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Abstract

Video anomaly detection under weak supervision is
complicated due to the difficulties in identifying the
anomaly and normal instances during training, hence,
resulting in non-optimal margin of separation. In this
paper, we propose a framework consisting of Dissimilarity
Attention Module (DAM) to discriminate the anomaly
instances from normal ones both at feature level and
score level. In order to decide instances to be normal
or anomaly, DAM takes local spatio-temporal (i.e. clips
within a video) dissimilarities into account rather than
the global temporal context of a video. This allows the
framework to detect anomalies in real-time (i.e. online)
scenarios without the need of extra window buffer time.
Further more, we adopt two-variants of DAM for learning
the dissimilarities between successive video clips. The
proposed framework along with DAM is validated on two
large scale anomaly detection datasets i.e. UCF-Crime and
ShanghaiTech, outperforming the online state-of-the-art
approaches by 1.5% and 3.4% respectively. The source
code and models will be available at https://github.
com/snehashismajhi/DAM-Anomaly-Detection

1. Introduction

Anomaly detection in videos has drawn a significant
attention in the vision domain due to its huge applications in
intelligent surveillance systems enabling crime prevention
and investigation. Detection of anomalies in real-world
scenarios is challenging due to the unavailability of
large annotated data, sparsity in anomaly occurrence, and
ambiguous definition of anomalies. To define, anomaly
detection for a given stream of video, we aim at learning
the start and end of an anomaly event occurring in a
video. For this, previous studies [3, 1, 6] have been
learning the distribution of only normal activities defined
for a specific environment through uni-class unsupervised
learning and treat anomaly as an outlier w.r.t. the learned
normal distribution. Since, it is difficult to generalize
representations for all possible normal activities, these

methods are highly biased to generate false positives in
real-world scenarios.

To combat this, recent anomaly detection
approaches [11, 17, 15, 7, 4, 16, 13, 14] adopt a
weakly-supervised binary classification paradigm where
both normal and anomaly videos are taken into account
during training. In this setting, for a long untrimmed
video sequence, only coarse video-level labels (i.e.
normal and anomaly) are required for training instead
of frame-level annotations. However, in these methods a
major challenge lies in identifying the anomaly instances
from normal ones to take part in maximizing the margin
of separation between the classes. Recent approaches
[11, 17, 15, 4, 7] have been addressing this challenge by
using Multiple Instance Learning (MIL) with a ranking
loss. These approaches inputs feature representation of
non-overlapping temporal segments of each video to the
MIL model which initially assigns scores to each segments
for optimizing the separation between anomaly and normal
temporal segments based on their scores by a ranking
loss. Broadly, these approaches discriminate the anomaly
instances either at the score level [11, 17, 15] by selecting
the maximum scoring instances as anomaly or at the
feature level [7] by combining several modalities. Either
of these approaches are limited due to the inappropriate
selection of anomaly instances at score level and difficulties
in obtaining discriminative feature representation. This
is mainly due to the previous algorithms focusing on
modeling the global temporal information ignoring the
local contextual information localized in the temporal
segments that pertain to have anomalies.

To this end, we propose a framework that not only
highlights the salient anomaly instances at the feature
level but also at the score level through a Dissimilarity
Attention Module (DAM) by taking the local contextual
information into account. In contrast to earlier methods
[7, 17] where both RGB and Motion modalities are used,
we only use RGB modality in our framework to achieve
real-time performance as well as to obtain discriminative
representation for anomaly instances. Since anomaly videos
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differ significantly in their temporal context from that of
normal ones, we aim at modeling this attribute for obtaining
discriminative representations. However, discriminating
anomaly instance by global temporal context modeling
using TCNs, LSTMs, are limited by the fact that they can
not detect anomalies in real-time detection systems, since
they require buffer as the input to the systems. Thus, the key
building bock of our framework DAM exploits the temporal
context of a video by looking at the neighboring instances
rather than the whole video to assign independent attention
weights both at the feature and score levels. The proposed
framework is validated on two publicly available large scale
datasets, namely UCF-crime and ShanghaiTech achieving
state-of-the-art anomaly detection performances.

In summary, the contributions of the paper include:

• A weakly-supervised anomaly detection framework
that learns a discriminative representation for anomaly
instances both at feature and score levels.

• A dissimilarity attention module that incorporates
local contextual information in the anomaly detection
for real-time applications.

• An exhaustive experimental analysis to corroborate the
robustness of proposed method on two competitive
anomaly detection datasets.

2. Related Work
Weakly-supervised anomaly detection has been studied

extensively in the past few years [11, 16, 13, 15, 12, 17,
7, 14, 4]. Major previous work can be divided into two
categories based on the learning paradigm: (1) Multiple
Instance Learning (MIL) based approach, (2) Cleaning
Noisy Labels based approach. Multiple Instance Learning
(MIL) Based Approach was introduced by Sultani et al.
[11] to overcome the drawbacks of traditional unsupervised
one-class learning based anomaly detection methods [1,
6, 3]. Since in weakly-supervised anomaly detection task
only video-level labels are provided for learning, authors in
[11] only extracts off-the-shelf features from a pre-trained
3D ConvNet backbone and aim at training a classification
network through a novel ranking loss function. The
optimal separation between normal and anomaly instances
is ensured by the ranking loss function by choosing the
maximum scoring instances of both normal and anomaly
videos for optimization and hence resulting in smaller
false positives than that of unsupervised anomaly detection
methods. Despite this, Sultani et al. were able to produce
limited detection performance since they only focus on
score level discrimination of the anomaly instances by
ignoring the temporal context modeling of videos in order
to discriminate anomaly instances at the feature level.

Cleaning Noisy Labels Based Approach was
introduced by Zhong et al. [16] since they claimed that
the MIL based approaches are incompetent in producing
higher anomaly detection performances since they are not
end-to-end trainable along with the 3D ConvNet backbone
due to the unavailability of precise temporal annotations.
Thus, Zhong et al. [16] aim at training the 3D ConvNet
backbone by generating pseudo temporal annotations for
untrimmed anomaly videos through a Cleaning Noisy
Labels based approach. This enables Zhong et al. to learn
a discreminative representation for anomaly instances.
However, the generation of pseudo temporal annotations
is done by training a Graph Convolution Network (GCN).
Since training of GCN is computationally complex and
can lead to unconstrained latent space, authors in [14]
use clustering algorithms for cleaning the noisy labels of
untrimmed anomaly videos. Different from [16], Zaheer
et al. [14] uses the k-means clustering algorithm to
produce pseudo temporal annotations for anomalous videos
and trained 3D ConvNet backbone for discriminative
representation learning of anomaly instances. Since these
methods are heavily dependent upon pseudo temporal
annotations stage, so a noisy generation of temporal
annotations can drastically mislead the training of 3D
ConvNet backbone.

Inspired by this, authors in [15] utilize TCN in
MIL based approach for obtaining temporal dependency
encoding for anomaly instances at the feature level. In
addition, they also proposed an inner-bag ranking loss
function for improved anomaly detection performance.
Another approach [17], combined optical flow features
with the RGB feature map for discriminating the anomaly
instances that exhibit strong motion in it. Similarly, authors
in [7] proposed two-stream framework i.e. RGB and
Social Force modalities to model the crowd behaviours
leading to anomaly patterns. Moreover, they used
self-attention mechanism as a feature modulation technique
and aggregated the anomaly detection score of both streams
to report the final detection performance. Recently, authors
in [13] claimed that combining audio features with RGB
map can discriminate the anomaly instances effectively
at the feature level. In addition, Wu et al. [13] also
utilize Graph Convolution Network (GCN) for temporal
context learning in videos leading to improved anomaly
detection performance. Since the usage of TCN and GCN
in anomaly detection methods require the whole video for
temporal context learning, this makes the system operate on
sliding window (offline) mode. Since a major application
of anomaly detection methods is to operate on real-time
surveillance systems, the usage of optical flow, Social
Force, and audio modalities increases the inference time.
Thus, we propose a real-time anomaly detection framework
composed of a DAM module that not only discriminates
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Figure 1: Proposed Anomaly Detection Framework: It comprises of four stages. (A) divides an untrimmed video into
a fixed number of Temporal clips (say C). Subsequently (B) extracts the spatio-temporal feature map for each clip from a
pre-trained 3D ConvNet. The main contribution of the proposed framework lies in (C) which modulates the features extracted
from the pre-trained 3D ConvNet as well as computes temporal attention weights for each clip through a Dissimilarity
Attention Module (DAM). Finally, (D) performs anomaly detection using fully connected networks. The whole framework
is optimized using a ranking loss function which takes the detection score from (D) and temporal attention weights from
DAM into account for gradient computation.

the anomaly instances at the feature level but also at the
score level. This discriminative learning is enabled by the
DAM which learns the dissimilarity present in consecutive
instances and highlights the temporal salience both at
feature and score levels.

3. Proposed Method
The overview of proposed framework is shown in Figure

1 and when the four stages are executed sequentially, it
achieves the weakly-supervised anomaly detection task.
It can be visualized that, the framework can operate by
using RGB videos with only video-level labels to detect
anomalies. In addition, Figure 1 presents the training
pipeline of the proposed framework, where both normal and
anomaly video sequences are taken simultaneously to learn
an optimal separation between the classes through a ranking
loss function. Whereas, while testing, the framework can
take a stream of frames instead of a whole video for
real-time anomaly detection. A detailed description of each
stage present in the framework is given in the following
subsections.

3.1. Temporal Clip Generation

Following earlier MIL based anomaly detection methods
[11, 17], the proposed framework divides a long untrimmed
video into a fixed number of non-overlapping temporal
clips (say C) in this stage. The temporal clips obtained

from a normal video contains no anomaly clips, however a
combination of normal and anomaly clips are obtained from
an untrimmed anomaly video. The objective of the temporal
clip generation stage is to ensure homogeneity in terms of
the number of instances (i.e. clips) among the classes.

3.2. Feature Extraction

In Feature Extraction stage for each temporal clip,
spatio-temporal features are extracted from a pre-trained
3D ConvNet backbone. The 3D ConvNet used in this
framework takes a 64 frame snippet (Si) into account to
extract a feature map of dimension t × n, where t denotes
the temporal scale and n is the channel size. Since multiple
64-frame snippets {S1, S2, . . . , Sm} can be present inside
a temporal clip (Ci) and a global feature map per Ci is
required, a max pooling operation is performed over m.
So for a given untrimmed video containing C clips, a
spatio-temporal feature map of dimension C × t × n is
generated from this stage.

3.3. Feature Modulation

The objective of the feature modulation stage is
to learn a discriminative representation for anomaly
and normal instances by enhancing the quality of the
feature map generated from the previous stage. This
is achieved by two components as shown in Figure
1, Long-Short-Term-Memory (LSTM) and Dissimilarity



Attention Module (DAM). The detailed functionalities of
each component is presented below.

Long-Short-Term-Memory (LSTM) With an objective
of clip-level temporal contextual learning that can
distinguish an anomaly clip from the normal ones, a vanilla
many-to-one LSTM module is used on top of the clip-level
feature map obtained from 3D ConvNet. The LSTM f()
having θh parameters takes the feature map of a clip FC ∈
Rt×n and outputs a nh dimensional temporally encoded
feature vector F

′

C at the final time step. The LSTM has nh
number of hidden neurons and the output encoding is tanh
squashed.

Dissimilarity Attention Module (DAM) In order to
learn a discriminative representation for the normal and
anomaly instances (i.e. clips) in long untrimmed videos, a
Dissimilarity Attention Module (DAM) is proposed in this
work. The DAM has two branches (i.e. ChannelA and
ClipA) as shown in Figure 2 which perform two major
functionalities. Firstly, the ChannelA branch highlights
the salient channels in the clip-level encoded feature vector
F

′

C obtained from the LSTM network. Secondly, ClipA
branch highlights the salient temporal clips in an untrimmed
video that contains anomaly patterns and hence, it guides
the ranking loss function for effective optimization between
normal and anomaly classes.

Unlike [7, 17], where optical flow and social force
modalities are used for attention map generation, DAM
uses only clip-level RGB feature map obtained from 3D
ConvNet to compute ChannelA and ClipA. In addition,
DAM neither requires the global temporal information of
a video, rather, it uses the local temporal dissimilarity
among two consecutive clips for computing the ChannelA
and ClipA. Depending upon the dissimilarity measures
used to generate ChannelA and ClipA, two variants
of DAM are proposed i.e. Dist-DAM and Cov-DAM.
In Dist-DAM, Manhattan distance measure is used as a
dissimilarity measure and likewise, the diagonal elements
of the cross-covariance matrix is used as a dissimilarity
measure in Cov-DAM . This mechanism of generating
attention map from local contextual information enables the
DAM module to perform on online scenarios.

It can be visualized from Figure 2 that for computing the
ChannelA andClipA forCi clip, the feature map ofCi and
Ci−1 having dimension t × n each is required. At first, to
capture the change in the distribution of channels for each
tj where j ∈ [1, t] between Ci and Ci−1, a dissimilarity
measure (Dn) is computed across n as presented in 1.

Dn =



t∑
j=1

|(Ci)j,k − (Ci−1)j,k|, if Dist-DAM

diag([(Ci)k − (Ci)k]

[(Ci−1)k − (Ci−1)k]
T ), if Cov-DAM

(1)

where ∀k ∈ [1, n]. Similarly, to capture the change in
the distribution of temporal scale for each nj where j ∈
[1, n] between Ci and Ci−1, a dissimilarity measure (Dt) is
computed across t as presented in 2.

Dt =



n∑
j=1

|(Ci)j,k − (Ci−1)j,k|, if Dist-DAM

diag([(Ci)k − (Ci)k]

[(Ci−1)k − (Ci−1)k]
T ), if Cov-DAM

(2)

where ∀k ∈ [1, t]. The dissociated dissimilarity
computation across channel and temporal scales allows the
DAM module to capture those channels and temporal scales
which significantly change between two consecutive clips
(i.e. Ci and Ci−1). The next step is to bind the Dn and Dt

in a single dissimilarity feature map (Dnt) by performing
Hadamard Product of Dn and Dt. Since, the dimensions of
Dn and Dt are 1×n and 1× t respectively, Dn and Dt are
inflated across temporal scale (t) and channel (n) to perform
the Hadamard Product as shown in 3.
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Figure 2: Dissimilarity Attention Module(DAM)
highlights the salient channels (ChannelA) in the feature
map and computes the temporal attention weights (ClipA)
for a clip (Ci), given the feature map of Ci and Ci-1 as input.

Dnt = Inflate(Dn)⊗ Inflate(Dt) (3)



The dissimilarity feature map (Dnt) is then passed on
to a many-to-one vanilla LSTM network with nh hidden
neurons to encode those channels which significantly
change over the temporal scale. The output of LSTM
network is further normalized with softmax activation
to generate the channel attention maps (ChannelA).
However, for computing the clip attention weights (ClipA),
the LSTM output map is first tanh squashed and then
projected into a fully connected (FC) layer having 1 neuron
with sigmoid activation. The usage of sigmoid activation in
ClipA, makes the clip attention map mutually exclusive of
other clip attention maps. The functional representation for
computing the ChannelA and ClipA is given in 4 and 5
respectively.

ChannelA = Softmax(LSTM(Dnt)) (4)

ClipA = Sigmoid(FC(tanh(LSTM(Dnt)))) (5)

Finally, to obtain a modulated feature vector (F ∗C)
per clip, first a channel attention mask is computed
by performing Hardamad Product between the channel
attention weights (ChannelA) and LSTM network output
(F

′

C). Subsequently the channel attention mask is added
with (F

′

C) to compute (F ∗C).

3.4. Anomaly Detection

The anomaly detection stage detects the temporal
clips that contain anomaly patterns using a multi-layer
perceptron (MLP) as shown in Figure 1. The MLP takes
the modulated features of a clip (F ∗C) as input and assigns
independent detection scores (D) in the final layer through
a sigmoid activation.

Optimization of the Framework: The proposed
framework along with the DAM module is end-to-end
trainable excluding the 3DConvNet feature extractor.
During training, following earlier method [11], a MIL
based ranking loss function is adopted for optimization.
The ranking loss operates between two bags of instances,
namely Da and Dn, where Da and Dn is a collection
of detection scores (D) corresponding to the temporal
clips obtained from anomaly and normal video sequences
respectively. Furthermore, to maximize the margin of
separation among the classes, identifying the anomaly and
normal instances in Da and Dn is a crucial task. Since with
video-level labels it is difficult to categorize the normal
and anomaly instances, authors in [11] select the maximum
scoring instances of Da and Dn as anomaly and normal
and optimized the separation among them as shown in 6.

RL(Da, Dn) = max (0, 1−max
i∈Da

(Di
a)+ max

i∈Dn

(Di
n)) (6)

However, a maximum detection score instance of Da

may not persist anomaly in all types of abnormal scene and

this inappropriate selection of anomaly instances can lead
to non-maximal margin of separation.

To address this, we take the clip attention weights
(ClipA) obtained from DAM into account to identify the
normal and anomaly instances effectively in Dn and Da

for optimization. Since, ClipA is generated by learning
the dissimilarity between two consecutive clips (i.e. Ci

and Ci−1), an abrupt change in spatio-temporal space can
associate higher clip attention weights. Now the ClipA are
modulated with D obtained from the final layer of MLP
to compute the weighted detection scores (wD) given by
wD = (D ⊗ ClipA) ⊕ D. These wD are then used in 6
to formulate weighted ranking loss (wRL) as shown in 7.
Further more, the wRL contains a temporal smoothing and
a sparsity constraint as proposed by [11].

wRL(wDa, wDn) = max (0, 1− max
i∈wDa

(wDi
a) + max

i∈wDn

(wDi
n))

+λ1

(N−1)∑
i

(wDi
a − wDi+1

a )2 + λ2

N∑
i

(wDi
a)

(7)
where N = T × batchsize, λ1 and λ2 are the weighting
factors of the temporal smoothing and sparsity constraints
respectively. This weighted ranking loss (wRL) is
employed in the proposed method to maximize the margin
of separation between normal and anomaly instances.

4. Experimental Analysis
Datasets - The experiments are conducted on two widely

used anomaly detection datasets, namely, UCF-Crime[11]
and ShanghaiTech [8]. UCF-Crime is a diverse and
large-scale dataset containing 1900 real-world surveillance
videos from 13 types of anomaly activities. In this dataset
anomaly activities may occur for longer duration or for
shorter duration, which makes the problem of detection
more challenging. It has 1610 videos for training out
of which 810 and 800 videos belongs to anomaly and
normal classes respectively. Similarly, for testing there
are 290 videos containing 140 anomaly and 150 normal
videos. ShanghaiTech is a medium scale dataset recorded
in a University campus. Originally [8] was designed for
unsupervised anomaly detection task, but we follow a
recent train-test protocol designed by Zhong et.al. [16] for
weakly-supervised settings. This contains, 175 normal and
65 anomaly videos for training as well as 155 normal and
44 anomaly videos for testing.

Evaluation Metric - Following earlier approaches [11,
16], frame-level Receiver Operating Characteristics (ROC)
and its corresponding Area Under the Curve (AUC) is used
to evaluate the anomaly detection performance. In addition,
a false alarm rate(FAR) measure introduced by Sultani et.al.
[11] is also used to evaluate the robustness of the proposed
method.



Table 1: Sequential Ablation Studies of the proposed method in UCF-Crime and ShanghaiTech dataset to quantify the
importance of different modules in terms of AUC(%)

Method Components UCF-Crime ShanghaiTech
l1 I3D 77.42 76.19
l2 l1 + LSTM 79.55 77.96

Dist-DAM l2 + ChannelA 81.49 80.1
l2 + ChannelA + ClipA 82.57 88.86

Cov-DAM l2 + ChannelA 81.51 80.32
l2 + ChannelA + ClipA 82.67 88.22

Table 2: Anomaly detection performance comparisons of the proposed method with state-of-the-art online and offline
methods in terms of frame-level AUC and FAR on UCF-Crime and ShanghaiTech dataset.

Mode of Methods Feature UCF-Crime ShanghaiTech
Operation AUC(%) FAR (%) AUC(%) FAR (%)

Offline
Zhong et al.[16] TSN RGB 82.12 0.1 84.44 -
Majhi et al.[10] I3D RGB 82.12 - - -
Wu et al.[13] I3D RGB 82.44 - - -

Online

SVM Baseline - 50 - - -
Hasan et al.[5] AE RGB 50.6 27.2 - -

Lu et al.[9] C3D RGB 65.51 3.1 - -

Sultani et al.[11] C3D RGB 75.41 1.9 - -
I3D RGB 77.42 1.4 - -

Zhang et al.[15] C3DRGB 78.66 - - -
Lin et al.[7] C3DRGB 78.28 - - -

Zhu et al.[17] C3D RGB 79 - - -
Zaheer et al.[14] C3D RGB 79.54 - 84.16 -

Wu et al.[13] I3DRGB - - 85.38 -
Zhong et al.[16] C3D RGB 81.08 2.8 76.44 -

Proposed Method
w Dist-DAM I3D RGB 82.57 0.3 88.86 2.1

Proposed Method
w Cov-DAM I3D RGB 82.67 0.3 88.22 2.3

4.1. Implementation Details

Training-At first spatio-temporal features are extracted
from the I3D backbone [2] for each temporal clips obtained
from a long untrimmed video. The number of temporal
clips (C) is set to 16 in these experiments. The input to I3D
is the center cropped image of dimension 224 × 224 from
the full frame for features extraction. The spatio-temporal
features are extracted for from the Global Average
Pooling layer of I3D which yields a feature map of
dimension t × n, where t = 7 and n = 1024. The number
of hidden neurons used in many-to-one vanilla LSTM is set
to 1024 (= nh). Then the proposed framework is trained
using Adam optimizer at a learning rate 0.0001 and with
the loss weighting factors λ1 = λ2 = 8 × 10−5. We
also randomly select 10 anomaly and 10 normal videos
as a mini-batch and compute the gradient using reverse
mode automatic differentiation on computation graph using
Tensorflow. Then the loss is computed and back-propagated

for the whole batch. Testing- We empirically found that
center crop and the four corner crop is suitable for model
testing and results in superior performance. This is to cover
the spatial fine detail of the anomaly, as in [16].

4.2. Ablation Study

A detailed ablation study in UCF-Crime and
ShanghaiTech datasets is given in Table 1 to observe
the importance of each modules present in the proposed
framework. At first, experiment is carried out with I3D
feature followed by 3-layer MLP anomaly detection
module to define the baseline condition of the proposed
framework. Subsequently to learn the intra-clip temporal
dependency in I3D feature map, a many-to-one LSTM
module is added and it is found to improve around 2%
detection performance in both the datasets shown in l2
of Table 1. Then the major component of the proposed
method, DAM is invoked to the framework for verifying
the influence of ChannelA and ClipA in anomaly detection
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Figure 3: Visualization of ClipA score along with the prediction score with respect to the ground truth during testing. The
Row-1 and Row-2 shows a comparison of ClipA and the prediction scores when Dist-DAM and Cov-DAM modules are
invoked separately in the proposed framework. The comparision is made for three videos of UCF-Crime dataset, namely,
“Explosion27”, “Shooting8”, and “Road Accidents128”.

performance. Since we propose two variants of DAM, i.e.
Dist-DAM and Cov-DAM in this paper, firstly Dist-DAM
is considered for experimentation and it is evident that
when both ChannelA and ClipA are added to l2 a substantial
performance improvement of 10.9% and 3.02% is achieved
in ShanghaiTech and UCF-Crime datasets respectively.
Likewise, when Cov-DAM is added to the framework in
place of Dist-DAM, a huge performance improvement
of 3.12% and 10.9% is achieved in UCF-Crime and
ShanghaiTech datasets respectively than that of l2 in Table
1.

For qualitative analysis, we visualize the ClipA weights
along with the prediction scores of different videos and
showcase a comparison between Dist-DAM and Cov-DAM
in Figure 3. Surprisingly, we found that the ClipA
weights learned by Dist-DAM are more sensitive to the post
anomaly scenarios by producing higher weights due to a
panic like situation than that of Cov-DAM. However, both
Dist-DAM and Cov-DAM based frameworks are capable
of detecting anomalies precisely in many videos as shown
for “Explosion27” for “Shooting8”. In addition, there are
also few special cases like “Road Accidents128” video
where the scene changes abruptly and the post anomaly
scenarios are very similar to a abnormal situation where
the framework containing either Dist-DAM or Cov-DAM
produces false positives.

4.3. State-of-the-art Comparison

To check the robustness of the proposed framework,
a comparison is made with the recently reported

state-of-the-art methods in UCF-Crime and ShanghaiTech
datasets as shown in Table 2 and Figure 4. For UCF-Crime
dataset, anomaly detection performance comparison is
made upon three indicators i.e. ROC, AUC and FAR.
However, for shanghaiTech dataset only two indicators i.e.
ROC and AUC is used for the performance comparison
due to the unavailability of protocol for computing FAR.
It can be seen from Table 2, the proposed framework
containing either Dist-DAM or Cov-DAM outperforms the
state-of-the-art online anomaly detection methods by a
larger margin in both UCF-Crime and ShanghaiTech dataset
and also produce significantly smaller false positive than
that of online methods in UCF-Crime dataset. It is majorly
due to the capabilities of the DAM in discriminating
the normal and anomaly instances in real-world scenarios
by considering the dissimilarity present in consecutive
instances. In addition, to detect anomalies in real-time
scenario, we compare speed of the proposed framework
with earlier methods in terms of FPS and it is evident from
Table 3, the proposed framework invoking either Dist-DAM
or Cov-DAM is much faster that Zhong et.al. due to the
reduced number of parameters.

Table 3: Testing Speed Comparison of the proposed method
with existing online anomaly detection methods.

Methods Param Speed(FPS)
Zhong et al.[16] - C3DRGB 78M 130

Proposed- Dist-DAM + I3D RGB 29M 282
Proposed- Cov-DAM + I3D RGB 29M 267
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Figure 4: State-of-the-art ROC curve comparison with the
proposed method.

5. Conclusion

In this work, a anomaly detection framework containing
DAM is proposed to discriminate the anomaly instances
from normal ones during training with video level labels.
The discrimination is ensured by the ChannelA and ClipA
of DAM by taking the local contextual information into
account rather than the global context, enabling the
framework to detect the anomalies in real-time scenarios.
From experimentation, it is evident that the proposed
framework outperforms the state-of-the-art online anomaly
detection methods in UCF-Crime and ShanghaiTech
datasets. In addition, it is also considerably more faster
than earlier online methods in order to meet the real-time
requirements. However, the proposed framework is still
affected by the post anomaly scenarios, resulting in false
positives.
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