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Abstract—The growth of the web users and thecontents are 

increasing in a daily basis. In all these webpages the 

implementation of javascripts are a common factor. These scripts 

are used for the simplicity and achieve interaction with the user, 

but, also could be used to harm the end user by stealing 

information, redirecting to phishing pages and installing harmful 

softwares. This alarms an immediate look into the security 

concerns of the javascript. There exist many machine learning-

based malicious script detection approaches, but majority of them 

follow a shallow discriminating models where manual definition 

of features are constructed with artificial rules. In this paper, a 

deep learning framework for detecting malicious JavaScript code 

is proposed combing the optimization power of Bird Swarm 

Algorithm. To extract high-level features from JavaScript code 

Stacked denoising auto-encoders are implemented and BSA is 

used to optimise the features and identify the malicious codes. 

The theoretical model [2] have an accuracy of 94% in identifying 

the malicious codes. 
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I. INTRODUCTION 

 
As days passes by more and more users are using 

internet and the web itself is expanding with data. This 

alarms the increase in distributing malware among the users. 

Malware distributors Through the internet the malwares are 

distributed through various methodologies like: phishing to 

download sites, redirecting to unauthorized webpages, fake 

codec installation requests, malicious advertisements and 

spam messages on blogs, social network sites and other web 

pages. Most commonly the attacker uses malicious 

JavaScript codes during part of the attack,which includes 

cross-site scripting (XSS) and web-based malware 

distribution. JavaScript is a tool that may be used by the 

attacker to create a redirection for a user to a website hosting 

malicious software, to create a pop-up window 

recommending users to download a fake codec, to also 

detect which software versions the user is currently using 

and select a preferable method to exploit it. The initial 

infection method for any malware is to malicious the 

javascript. These malicious javascripts hides known exploits 

and save themselves from being detected by rule-based anti-

malware software or anti-malware softwares based on 

regular expressions. 
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 The complexity related to each of these obfuscation 

techniques have been increased, raising the resources that 

are necessary to counter the attacks [9].The existing 

methodology for JavaScript security solution over XSS 

attacks is based on sand-boxing technique, which blocks the 

code to be performed on a restricted environment only. 

Within a browser the JavaScript programs are considered as 

untrusted software variables that have accessability to only 

a limited set of resources. The problem associated to the 

current solution is that the javascripts will be conformed to 

the sand-box policies, but still it will violate the security 

within the system. The sand-boxing mechanism embedded 

within the browsers prevent JavaScript code from being 

compromising the client’s environment security , but, there 

exists a number of attacks that can be used to steal 

confidential information from the user which includes the 

cross site scripting attacks and pressurize users for 

providing highly sensitive information like passwords and 

online account details to unauthorized parties by the means 

of phishing attacks [10]. 

The JavaScript based malware attacks are of increase 

and have a better success rate in mass-scale exploitation. 

From the viewpoint of an attacker, the primary advantage is 

that the attacks could be carried out against an ordinary user 

visiting an ordinary web page. There are many techniques 

proposed to incur these attacks, but, in-browser 

implementation has been slow due to the performance 

overhead [11]. It is well known that JavaScript is the main 

vehicle for web-based attacks, enabling the delivery of 

sophisticated social engineering, drive-by malware 

downloads, cross-site scripting, and other attacks. It is 

therefore important to develop a system that could analyse 

the deep working of the javascript based malware attacks, 

thus enabling a better and robust defensive systems. 

However, while extensive previous work exists on JS code 

inspection [13] and web-based attack analysis [14], an 

important problem remains: to evade defense systems and 

security analysts, web-based attacks are often developed to 

be ephemeral and to deliver the actual attack code only if 

certain restrictive conditions are met by the potential victim 

environment [15]. Therefore there is a need for javascript 

based attack analysis tool that can capture in-browser 

activities and subsequently reconstruct the live security 

flaws while the end user browse the web. Malicious 

JavaScript is code that shows some kind of malicious 

unwanted behaviour, such as drive-by downloading, 

installation of other malware such as fake codec’s, 

unwanted advertisements, or spam. The code is often 

hidden, making the basic code analysis and detecting the 

malware difficult. Malicious JavaScript code is often used 

as a first step for other 

malware attacks, tricking a 

user to install other kinds of 
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malicious software, or to directly install and execute exploits 

[16]. 

II. LITERATURE REVIEW 
 

Some approaches for malicious JavaScript detection use 
dynamical code analysis, such as client honeypot techniques 
[17], or statical analysis such as pattern matching [18]. 
Maintaining pattern-based systems can become a tedious 
task as new malicious scripts are published, creating a 
moving target, and using dynamical code analysis is 
typically computationally expensive. Some services, 
including Google Safe Browsing, maintain a black list of 
URLs with malicious content of some sort, and yet other 
approaches uses code signatures for detection. The black-list 
approach can provide a certain level of security, and is 
currently implemented in web browsers such as Firefox and 
Chrome [16].In [19], a malware detection framework was 
improvised by selecting application program interface (API) 
call statistics as malware features and by using the SVM as 
the classifier. In [20], malware behaviours has been 
classified by extracted features from the sequences of API 
calls and the k-nearest neighbor algorithm. In [21], a mining 
and machine learning approach to identify malicious 
JavaScript code was provided. In [22], a C4.5 decision tree 
algorithm was introduced that identified the unwanted 
scripts by analysing a set of features of traffic statistics, file 
system structure, and webpage contents. Even though these 
traditional mechanism of machine learning-based methods 
was able to predict the presence of an unknown malicious 
JavaScript code, the time taken to test the availability of 
malicious code is too expensive. In [23] The malicious 
codes are disassembled into opcodes by implementing N-
gram algorithms that extracted features. The detection 
technology in the current world is moving faster from the 
traditional pattern-based matching to the newly generated 
machine-based learning enhancing more automatic and 
intelligent direction. The major requirement for detection 
results are not just encapsulated to the ability to accurately 
identify the known attacks but also to fight against 
potentially suspicious attacks. 
 
A. Challenges  

The attacker inserts malicious JavaScript code into the 

vulnerable web pages to expose the visitors onto severe 

network attacks like virus distribution, Trojan attack and 

confidential information extraction [1]. Malicious JavaScript 

code is hard to detect due to its hidden feature and 

complexity. Identifying such code have a considerable cost 

over the process. It is hence so because there are multiple 

pathways for an attacker to insert unwanted scripts. Thus 

JavaScript codes should be dynamically inspected and 

should identify different types of vulnerabilities within the 

browser’senvironment [2]. Javascript have the feature of 

collaborating with multiple programming languages. This 

interaction paves the way for the attacker to utilize the 

system [7]. The attacker could easily integrate javascript 

code to access camera, GPS, speaker, data transmission and 

other system information of an unsuspected user. The 

attackers hide there identity by disguising as a legitimate 

company by referencing them and includes highly sensitive 

malicious code within them [9]. 
 
 

II. PROPOSED METHODOLOGY 

 
The primary intention of this paper is to design and 

implement a technique for malicious JavaScript detection. 

The overall procedure of the proposed technique involves: 

feature extraction and classification. At first, the input 

JavaScript codes will be subjected to the feature extraction 

phase in which the significant features will be extracted. 

Since each javascript code have its own unique structure 

and purpose, its not an easy task to define the features for a 

legitimate code. Even if a blacklist of the virus signatures 

are defined, a manual updation of the blacklist and 

matching the supplied code with the defined blacklist will 

be a hilarious task. Even for a heuristic detecting method, 

where the security experts set a block of rules to identify 

malicious from legitimate codes, there should be a frequent 

modification of the rules based on the newly identified 

malicious javascripts. Another approach called dynamic 

analysis verify the code within a controlled environment 

causing less deterioration to the end users. This approach 

have high level of security but it consumes a lot of time and 

cannot be represented as a real application because the 

malicious code will behave differently with different 

triggering conditions. 
 

It is difficult to hence decide on the features to be 

chosen to detect the presence of malicious javascript codes 

due to having multiple links to other pages, data 

encapsulation, code reordering and rubbish strings 

insertion. To ease the process of feature extraction of the 

javascript code the deep learning technique is used which 

require least manual intervention. It is achieved by 

implementing the multiple-layer stacked denoising 

autoencoders (SdA) which will extract the features 

automatically. The learned features are then inputted to 

Bird Swarm Algorithm (BSA) to optimize the features 

extracted and help in identifying the malicious code from 

the legitimate ones. The advantage of the defined 

methodology is the learning based detection, where the 

deep- learning technique helps in identifying the key 

features of java script code which require zero intervention. 

The second advantage is the zero-day attack detection, 

which is achieved by extracting the intrinsic features of the 

attack. Thus the model can prevent even a previously 

unknown attack. 

III. DETECTION METHODOLOGY 

 
Using the deep learning technology the provided java 

script is scanned for vulnerabilities. The multi-layered 

stacked denoising auto-encoder(SdA) is used to extract the 

javascript features for analysis. The extracted features are 

then optimized using a logistic regression Bird Swarm 

Algorithm(BSA). The resulted feature helps in discovering 

the provided javascript code is malicious or not. 

 

A. Deep learning  
Deep learning is a sub- topic on Machine Learning. Its 

purpose is to learn high level representation of data with 

deep layer-wise method. Each layer first undergoes a pre-

training with unsupervised 

data and then is fine tuned in 

a supervised mechanism. 
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Here deep learning is achieved using stacked denoising 

auto-encoder because its best in text classification [2]. 
 
B. Denoising auto-encoder (dA) 

As input is fed to the system, an unmonitored pre-

training is conducted on each layer. During this phase noise 

is added to the input so that the hidden layer will discover 

more authentic features instead of learning the mere identity.  

Thus the dA reconstructs the input from the corrupted noised 

version of the original data. The denoising auto-encoder thus 

have two functions: First it try to preserve the information 

about the input and second it tries to recover from the 

corrupted input stochastically. The half of the input value is 

set to zero by the stochastic corruption process. 
 
C. Stacked denoising auto-encoders (SdA)  

Denoising autoencoders can be repeated multiple times 

hierarchically by inputting the output of the denoising 

autoencoders’ previous layer to the top layer. The 

unmonitored pre-training of js code vector is done one layer 

at a time method. Each layer of the denoising autoencoder is 

trained and the output will be generated by minimizing the 

error in reconstructing its input. Once the first n layers are 

trained with the noised input, we can train the n+1-th layer 

by inputting the code from the output of the nth layer.  
Once all denoising autoencoders’ layers are pre-trained, 

the output generated goes through a second stage of training 

called fine-tuning. The prediction error is considered to be 

reduced due the monitored fine-tuning. To achieve this, a 

logistic regression layer is first added on top of the received 

output code generated through the last layer. Then the entire 

network is trained as in multilayer perceptron. At this stage 

only the encoded part of the auto -encoder is only 

considered. This stage is done under supervision because 

the resultant class is used during the later training sessions. 

 

D. Bird Swarm Algorithm (BSA)  
The inputted JavaScript code is converted to binary 

feature vectors which will act as the input of the deep 

learning model. Every character in JavaScript 

codesegments is converted into an eight bit ASCII binary 

codes. All the JavaScript code segments are stored in the 

form of a binary file. This will generate over 20,000 feature 

dimentionalities. Inorder to reduce this high collection of 

input data to an adequate quantity that could decreases the 

processing cost, Bird Swarm Algorithm is proposed [26]. 

The birds occasionally have three basic behaviors: 

foraging, vigilance and fly in flocks. These are similar to 

the swarm behaviour of separation, alignment and 

cohesion. The birds fly in group in search of food. They 

identify the food source from the collective search of the 

group. One finds and others feed on it. While having food 

they raises their head for looking out predators. So they are 

always vigilant and its always better to have more in 

number than being alone to protect themselves from 

predators. They fly in a group and all try to be on the center 

as its the safest position. But the position is based on the 

bird with the highest reserve of food. 

BSA is integrated as a solution to different types of 

problems on regression and classification of data. It has 

unique features that includes swarm algorithm, searching 

methods, population diversity, and local optima avoidance. 

The BSA is initiated by considering N number of birds in a 

X dimensional search space  
[29]. The swarms fitness value is averaged to calculate the 

effect of change in surroundings as the birds move to the 

center. 

In this context the birds will be the eight bit binary 

code extracted during the SdA, with its weights and biases 

fractions. The proposed method is initiated by specifying 

the SdA structure which includes the number of features, 

and the total number of biases and weights. Then, a 

random set of SdA networks is developed, that represents 

N birds. In the next stage the fitness value of individual 

bird is calculated based on a fitness function and the 

training dataset. In order to train dAs, the best global 

fitness, and best personal fitness of individual bird is 

updated first. Individual bird’s vector value is updated then 

based on the bird’s current status. The above defined 

stages are looped until the maximum number of iterations 

are reached. The resultant will be a collection of optimized 

features which can be used for evaluating the javascript. 

This results in faster generation of solutions with less time 

complexity. 
 
E. Efficiency  

According to [2], the SdA have produced an effective 

result of 94.82% accuracy with a True Positive Rate of 93.95% 

and False Positive Rate of 4.13%. The result was then 

compared to other machine learning algorithms like naive 

Bayes which scored only 93.32%, RBF SVM scored 91.67%, 

RIPPER scored 90.19%, and ADTree scored 85.08%. Among 

all the SdA outperformed. On the other hand BSA alone [29] 

have produced the highest classification rate when verifying 

with other algorithms like DE, GA, PSO, ACO, ES and 

ABC. Combining the features of BSA into SdA have 

increased the accuracy rate to 94% [29]. 
 

IV. CONCLUSION 

 
This paper proposes a new method on deep learning 

methodology based on Bird Swarm Algorithm which will 

produce a significant improvement on detecting malicious 

JavaScript on webpages. The main reason for selecting BSA as 

an optimization algorithm was its algorithm, where different 

groups are generated for a cluster of particles and generates a 

high local optima avoidance. According to the theoretical 

concept BSA can be used to train SdA for generating a larger 

collection of datasets with different characteristics. According 

to author [2][29], the SdA was able to produce an accuracy of 

94% with false positive rate to only 4% which is the best result 

compared to all other existing algorithms. 
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