
 ttp://iaeme.com/Home/journal/IJCET 215 editor@iaeme.com h

International Journal of Computer Engineering & Technology (IJCET)
Volume 10, Issue 2, March-April 2019, pp. 215-233, Article ID: IJCET_ _02 22 10 _0
Available online at

ttp://iaeme.com/Home/issue/IJCET?Volume=10&Issue=2 h
Journal Impact Factor (2016 9.3590(Calculated by GISI) www.jifactor.com):
ISSN Print: 0976-6367 and ISSN Online: 0976–6375
© IAEME Publication

DISTRIBUTED CONTROLLER FAULT
TOLERANCE MODEL (DCFT) USING LOAD

BALANCING IN SOFTWARE DEFINED
NETWORKING

Gaurang Lakhani and Dr. Amit Kothari

Research Scholar Ph.D. (CE/IT) Gujarat Technological University,
Ahmedabad, Gujarat, India

ABSTRA CT
Lack of Flexibility, Centralized Control, and Cost are limitations of the traditional

network. Software defined networking (SDN) adds flexibility and programmability in
network management by separating the control plane from the data plane. Distributed

 controllers with SDN are logically centralized at control plane and physically
distributed at data plane. They are deployed to improve the adeptness and accuracy of
the control plane, which could isolate network into few subdomains with independent
SDN controllers. Traffic is dynamic and configuration between switch and controller
is static. If one of the controllers fails, load imbalance arises. To address this problem

 of fault tolerance in distributed controller DCFT (Distributed Controller Fault
 Tolerance) model is proposed in this paper. A novel switch migration method with

coordinator controller in a distributed SDN controller is proposed for providing fault
tolerance through load balancing. The system architecture of the proposed model with

 different modules such as coordinator controller election, load collection, decision
 taking, switch migration, Inter controller messenger designed. On failure of

 coordinator controller switch migration discussed. Implement DCFT model in
 Mininet, derived results, The results show that our design could achieve load

balancing among distributed controllers while fault occurs, regardless network traffic
 variation and outperforms static binding controller system with communication

overhead, controller load balance rate, and packet delay. We compare our model with
 CRD (controller redundancy decision), MUSM (maximum utilization switch

 migration) and ZSM (Zero switch migration) techniques. Simulation analysis
performed on custom topology. compare packet delay, communication overhead We

 and load balancing rate in custom topology with before and after migration of a
 switches. that the DCFT model produces better performance in fault It’s revealed

tolerance.
Keywords: Software Defined Networking, Distributed controller, Fault Tolerance,

 DCFT, Switch Migration, coordinator Election, Load Balancing, Data Plane, and
Control Plane.

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 216 editor@iaeme.com h

Cite this Article: Gaurang Lakhani, Dr. Amit Kothari, Distributed Controller Fault
 Tolerance Model (DCFT) Using Load Balancing in Software Defined Networking,

International Journal of Computer Engineering and Technology, 10(2), 2019, pp. 215-
233.
ttp://iaeme.com/Home/issue/IJCET?Volume=10&Issue=2 h

1. INTRODUCTION
Software- is a new approach in network management and enable Defined Networking (SDN)

 innovation in networking. Current traditional networks are complex and difficult to manage
especially in light of changing routing and other quality of service demands of administrators.
SDN separates the two main functions of a traditional networking device (switch or router)

 viz packet switching and routing decision. The brain of the control plane is the SDN
controller. Controller talks with network devices through southbound Interface (SBI) such as

 openflow protocol. The control plane exposes some features and APIs through the
Northbound Interfaces (NBI) to network operators to design various management application

 exploiting such as set of REST API. East-West bound API used for inter-controller a
communication among multiple controllers. Control functionality is removed from network
devices that are considered as simple packet forwarding elements. The forwarding decision is
flow based rather than destination based. Figure 1 shows flow tables, flow defined by set of a

 packet field values acting as match criteria and sets of associated actions to the matching
 criteria. All packets of the same flow receive identical service policies at the forwarding
 devices. The flow abstraction allows unifying the behavior of different types of network

devices including routers, switches, firewalls, and middleboxes. Flow programming enables
unprecedented flexibility, limited only to the capabilities of the implemented flow tables. The
separation of the control plane and the data plane can be realized by means of a well-defined
programming interface between switches and SDN controller. Openflow switch has one or

 more tables of packet handling rules. Each rule matches subset of traffic and performs a
 certain actions on traffic. Depending on the rules installed by controller application, an

OpenFlow switch instructed by controller to behave like a router, switch, firewall or perform
any other roles.

Figure 1 Openflow enabled SDN device

SDN adoption raises issues of scalability and reliability in centralized design. That can be
 referenced with physical delegation of the control plane. Such materially dispersed but

 logically centralized systems bring an added set of challenges. Logically centralized
 controllers responsible for forwarding routing decisions, controller failure is significant a

problem of SDN, load of the futile controller has to be spread among the other controllers. a
In this paper, we design Distributed Controller Fault Tolerance model (DCFT) using load a
balancing in SDN.

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 217 editor@iaeme.com h

 Few previous papers [5][6][7][8][9] have explored switch migration to provide load
balancing but existing proposed algorithms can only work with load imbalance they cannot

 work with the event of controller failure. Control plane is suffering from lack of fault a
tolerance. For distributed control plane coordinator election algorithm used to identify a
unique coordination between all SDN controllers.

The main contribution of this paper as follows is
 A novel switch migration method with coordinator controller in distributed SDN controller a

is proposed for providing fault tolerance through load balancing.

 The system architecture of the proposed model with different modules such as coordinator
 controller election, load collection, decision taking, switch migration, Inter controller

messenger designed.

 On failure in coordinator controller, switch migration discussed.

 Implement the DCFT model in Mininet, derived results. The results show that our design
could achieve load balancing among distributed controllers while fault occurs, regardless of
network traffic variation and outperform static binding controller system with communication
overhead, controller load balance rate, and packet delay. Verify the DCFT model on custom
topology.

Rest of the paper is organized as follows. Section II presents literature survey Section III
 presents proposed DCFT model system architecture with different modules. Section IV

 represents design and implementation with the proposed switch migration algorithm along
with coordinator failure, ordinary controller failure, and load imbalance. Section V reports

 with simulation analysis. Section VI presented with conclusion and section VII reports a
references.

2. LITERATURE SURVEY
2.1. Distributed contro in SDN l plane

 Distributed SDN control plane architecture divided into flat SDN control architecture and
hierarchical SDN control architecture.
(1) Flat architecture

 Flat architecture implies horizontal partitioning of the network into different regions, each
 will be taken care by single controller in-charge dealing with a subset of SDN switches.

 ONOS [15], Onix [22], HyperFlow [23] and OpenDayLight [24] are flat SDN distributed
controllers.

 Each controller is statistically associated with certain switches and exclusively handles
demands from them In ONOS [15]. In the interim to provide focal view and control among
the network, the controllers intermittently synchronize organize data and direction with one
other.

 Onix [22] panels the NIB (Network Information Base) giving each controller instance
responsibility for a subset of the NIB and it totals by making application decreases the fidelity
of the information before sharing it between other Onix instance within the group. Hyperflow

 [23] used WheelFS as distributed file system to build global network view and each a
 controller assumes responsibility for its system. The synchronization between controllers

 ought to be declared for certain occasion such as link status changes that could affect the
network view. The OpenDayLight [24] controller starts by building the data structure trees by

 utilizing the Yang modeling language and MD-SAL. They concentrated on necessary
 components to achieve spread control plane, give worldwide perspective of the network a

topology for upper applications.

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 218 editor@iaeme.com h

 Weal et al [39] described LBFTFB (load balancing to support fault tolerance using
feedback control for SDNs), model. It reduces the cascading failure problem effect. Compared
with the Hyperflow [23] model LBFTFB outperforms by 16% in terms of packet loss and
packet delay. Our model followed horizontal architecture. More details mentioned in the next
sections.
(2) Hierarchical architecture
The hierarchical SDN control architecture assumes that the network control plane is vertically
divided into different dimension (layers) reliant upon the required services. a

 Kandoo [32] expect progressive two layer control structure that segments control
 application into local and global. Contrast to Devoflow [33] and DIFANE [34], Kandoo
 proposes to diminish the general weight of the control plane without the need to alter

openflow switches. It set up two dimensions control plane where frequent events occurring
near the data path are handled by the bottom layer, and non-local events requiring network
vide view dealt by the top layer.

2.2. Coordinator election algorithm.
Esteban Hernandez et al [26] described a coordinator election algorithm using Raft consensus
method to provide fault tolerance to the distributed control plane. Raft gorithm is the al
consensus algorithm for managing replicated logs. Raft algorithm allows set of nodes or a
servers to work together as unique coherent system that is able to handle failures of some of a
its nodes. It can be done by replicating state machine of the coordinator

2.3. Switch migration algorithm.
Dixit et al. [5 work towards the utilization of controller resources using load balancing and]
reduce the power consumption by switching of under loaded controllers from the controller
pool. Dixit, Advait Abhay, et al. [6] proposed detailed and enhanced distributed control plane

 and switch migration protocol compare to their previous work viz. towards an elastic
 distributed SDN controller. They have proposed three properties to provide successful

migration of a switch but fault tolerant mechanism and how to select a controller or switch to
migrate were not discussed.

Liang, Ryota et al. [7] proposed an architecture to balance the load among controllers.
Controller with the role of coordinator calculate the load and take decision for migration of

 switch. They have proposed a switch migration algorithm that can provide crash free
migration. Yanyu Chentt, Qing Lit et al. [8] proposed an elastic architecture that can change
switch controller mapping as per the load condition. Cheng, Guozhen, et al. [9] work towards
Balance a load of control p ne by switch migration using parameters optimization of CPU, la

 bandwidth and memory. Zhou, Yahoo, et al. [10] work towards controller dynamic and
 adaptive load balancing algorithm for distributed architecture. There is no centralized a

component. Each controller runs DALB (Dynamic adaptive load balancing) and collect load a
 of other controllers and make the decision to migrate switch. Yu, Jinee, et al. [11] work

towards load balancing in distributed controllers by switch migration. The focus of this work
is to make load balancing decision locally to reduce the migration time. Their algorithm a
can’t work the event of controller failure.

 Hu, yannan et al [21] referenced method of uneven burden problem in the distributed
controller. Centralized node used for load balancing, centralized controller is constrained by a
memory, CPU power, and bandwidth. Moreover, a centralized node collects load information

 intermittently and it talks lot of messages frequently with other controllers, which will a
prompt to performance reduction of the whole system. Aly et al. [18] mentioned the selection
of destination backup controller based on distance between switches and target controller, a

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 219 editor@iaeme.com h

current load and percentage of packet loss. Distance between switch and backup controller a
influence the packet response time. Which affects the network model efficiency. Our model
considered the workload of the destination backup controller.

 Katta et al [27] depicted Ravana, conveyed convention for fault tolerant SDN. Ravana
forms the control messages transactionally and precisely once (at both the controllers and the
switches). Ravana keeps up these certifications even with both controller and switch crashes.
The key understanding in Ravana is that reproduced state machines can be reached out with
lightweight change side components to ensure accuracy, without including the switches in a
detailed accord convention.

 Botelho et al [28] mentioned replicated data store used as central component of the a
design of this method. Data store implemented as fault-tolerant replicated state machine for

 storage and coordination operations. One controller configured as primary and other as
backup. All controllers run the Lease management algorithm. The primary controller contains
cache of the data store.

Obadia et al [29] address problem of failover for distributed SDN controllers by proposing
two strategies for neighbor dynamic controllers to assume the control of vagrant openflow
switches (1) greedy incorporation and (2) prepartioning among controllers. They utilized a

 model with distributed floodlight controllers to assess the techniques the outcome
demonstrates that the failover term with the unstable methodology is corresponding to the no
of vagrant switches while the pre-partitioning approach proposing a very little extra control
traffic, empowers to respond faster in under 200 ms.

Fonseca et al [30] described resilience improvement in NOX controller through primary-a
 backup approach. unlike the distributed approach where the controller will need to collect

 information from each switch. Switch loss connection with a controller checked by probe
message sent periodically to the controller.

 Hu tao et al [31] depicted distributed decision mechanism (DDM) based on switch
migration in the multiple subdomain SDN networks. Through gathering network information,

 it develops distributed migration choice fields dependent on the controller load condition.
Then migrating switches according to the selection probability, and the target controllers are

 dictated by integrating three network costs, including information accumulation, switch
migration, and arranged switch movement. Finally, set the migrating countdown to achieve
the ordered switch migration. In this proposal no provision of controller disappointment or
any adaption of failure activity discussed.
3. PROPOSED SYSTEM ARCHITECTURE OF DCFT MODEL THE
Different modules of the distributed controller are shown in figure 2. Modules described as
follows.

Figure 2 Architecture of the distributed control plane with load balancing [10]

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 220 editor@iaeme.com h

(a) Coordinator controller Election module: Coordinator Controller of the system decided
by this module. It will be available all the time the cluster to take various coordination in
decisions in case of load imbalance as well as controller failure and to collect and calculate

 controller statistics. It stores each controller IP address, capacity, associated switches data.
 The controller’s IP address recognize each controller, while limit chooses whether the s

controller is equipped for overseeing more switches. The limit of the controller chosen by
 various streams every second that the controller can process If the load of the controller

beyond the controller’s threshold, the controller fails. The coordinator controller periodically

receives the current load of each controller and switches load. The controller’s current load is
the value that specifies the load of the controller at a given time. The load represents a number

 of flows per second that the controller receives from the switches. Coordinator controller
checks periodically status of the controllers. To detect the failure of the controller, coordinator
controller uses controller information. For every specific time coordinator controller checks
the last updated time of the controller’s current load. If the last updated time exceeds a certain
threshold, the coordinator controller considers this controller as a failed controller and takes
the next step to recover the controller failure.

The election module continuously running in the background, when it detects the failure
 of a current Coordinator it starts re-election and elects a new Coordinator. The election

module can elect a new coordinator if and only if the 51% of the controllers are active, in it’s
order to ensure that there is at least one group which will produce a majority response to elect
one coordinator. Otherwise, it sets the controller having id c1 as the default Coordinator.
(b) Internal controller messenger module: This module is responsible to provide all the
updates of controllers of the cluster to each other. It synchronizes state between the controllers
by letting all of them access updates published by all other modules in the controller. ZMQ,
the asynchronous messaging service used for internal communication among controllers.

 Distributed coordination service such as zookeeper [17] glues cluster of the controllers to
 share the information about used for updating status of the a link, topology etc. it’s

controllers.
(c) Load Calculation and decision taking module
In load calculation module, all the controllers including Coordinator controller calculate its

 own load and send load information to the Coordinator controller. Loa of the controller d
consists accumulation of load of the switches. With an enormous scale of flow table entries,
the controller deals a very huge flow table and load of the controller will be high. Bigger a

 average message arrival rate of a switch means is switch conveys more load to the th
controller. Propagation delay also impact factor. the ntroller is overloaded, we choose to If co
switch to migrate according to the following formula.

 Load of the switches comprises number of flow table entries (N), average message a
arrival rate (F) and propagation delay (D).

CLoad= w1*N + w2*F+w3*D (1)
Where w1, w2, and w3 are weight coefficients and their sum is 1.0. Similarly, compute load

of each switch based on their flow table tries, and compute the total load of the controllers en
based on the number of switches.

Coordinator controller collects load information and stores it in the distributed database.
Coordinator store load information as an array list sorted in ascending order. The first member

 of array list is minimum loaded controller and the last member is maximum loaded a
controller without any duplicate entry. After a specified time interval of every 5 seconds, the
load calculation module calculates the load and send to Coordinator. The time interval can be

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 221 editor@iaeme.com h

adaptive or dynamic. The time interval can be set by the aggregate of the current load and
previously calculated load balancing.
(i) Load Calculation Threshold
T=Tmax / (|CurrentLoad PreviousLoad|+1) –

Tmax= initially set interval
CurrentLoad= Controll er’s Current Load

PreviousLoad= Controller’s Previous Load
After receiving the load information Coordinator store load of each controller and aggregate
load of all the controllers in distributed data store. a
(ii) Decision Taking Module

 To balance the load of all the controller nodes, a threshold value C is decided to detect
 overload and under load condition. Based on this threshold value Coordinator decide to

balance the load or not.
C= (Average of load of all the controllers) / (load of maximum loaded controller) a a a
0 ≤ C ≤ 1, C is the load balancing rate. If C will be close to 1 load is evenly distributed and if
a load is close to 0 uneven load distribution is there. We have selected an initial load
balancing rate is 0.7. the value of C is less than 0.7 than load balancing is required. If the If
value of C is greater than 0.7 no need for load balancing [10].
(iii) Selection of Destination backup controller and switch to be migrated before migration,

 Coordinator must check that migrated switch should not overload the destination backup
 controller. Following formula used to check to an overload of destination controller on a

migration of switch. If the migration can create an overload to destination Coordinator should
choose another switch to migrate.

Load_of_Switch_to Load_of_Target _Migrate ≤ CT –

CT= Controller Capacity (packets/Sec)
 Authors [18] mentioned selection of destination backup controller based on distance

between switches and target controller, current load and percentage of packet loss. Distance
between switch and backup controller affect the packet response time. Which influences the
network model efficiency.

Our proposed switch migration algorithm (mentioned in section IV) to assigns switches to
 the nearest backup controller with considering outstanding workload on the destination

backup controller steps of assignment of the switch as follows.
1. Assign each switch to n backup destination controller can be from sorted array list of the
closest controller. array list stored at the distributed data store.
2. Each span t, controller loads are processed based on eq (1). The lightest loaded time
controller has selected whose load is less than the bellow capacity CT. The selection of switch
to be migrated based on formulae of eq (1) as mentioned above.
3. Reord switches the backup list according to the controller weight. er
4. The maximum loaded switch should be select to migrate.

 5. After the coordinator controller detect which controller failed, coordinator controller
detects the switches of the failed controller.

 6. Loop through the to check the backup failed controller’s associated changes of switches
controllers list.
7. Check the availability of each backup controller in the backup controller list.

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 222 editor@iaeme.com h

 8. In the event of first backup controller can endure the switch, the coordinator controller
sends switch to the IP address of the controller.
9. On the off chance first backup controller can’t endure the switch, the coordinator controller
checks the next available backup controller.

 10. Steps 2 to 9 repeated until coordinator controller allots switch to suitable backup a
controller while the controller load changes over time.

4. DESIGN AND IMPLEMENTATION
Migration

 Switch migration occ s in three situations. (1) Coordinator controller failure (2) ordinary ur
controller failure (3) Load imbalance Pseudo code for three conditions as follows.
Algorithm: Switch migration process
/*(a) Coordinator controller failure */
Input: controllers, coordinator controllers, threshold value c1… c2, cn

Output: Balanced distributed controllers

1. Call coordinator controller election module for deciding new coordinator.
2. all the switches migrated to the neighbor controller if then
 (capacity of neighbor controller > threshold) if then
 neighbor controller may be overloaded due to migration and crashed. a
 else
 all the switches migrated and switch-controller mapping updated in distributed a
database
 endif
3. all the switches migrated to other controllers equally if then
 check each controller capacity and switch-controller mapping updated in distributed a
database
 endif
4. all switches migrated to the least loaded controller if then
 find least loaded controller from distributed database a
 and update switch controller mapping in distributed database a
 endif
/*(b) ordinary controller failure */
5. ordinary controller failed if an then
 coordinator controller select least loaded controller from distributed database
 (capacity of least loaded controller > threshold) if then
 call switch migration module and migrate switches
 else
 migrate few switches upto limit of threshold and assign remaining switches to next a
least loaded controller
 endif
endif

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 223 editor@iaeme.com h

/* (c) Load Imbalance */
6. (capacity of ordinary controller >threshold) if then
 call switch migration module and migrate highest loaded switches to the least
loaded controller
endif

Migration can be encounter in three cases, (a) coordinator controller failure (2) ordinary
controller failure (3) load imbalance. In all cases, switch migration carried out.

Coordinator controller performs two roles, one is its ordinary role of routing incoming
packets and second is a special role, Coordinator role, where it has to calculate the load of
each controller of the cluster and information about switch controller mapping and store it as

 an array list at the distributed database. All the controllers send its load information and
 switch information to the Coordinator controller. Coordinator controller calculates the

aggregate load of all the controllers and stores it in the distributed database. Based on a load
 of the cluster, Coordinator controller takes the switch migration decision. Controllers can

communicate with Coordinator using messaging services provided by ZMQ and SyncService
of floodlight. Each switch must be connected to one controller with master role and with a a
any no of controllers with slave role. a

Failover mechanism in the proposed system
The whole network divided into logical cluster of controllers. All controllers of a cluster are a

 assigned a controller id as per they joined the controller cluster viz. C1, C2…Cn. When
cluster start, a controller having maximum controller id is elected as a coordinator controller
using our election algorithm.
(a) Failure in coordinator controller
The coordinator is the -charge of the coordination of all the other controllers, controllers in
may have different number of switches. Failure occurs in the coordinator node leads failure a
of whole distributed control plane. Failure of coordinator can be detected by using separate a
function available with all the controllers in the cluster which will be synchronized with ZMQ

 and syncdb. Coordinator controller fails, aggregate load calculation stopped, decision of a
load balancing cannot be taken, which leads towards the failure of an overloaded controller.

To overcome the failure of a coordinator controller we plan to run an election algorithm to
elect a new coordinator on failure of the current coordinator. Controller id decides priority a
among controllers. After a specified time interval, a check performed that elected coordinator
is active or failed. If coordinator failed, the re-election starts. A controller having maximum
controller id from the cluster, elected as a new coordinator of distributed control plane. a A
new coordinator has to migrate switches of failed controller to lightest loaded controller by a

 proposed switch migration. All the controllers may have different number of switches. a
Figure 3 shows failure in coordinator controller. C10 is current coordinator, Switch of Ca 10

 migrated to C7 (lightest loaded backup controller from the array list. C9 becomes new a
coordinator. Similarly array list from distributed data store updated at every time t seconds.

In our model, the coordinator controller periodically check the status of the controllers, to s
 perceive the failure of the controller, coordinator controller utilizes controller data, Every

particular time coordinator controller checks last refreshed time of controllers If last refreshed
time surpasses certain threshold, coordinator controller think about this controller as failed a
and proceeds recovery steps.

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 224 editor@iaeme.com h

Figure 3 Failure in coordinator controller, election of new coordinator controller

(b) Failure in an ordinary controller
Coordinator controller manages failure of an ordinary controller by using an array of least the
loaded controllers stored at the distributed database. On failure of any ordinary controller, its
orphan switches will be migrated to the first least loaded controller, limited switches up to
threshold value only migrated to the least loaded controller, rest switches if any migrated to
next controller of the array.
(c) Load Imbalance between controllers

 Similarly, load imbalance occurs on overloading of controller, the overloaded controller a
needs to migrate its highest loaded switches to the least loaded controller from an array of a
distributed database.

Proposed Switch Migration process
 Controllers having three roles master, slave and equal [10]. Openflow protocols 1.5.1

specification [19] included the capacity for a controller to set its role in the multi-controller
condition. In openflow protocols version 1.4 onwards the job status message empowers the
switch to advise the controller about changes its role.

The default job of a controller is OFPCR_ROLE_EQUAL [19]. In this job, the controller
has full access to the switch and is equal to other controllers in a similar job. As a matter of
the course, the controller gets all the switch nonconcurrent messages (such as packet-in, flow-
removed). The controller can send controller- -switch directions to alter the conditions of the to
switch. The switch does not do any intervention or asset sharing between controllers.

A controller can demand its job to be changed to OFPCR_ROLE_SLAVE. In this job, the
controller has read-only access to the switch. As a matter of course, the controller does not get
switch asynchronous messages, aside from Port-status messages [19].

A controller can demand its job to be changed to OFPCR_ROLE_MASTER. This job is
like to OFPCR_ROLE_EQUAL and has full access to the switch, the thing that matters is that
the switch guarantees it is the main controller in this job. At the point when the controller
changes its role to OFPCR_ROLE_MASTER, the switch changes the present controller with

 the job PCR_ROLE_MASTER to have the job OFPCR_ROLE_SLAVE, yet does not OF
 influence controllers with job OFPCR_ROLE_EQUAL. At the point when the switch

performs such job changes, if a controller job is changed from OFPCR_ROLE_MASTER to
 OFPCR_ROLE_SLAVE, the switch must produce a controller job status occasion for this

controller educating it of its new state (much of the time controller is never again reachable,
and the switch will most likely to transmit that occasion).

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 225 editor@iaeme.com h

Each controller may send an OFPT_ROLE_REQUEST message to convey its job to the
switch and the switch must recollect the job of each controller connection. A controller may
change its job whenever, gave the generation_id in the message is present [19].

 The job demand message offers a lightweight system to enable the controller master
decision process, the controllers design their job normally still need to facilitate among
themselves. The switch cannot change the condition of a controller all alone, controller state
is constantly anged because of as a result of a solicitation from one of the controllers. Any ch
Slave controller or Equal controller can choose self, Master. A switch might be at the same it
time associated with different controllers in Equal state, multiple controllers in Slave state, a
and at most one controller in Master state. The controller in Master state (assuming any) and
everyone the controllers in Equal state can completely change the switch state, there is no

 mechanism to implement partitioning of the switch between those controllers. On the off
chance that the controller in Master job should be the main controllers ready to make changes

 on the switch, at that point, no controllers ought to be in Equal state and every single
controller ought to be in Slave state. a

Figure 4 Proposed switch migration process overloading of the controller in

 Destination backup controller selected, switch decided to be migrated following steps
 performed for the switch migration process. All the handshakes in this protocol are using

ZMQ [20]. Initially overloaded controller A connected as master with switch s and in slave
role with controller B.

 Coordinator controller sends a switch migration request to selected destination controller.
There is no need for the reply this message. to

 After the receipt of the load migration request selected destination controller send role change
request (from slave to master) to the switch which needs to be migrated.

 Switch replied configured destination underloaded controller as now master, from now
original master no longer able to receive any packet-in message from a switch.

 Destination controller sends End Migration message to the Coordinator Coordinator update .
controller switch mapping in Distributed Database. a

5. SIMULATION ANALYSIS
We use experimental testbed for simulation as mentioned in table1. Physical devices contain
four machines with the configuration mentioned in table1. In the cluster, there is only one

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 226 editor@iaeme.com h

master controller, which enables programmed network management. We design series of a
experiment to demonstrate the performance of the DCFT model. DCFT compared with some

 other mechanism such as Zero Switch Migration (ZSM), Controller Redundancy Decision
() [6] and Maximum Utilization Switch (MUSM) [13]. There is just one controller in CRD
ZSM. Overloaded controller randomly migrates switches to closest underloaded controller a

 to solve the load imbalance problem in CRD. In MUSM overloaded controller migrates
switch into the controller that has maximum residual capacity. DCFT model reduces packet a
delay, increased no of request processing by each controller, load balance rate and improve
fault tolerance.

 In our topology switch can be well-ordered by one master controller. A controller can
 control more than one switch. In the mean , ere are many slave controllers for the time th

switches. A slave controller will be chosen as new master if the original master fails. a We
consider custom topology in figure 5. Traffic patterns are shown in table2 used for all
simulations.

In Hyperflow [23] controller fault tolerance technique directs the failed controller without
 considering the hich leads to packet loss, cascading failure and controller’s current load. w

 packet delay or latency. The proposed DCFT lessens the effect of these problems by
distributing the her controllers whenever point of disappointment controller’s load among ot a
occurs. It is performed by the coordinator controller. So DCFT model used for load balancing
performance, topological adaptability and reveals fault tolerance.

Table 1 Simulation Testbed

Software Version Function
Mininet[] 35 2.2.1 Network Emulator tool
Floodlight[36] 1.2 SDN Controller
OpenFlow 1.5 Communication

Protocol
Linux Ubuntu 16.0.4 64 bit An operating system on

each virtual machine
RAM 8 GB Main memory
Processor Intel ® Core TM i3 2370

M CPU 2.4 GHz
Processing, coordinating
all processes

Traffic hping3 Traffic generator tool
Bandwidth 1000 Mbps Between switch and

hosts
Packet arrival rate 500 packets/s Switch-controller

Table 2 T ffic designs used in the experiment ra

Traffic
Number

Traffic
source

Traffic
destination

T1 H1 H4
T2 H8 H12
T3 H13 H18

We use hping3 to generate TCP flows to simulate the distribution of network traffic the
 average flow requests The average packet arrival rate 500 packets/s. we use floodlight a

controller to process packets received by the switch. To reduce the effect of packet delay and
 packet loss link bandwidth between switches and hosts to 1000Mbps. Packet in rate P=30

Bytes/s. we set no of switches managed by one controller is from 2 to 10. All the simulations
run for 12 Hours readings noted at every 20 minutes.

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 227 editor@iaeme.com h

Figure 5. The logical perspective of the topology used in simulation a

Consider the topology shown in figure 5. DCFT model takes delay between switches and
their associated controllers to minimize the response time. Table 3 shows configuration of a

 topology before switch migration while table 4 shows configuration of topology after a
migration of switches from controller C2 to C1.

Packet delay or latency:
Consider traffic patterns T1, T2 and T3 of table 2. Traffic T1 generated from host H1 to host
H4.Both are connected by controller C1. Simulation experiment starts with packet delay of a
12-14 ms for all traffics. After controller C2 falls flat at 15 seconds, coordinator controller
manages controller C1 for it. Controller C1 assumes the responsibility of the switches related

 with controller C2 at 20 seconds because C1 is the nearest controller and lightest loaded
compared to C3. We assume that the D and MUSM mechanism takes the same recovery CR
time as DCFT. Packet delay increases in traffic T1, T2 and not affected in traffic T3, because
T3 not affected by switch migration.

 Regarding DCFT, coordinator controller recoups the disappointment of controller by
distributing the load of the failed controller C2 among C1 and C3. This migration causes an
expanded number of solicitations to every controller then the blockage in th controller lead is
to the packet delay. The maximum packet delay for traffic T1 is 28.66 ms at 57 seconds, for
traffic T2 is 27.99 ms at 59 seconds and for traffic, T3 is 33.6 ms at 55 seconds. Numerical
results shown in figure 10 depicts the lowest packet delay by DCFT model compared to other
methods of switch migrations. Packet delay reduced by our model is 28.52 Coordinator %.

 controller can’t recover the controller C2 failure by migrating switches to least loaded
controller C1 only, as it will be overloaded on migration.

 Flow request count of the given topology shown in figure 6 When the load imbalance
occurs, packet delay (latency) increased, we change flow request count to overload controller
and observe packet delay of the given topology in figure 9.

Communication overhead
The Communication overhead is created between switch-controller and between controller-
controller. Rule installation in openflow switches causes wasteful network operation inferable

 from the high overhead potential on the openflow controller. DCFT model demonstrated
pursued routine with regards to install a rule in the switches for a minimal flow entry in the

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 228 editor@iaeme.com h

 network switches without impairing the network operation itself. Figure 8 depicts a
communication overhead for the given topology.

 Since ZSM just arranges single controller, the correspondence overhead between
controllers is 0. The single controller is easily in the overloaded state since it needs to process
all the flow demands. In this way, correspondence overheads among switches and controllers
are most extreme in ZSM. CRD migrates switch to the nearest controller to streamline the
selection of target controller, which brings down the overhead between controllers. On the

 other hand, closest migration is easy to produce traffic congestion that may increase
communication overheads between switches and controllers. if multiple switches swarm into
nearest controller at the same time. MUSM lessens overhead by adding an extra controller and
the communication overhead between switches and controller lowest.

DCFT model considers multiple costs and adopts greedy algorithm to look for the ideal a
outcome. Design of the DCFT model reduces information interaction of irrelevant controllers

 by taken “first packet” of flow, which is sent to the controller for the purpose of flow
acknowledgment and rule installation. The controller removes all the first packet payloads
including VLAN id, source, and destination MAC addresses, IP addresses, ethertype, port and
match actions information so that the subsequent packets are hopped of the next switches as

 the first packet already holds and distribute forwarding information and reduces
communication overhead. Communication overhead of the DCFT model is lowest among all

 other methods in controller-controller and switch-controller communication. Average
 communication overhead is reduced between switch-controller by 44.47 % and controller-

controller is reduced by 48.12%

Controller load balancing rate
We record the number of requests processed by each controller and reflect the distribution of
controller loads. ZSM has only the one controller It doesn’t exist load balancing. We compare

 result of CRD, MUSM, and DCFT for three controllers in the given topology. which are
shown in figure 9. has a big difference in the number of requests processed by each CRD
controller. MUSM on second place and DCFT has the slight fluctuation. As migrates the CRD
switch to the closest controller, the neighbors of the overloaded controller are likely to

 produce switch migration again if receiving too many migrating switches. Controller load
balancing rate increased by 7.11 %

Table 3 Before Switch Migration

Controller Type
Master/Slave

Switch Type of
Switch

No of the host
under the switch

Coordinator
Controller

Master S1,S4,S6
attached via
C1,C2,C3

Openflow

C1 Master S1 Openflow H1,H2
S2 Openflow H3, H4
S3 Legacy H5,H6, H7

C2 Slave S4 Openflow H8,H9,H10
S5 Openflow H11,H12

C3 Equal S6 Legacy H13,H14
S7 Openflow H15,H16,H17
S8 Openflow H18
S9 Openflow H19, H20

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 229 editor@iaeme.com h

Table 4 After switch Migration from C2 to C1(S4, S5 migrated to C1)

Controller Type
Master/Slave Switch Type of

Switch
No of the host
under the switch

Coordinator
Controller Master

S1,S4,S6
attached via
C1,C2,C3

Openflow

C1 Master

S1 Openflow H1,H2
S2 Openflow H3, H4
S3 Legacy H5,H6,H7
S4 Openflow H8,H9,H10
S5 Openflow H11,H12

C2(crashed
after 15s) Slave S4 Openflow H8,H9,H10

S5 Openflow H11,H12

C3 Equal

S6 Legacy H13,H14
S7 Openflow H15,H16,H17
S8 Openflow H18
S9 Openflow H19, H20

Table 5 Maximum packet delay(ms),Communication overhead and load balancing rate (before/after
switch migration)

Before switch Migration After switch Migration (At 15 second C2
failed)

Traffic
Numb

er

Maximu
m

Packet
delay
(ms)

Communication
Overhead(KB/s)

Load
balancing

rate
(packets/s)

Maximu
m

Packet
delay
(ms)

Communication
overhead

(KB/s)

Load
balancing

rate
(packet/s)

 Switch-
controll

er

Controll
er-

controlle
r

C1 C2 C3 Switch-
controll

er

Controll
er-

controlle
r

C1 C2 C3

T1 40.1 423 372 50
3

51
1

47
5

28.66 237 193 49
6

52
1

48
9

T2 30.9 394 321 47
8

52
4

43
4

27.99 206 134 49
2

53
6

44
2

T3 16.8 254 212 47
4

50
4

46
8

17.2 148 126 48
3

51
4

47
8

Figure 6 Network traffic in custom topology

Figure 7 Request processed by each controller-custom
topology

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 230 editor@iaeme.com h

Figure 8 Communication Overhead in custom topology

Figure 9 Packet delay(latency) in custom topology

6. CONCLUSION
 In this paper, we did study of fault tolerance in the distributed controller with software a

defined networking. Paper introduced with the introduction of software defined networking
with open flow devices. Distributed control plane with flat SDN controller and hierarchical
SDN controller discussed.

Simulation analysis performed with series of experiments performed using traffic patterns
 (Table 2), on custom topology with three controllers along with coordinator controller

 Communication overhead, controller load balance rate, packet delay used as evaluation
 indexes. It is found figure 7 that DCFT model reduces packet delay by 24.51 %. From in

figure 8 Average communication overhead reduced switch-controller by 44.47 % and is
controller-controller is by 48.12% From figure 9 Controller load balancing rate is increased .

 by 7.11 %. It is concluded that by reducing communication overhead, packet delay and
 increasing load balancing rate DCFT model contributes better in fault tolerance in the

distributed control plane.
Our future work focuses on an analysis of the failure of both switch and controller and

finds more refined technique to distribute a load of futile controller among other controllers a
founded on AI-based techniques.

REFERENCES
 [1] Yu, Yinbo, et al. "Fault Management in Software-Defined Networking: A Survey." IEEE

Communications Surveys & Tutorials (2018).

 [2] P. Pe resini, M. Ku´zniar, and D. Kosti´c, “Monocle: Dynamic, fine grained data plane
monitoring,” in Proc. of ACM CoNEXT, 2015.

 [3] C. Scott, A. Wundsam, B. Raghavan, A. Panda, A. Or, J. Lai, E. Huang, Z. Liu, A. El-
 Hassany, S. Whitlock et al., “Troubleshooting blackbox SDN control software with

minimal causal sequences,” in Proc. of ACM – SIGCOMM, 2014, pp. 395 406.

 [4] K. Mahajan, R. Poddar, M. Dhawan, and V. Mann, “JURY: Validating Controller Actions
in Software-Defined Networks,” in 46th IEEE/IFIP – DSN, 2016, pp. 109 120.

 [5] Dixit, Advait, et al. "Towards an elastic distributed SDN controller." ACM SIGCOMM
Computer Communication Review. Vol. 43. No. 4. ACM, 2013

 [6] Dixit, Advait, Fang Hao, Sarit Mukherjee, T. V. Lakshman, and Ramana Rao Kompella.
"ElastiCon; an elastic distributed SDN controller." In Architectures for Networking and

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 231 editor@iaeme.com h

 Communications Systems (ANCS), 2014 ACM/IEEE Symposium on, pp. 17-27. IEEE,
2014.

 [7] Liang, Chu, Ryota Kawashima, and Hiroshi Matsuo. "Scalable and crash-tolerant load
balancing based on switch migration for multiple open flow controllers." In Computing
and Networking (CANDAR), 2014 Second International Symposium on, pp. 171-177.
IEEE, 2014.

 [8] Chen, Yanyu, Qing Li, Yuan Yang, Qi Li, Yong Jiang, and Xi Xiao. "Towards adaptive
 elastic distributed Software Defined Networking." In Computing and Communications

Conference (IPCCC), 2015 IEEE 34th International Performance, pp. 1-8. IEEE, 2015.

 [9] Cheng, Guozhen, Hongchang Chen, Hongchao Hu, and Julong Lan. "Dynamic switch
 migration towards a scalable SDN control plane." International Journal of

Communication Systems 29, no. 9 2016 Page no.1482-1499. :

 [10] Zhou, Yuanhao, Mingfa Zhu, Limin Xiao, Li Ruan, Wenbo Duan, Deguo Li, Rui Liu, and
 Mingming Zhu. "A load balancing strategy of sdn controller based on distributed

decision." In Trust, Security and Privacy in Computing and Communications (TrustCom),
2014 IEEE 13th International Conference on, pp. 851-856. IEEE, 2014.

 [11] Yu, Jinke, Ying Wang, Keke Pei, Shujuan Zhang, and Jiacong Li. "A load balancing
mechanism for multiple SDN controllers based on load informing strategy." In Network

 Operations and Management Symposium (APNOMS), 2016 18th Asia-Pacific, pp. 1-4.
IEEE, 2016.

 [12] A.Dixit,F.Hao,S.Mukherjee,T.V.Lakshman. ElastiCon: an elastic distributed SDN
controller. Proceedings of 2014ACM/IEEE Symposium on architectures for Networking
and Communications Systems (ANCS), Marina, 2014:17-27.

 [13] Guozhen Cheng, Hong chang Chen, Zhiming Wang. DHA:Distributed decisions on the
 switch migration toward a Scalable SDN control plane.Proceedings of 2015 IFIP

Networking Conference,Toulouse,2015:1-9.

 [14] Jarraya, Yosr, Taous Madi, and Mourad Debbabi. "A survey and a layered taxonomy of
software-defined networking." IEEE mmunications surveys & tutorialsco 16, no. 4,2014.

 [15] Berde, Pankaj, et al. "ONOS: towards an open, distributed SDN OS." Proceedings of the
third workshop on hot topics in software defined networking. ACM, 2014

 [16] Mantas, André Alexandre Lourenço. Consistent and fault-tolerant SDN controller. Diss.
2016.

 [17] Hunt P, Konar M, Junqueira F P, et al., Zookeeper: wait-free coordination for internet-
 scale systems[c], Proceedings of the 2010 USENIX conference on USENIX annual

technical conference. 2010, 8:11-11

 [18] Aly, Wael Hosny Fouad, and Abeer Mohammad Ali Al-anazi. "Enhanced Controller Fault
 Tolerant (ECFT) model for Software Defined Networking." Software Defined Systems

(SDS), 2018 Fifth International Conference on. IEEE, 2018

 [19] “Openflow switch specification 1.5.1”, https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf page no 74, accessed online on 13th
Feb 2019.

 [20] “ZeroMQ”,http://www.zeromq.org, accessed online on 13th feb 2019.

 [21] Hu, Yannan, et al. "Balanceflow: controller load balancing for openflow networks." Cloud
Computing and Intelligent Systems (CCIS), 2012 IEEE 2nd International Conference on.
Vol. 2. IEEE, 2012

Gaurang Lakhani, Dr. Amit Kothari

 ttp://iaeme.com/Home/journal/IJCET 232 editor@iaeme.com h

 [22] Koponen, Teemu, et al. "Onix: A distributed control platform for large-scale production
networks." OSDI. Vol. 10. 2010

 [23] Tootoonchian, Amin, and Yashar Ganjali. "Hyperflow: A distributed control plane for
 openflow." Proceedings of the 2010 internet network management conference on

Research on enterprise networking. 2010.

 [24] Medved, Jan, et al. "Opendaylight: Towards a model-driven sdn controller
architecture." 2014 IEEE 15th International Symposium on. IEEE, 2014

 [25] Aly, wael Hosny Fouad. "A Novel Fault Tolerance Mechanism for Software Defined
Networking." 2017 European Modelling Symposium (EMS). IEEE, 2017

 [26] Estban Hernandaz "Implementation and performance of a SDN cluster-controller based on
the OpenDayLight framework." Ph.D. thesis (2016).

 [27] Katta, Naga, et al. "Ravana: Controller fault-tolerance in software-defined
networking." Proceedings of the 1st ACM SIGCOMM symposium on software defined
networking research. ACM, 2015.

 [28] Botelho, Fábio, et al. "On the design of practical fault-tolerant SDN controllers." Software
Defined Networks (EWSDN), 2014 Third European Workshop on. IEEE, 2014.

 [29] Obadia, Mathis, et al. "Failover mechanisms for distributed SDN controllers." Network of
the Future (NOF), 2014 International Conference and Workshop on the. IEEE, 2014

 [30] Fonseca, Paulo, et al. "Resilience of sdns based on active and passive replication
 mechanisms." Global Communications Conference (GLOBECOM), 2013 IEEE. IEEE,

2013

 [31] Hu, Tao, et al. "A distributed decision mechanism for controller load balancing based on
switch migration in SDN." China Communications 15.10 (2018): 129-142

 [32] Hassas Yeganeh, Soheil, and Yashar Ganjali. "Kandoo: a framework for efficient and
 scalable offloading of control applications." Proceedings of the first workshop on Hot

topics in software defined networks. ACM, 2012.

 [33] curtis, Andrew R., et al. "DevoFlow: Scaling flow management for high-performance
networks." ACM SIGCOMM Computer Communication Review. Vol. 41. No. 4. ACM,
2011

 [34] Yu, Minlan, et al. "Scalable flow-based networking with DIFANE." ACM SIGCOMM
Computer Communication Review41.4 (2011): 351-362.

 [35] Lantz, Bob, Brandon Heller, and Nick McKeown. "A network in a laptop: rapid
 prototyping for software-defined networks." Proceedings of the 9th ACM SIGCOMM

Workshop on Hot Topics in Networks. ACM, 2010

 [36] http://www.projectfloodlight.org/floodlight/ “Project floodlight” [online], available : ”,
accessed on 08/10/2018)

 [37] Abilene Topology [online] available : “http://www.topology-
zoo.org/files/Abilene.graphml accessed online on 19/10/2018) ”

 [38] Internet 2 OS3E topology [online] available at:
http://www.internet2.edu/media/medialibrary/files/.graphml accessed online on ”
19/10/2018)

 [39] Aly, Wael Hosny Fouad. "LBFTFB fault tolerance mechanism for software defined
networking." Electrical and Computing Technologies and Applications (ICECTA), 2017
International Conference on. IEEE, 2017.

Distributed Controller Fault Tolerance Model (DCFT) Using Load Balancing in Software Defined
Networking

 ttp://iaeme.com/Home/journal/IJCET 233 editor@iaeme.com h

Mr. Gaurang Lakhani has completed his M.E. (CSE)
from Gujarat Technological University Ahmedabad in
2013. And joined PhD from 2014 in same university. His
main area of research in Distributed SDN. He had
published 5 National/International research papers.
Mainly Interested computer Networks, Network/
Information security, Distributed computing, Worked as
reviewer /session chair in National level Conferences.
Worked as committee members in GTU academic
activities.
Dr. Amit D Kothari has completed his PhD from
Hemchandracharya North Gujarat University, Patan,
Gujarat in 2011. During PhD his research area was
routing protocols for Mobile Adhoc Network (MANet). 6
students are pursuing their PhD research work under him.
More than 13 National/International research paper are
published. Delivered expert talk at many institutes and
universities during his 15 years of academic career. His
interest area is Computer Network, Network / –
Information security, Parallel / Distributed Computing
and Artificial Intelligence. He offers his service as a book
reviewer for McGraw Hill Publication. He is invited as a
member Doctorate Review Committee at many
Universities

