
Delivered by Ingenta
IP: 207.241.232.186 On: Tue, 08 Mar 2022 13:45:23

Copyright: American Society for Photogrammetry and Remote Sensing

PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING March 2022 145

GIS &Tips Tricks By Dave Maune, Ph.D., CP, GS, PS,
and Al Karlin, Ph.D, CMS-L, GISP
YoLani Martin & Al Karlin, Ph.D.
CMS-L, GISP

You May Not Be The Only One Confused About Python Formatting
One of the continuing theses of this column is that with GIS
software, there are always multiple ways to accomplish the
same end goal. With Python scripting, it is even more true,
but with a twist. When scripting there are 101 addition-
al things to think about. Does the function have the right
inheritance hierarchy? Are there too many comments? Was
that fourth IF- statement indented properly? And then there
is an entire additional list of items when geographic infor-
mation system (GIS) software is thrown into the mix. What
worked perfectly fine in the code editor you are using for your
development environment suddenly doesn’t cooperate when
bringing it into another GIS interface. Then, a major factor
to keep in mind when developing scripts is identifying what
version of Python your software is using and what format a
script needs to be written in for the software to understand
a particular command. For this month’s Tip & Trick, we will
focus on formatting strings with the F-String function.

In Python, there are three methods of formatted strings
(f-strings) that can be used to format syntax and change dis-
play expressions. Each method was developed as new versions
of Python were released; the intent was to make formatting
simpler, but of course, with different versions, new issues and
confusion can arise.

For Python version 1.0
In Python 1.0, the f-string method involves using %format-
ting. The percent (%) operator acts as a placeholder in a
statement while the variable being formatted is then added
after the % (Example 1). If there is more than one variable
needed in a statement, then the variables are included after
the % operator using parenthesis and commas to separate
each variable (Example. 2).

Example 1. Basic use of %formatting where variable
“baker” is being incorporated into a print statement.

baker = “cleo”
print (“Welcome to %s’s bakery”%baker)

Result: Welcome to Cleo’s bakery
Example 2. Formatting with more than one variable.

food = “donuts”
num = 73
baker = “Cleo”
print (“Welcome to %s’s bakery!. There are %s %s in
stock.”%(baker, num, food)

Result: Welcome to Cleo’s bakery! There are 73 donuts
in stock.

For Python version 2.0
In Python 2.0, the f-string method involves using the string
format; where curly brackets “{}” are used to contain a string
variable (otherwise known as “str.format())”. The {} act as a
placeholder for the variable “while .format()” follows after; the
variable is contained within the parenthesis (Example 3). As
many variables as needed can be added within the parenthesis,
where even variables in a dictionary (Example 4) can be called
and formatted in a statement.

Example 3. Basic use of string format where baker, num-
ber, and food variables are applied to the print statement.

Food = “donuts”
Num = 73
Baker = “Cleo”
Print (“Welcome to {}’s bakery! There are {} {} in
stock.”format(baker, num, food))

Result: Welcome to Cleo’s bakery! There are 73 donuts
in stock.

Example 4. Accessing a dictionary with string format for
the print statement.

bakery = {“baker”:“Daniel”,“food”:”danishes}
print (“Welcome to {baker}’s bakery! We sell
{food}.”.format (**bakery))

Result: Welcome to Daniel’s bakery! We sell danishes.

For Python version 3.0
In Python version 3.0, the f-string method is similar to str.
format() but now it is written out as f “{}”. By using lowercase
f or uppercase F in the beginning of the statement, the curly
brackets containing the variable can be placed more easily
(Example 5). This method makes editing syntax more efficient
and easier to follow.

Example 5. Basic use of f”{}” where variables are placed
throughout the print statement.

baker = “Cleo”
rival = “Daniel”
b1 = “donuts”
b2 = “danishes”
print (f”{rival}’s bakery is {baker}’s rival. But their {b2}
can’t compare to our {b1}!”)

Result: Daniel’s bakery is Cleo’s rival. But their
danishes can’t compare to our donuts!

Photogrammetric Engineering & Remote Sensing
Vol. 88, No. 3, March 2022, pp. 145-146.

0099-1112/22/145-146
© 2022 American Society for Photogrammetry

and Remote Sensing
doi: 10.14358/PERS.88.3.145

March2022 Layout.indd 145March2022 Layout.indd 145 2/17/2022 11:54:03 AM2/17/2022 11:54:03 AM

Delivered by Ingenta
IP: 207.241.232.186 On: Tue, 08 Mar 2022 13:45:23

Copyright: American Society for Photogrammetry and Remote Sensing

146 March 2022 PHOTOGRAMMETRIC ENGINEERING & REMOTE SENSING

Understanding the different methods of f-strings is not only
useful for formatting scripts, but also significant to format-
ting tools for different GIS software systems. Not all GIS sys-
tems may have Python incorporated into their back-end code;
while some GIS software may use older versions of Python.
The trick to formatting lines of code with f-strings is knowing
what version of Python the software uses.

Every update to a piece of software is going to come with its
own positives and negatives. One update may solve developing
needs and make work much easier. On the other hand, an up-
date may have the most up to date version of Python, but may
take away a feature the last version had that was needed for a
special kind of analysis or cartographic work. Table 1 summa-
rizes popular GIS software and Python versions, there are a
variety of packages that come in certain software versions.

Knowing how to adapt code for frameworks is part of an
application and script’s life cycle. Not every project requires
legacy code to function, but having a basis of what format-
ting is required makes the adaptation and troubleshooting
process run smoother.

It is important to note that there is no wrong way to write
scripts and tools; there is always more than one way to
accomplish the end-goal. Rather, it is a matter of how clear
they are to users and developers that determines their
usability. If a project is dependent on features of one system
version over another, developing code that’s understandable
for that specific system is essential. But where there are
limits, there also lies creative bounds. Once a system’s syn-
tax limits are understood, it becomes easier to adapt code
for the best use of a project or task.

Below are some additional sources for help with Python
scripting.

Sources
“Arcgis Notebook Server.” Available Python Libraries-Arc-

GIS Notebook Server | Documentation for ArcGIS En-
terprise, https://enterprise.arcgis.com/en/notebook/latest/
python/windows/available-python-libraries.htm.

FAQ: What Version of Python Is Used in Arcgis?, https://sup-
port.esri.com/en/technical-article/000013224.

Real Python. “Python 3’s F-Strings: An Improved String
Formatting Syntax (Guide).” Real Python, Real Python,
19 Mar. 2021, https://realpython.com/python-f-strings/.

Jablonski, J. “Python 3’s F-Strings: An Improved String
Formatting Syntax (Guide).” Real Python, Real Python,
19 Mar. 2021, https://realpython.com/python-f-strings/.

“Microsoft Azure SDK for Python.” Microsoft Docs, https://
docs.microsoft.com/en-us/python/api/overview/azure/mg-
mt-maps-readme?view=azure-python.

“Python in Global Mapper.” Python Scripting, https://www.
bluemarblegeo.com/knowledgebase/global-mapper-23/Py-
thon.htm.

QGIS Documentation, https://qgis.org/en/docs/index.html.
Requirements to Compile Grass GIS 7, https://grass.osgeo.

org/grass74/source/REQUIREMENTS.html.

Send your questions, comments, and tips to GISTT@ASPRS.org.

YoLani Martin is a Geospatial Analyst with Dewberry’s
Fairfax, VA office. She is a resource for open source tools and
Python scripting. Al Karlin, Ph.D., CMS-L, GISP is with
Dewberry’s Geospatial and Technology Services group in
Tampa, FL. As a senior geospatial scientist, Al works with
all aspects of Lidar, remote sensing, photogrammetry, and
GIS-related projects.

Table 1. Comparison of several popular GIS software programs and compatible Python versions.

GIS Software Version Python Version Used Recommended
F-string to use

ArcGIS Desktop 10.0-10.8.1 Python 2.6.5 - Python
2.7.18

 y % formatting
 y str.format()

ArcGIS Enterprise 10.0 - 10.2.1, 10.5, 10.5.1, 10.6, 10.6.1, 10.7, 10.8, 10.9 Python 2.6.5 - Python
2.7.18

 y % formatting
 y str.format()

ArcGIS Enterprise cont. 10.4 - 10.9 *(note: versions may include upgraded set of python
libraries)

Python 3.4.1 - 3.7.9 y f “{}” formatting

ArcGIs Notebook 10.7 - 10.9 *(note: versions may include upgraded set of python
libraries)

Python 3 y f “{}” formatting

ArcGIS Pro 1.0 - 1.2 Python installation required y % formatting
 y str.format()
 y f “{}” formatting

ArcGIS Pro cont. 1.3 - 2.8.3 Python 3 y f “{}” formatting

Global Mapper v22.0 - v23.0 Python 3.9 y f “{}” formatting

QGIS v3.16 - v3.22 Python 3 y f “{}” formatting

QGRASS GIS 7.4.4 - 7.8.6 Python 2.7 - Python 3 y % formatting
 y str.format()
 y f “{}” formatting

Microsoft Azure Maps 2.0 Python 2.7 - Python 3.8 y % formatting
 y str.format()
 y f “{}” formatting

March2022 Layout.indd 146March2022 Layout.indd 146 2/17/2022 11:01:52 AM2/17/2022 11:01:52 AM

