
International Journal of Database Theory and Application

Vol.7, No.4 (2014), pp. 59-78

http://dx.doi.org/10.14257/ijdta.2014.7.4.06

ISSN: 2005-4270 IJDTA

Copyright ⓒ 2013 SERSC

Design and Implementation of Multiple Volume Servers Block Level

Storage System based on Load-Balanced Strategy

Jian Wan
1*#

, Xun Chen
2*#

 and Xindong You
3*#

*
School of Computer Science and Technology, Hangzhou Dianzi University,

Hangzhou, China
#
Key Laboratory of Complex System Modeling and Simulation,

Ministry of Education
1
wanjin@hdu.edu.cn,

2
cx787@163.com,

3
 youxindong@hdu.edu.cn

Abstract

Block level storage system has been widely used as it can provide users raw block device.

On the basis of Orthrus system, this paper designs and implements a multiple volume servers

block level storage system based on load-balanced strategy-Orthrus Plus. This system uses

the dynamic load-balanced strategy based on genetic algorithm strategy to load balance the

volume servers clusters and proposes an iSCSI pause and resume method to solve the

breakpoint retransmission problem during load-balancing. At last, we design a hierarchical

management mechanism based on volume life cycle at storage. Experiments show that the

load balancing capability in Orthrus Plus is more accurate and efficient under the situation

of larger amount of data, and the hierarchical storage strategy also increases the I/O

throughout capacity.

Keywords: cloud storage, load balancing,genetic algorithm, iSCSI pause and

rusume;hierarchical storage strategy

1. Introduction

With the widely use of cloud computing technology, as well as the surge of global amount

of user data , cloud storage fields also began to grow up.

Cloud storage is an extension and development of the concept of cloud computing,it means

to gather a variety of heterogeneous network storage device to work together by using

clustering technology, distributed file system, grid technology, etc. It provides users safe,

reliable, efficient data storage and access service.

According to the difference of storage level, cloud storage system can be divided into two

parts: file level storage and block level storage. File level storage system mainly refers to

distributed file system. It provides file level storage access services through the Network File

System protocol. Such as Hadoop Distributed File System(HDFS)[1] ,Google File

System(GFS)[2],Amazon Simple Storage Service(S3)[3]and so on. While Block level cloud

storage system provides users row block level storage resources via Small Computer System

Interface(SCSI) or Fibre Channel(FC). Like Amazon Elastic Block Store(EBS)[4],Virtual

Block Store(VBS)[5] from Indiana University and Orthrus from Hangzhou Dianzi

University[6].

Because of the block level storage’s high versatility, flexibility and other characteristics, it

is widely used in file storage, database storage, the virtual machine file system volume[7].But

different block level storage products has their own shortage. (1)Amazon EBS has high

coupling with its own platform, which is the disadvantage of integration between different

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

60 Copyright ⓒ 2014 SERSC

systems and second development; (2)VBS only uses one single node as volume server, that is

likely to cause single point of failure, thus affecting the stability of the system. (3)Orthrus

adopts multiple volume servers to improve the single point of failure. Meanwhile, it uses the

mutated genetic algorithm strategy to ensure the load-balancing between each volume servers.

However, when Orthrus uses the load-balancing strategy and the iSCSI [8] connections will

be reset, if a user is uploading data at that time, after the new iSCSI connection is rebuilded,

user should re-upload the data. This lowers the system efficiency. Besides, as Orthrus uses the

mutated genetic algorithm strategy, which is lack of mutation, it is easily to get the locally

optimal solution, rather than the global optimal solution. At last, as users of the system

gradually increased, with the amount of data, the back-end storage pool is also extended to

the many heterogeneous storage devices. Orthrus system lacks full use of existing storage

resources strategy, as well as depth and unified management of heterogeneous storage devices

and logical volumes.

Therefore, this paper has implemented a multiple volume servers block level storage

system based on hierarchical storage strategy——Orthrus Plus. This system focuses on the

problems such as local optimum in load balancing, iSCSI breakpoint retransmission and the

lack of unified management of heterogeneous storage devices. It does certain improvements

in load balancing. Firstly, put the mutation process of genetic algorithm into the load

balancing strategy to improve the accuracy of global optimal solution as much as possible.

Secondly, this paper has designed an iSCSI pause-and-resume oriented method. After reset

the iSCSI connection, users who are uploading data do not need to re-upload data. System

will continue to upload from the breakpoint automatically. This improves the system

performance. Thirdly, we proposed a hierarchical storage management mechanism based on

volume life cycle through the existing heterogeneous storage environments. Lastly, we have

verified through experiments that the load balancing strategy in Orthrus Plus is more reliable

and efficient under large amount of data, and the performance improvement on hierarchical

storage management mechanism on the overall system.

In this paper, Section 2 designs the basic architecture of Orthrus Plus system, and briefly

introduces the process of logical volume management and failure detection in Orthrus Plus;

Section 3 adopts volume server load model and performance model, and proposes an

improved load balancing strategy based on genetic algorithm. Meanwhile, we propose an

iSCSI pause-and-resume method to improve the system’s load balancing efficiency; Section 4

proposes a hierarchical storage management mechanism based on volume life cycle; In

Section 5, we compare the experiments of before and after improve the load balancing

strategy, analysis the performance of iSCSI pause-and-resume, and verified the performance

improvement on hierarchical storage management mechanism on the system access

efficiency; Section 6 concludes this paper and proposes the next steps.

2. Architecture of Orthrus Plus

2.1. Introduction of System Architecture and Module Function

This paper designs a kind of multiple volume servers block level cloud storage system

based on hierarchical storage strategy—Orthrus Plus. It can allocate storage resources for

virtual machines according to users’ requirement. The system adopts multiple volume servers

architecture, and volume servers faults’ monitor-detection-switching mechanism to avoid

single point of failure as much as possible, and strengthen the stability of the entire system.

Orthrus Plus system mainly consists of seven modules. They are Orthrus Plus client

module, Orthrus Plus delegate module, Volume server status listening module, Volume

app:ds:architecture

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 61

delegate module, Load monitoring module, Status monitoring module and VMM delegate

module. Except that the Orthrus Plus client module is deployed on the Orthrus Plus Client,

the others are respectively deployed on services node, and details are shown in Table one. All

management monitor modules packed their interface functions, and publish them through web

service[9],these functions will be invoked by other modules for achieving functional

assignments together like creating/deleting volume, attaching/detaching volume. Figure 1 is

the Orthrus Plus system architecture.

Table 1. Orthrus Plus System Functional Module and Deployment Position
Table

Functional Module Deployment Position

Orthrus Plus client module Orthrus Plus Client

Orthrus Plus delegate module Orthrus Plus Server

Volume server status listening

module

Orthrus Plus Server

Volume delegate module Volume Server

Status monitoring module Volume Server

Load monitoring module Volume Server

VMM delegate module VMM Server

VM1 VM2 VMn……

CLVM
iSCSI
target

Load Monitoring
Module

Volume Delegate
Module

Status Monitoring
Module

……

Storage Pool

XEN

CLVM
iSCSI
target

Load Monitoring
Module

Volume Delegate
Module

Status Monitoring
Module

CLVM
iSCSI
target

Load Monitoring
Module

Volume Delegate
Module

Status Monitoring
Module

CLVM
iSCSI
target

Load Monitoring
Module

Volume Delegate
Module

Status Monitoring
Module

……

FC FCFC

iSCSI iSCSI iSCSI

Orthrus Plus
Delegate
Module

Volume Server
Status Listening

Module

Orthrus Plus Server

Metadata Database

Orthrus Plus
Client
Module

Orthrus Plus Client

Invocation

Data transmission

Volume Server Cluster

VMM Server
VMM

Delegate
Module

iSCSI
initiator

VM1 VM2 VMn……

XEN

VMM
Delegate
Module

iSCSI
initiator

VM1 VM2 VMn……

XEN

VMM
Delegate
Module

iSCSI
initiator

Figure 1. Architecture of Orthrus Plus

Orthrus Plus client is deployed on users’ client through which user can creating, deleting,

attaching and detaching commands, and receive feedback information. Orthrus Plus system

management module is mainly used for receiving commands from client module, and then

send command to volume management server, VM management server according to

command type, and receive feedback information, store logical volume, snapshot, and logical

attaching information into database.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

62 Copyright ⓒ 2014 SERSC

Volume server status listening module send volume server running status request and

volume server load status request to every node of volume server cluster timely to get the

runtime status and load of every volume server. When find errors on one volume server, it

will start error handling module to switch volume server immediately. And after getting the

volume server’s load data, when find that the server’s load is not balance, it will invoke Load

monitoring module, run the load balance strategy to make the load balance.

Volume server cluster use CLVM [10] to co-manage back-end heterogeneous storage

devices and synchronize information of volumes and snapshots. Volume delegate module

takes advantage of CLVM interface to achieve functions of creating/deleting

volume/snapshot. Meanwhile, it uses the iSCSI Enterprise Target(IET) [11]on volume server

to map a volume to an iSCSI target for connecting from iSCSI initiator to VMM server.

Status monitoring module regularly invokes CLVM functional interface to estimate if the

volume server is on the work state or not, and returns the result to Volume server status

listening module.

Load monitoring module can record each iSCSI connection’s load in this volume server in

real time through the TCP port and the total load in the volume server, and return the result to

Volume server status listening module.

VMM delegate module mainly provides functions of attaching and detaching volumes for

users’ VMs. At first, it connects to the published iSCSI target on volume server through

iSCSI initiator to get the volumes that users need. And then, VMM delegate module use

Virtual Block Device (VBD) [12] technology, attach the block device from Domain 0[13] to

user’s VM in Domain U [14] so that users can use this remote block device.

2.2. Failure Listen-Detect-Switch Process

System failure listen-detect-switch process can be divided into listen-detect and listen-

switch two parts.

(1)Listen-Detect:Orthrus Plus system management module will send volume server

runtime status request to each volume server regularly and the status monitor module in

volume management server will invoke CLVM interface to judge whether the volume server

is normal or not. If some error occur, it will return error information to volume server status

monitor module, and then the system will enter into Listen-Switch period.

(2)Listen-Switch:When it finds thar some errors occur in one volume server, the system

will cut off all the iSCSI connection with the volume server, and then choose another one

volume server, republish iSCSI connection to VMM server through it. At the same time, if

there is new attach request, the system will automatically avoid this volume server.

3. Dynamic Load Balancing Strategy and ISCSI Pause and Resume

Technology

Orthrus Plus system adopts the architecture of multiple volume servers, and use the error

listen-detect module to deal with the problems in volume server which can effectively avoid

the single point of failure problem. However, in the structure of multiple volumes, for the

reasons of volume detaching and so on, volume servers’ load is usually not balance. So, how

to make load balance and keep the system steady is a key problem that need to solve

immediately. Meanwhile, when volume server cluster re-allocate the iSCSI connections

according to some kind of load balancing strategies, if some users are uploading the data

through the iSCSI connections, then after the connections are re-connected, users need to re-

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 63

upload these data. It undoubtedly will lowers the system efficiency and adds extra weight to

the system.

Therefore, in the first half of this section, we will focus on a dynamic load balancing

strategy based on the performance of volume server, and introduce a method to achieve iSCSI

pause-and-resume in the second half.

3.1. Performance Model of Volume Server

There are many factors [15] affect the performance of volume server, such as CPU

frequency, memory size, network bandwidth, operation system. So it’s hard to quantize the

performance of volume server directly using White Box method. But under the same load, the

IO performance of the logical volumes on the VMs will be affected by the different

performance of volume server. Therefore, we can use the volume performance under the

same load to characterize the performance of volume server.

This paper studies the relationship between the different characteristics of load (OIOs,

%Randomness, %Read, IO Size) and the IO performance of volume (Average Response

Time, Throughput, IOPS) under the different network bandwidth through experiments. The

experiment figure shows that there is a good liner relation between OIOs and Average

Response Time(ART) (Figure 2).So the slops of ART-OIOs line can characterize the relative

performance of volume servers.

0 10 20 30 40 50

0

100

200

300

400

500

 50MBit

 20MBit

 10MBit

Figure 2. Relation between OIOs and ART

Definition 1 (Performance Model of Volume Server):If there are M volume servers in

Orthrus Plus system. Their relative performance values are {c1, c2, … cm}, and the

corresponding slops of OIOs-ART line is {k1, k2, … km}. Let c1=1, then for ∀ci,

1

1 1

* , i= 1 ,2 ,... ,m
i i

i

k k
c c

k k
  (1)

3.2. Load Model of Volume Server

The main function of volume server is publishing the logical volume as an iSCSI target,

and ready for connecting with VMM server and attaching to users’ VM. So the main load of

volume server relays on a serious of IO operations to the volumes through the iSCSI

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

64 Copyright ⓒ 2014 SERSC

connections with users’ VMs. Therefore, the total load of one volume server can be indicated

by the sum of all the IO load on it.

Definition 2 (Load Model of Volume Server):For any volume server Vi in volume server

cluster, let assume that there are n iSCSI connections , the load of each connection is Wk,,

then the total load Li of volume server Vi is:

1

n

i k

k

L w



  (2)

Where the number of connections n is recorded in IET, the load of each connection can be

got from Orthrus Plus load monitor module on volume server through listening the 3260 port.

In order to match the load of volume server with its performance, this paper defines the

performance weighted load model as follows.

Definition 3 (Volume Server Performance Weighted Load Model):If the performance

weighted load value of M volume servers in Orthrus Plus system are {Lc1, Lc2, … , Lcm},

then

Lci = Li / ci ，i = 1，2，…，m (3)

Where Li is the total load of volume server Vi, which can be calculated from Definition

2,and ci is the performance value of volume server Vi, which can be get from Definition 1.

3.3. The Volume Server Dynamic Load Balancing Strategy

3.3.1. The General Framework of Dynamic Load Balancing Strategy:If there are M

volume servers {V1, V2, …, Vm} in Orthrus Plus system, their performance values and load

values are {c1, c2, … , cm} and {L1, L2, … , Lm}, as the load size in each iSCSI connection is

discrete, it’s difficult to reach the ideal status, when each volume server reaches the load

balancing status

Lc1 = Lc2 = … = Lcm (4)

also is

1 2

1 2

m

m

LL L

c c c
      (5)

In Orthrus Plus system, if any two volume servers Vi, Vj can reach the status in (6),we

judge the volume servers in system are in the load-balancing status.

| Lci – Lcj | ≤ ω, i , j = 1, 2, … , m; i ≠ j (6)

Where ω is a defined threshold according to the actual requirement in the system.

Volume server status listening module in Orthrus Plus System Manage Server invokes the

load monitoring module in Volume Server in every time τ, to obtain the load condition in

each volume server. Then it calculates the performance weighted load value according to the

Definition 3.

Definition 4 (The Volume Server Unbalanced Degree Value):In Orthrus Plus system,the

volume server unbalanced degree value

T({ Lc }) = Lcmax – Lcmin (7)

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 65

Where Lcmax is performance weighted load values maximum in the systems, Lcmin is

performance weighted load values minimum in the systems.

When the unbalanced degree value T({ Lc }) is larger than certain threshold ω, Orthrus

Plus system will start the dynamic load balancing strategy, choosing two volume servers

whose performance weighted load values are the maximum and the minimum. Then reset

their iSCSI connections.

3.3.2. Dynamic Load Balancing Strategy Based on GA: Orthrus system uses the dynamic

load balancing strategy based on mutated genetic algorithm, it produces the next generation

via mutation and roulette wheel, and not join the crossover operation in genetic algorithm

[15]. In genetic algorithm, as the global searching ability is reflected by crossover operation,

if simply rely on the mutation operation; it is likely to obtain a local optimal solution, rather

than the global optimal solution. Therefore, this paper has improved this existing issue in

Orthrus system load balancing strategy, the mproved dynamic load balancing strategy

processes are as follows:

(1) Coding:In this paper, we use the common binary coding. Suppose the two volume

servers A and B with the maximum and minimum performance weighted load value

according to this system, their iSCSI connection numbers are n1 and n2. Order these

connections in chronological order, then create a 0/1encoded string with the length of n1+n2.

For example, string “0110001110”, means that there are 10 iSCSI connections in this two

volume servers. The 1st, 4th, 5th, 6th, 10th connections(0 bit) are connected with volume

server A, while others(1 bit) are connected with volume server B.

(2) Selection:This paper defines the fitness function is

(i) 1 1 , i= 1 ,2 , ,k
c a b

F L L c L c      (8)

Where (I) Lca and Lcb are the performance weighted load values of corresponding iSCSI

connections’ allocation plan in volume server A and volume server B; (II) k indicates the total

number of chromosomes in the population. Then, using roulette wheel selection, the

probability of being selected of each individual is

1

(i)
(i) , i= 1 ,2 , ,k

F (i)
k

j

F
P



  


 (9)

Accumulation probability is

1
(i) , i= 1 ,2 , ,k

i

i j
q P


   (10)

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

66 Copyright ⓒ 2014 SERSC

Initialize
Initial chromosome s, Population size K,

Terminal generation T, Elite chromosome sjy

Generate the initial
population

k time variation

 T==0？

Calculate the fitness values of
the population and keep the elite

N

Select by the roulette wheel method

Crossover operation using
adaptive crossover rate model

Mutation operation

Generate new population,
T=T-1

End

Y

Figure 3. GA-based Load Balancing Strategy Flow Chart

(3) Crossover:In basic genetic algorithm, crossover rate is a fixed value. But a fixed

crossover rate is hard to meet the needs of the constantly evolving population. At the

beginning of the search, a bigger crossover rate could improve the searching efficiency of

algorithm; but in the latter, as the individual fitness values have generally increased, small

crossover rate will make the good individual genes are not excessively damaged. Therefore,

this paper designs an adaptive crossover rate model based on the cosine function, adding the

single point crossover method, to achieve the purpose of cross a pair of chromosome.

Definition 5 (Adaptive Crossover Rate Model) As to the crossover rate Pc in an iterative

process,

m in

m in m in

c o s (*) (P c P c)
2

 (P c)

t

P c

P c P c








 

 

 (11)

Where (I)t denotes the current generations; (II) T means the total generations in the

algorithm; (III) Pcmin takes the empirical value of 0.6[16].

(4) Mutation:After a global search by crossover operation, mutation operation can obtain a

batter effect in local search. The mutation operation defined in this paper, will randomly

change a 0 bit to 1 and change a 1 bit to 0 at the probability of 50%. This ensures the

probabilities of mutate to two directions are equal.

The entire dynamic load balancing strategy based on GA can be expressed as follows:

First, encoding the iSCSI connections in two load balancing volume servers selected by the

system to a 0/1 string, and calling this string s as the initial chromosome. Then, mutate k

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 67

times on initial chromosome to generate k offspring s1, s2, …, sk as initial population.

Second, calculate the fitness value and cumulative probability of all individuals in the

population. In order to prevent the good individual genes is forced to destroy, this paper

adopts the elitism strategy. That is as each time, after produce offspring, comparing them with

the elite and keeping the individual with the highest fitness value as the elite. Then, using the

roulette wheel method to select k offspring, and taking crossover and mutation operation.

Repeat the above process until reach the defined generation. The algorithm flow chart is

shown in Figure 3. At last, re-allocate the iSCSI connections in two volume servers according

to the coding calculated by above procedures.

3.4. An iSCSI Pause and Resume Method

The volume server dynamic load balancing strategy based on genetic algorithm effectively

ensures the volume server cluster’s ability in load balance, improving the performance of

system. However, when the volume server cluster resets the iSCSI connections according to

this strategy, if there are some users uploading the data, then after the iSCSI connections have

been re-established, users should have to re-upload the data, this no doubt increases the

burden of the system, and waste user time. Therefore, this paper designs an iSCSI pause-and-

resume method to solve this problem.

Networks

Network Protocol
Stack

Network Protocol
Stack

Initiator

Target

SCSI Upper Driver

SCSI Underlying
Driver

File System

Storage DeviceApplication

Figure 4. Process of Dealing with the SCSI Commands and Data by iSCSI
Protocol

iSCSI mainly transmit SCSI command and data through TCP/IP network, for users to

connect and manage the remote storage. When user accesses the iSCSI target device via

iSCSI initiator, it will access the file system through the application, the file system analysis

the IO command to get the corresponding device and address, and transmit the request to

SCSI upper driver. Then the driver changes the IO command to SCSI command and delivers

to iSCSI initiator. iSCSI initiator capsulate iSCSI protocol header into commands and data,

sending to the iSCSI target through the IP network. After iSCSI target receive the command

package, it sends the package to SCSI underlying driver. The driver completes the IO

operations and transfers to users through the opposite direction [17]. The whole process of

dealing with the SCSI commands and data by iSCSI protocol is shown in Figure 4.

When users access the remote storage by iSCSI, it generally invokes the iSCSI interface

through file system, so it is more reasonable and convenient to achieve the iSCSI pause-and-

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

68 Copyright ⓒ 2014 SERSC

resume from the file system level. In this paper, we use log file to record these information

including the source address and destination address of the file, realize the pause-and-resume

technology. When user uploads a file to the iSCSI volume, system will firstly search the log

file according to the source address and destination address to see if there is a record. If there

is no corresponding record, which means this file is the first time to upload, system will

record the source and destination address in log file, the record will be deleted after the

transfer is complete. If find the record in log file, which means it is a resume. First, system

will use a specific function to calculate the size of uploaded file accord to the record in log

file. Then set the read pointer to the breakpoint, and read the remaining uploading file into the

buffer, at the same time, set the write pointer to the end of destination file, and write the data

from buffer. After the upload is finished, system will delete the record in log file.

4. Hierarchical Storage Management Mechanism Based on the Life Cycle

of Volume

With the increase of Orthrus Plus system user, data also showed explosive growth, the data

access speed requirements of users are also increasing, these make traditional data storage

methods have been unable to meet people's needs. The contradiction between cost of storage

and data access performance is a great challenge for us. This paper designs a hierarchical

storage management mechanism based on the life cycle of volume, use the existing

heterogeneous storage resources, save storage costs, improve data access efficiency.

4.1. Hierarchical Storage Profile

Hierarchical storage based on Information Lifecycle Management [18], according to the

importance of data, frequency of access, storage costs and other indicators, the data is stored

in storage devices of different performance levels (SSD, ordinary hard drive, CD-ROM, tape,

etc.). Meanwhile, through the hierarchical storage management mechanism [19], artificially

realize the data migration between storage devices, eventually high access frequency data is

stored in high-performance and high-cost storage devices, less frequently accessed data is

stored in low performance and low-cost storage devices, make the cost of the storage system

tends to low price devices, and overall performance tends to be high performance devices.

Hierarchical storage can generally be divided into online storage, near-line storage, and

offline storage. Online storage stores data on high speed disk devices, its performance and

access rate is good, but its price is expensive. Offline storage stores data on the low speed

disk devices, its access rate is low, but its price is low. Near-line storage is between online

storage and offline storage. The performance and price of its disk devices is between two

other method.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 69

Level 1

Level 2

Level 3

Level n

...

Higher
Access Latency

Higher
 Storage Space

Lower Prices

&

&

Figure 5. Hierarchical Storage Pyramid Structure

Hierarchical storage structure is shown in Figure 5, it make full use of existing

heterogeneous storage resources, utilize the advantages and features of each levels. It can

effectively improve the storage system performance, reduce overall storage costs, and

strengthen the unified management and protection of data.

4.2. Dynamic Volume Migration System Structure and Volume Migration Strategy

According to the characteristics of hierarchical storage management, this paper add the

hierarchical storage management mechanism based on the life cycle of volume into Orthrus

Plus system, the design and implementation are mainly from two aspects, the volume

migration architecture and the volume replacement and migration strategy.

4.2.1. Design and Realization of Dynamic Volume Migration System

Structure;Hierarchical storage management system based on the life cycle of volume is

mainly composed of the following modules:

(1)Volume Migration Trigger: Considering the newly created volumes may be used by the

user as soon as possible, therefore, the volume created by default must be created on the

OnStore storage devices. But when idle resources of online storage devices are insufficient or

the access frequency of one volume is higher than the average access frequency of all the

volume in primary storage devices, volume migration trigger VMT is invoked, which started

the whole migration process.

(2)Volume Value Judgment Manager: Volume Value Judgment Manager mainly obtain

real-time volume information from the volume metadata server regularly, including the

number of volumes, size, frequency, etc. Then according to the collected data and certain

strategy (see 4.2.2), Volume Value Judgment Manager create volume migration queue in

advance. When VMT is triggered, VVJM will send the information about the head volume of

the migration queue to the Volume State Detector.

(3)Volume State Detector: After Volume State Detector receive the information from

VVJM ,VSD will detect the volume usage. If the volume is detected being used, it will send

feedback error to the VVJM, and VVJM will send the new volume information to VSD; If the

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

70 Copyright ⓒ 2014 SERSC

volume is detected not in use, the VSD will continue to send the volume information to the

Volume Migration Executor.

(4)Volume Migration Executor: Volume Migration Executor receive the information about

volume detected not used by VSD, and the volume migration is done according to the steps:

create new volume - duplicate content - remove old volume - update the metadata server.

After all steps are complete, VME return the complete information to the system.

(5)Volume Usage Collector: Volume Usage Collector deploy in the form of daemons on

each volume server. By monitoring the iSCSI port 3260, it collects each volume usage,

update the volume information in the metadata server, for VVJM to analyse and calculate, so

as to draw the best migration queue.

When a certain condition of the volume migration is satisfied, VMT can detect it and then

be triggered, it will send a request of migration volume information to VVJM .VVJM obtain

real-time volume information from the volume metadata server regularly, and using certain

strategy constantly to update and improve the migration queue it maintains. After VVJM

receives the request of get migration volume information, take out the first volume in the

migration queue and send it to VSD to detect the volume usage now. If the volume is detected

being used, it will send feedback to the VVJM and request to send migration volume

information until one reasonable and not being used volume.VSD will send the information of

volume which is detected to VME, and VME will perform the final migration work. The

volume migration is done according to the steps: create new volume - duplicate content -

remove old volume - update the metadata server. After all steps are complete, VME return the

complete information to the system. During the operation process of Orthrus Plus system, the

VUC will monitor the information about access to the volumes real-time, and the volume

access information will be updated to the metadata server. Figure 6 intuitively describes the

logical structure of the modules above and the migration process.

Volume Migration
Trigger
(VMT)

Volume Value
Judgment Manager

(VVJM)

Volume State
Detector

(VSD)

Volume Usage
Collector

(VUC)

Metadata
Server

one-level
Store

Two-level
Store

Three-level
Store

Volume Migration Executor
(VMT)

Volume Migration
Executor

(VMT)

Update Metadata
Server

Get the Volume Use information

Get the Volume Migration
Request information

Detect the Volume State

Return the Volume State

Migrate Migrae

Execute Migration

Figure 6. Logic Structure Diagram of Volume Migration Model

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 71

4.2.2. Design and Realization of Replacement and Migration Strategy based on Volume

Life Circle: In hierarchical storage, the online storage device has high read-write speed and

high performance, but capacity is limited, the price is expensive, and this is similar to the

cache. Therefore, when designing volume replacement and migration strategy, common web

cache replacement strategy can be used for reference. In general, common web cache

replacement algorithm include LRU [20] algorithm, SIZE [21] algorithm, etc. LRU algorithm

only consider the recent visit time of data, so the efficiency is not high; Data size is

considered as a characteristic in SIZE algorithm, the max data will be the first to be replaced,

so that more small data can be stored. But the algorithm may pollute cache, that is, although

some data have already been expired but not been replaced. In order to avoid the above

situation, this paper USES a multiple parameter GDSF algorithm (Greedy Dual - Size

Frequency) [22].

GDSF algorithm replace the key factor ,minimum volume, each key factor Ki of volume

can by calculated by the formula

Ki = Fi * Ci / Si + L (12)

Among the formula, Fi indicates the use frequency of volume i; Ci indicates the cost to

replace the volume i , we take the commonly used classical number 2 + size/536 [22] here; Si

indicates the size of the volume i; L is inflation factor and the initial value is 0, when volume j

is replaced, the inflation factor L of the rest volumes which have not been replaced are

updated to Kj. The algorithm fully considers the use frequency, the volume replacement cost

and the size of the volume. At the same time, the inflation factor completely overcome the

pollution problem of the SIZE algorithm, makes the volume not to be used can be replaced

out.

5. Orthrus Plus System Experimental Evaluation

5.1. Experimental Environment Description

This paper deploys the Orthrus Plus system in a real environment, and achieves the load

balancing strategy based on GA. The experimental environment is as follows: a 10TB

Inforcore Nextor SS5048 storage array, an Orthrus Plus Server node, two volume server

nodes, two VMM nodes, an Orthrus Plus Client node and an internal 1GB Ethernet

experimental environment. Table 2 shows the hardware and software configuration of each

node. We carve out a 1TB space from the storage array as the storage pool of the system. Two

volume servers shared manage the storage space by using CLVM, and provide VMs block

device. There create a virtual machine in each VMM server. The configuration of VM is

shown in Table 3.

Table 2. The Hardware and Software Configuration Table of Each Node

 Quantity CPU Memory OS Others

Orthrus

Plus

Server

Node

1

Intel Core

2.98GHz

CPU*4

2GB

CentOS

5.4

2.6.18-

238

HSQLD

B

Volume

Server
2

Intel

Xeon
2GB

CentOS

5.5
CLVM

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

72 Copyright ⓒ 2014 SERSC

Node 2.13GHz

CPU*4
2.6.18-

164

VMM

Node
2

Intel Core

2.98GHz

CPU*4

2GB

CentOS

5.4

2.6.18-

238

Xen

Orthrus

Plus

Client

Node

1

Intel Core

2.98GHz

CPU*4

2GB

CentOS

5.4

2.6.18-

238

Table 3. VM Configuration Table

CPU Memory Storage OS

Intel Core

2.98GHz * 1

512M 4GB CentOS 5.4

5.2. Experimental Comparison Before and After Improving the Dynamic Load

Balancing Algorithm

This paper designs the following two sets of experiments to verify the dynamic load

balancing strategy in Orthrus Plus has some improvement than in Orthrus in the accuracy and

efficiency to search for the optimal solution.

At first, artificially limit the bandwidth of two volume servers which result in the

significant performance difference. Second, modeling by performance weighted load model

in Section 3.2, and getting the performance weighted load values of two volume servers. At

the same time, the population size of the two algorithms is set to experience value 50. When

the population doesn’t produce better elite for 30 generations, it tacitly approves that the

function has converged, and the evolution will terminate.

(1) Accuracy Experiments:This experiment takes the chromosome length (the total

number of connections in two volume servers) as the variable which range from 10

to 100 by steps of 10. Each group of experiments will generate the initial

chromosome and initial population under the defined length randomly. Each length

will take 10000 experiments. We take the ultimate elite’s fitness value as criterion to

compare the searching accuracy of original and improved algorithm. The experiment

result is shown in Figure 7.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 73

Figure 7. The Experiment Figure of Searching Accuracy of Original and
Improved Algorithm

(2) Efficiency Experiments: This experiment also considers the chromosome length as a

variable, and the range and steps are also the same. But this time we take the average iteration

steps when get the same optimal solution in two algorithms as criterion to compare the

efficiency of getting the same solution. The experiment result is shown in Figure 8.

The above two experiment result figures show that as the chromosome length is small at

the beginning, the complexity of entire search is not high. The load balancing strategy based

on mutated genetic algorithm which reduces the global leap search caused by crossover is

more appropriate in the case of small amount of data. However, when the chromosome length

becomes larger, the entire search process is more and more complex, the global search

capability of load balancing strategy in Orthrus Plus system demonstrates its superiority in

accuracy and efficiency.

5.3. Experimental Analysis of ISCSI Pause and Resume

Compared with a complete transmission process, the iSCSI pause-and-resume in Orthrus

Plus system will add some additional overhead, such as the process of break iSCSI

connections, the process of re-select the volume server by Orthrus Plus Server, the process of

establish the iSCSI connections, the process of calculate the breakpoint, etc. We adopt the

timing operation of various additional aspects to accurately quantify their time overhead, and

compare with a complete transmission to reflect the effect to users.

Figure 8. The Experiment Result Figure of Searching Efficiency of Original and
Improved Algorithm

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

74 Copyright ⓒ 2014 SERSC

We design the following experimental scene: A virtual machine VM1 in VMM1 connects

to a remote volume whose size is 5G through volume server A. The user of VM1 is uploading

a 2G file to this volume. At this time, we artificially set the status of volume server A failure.

When the volume server status listening module has detected the failure of volume server A,

it will disconnect the connection between volume server A and VMM1 immediately, and

search for another normal volume server B. Then it establishes the connection between

volume server B and VMM1. At last, system calculates the breakpoint and continues to

upload until the uploading is finished. At the same time, we set a group experiments without

pause-and-resume process as a contrast.

Table 4. The Experimental Result of ISCSI Pause-and-Resume

Break

iSCSI

connectio

ns

Re-

select

the

volume

server

Establish

the iSCSI

connection

s

Calculate

the

breakpoi

nt

File

transmissio

n

Total

time

Time

Cost（

ms）

158.7 1.3 1228.4 0.1 9986.8 11517.9

System calculates the total time of above process and the respective time of these

additional overhead. We make several experiments using different files with the same size to

reduce the effect by cache, and calculate the average time. The result is shown in Table 4.

From Table 4 and Figure 9, we can see the process of establishing the iSCSI connection

costs a lot of time because this process contains the connection between VMM and volume

server and attaching the volume to VM from VMM. From another side, although the

proportion of time cost of breaking and establishing the iSCSI connection is relatively large,

it only costs 1.5 seconds if we quantify the time. It should be in the acceptable range of users.

Therefore, there has certain advantages in iSCSI pause-and-resume compared with the time

cost of data retransmission.

Figure 9. The Proportion Figure of Overhead in All Aspects in ISCSI Pause-and-
Resume

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 75

5.4. Experimental Analysis of Tiered Storage Performance Based on Volume Life Cycle

This experiment takes two disk in the storage array as the back-end storage array, one of

which used for online storage, another of which is artificially limited the network bandwidth

as 1/10 of the original, to simulate the speed gap between SSD and HDD disk. At the same

time, in advance, we respectively create 10 10G-size logical volumes in the two types of

storage devices. Experiment will be performed as two groups, one of which will not use any

strategies and another uses the tiered storage strategy, a random volume access sequence of

equal length 100 will be used in each group.

Table 5. The Improvement of Logical Volume Throughput under Different
Request Block Size

request

block

size

logical volume

throughput

without tiered

storage（MB/s

）

logical volume

throughput

with tiered

storage（MB/s

）

Percentag

e raising

512B 0.01522 0.0207 36.00%

1KB 0.030322 0.041222 35.95%

2KB 0.060855 0.0828 36.06%

4KB 0.120847 0.164456 36.09%

8KB 0.238151 0.324022 36.06%

16KB 0.466598 0.637762 36.68%

32KB 0.903897 1.231253 36.22%

64KB 1.679757 2.27906 35.68%

128KB 2.986225 4.076104 36.50%

256KB 4.384132 5.950705 35.73%

512KB 5.775538 7.892975 36.66%

1MB 7.214614 9.875994 36.89%

This paper uses the iometer [23] as the load produced for each logical volume in this

experiment, and according to the random volume access sequence to test the IO throughput of

logical volume under the load. The results are shown in Table 5 and Figure 10.

From the experiment data ,we can see that after using the tiered storage strategy, the

logical volume IO throughput of the whole system has large ascension, between 35% and

37%. One important reason is about 10 times the speed between the two hard disks, and the

volume replacement and migration strategy based on volume life circle enables the volume

frequently accessed to reside for a long time in the faster hard disk, so that the overall IO

throughput rate is improved.

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

76 Copyright ⓒ 2014 SERSC

Figure 10. Logical Volume Throughput with Tiered Storage

6. Conclusions and Future Work

This paper proposes and achieves a multiple volume servers block cloud storage system

based on load balancing—Orthrus Plus. Dynamic load balancing strategy based on genetic

algorithm is used in the volume server to make the whole cluster load more stable. At the

same time, we put forward the iSCSI pause-and-resume technology, to solve the problem

about user data retransmission in the process of load balancing. he experiments show that

Orthrus Plus system with dynamic load balancing strategy achieve higher efficiency and

reliability in the case of large amount of data, and tiered storage strategy to a certain extent,

also improves the IO throughput of the system.

In the future, we will consider the safety of the whole system: 1) the metadata server

records all the system volumes, snapshot information, which is the key to the Orthrus Plus

system. Distributed deployment of the metadata server can guarantee its reliability to a certain

extent; 2) due to the tiered storage strategy, the users’ data risk in the volume migration

process. Therefore, snapshot backup for each logical volume established can be way to ensure

the security of user data.

Acknowledgement

This paper is granted by National Natural Science Foundation of China under Grant(No.

61202094), Zhejiang Provincial Natural Science Foundation(No.LY13F020045,

LY13F020047), China Postdoctoral Science Foundation(No. 2013M541780) and The

National Key Technology R&D Program under Grant(No.2012BAH24B04).

References

[1] Hadoop, http://lucene.apache.org/hadoop/.

[2] S. Ghemawat, H. Gobioff, S. Leung, “The Google file system”, Proceedings of the nineteenth ACM

symposium on Operating systems principles, Bolton Landing NY, USA, October, (2003), pp.19-22

[3] Amazon S3, http://aws.amazon.com/s3/.

[4] Amazon EBS service, http://aws.amazon.com/ebs/.

[5] X. Gao, M. Lowe, Y. Ma, M. Pierce, “Supporting Cloud Computing with the Virtual Block Store System”,

Proceedings of e-Science, Oxford, UK, (2009), pp.208-215.

[6] J. Wan, Y. Wang, J. Zhang, L. Zhou, “Orthrus: A Block-Level Virtualized Storage System with Multiple-

Volume Servers”, Advanced Science Letters, vol. 7,iss. 5, (2012), pp. 68-72.

[7] W. Zeng, Y. Zhao, K. Ou, “Research on Cloud Storage Architecture and key technologies”, IEEE

International Conference on Intelligent Computing and Intelligent System, (2009), pp. 24-26

[8] Internet Small Computer Systems Interface (iSCSI), http://tools.ietf.org/html/rfc3720.

[9] D. Roman, “Web Service Modeling Ontology”, Applied Ontology, vol. 1, no. 1, (2005), pp. 77-106.

http://lucene.apache.org/hadoop/
http://aws.amazon.com/s3/
http://aws.amazon.com/ebs/
http://tools.ietf.org/html/rfc3720

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

Copyright ⓒ 2014 SERSC 77

[10] CLVM Project Page, http://sources.redhat.com/cluster/clvm/.

[11] iSCSI Enterprise Target, http://iscsitarget.sourceforge.net/.

[12] D. Teigland, H. Mauelshagen, “Volume Managers in Linux”, Proceedings ofthe FREENIX Track USENIX

Annual Technical Conference (2001),pp. 185-197.

[13] M. Rosenblum, “Tal Garfinkel, Virtual Machine Monitors: Current Technology and Future Trends”,

Computer, v.38 iss.5, May (2005), pp. 39-47.

[14] T. Berczes, G. Guta, G. Kusper, W. Schreiner et al., “Analyzing Web Server Performance Models with the

Probabilistic Model Checker PRISM”, Technical report no. 08-17 in RISC Report Series, University of

Linz, Austria. November (2008).

[15] J. Hu, Y. Sun, Q. Xu, “The theory and application of Genetic Algorithm”, Proceedings of Computer and

Communication Technologies in Agriculture Engineering, vol, 1, (2010), pp.155 - 157.

[16] K. A. de Jong, “An analysis of the behavior of a class of genetic adaptive systems”, University of Michigan,

USA, (1975).

[17] B. Li, J. Shu, W. Zheng, “SCSI Target Simulator Based on FC and IP Protocols in TH-MSNS”, Proceedings

of Tsinghua Science and Technology, vol. 10, (2006), pp.89 – 93.

[18] G. Shah, K. Voruganti, P. Shivam, “Ace: Classification for information lifecycle management”, Proceedings

of NASA Mass Storage Systems and Technologies, (2006).

[19] M. He, L. Xing, G. Li, “A Data Migration Strategy for HSM Based on Data Value”, Proceedings of Journal

of Information & Computational Science, (2011).

[20] D. L. Willick, D. L. Eager, R. B. Bunt, “Disk Cache Replacement Policies for Network Fileservers”,

Proceedings of the 13th International Conference on Distributed Computing Systems, Pittsburgh, 1993.

[21] S. Williams, M. Abrams, C. Standridge, G. Abdulla, E. Fox, “Removal Policies in Network Caches for

World Wide Web Documents”, Proceedings of ACM SIGCOMM, Stanford, CA, (1996).

[22] L. Cherkasova, “Improving WWW Proxies Performance with Greedy-Dual-Size-Frequency Caching

Policy”, Technical Report HPL-98-69R1, Hewlett-Packard Laboratories, (1998).

[23] Iometer, http://www.iometer.org/.

Authors

Jian Wan, he received the PhD degree in Computer Application

Technology from Zhejiang University, Zhejiang, China, in 1989. He

is currently a professor in software engineering in Hangzhou Dianzi

University, China. His research interests include Grid Computing,

Service Computing and Cloud Computing.

Xun Chen, he received the Bachelor Degree of Communication

Engineering in Central China Normal University, Hubei, China, in

2011. He is now studing the Master of computer software and theory

in Hangzhou Dianzi University, China. His research interest is cloud

computing and cloud storage system.

Xindong You, she is a lecturer of School of Computer Science and

Technology, Hangzhou Dianzi University, China. She is with the Grid

and Service Computing Lab in Hangzhou Dianzi University. Before

joining Hangzhou Dianzi University, she was a PhD candidate in

Northeastern University from 2002 to 2007. She received her PhD degree

in 2007. Her current research areas include virtualization, distributed

computing, etc.

http://sources.redhat.com/cluster/clvm/
http://iscsitarget.sourceforge.net/

International Journal of Database Theory and Application

Vol.7, No.4 (2014)

78 Copyright ⓒ 2014 SERSC

