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Automated design of a convolutional neural
network with multi-scale filters for cost-efficient
seismic data classification

Zhi Geng® 2™ & Yanfei Wang® 123%™

Geoscientists mainly identify subsurface geologic features using exploration-derived seismic
data. Classification or segmentation of 2D/3D seismic images commonly relies on conven-
tional deep learning methods for image recognition. However, complex reflections of seismic
waves tend to form high-dimensional and multi-scale signals, making traditional convolu-
tional neural networks (CNNs) computationally costly. Here we propose a highly efficient and
resource-saving CNN architecture (SeismicPatchNet) with topological modules and multi-
scale-feature fusion units for classifying seismic data, which was discovered by an automated
data-driven search strategy. The storage volume of the architecture parameters (0.73 M) is
only ~2.7 MB, ~0.5% of the well-known VGG-16 architecture. SeismicPatchNet predicts
nearly 18 times faster than ResNet-50 and shows an overwhelming advantage in identifying
Bottom Simulating Reflection (BSR), an indicator of marine gas-hydrate resources. Saliency
mapping demonstrated that our architecture captured key features well. These results sug-
gest the prospect of end-to-end interpretation of multiple seismic datasets at extremely low
computational cost.
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pplications of artificial neural networks (ANNs) are

rapidly increasing in data-driven natural-science

research fields such as materials!=3, biology and medi-
cine*~7, and geoscience®-10. In exploration geophysics, many
such studies can be treated as problems in visual image clas-
sification or segmentation. For example, geologists have used
images of seismic reflection data to classify subsurface sedi-
mentary units or hydrocarbon reservoirs!! and identify dis-
continuous structures like faults and large fractures!? or salt
bodies!3. All morphology patterns in such images can be
properly learned by ANNs, many of which are based on the
popular convolutional neural networks (CNNs) specifically
designed for image-related tasks in computer vision. However,
seismic reflection signals have intrinsically different natures
compared with visual images with respect to polarity and
limited bandwidth of sparse signals. In addition, seismic
responses of geologic features vary in terms of wave propaga-
tion paths, frequencies, amplitudes, and polarity orientations.
This suggests that data-driven ANN-based seismic interpreta-
tion research should be treated as complex mapping problems
of high-dimensional sparse signals.

Morphology analysis of seismic images can employ CNNs for
segmentation by pixel (e.g., fully convolutional network var-
iants'2) or classification by patch/image (e.g, Visual Geometry
Group (VGG) or other variants!!-14), In addition, CNNs used for
classification have the potential to identify events or implications
of multiple-channel seismic signals in a given receptive field that
are difficult to annotate using pixel-level labels. For example, in
geophysics and reflection seismology, wave amplitude variations
by angle of incidence indicate types of hydrocarbons and drilling
risk!>16, However, classic CNNs popular in computer vision
classification are commonly manually designed by experience
based on past designs and require enormous computational
resources, even in recognition of 2D images. In addition, the
seismic reflections of one specific subsurface reflector alone could
consume gigabytes in storage space. Therefore, low-cost tools for
handling high-dimensional seismic reflection signals are urgently
needed. Specifically, such highly lightweight and computing
efficient tools would significantly accelerate the estimation of
marine seafloor hydrocarbon and methane hydrates resources,
the carbon cycling of which has significant impacts on the
atmosphere, biosphere, and hydrosphere from local to global
scales!7-20,

In this study, we propose a data-driven solution for automated
searching a neural network architecture using a CNN framework
capable of efficient seismic data classification (Fig. 1). We hypo-
thesized that key signal features embedded in exploration seismic
data could be captured by an ANN with significantly fewer
parameters than classic CNN architectures. We first designed
patches of conceptual signals (Fig. 1a) with particular sequences
of seismic amplitudes; these are analogous to the key seismic
reflections of oceanic gas hydrates. Next, various complex
corruption methods were applied to the synthetic patches to
generate an aggressive dataset (Fig. 1b) for searching the spe-
cific CNN architecture (Fig. 1c). The highlights in the CNN
architecture were topological layers of fusion units used to filter
multi-scale features. We factorized the network kernels to
quadratically reduce the number of parameters and tried to
keep polarity information by aggregating opposite sampling
features. Our final architecture (SeismicPatchNet) was found by
a random searching strategy with the help of high-performance
graphics processing units (GPUs). To the best of our knowl-
edge, this study constitutes the first data-driven design of a
computationally efficient CNN intended for end-to-end inter-
pretation of seismic data from the perspective of sparse-signal
processing.

4-7

Results

Overview. For convenient comparative analysis, we focused on
2D data patches, meaning that the input tensor channel was
limited to 1. We first presented the architecture evolution as a
function of inference accuracy during massive searches of
167,512 instances in the architecture space and used this to
detail the discovered SeismicPatchNet. We then benchmarked
SeismicPatchNet along with several classic CNN architectures
for image classification using our synthetic dataset. In addition,
we evaluated these architectures’ predictive performance using
real 3D seismic data from gas-hydrate exploration. Finally, we
demonstrated that SeismicPatchNet could predict the bottom-
simulating reflector (BSR) indicator for gas hydrates with: (1)
the lowest number of architecture parameters and disk storage
volume, (2) the largest inference speed and precision, and (3)
high confidence for positive and negative features with
minimum noise.

Architectural evolution during search. A synthetic dataset was
used to represent the worst-case seismic data scenario for massive
searching of sub-optimal architecture in the architecture space.
The searching task was distributed in multiple GPUs, which
trained and validated 167,512 different architectures over the
course of 1 month (Fig. 2a). As this was a problem of random
searching instead of continuous optimization, for greater clarity,
12 instances were uniformly chosen from all architectures sorted
by accuracy to show the evolution of CNN layers. We plotted the
relative output size (rectangles in Fig. 2a) of the traditional
convolutional layers and the topological fusion layers. The former
were similar to the initial layers of GoogLeNet?! but with varying
sizes; the traditional layers of the best architecture (black rec-
tangles in Fig. 2a) were medium in size and the output size of
each layer was similar. However, the latter exhibited a funnel
form, in which the output size of the lower layer was significantly
smaller than that of the higher layer. Similarly, we also uniformly
chose 256 architectures to represent the overall performance,
resulting in a negatively skewed distribution (Fig. 2b). The mode
(My) of the distribution in Fig. 2b indicated the most frequently
occurring accuracy of randomly drawn architectures. Unexpect-
edly, the architecture performance at the mode was ~2% lower
than at the optimal level, suggesting that the architecture with the
best predictive performance was accidentally discovered and
achieved a trade-off with layer output size.

Configuration of SeismicPatchNet. The suggested configuration
of SeismicPatchNet (Table 1) had seven layers/blocks containing
trainable parameters in its naive form. The size of input tensor
was 112 x 112 x number of channels. The input receptive field
covered a vertical area between 100 x 100 and 300 x 300 m? in
seismic surveys. The total number of trainable parameters was
0.725697 M.  Overall, SeismicPatchNet had the following
characteristics:

(1) The output number of kernels/filters varied from layer to
layer and was restricted to the specified searching space,
preventing uncontrolled increases in feature maps and
subsequent reduced computational performance.

(2) The rich diversity of parallel multi-scale kernels/filters was
concatenated as one output vector in each topological
fusion layer, forming the input of the next layer (Fig. 1c).
Similar to InceptionNet?2, the factorization of convolu-
tional operations was used to significantly reduce the
number of trainable parameters: sequences of 1 x 1, nx 1,
and 1 xn convolutions were combined to replace a single
expensive nxn convolution with larger kernel size. In
addition, a group of max-pooling and min-pooling

2 | (2020)11:3311 | https://doi.org/10.1038/s41467-020-17123-6 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-17123-6

ARTICLE

a Signal prototype b
Signal Visualization
[N T
2 — Elsaljip
3 e i
o [N]
0
(]
=
@ - Z
=2 5
P: positive, N:
C Model framework
Topological layers
_IEIt_Ial Ify_eis_ N , s Multi-scale features fusion units N _O_Ut_p:‘tja_yf’f
/’ Com'mon \ Conv_MxM ¥/ Multi-scale _ 1 Classifier AN
: convolution units ll ' |—-i - features : : Positive:
. L Conv_1xN
' Inputsignals ! : @ ~ Conix K o | X ;[ Negative,
Positive  Negative . [ % 1 |
! itiv g : | Multi-scale 1 J Positive |
. | 4 ~kemels Conv_Nx1 | T
L E - [ Negatlve,
: : - @ T 17 ¢ b
Conv_1x1 1 ositive .
Ny | TEBT
) / 11 NegatlveI
1
L | Positive |
|~ Feature maps %%}L = P g T
= { _ \ Negative,
K \ Max_pooling P,xP, I~ 005 1 7
~ Min_pooling P,xP, ~  OOB% , =777 ===~

Fig. 1 Schematic representation of data-driven CNN design flow proposed here. a Prototype of the target signal embedded in background signals. Key
features differ in the combination of sequences of positive and negative “amplitudes”. Left-hand column presents wiggle plots of the signals and right-hand
column presents 2D images of the corresponding signals. b Examples of heavily corrupted signals used for training and validation of the architecture
candidates. ¢ Diagram of the scalable architecture. The number and sizes of layers, kernels, and other components are variables to be determined by
searching with respect to specific data and architecture space.
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operations was also incorporated as a parallel path to merge
the sampled features from the previous layer. Our
experimental experience suggested that adding pooling
operations with opposite polarity had additional benefits on
seismic reflection data.

In each topological layer, the size of kernels/filters and the
number of various units were different, meaning that the
fusion layers were not stacked upon each other with
the same type as usual. All the numbers and m x n sizes of
the kernels/filters were determined using an automated
search strategy to approximate a quasi-optimal structure.
Interestingly, both the number and size of the kernels
showed a growing trend from the lower fusion layer (4) to

(4)

the higher fusion layer (6), suggesting that patterns of
higher abstraction were learned by higher layers?!.

Only traditional and most used operations like convolution
and feature sampling/pooling were considered, in order to
significantly reduce the computational resources needed
and thus improve computing speed; more intermediate
variables during the training mean more memory usage and
less computational efficiency. In the naive form of
SeismicPatchNet, all layers used rectified linear unit as
activation function. Occasional pooling layers with stride
two were used to halve the resolution of the feature maps.
One dropout layer followed by one fully connected layer
was applied to combat the overfitting problem.

NATURE COMMUNICATIONS | (2020)11:3311 | https://doi.org/10.1038/s41467-020-17123-6 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Table 1 Configuration of SeismicPatchNet.
Type (layer Ib.) Patch size/stride Output size Element (size): num.
Convolution (1) 7x7/2 56 x 56 x 137 Conv (7 x7):137
Max pool 3%x3/2 28 x 28 x 137 Max pool (3x3):1
Convolution (2) 1x1/1 28 x 28 x 137 Conv (1x1): 137
Convolution (3) 3x3/1 28 x 28 x 144 Conv (3x3): 144
Max pool 3x3/2 14 x14 x144 Max pool (3x3):1
Fusion (4) NA2 14 x14 x133 Conv (2x2): 83
Conv (1x1): 104
Conv (3x1): 2, conv (1x3): 2
Conv (1x1): 112
Conv (7 x1):16, conv (1x7): 16
Max pool (2 % 2): 12, min pool (2 x 2): 1
Max pool (3 x3): 4, min pool (3x3): 5
Fusion (5) NA2 14 x14 x 151 Conv (2x2): 75
Conv (1x1): 280
Conv (6x1): 5, conv (1x5): 5
Conv (1x1): 382
Conv (7x1): 7, conv (1x7): 7
Max pool (2 % 2): 20, min pool (2 x 2): 21
Max pool (5 x 5): 12, min pool (5x5): 11
Max pool 3x3/2 7 x7 %151 Max pool (3x3):1
Fusion (6) NA2 7 x7 x 459 Conv (2x2):14
Conv (1x1): 46
Conv (3 x1): 25, conv (1x3): 25
Conv (1x1):170
Conv (5x1): 116, conv (1x5): 116
Max pool (4 x4): 107, min pool (4 x 4): 107
Max pool (5 x 5): 45, min pool (5% 5): 45
Average pool 7x7/1 1x1x459 Average pool (7 x7): 1
Dropout (50%) NA2 1x1x 459 NA2
Linear_FC (7) NA2 1x71x 459 Fully connected
Classifier NA2 1x1x64 Softmax
aNA not applicable here.

Computational performance using the synthetic dataset.
Receiver operator characteristic (ROC) curves (Fig. 3a) were used
to assess the comprehensive performance of SeismicPatchNet and
five other classic CNN architectures using the synthetic test
dataset. All CNN architectures were trained dozens of times using
similar settings, including moving averages of the trainable
parameters/weights and automated training, to allow accurate
statistical comparison of their performance. Markers on each
ROC curve in Fig. 3 indicate the position of the 0.5 confidence
threshold of the best-trained model, while the corresponding
rectangle denotes the variations of the threshold during the
dozens of training runs. Unexpectedly, ResNet-5023, which has
shown superior performance over other classic CNN archi-
tectures in visual image recognition tests?4, performed worst on
our synthetic seismic data. The prediction accuracy and the area
under curve (AUC) value for ResNet50 were ~4% and ~3% less
than that of GoogLeNet?!, respectively, which had the best per-
formance. In addition, the performance of VGG-16%>, which
contained the largest number of parameters, was moderate
compared with all others except ResNet-50. The overall perfor-
mance of SeismicPatchNet and its model trained with a double
regularization method was similar to the other CNN archi-
tectures. The performance of Inception-ResNet?2, which com-
bines GoogLeNet variants and ResNet, fell between that of
GoogLeNet and ResNet-50. In summary, the architectures with
feature fusion designs (GoogLeNet and SeismicPatchNet) were
overall superior to the others, especially those with skip con-
nections®* (e.g., ResNet).

However, there were remarkable differences among the CNN
architectures with regard to the number of parameters (size in

Fig. 3b) and computing speed (Fig. 3¢c). In this study, VGG-16
consisted of 16 layers with ~134 M trainable parameters and took
up nearly 500 MB of storage space, 185.02 times larger than
SeismicPatchNet. In contrast, the best predictive accuracy and
AUC for SeismicPatchNet was 1.9% and 0.43% larger than for
VGG-16, respectively. Although GoogLeNet performed slightly
better (Fig. 3a), its size was ~14 times that of SeismicPatchNet
(Fig. 3b). On the other hand, the computing speed of
SeismicPatchNet was more than 12 and 18 times higher than
that of VGG-16 and ResNet-50, respectively. SeismicPatchNet
had a comparable number of trainable parameters with ResNet-
50 but had an order-of-magnitude advantage in both low
memory usage and high predictive speed. Using the same
settings, ResNet-50 could only be trained using a large-memory
GPU (24 GB, Titan RTX Nvidia GPU) because of expensive
operations in the architecture such as the batch normalization of
parameters. In most cases, automated training of ResNet-50 took
~2h that of SeismicPatchNet took only ~8 min. Thus, Seismic-
PatchNet clearly outperformed other CNN architectures in a
combination of computational cost and predictive speed.

Comparison of predictive performance using real data. 3D
seismic reflection data of oceanic gas hydrates from Blake Ridge
(USA)2627 were used to evaluate the real-world performance of
the various CNN architectures (Fig. 4). All architectures were
trained five times using a similar procedure and a trained model
representing the average performance of each was chosen for
further comparison. As BSR was the only prediction focus, pre-
cision was used to assess the predictive performance (Fig. 4b).
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SeismicPatchNet clearly achieved higher precision for real-
world BSR prediction than the other CNN architectures (Fig. 4a),
though its advantage was only 0.33% greater than the lowest
performer (ResNet-50, as in the first test). Interestingly,
GoogLeNet’s performance using real-world data was lower than
for synthetic data; as this contained one order of magnitude more
parameters than SeismicPatchNet, it may have been inferior at
capturing the sparse features of real seismic reflection signals. In
addition, although SeismicPatchNet was marginally superior to
the architecture trained with double regularization (SPN-DR), the
latter had less performance variation. As real-world seismic
reflection signals are particularly sparse, SeismicPatchNet inherit-
ing implicit regularization ability may be capable of covering the
data space even without the use of explicit regularization schemes
to improve the network’s generalization performance.

Attentive responses of the CNN architectures. We performed
attentive response analysis using a guided-smooth-gradient
algorithm?® to identify the prediction focus of the CNN archi-
tectures (see more examples of SeismicPatchNet in Supplemen-
tary Fig. 3) with respect to label class. The key signal features used
by a specific CNN-trained model for prediction were determined
by superimposing maps of the masked tensor of the salient gra-
dient and the signals with polarity. For demonstration purposes,
we selected three patches from the real seismic dataset, including
a ground truth BSR (Fig. 5a), a ground truth non-BSR (Fig. 5b),
and a potentially incorrectly labeled BSR (Fig. 5¢). The key feature
in a BSR patch is a sequence of a negative signal followed by a

positive signal. In Fig. 5a, all architectures except ResNet-50
properly captured this pattern. However, in Fig. 5b, only Seis-
micPatchNet was sensitive to both strong reflections and back-
ground features. Although Inception-ResNet showed a salient
gradient (grayscale image in Fig. 5b) around the strong reflec-
tions, it mainly emphasized the positive signals. In Fig. 5¢, Seis-
micPatchNet once again showed that it was sensitive to both
strong reflections and a few background features. More examples
(Supplementary Fig. 3) also demonstrated that SeismicPatchNet
could learn patterns that agreed with accepted seismic reflection
signatures.

Predictive performance of CNNs in field applications. A
complete section of the 3D seismic data (inline 88, Fig. 6a) was
chosen to test the predictive performance of the CNN archi-
tectures for characterizing the subsurface distribution of BSR
(Fig. 6b-s). Unexpectedly, ResNet-50 failed to characterize the
occurrence of BSR in the field using the same prediction method
as the others. In the noisy view of the predictions (the middle
group of plots in Fig. 6), there was also much more noise (white
dots) in the deep zone results (dashed line in the middle group) of
Inception-ResNet (Fig. 60) than in the results of SeismicPatchNet
(Fig. 6r), which showed the highest confidence for non-BSR.
However, all the architectures showed false positives of BSR more
or less along the seabed, except VGG-16. As shown by the
zoomed-in seabed image in Fig. 6a, the leading polarity of the
seabed reflection was very similar to that of BSR, probably
because of technical issues in the data processing. This means that
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Fig. 4 Predictive performance of CNN architectures using gas-hydrate field data from Blake Ridge, USA. a Comparison of predictive precision using real
seismic data from the test area showed in the legend. b Selected illustrations of the inferred occurrence of BSR by the CNN architectures. SeismicPatchNet-
DR SeismicPatchNet trained with double regularization method. The occurrence of BSR is represented by probability (0-1).

the seabed reflection signatures around the marked region were
misleading and inconsistent with the accepted definition,
explaining the false positives of CNN architectures including
SeismicPatchNet. For comparison, only SeismicPatchNet showed
high confidence in non-BSR in the deep zone (the right group of
plots in Fig. 6). In practice, however, the false positives along the
seabed can be easily removed by computational post-processing,
but those in the subsurface zones cannot be removed without
human intervention. Therefore, this case study demonstrated the
robustness of SeismicPatchNet in this application.

Discussion

Neural architecture search (NAS) has been one of the most
popular topics in machine learning in recent years, with many
studies focusing on search strategies like reinforcement learning,
evolutionary algorithms, and Bayesian optimization?. One
common issue, however, is that most NAS research has placed a
priority on inference performance and consequently tends to
produce a large architecture3?. Here, we used a random search3!
strategy and hypothesized that a significantly small architecture
could be found if the draw number was large enough. Although

6

random search is believed to be computationally expensive, it is a
global optimization method for hyper-parameter selection in
deep learning, and other research has shown that the resultant
architectures were comparable to those found by other optimi-
zation processes in a certain period of computation time30-32, By
limiting the number of topological fusion layers with rich multi-
scale filters used to aggregate complex features of the polar sig-
nals, we demonstrated a trade-off between search efficiency and
architecture performance. As it is impossible to draw infinite
realizations from the search space, our core intention was the
accidental discovery of an architecture with significantly few
parameters (Fig. 2b and Table 1), which may not be acquired by
some adaptive/optimization algorithms trapped at local
convergences.

We therefore proposed a data-driven solution to search a
compact CNN architecture (SeismicPatchNet) devoted to classi-
fying multiple seismic reflection datasets synchronously at a low
computational cost. After constructing a complex but quantita-
tively controllable data space to simulate seismic data in a difficult
scenario, a sub-optimal architecture for sparse signals was found
through hundreds of thousands of automated searches in a
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restricted architecture space. Unlike the usual practice of
stacking the same layers repeatedly, we designed topological
fusion layers with rich multi-scale filters. For comparison, the
traditional convolutional layers and fully connected layer used
in classic CNNs were kept in SeismicPatchNet to show the
advantages of the newly designed topological fusion modules.
Only some regular operations like traditional convolution,
activation, and sampling were employed for balancing the
computational resources. Many other cutting-edge operations,
such as dilated convolutions33 and transposed convolutions34,
may contribute to the overall inference performance of the
architecture; these need further investigate in future research.
However, the poor performance of ResNet50 using the syn-
thetic data and the noisy outputs of Inception-ResNet and
ResNet50 on the real data suggested that skip connections?*
deteriorated the architectures’ inference performance on our
seismic data. A potential explanation was that the effective
features in polarized seismic data were sparse and different
from vision images, such that the skip connections passed
useless information (noises) from shallow to deep layers. On
the other hand, total number of parameters of the cutting-edge
architectures were commonly in the dozens of millions, but
only 0.73 million in our architecture. Although the functional
capacities of those architectures should therefore be nearly 100
times greater than our architecture, their performances were far
from superior to ours. Therefore, we concluded that our
architecture had comparable inference performance and
achieved a major advancement in computational speed and
resource efficiency.

We demonstrated that the naive form of SeismicPatchNet was
equal or better, in terms of predictive performance, than some
state-of-the-art CNN architectures when used on both synthetic
and real-world seismic data. Although we used stacked seismic
data with one channel, SeismicPatchNet showed order-of-
magnitude superijority in computing speed with a significantly
smaller number of trainable parameters. Thus, variants of Seis-
micPatchNet can be used to process multiple channels of seismic
reflection signals directly deployed on individual devices with
limited computational resources. This should make it possible to
conduct efficient end-to-end interpretations of subsurface geo-
logical implications, which are not problems of visual image
recognition. For example, under certain condition, VGG-16
would consume ~55 GB of GPU memory to train using a partial-
stack seismic dataset with multiple channels (offsets), while
SeismicPatchNet only needed ~300 MB memory. Specifically,
smaller and more powerful variants of the architecture could be
proposed by carefully optimizing the shallow network of tradi-
tional convolutional layers, considering a scale-free topology>®, or
replacing the fully connected hidden layer with sparse ones>®. We
hope that these results will stimulate new research into automated
machine learning for seismic data interpretation, and help explore
marine carbon resources indicated by seismic data at a decisive
advantage in terms of computational efficiency and cost.

Methods

Synthetic data. To develop a data space that was analogous to exploration-derived
seismic data and could be quantitatively controlled, we designed a synthetic dataset
by embedding stochastic key signals in chaotic background signals. The original
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Fig. 6 Predictions on a section (inline 88) of 3D seismic data from the Blake Ridge gas hydrates. a Image view of the seismic data (inline 88). b-s show
BSR occurrence predicted by selected CNN architectures. Raw output: the original output of the trained models; the output data are provided as source
data. Noisy view: the predicted value belonging to [0.05, 0.95] is set to 0.5. High confidence: the predicted value belonging to [0, 0.95] is set to O.

data prototypes were patches consisting of stochastic sequences of bricks with
different thicknesses and values ranging from —1 to 1 with a mean of 0 (Fig. 1a),
imitating varying-amplitude reflections of stratigraphic units. The key signal in the
patch labeled as True (coded as 1) was a combination of one negative amplitude
(—1 to 0) followed by one positive amplitude (0 to 1). The key signal in the patch
labeled as False (coded as 0) was either a combination of one positive amplitude
followed by one negative amplitude or nothing but fully random background
signals. The patches with True labels were analogous to BSR, seismic reflections
indicating the base of oceanic gas hydrates3°.

In contrast, the key features of the seabed reflections were a reverse
combination of the wave polarity (one positive amplitude followed by one negative
amplitude). The synthetic patches represented seismic reflections for BSR, non-
BSR, and seabed/environmental/other settings. To push the limit of the predictive
performance of our CNN architectures, we applied a series of corruption methods
when processing the patch data, including random brightness, blur, Gaussian noise,
elastic transformation, frequency noise, perspective transformation, and coarse
dropout, then prepared the synthetic dataset for testing. The synthetic data were
particularly designed to simulate extreme situations in the seismic reflection data,
such as significant low signal-to-noise ratio or brightness, serious noise problems,
and missing records.

We used 16,000 patches (samples) for training and 4000 patches for validation
during massive searching of the CNN architecture. A more complex dataset
containing 7500 patches was used as benchmark data when comparing CNN

performance. All data were approximately balanced, and only the patches
containing BSR were labeled as True. All synthetic data were generated by the same
pipeline but with different controlling parameters to differentiate the data space
quantitatively while assessing the architectures’ capability to focus on key signals.
Randomly selected patches of the training set and the synthetic benchmark data are
shown in Supplementary Fig. 1. More information about the synthetic data and
patch generation and processing are detailed in the open-source codes.

Real-world seismic data. The real-world data consisted of 3D marine exploration
seismic data from the well-studied Blake Ridge gas-hydrate site offshore of South
Carolina, USA. The seismic survey covered an area of 348.93 km? with two-way
time ranging from 3.400 to 5.998 s. The crossline 1 to 690 of inline 6 to 80 was
chosen for preparing the training and validation dataset, while that of inline 81 to
92 was chosen for preparing the test data (Fig. 4).

Unlike those for fault morphology, BSR reflections have complex regional
features because of their complicated geologic origin’’. We manually annotated
BSR occurrences in seismic data qualified in previous research26-38, Before
producing the labeled dataset for machine learning, the seismic data were
normalized to between —1 and 1. Four types of patches were extracted by sliding
windows at a step increment of 5 traces along with the BSR locations, BSR vicinity
zones, seabed, and other zones. The patch window covered 140 ms of depth in a
two-way time domain and 7 traces with spacing of 37.5 m. Only the patches
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contained BSR were labeled as True and the data represented an approximately
balanced dataset. No data augmentation methods were applied except flipping the
patches horizontally. A total of 30,478 patches were used to train the CNN
architectures (25,905 for training, 4,573 for validation) and 5,339 patches were used
as test data for the benchmark. Randomly selected patches of the training set and
the benchmark real-world data are shown in Supplementary Fig. 2.

Architecture search and training procedure. To limit the architectures’ space, we
defined a template containing three traditional convolutional layers (initial layers in
Fig. 1c), three topological layers/blocks with multi-scale fusion units (topological
layers in Fig. 1c), and one fully connected hidden layer for controlling output size
(output layers in Fig. 1c), ending with one Softmax classifier:

P(y =jlx) = % All the sizes of the layers’ output, the multiple kernels/
k:

=1
filters inside the layers (Fig. 1c), and the configuration of kernels/filters are dis-
crete integer variables belonging to certain intervals. The output sizes of the
traditional convolutional layers belonged to [32, 256], while the output sizes of
the topological layers/blocks belonged to [128, 640]. The sum of numbers of the
kernels/filters inside the corresponding layer equaled the layer’s output size. The
size of kernels/filters in the layers was determined as conv_MxM : M € [1,2],
conv_1x N : N € [3, 7],pooling size € |2, 5] (Fig. 1c). Consequently, hundreds of
thousands of CNN architectures with the same topological framework but with
different functional capacities were randomly generated, trained, and validated
during massive searches carried out by high-performance GPUs. Then, we sorted
the trained models by inference accuracy with regard to the validation data.
Finally, the architecture corresponding to the trained model with the highest
accuracy and a significantly small number of parameters was selected as the
desired architecture. The pseudocode of the architecture search strategy was
summarized in Table 2.

The training and prediction algorithms were implemented using Python and
TensorFlow®. For a fair comparison, all CNN architectures were trained and
evaluated using the same procedure and similar settings. We adopted an automated
training and stopping strategy to guarantee full training without overfitting. In this
approach, the program would not stop training if the loss value on the validation
data decreased more than 2.5% relative to the minimum loss value within a certain
number of iteration steps, during which ~70% of the whole training dataset was
consumed. We used the Adam optimizer®? and exponential moving average
method>® to update the trainable parameters. As the number of training epochs
varied significantly in different architectures, we set a constant learning rate of
10~* for the optimizer. The training was performed with mini-batches of 64
patches for each epoch and cross-entropy (C = — S°M | Yoo - log(p,.)) as the loss
function. The massive searching of architectures took ~1 month in machines
equipped with one Titan RTX and three RTX 2080ti Nvidia GPUs.

Hybrid regularization scheme. Inversion problems in seismic reflection benefit
from hybrid regularization methods*! due to the sparsity and non-smoothness of
seismic data. Inspired by this, we adopted the following regularization scheme to
train and explore the performance limit of our architecture using an extreme
seismic data scenario:

M
JEW) = =3 o log(pa) + al Wil +BI WII, (1)

c=1

where ] is the objective function to be minimized by the optimizer, W is all the
trainable parameters, — "M, y, _-log(p, ) is the cross-entropy loss function, M is
the number of categories/classes, y, . is the indicator/label (0 or 1), p,, . is the
prediction score that the observation sample o belongs to category ¢, and « and 8
are penalty parameters for the [; and I, regularization of W, respectively. The term
af|Wl|; is used to keep the sparsity of the trained model’s parameters, while the
term B||W/|, is used to keep the boundary structure/smoothness of the parameter
space. The double regularization scheme was implemented in TensorFlow. The
penalty parameters were tuned by random searching of a given parameter space.

Benchmark and robustness of the CNNs. All the trained models of CNN
architectures were restored with the moving-averaged parameters for evaluation
and prediction using the test data, contributing to the robustness of the training
and prediction performance of the individual architecture. As we were limited by
the computational resources and experimental time available, we also trained the
CNN architectures on the synthetic dataset for dozens of time to compare the
statistical performance. Because of the simplicity of the real seismic data, the CNN
architectures were trained five times for each on the real dataset. We also mon-
itored training curves of validation loss and accuracy for quality control. The
ResNet50 used was a realization for the CIFAR-10 dataset?4. The computational
speed and the number of parameters of the CNN architectures were normalized for
comparison; the results may differ by software library version and hardware
specifications.

Prediction using real-world data. We predicted BSR occurrence by feeding the
CNN architectures with patches of real seismic data extracted from 2D sections of
the 3D data cube using the sliding window approach?2 (Fig. 7). These patches were
sliced by a fixed-size window from the top-left corner to the bottom-right corner of
the 2D seismic section (inline 88), at a moving step of 5 seismic traces in the lateral
direction and 6 ms of two-way time in depth. Prediction scores given by the CNN
architectures were plotted as a prediction confidence map (Fig. 6), ranging from 0
(definite non-BSR) to 1 (definite BSR).

Table 2 Architecture search strategy.

Algorithm 1: random search pseudocode

(1) Build a complex data space y and architecture configuration space 4;

(3) while not stopped do

6) Log performance evaluations;

(2) Define a learning/training algorithm A for mapping dataset i@ to a function f = bXA(W,X”""”) as a trained model;

4) Randomly draw trial points {)U . -/1”} in A to create network realizations;
5) Update weights/parameters w of networks by descending loss L(x;f);

(7) Derive the final architecture with high performance and small number of parameters.

Field data (inline 88, Blake Ridge)

BSR?
a5 200 600 1000 5
T E Prediction
& - B s S <~ J(es 1
:GE; 451 sliding/moving \ y s e i BSR? *
F BSR— ' 05
5.5 1 . No
§ S~ ~»
Seismic data 0
2 0 2 Window slices 1:1 windows, real scale
[ —

Fig. 7 Predicting of BSRs on a seismic data section using a simple sliding window method. The dotted rectangles are illustrations of slice windows
moving row by row on specific seismic section, while the solid squares denote the windows with real scale on the section. The prediction results of BSR

occurrence is represented by probability (O to 1).
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Interpretable analysis of salient features. Interpretable studies highlight the
relevant focus of the CNN architectures on the object of interest. We employed a
guided-smooth-gradient algorithm?®, implemented in the Python repository
(PyPI), to show the responses of the trained model’s parameters with respect to the
pointwise intensities of the input seismic signals (Fig. 5). The smoothed gradients
were converted to 2D grayscale images, the brightness of which indicated the
attention of the architecture. To visualize the polarity of the seismic signals, we also
plotted the wiggle view of seismic traces overlapped by the masked image of the
seismic patch. Only 20% of the most salient pixels were shown. The opacity of the
seismic traces and the image were set to 30 and 95%, respectively, for improved
visual perception.

Data availability

The synthetic data for architecture searching were generated using the scripts in the code
repository mentioned below. The real seismic data of Project Blake Ridge Hydrates is
available under a Creative Commons (CC BY-SA) license at http://www.opendtect.org/
osr/Main/BlakeHydrates. The source data underlying Figs. 6b, e, h, k, n and q (raw
output of trained models) are provided as a Source Data file. All other relevant data are
available upon request.

Code availability

Code supporting the findings of this study are available open-source in GitHub.
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