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Abstract: Nonlinear response is an important factor affecting the accuracy
of three-dimensional image measurement based on the fringe structured light
method. A phase compensation algorithm combined with a Hilbert transform
is proposed to reduce the phase error caused by the nonlinear response of
a digital projector in the three-dimensional measurement system of fringe
structured light. According to the analysis of the influence of Gamma distor-
tion on the phase calculation, the algorithm establishes the relationshipmodel
between phase error and harmonic coefficient, introduces phase shift to the
signal, and keeps the signal amplitude constant while filtering out theDC com-
ponent. The phase error is converted to the transform domain, and compared
with the numeric value in the space domain. The algorithm is combined with
a spiral phase function to optimize the Hilbert transform, so as to eliminate
external noise, enhance the image quality, and get an accurate phase value.
Experimental results show that the proposed method can effectively improve
the accuracy and speed of phase measurement. By performing phase error
compensation for free-form surface objects, the phase error is reduced by about
26%, and about 27% of the image reconstruction time is saved, which further
demonstrates the feasibility and effectiveness of the method.
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1 Preface

Structured light three-dimensional (3D) measurement technology, with non-contact, high-
speed, and high-precision measurement, has become a commonly used tool [1–4] in areas such as
machine vision, virtual reality, reverse engineering, and industrial measurement. Structured light
technology projects a sequence of fringe images on the surface of the measurement object, and
the fringe is deformed by the contour of the object. The phase calculation [5–7] of the collected
fringe image can realize reconstruction of the three-dimensional contour of the object. However,
due to the influence of instrument design, gamma nonlinear distortion [8] between the projector
and camera will produce measurement phase errors, and the collected grating fringes will not be
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an ideal cosine function, but a function with certain distortion. To improve the accuracy of phase
calculation requires compensation for the phase error caused by the gamma nonlinear distortion.
This has been the topic of much research, mainly of methods of curve calibration, imaging
defocusing, and phase error modeling.

Curve calibration makes no changes to the projection fringe pattern, but compensates for the
phase error in the phase calculation process. First, the method calibrates a brightness transfer
function from projector to camera, and performs a gamma inverse transformation when generating
the pattern image to realize advance correction of the input value of the projected image, or
gamma correction of a distorted fringe image. Huang et al. [9] established the grayscale mapping
relationship between the input fringe image and the fringe image collected by a camera, and
deduced the nonlinear phase error caused by nonlinear system response. Guo et al. [10] proposed
a technique for gamma correction based on the statistical characteristics of fringe images. Gamma
and phase values can be estimated simultaneously through the normalized cumulative histogram
of fringe images. Liu et al. [11] modeled the phase error caused by gamma distortion, deduced
the relationship between high-order harmonic phase and gamma value, obtained the high-order
harmonic phase through a multi-step phase shift, and calibrated the gamma coefficient and
performed gamma correction. Li et al. [12] considered the defocusing effect of the projector in
the phase error model, for more accurate gamma calibration.

Phase error compensation corrects the projection pattern so that the collected fringe image
has an approximately sinusoidal intensity distribution. The phase error is calibrated in advance
according to its inherent regularity, and the calculated distortion phase is compensated to obtain
the correct phase. Zhang et al. [13] obtained a regular phase error distribution through statistical
analysis of the experimental data of a three-step phase shift method, and established a lookup
table to compensate for the phase error. Pan et al. [14] pointed out that harmonics higher than the
fifth order rarely appear in the digital fringe projection 3D measurement system, so the response
signal containing the fifth harmonic is used to derive the phase error model of three-, four-,
and five-step phase shift methods. These phase error models are used to design error iteration
algorithms, and to calculate the optimal phase.

The defocus imaging method uses the suppression effect of image defocus on high frequency
and reduces the high-order harmonic energy of the captured image, thereby reducing the phase
error. The method generates a low-pass filter through the defocus of a projector to obtain a
fringe image without gamma distortion, thereby avoiding the gamma effect. Zhang et al. [15] used
projector defocusing technology to effectively reduce the non-sinusoidal error of fringe images.
Zheng et al. [16] binarized grayscale fringes and processed the defocus of the projector to obtain
high-quality phase information.

In summary, whether to establish a phase reference, calibrate the gamma value, or defocus
projection, auxiliary conditions are needed for phase error compensation. For example, curve
calibration and phase error compensation need to quantify the nonlinear response of a system,
and defocus imaging method needs to adjust the optical parameters of a system, and both
procedures affect a method’s flexibility and robustness.

Current nonlinear phase-error compensation methods all require auxiliary conditions, such as
phase reference construction, gamma calibration, and response curve fitting, which affect the flex-
ibility and robustness of the method. This paper presents an adaptive phase error compensation
method based on a Hilbert transform. The method introduces a π/2 phase shift in the signal
to filter out the direct current (DC) component while the signal amplitude remains unchanged.
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By comparing the distribution characteristics of the phase error in the Hilbert transform domain
and spatial domain, the two domain phases are averaged to compensate for the phase error,
without auxiliary conditions.

2 Basic Principle

2.1 Structured Light 3D Reconstruction Error Model
In the structured light 3D reconstruction system, the grating fringes, which are obtained with

gamma distortion on the projection reference plane, can be expressed as

Isn (x, y)=A+
∞∑
k=1

[Bk cos (ϕ+ δn)]= α (In)γ (1)

where Isn (x, y) is the fringe gray value distribution, A is the background light intensity, B is
the fringe modulation degree, Bk represents the coefficients of the harmonic components in the
Fourier series expansion, δn indicates the phase shift of the deformed fringe after modulation, α is
a scale factor, φ is the ideal phase, and γ is the system gamma value.

According to the principle of least squares, the image data can calculate the package phase
information, which can be expressed as

ψ =−arctan

(∑N
i=1
(
Isn sin δn

)
∑N

i=1
(
Isn cos δn

)
)
=−arctan

(∑N
n=1

∑∞
k=1 [Bk cos (φ+ δn) sin δn]∑N

n=1
∑∞

k=1 [Bk cos (φ+ δn) cos δn]

)
(2)

Due to the nonlinear characteristics of the projection line, the fringe pixel intensity produces
nonlinear error. The resulting phase difference is expressed as

	φ =ψ −φ = arctan
(

tanψ − tanφ
1+ tanψ · tanφ

)
(3)

Substituting Eq. (2) in Eq. (3), the phase difference can be obtained as

	φ = arctan

( ∑N
n=1

∑∞
k=2

[(
Bk+1−Bk−1

)
sin (kφn)

]
NB1 +

∑N
n=1

∑∞
k=2

[(
Bk+1−Bk−1

)
cos (kφn)

]
)

(4)

The relationship [16] between phase error and GN−1 is given by

Δφ = arctan
{ ∑∞

m=1 [(GmN+1−GmN−1) sin (mNφ)]
1+∑∞

m=1 [(GmN+1+GmN−1) cos (mNφ)]

}
(5)

where Gk =
Bk
B1

is a coefficient related to the gamma value. The relationship, which is deduced

from Gk and the gamma value [11], is given by

Gk =
k∏
i=2

γ − i+ 1
γ + i

(6)

The absolute value of Gk decreases significantly with the harmonic order k. Since GN−1
decreases rapidly with the increase of the number of phase shift steps, and the effect of GN+1 on
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phase error correction is negligible, considering that the N-order harmonics can already meet the
accuracy requirements, Eq. (5) is simplified as

	φ = arctan
[ −GN−1 sin (Nφ)
1+GN−1 cos (Nφ)

]
(7)

Eq. (7) shows that the phase error is a periodic function related to ideal phase φ, phase
shift steps N, and gamma value, and its frequency is N times the fringe image, so it is a
universal nonlinear phase error model suitable for any number of phase shift steps. Based
on this model, different phase-error compensation methods can be proposed according to
application requirements.

2.2 Hilbert Transform Compensates Phase Error
The Hilbert transform does not need to rely on external auxiliary conditions to introduce a

phase shift in the image signal to compensate for the phase. The Hilbert transform of the phase-
shift fringe image is expressed as

IHn =H [In]=−B sin (φ+ δn) (8)

where IHn is the transform image intensity, and H is the Hilbert transform operator. During the
Hilbert transformation process, the DC component in the fringe image may not be completely
filtered out, and will remain in the transformed image, but it will not affect the phase calculation
result because the phase shift method can cancel the DC component. Moreover, when the mod-
ulation area of the object to the fringe is less than one fringe period, the Hilbert transform of
the fringe image will bring transformation errors. However, in practical applications, dense fringe
projection is usually used to obtain high-precision measurements, and the fringe modulation is
rarely less than one fringe period.

Due to the nonlinear response, the transformed fringe image also contains high-order har-
monics, so the actual transformed image is given by

IHSn =H
[
ISn
]
=−

∞∑
k=1

[Bk sin (kδn)] . (9)

According to Eqs. (2)–(7), the actual phase of the transform domain is

ψ = arctan

(∑N
i=1
(
Iscn cos δn

)
∑N

i=1
(
Iscn sin δn

)
)
= arctan

(∑N
n=1

∑∞
k=1 [Bk sin (φ+ δn) cos δn]∑N

n=1
∑∞

k=1 [Bk sin (φ+ δn) sin δn]

)
(10)

The phase error in the transform domain is the deviation between the actual phase and true
phase. According to the phase derivation formula in the space domain, the phase error is given by

ΔφH = arctan
[

GN−1 sin (Nφ)
1−GN−1 cos (Nφ)

]
(11)

Like the phase error distribution in the space domain, the phase error in the transform
domain is a periodic function related to the number of ideal phase shift steps N and the gamma
value. By comparing the phase error models in the space domain and transform domain, it can
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be seen that their amplitudes are equal, but the phase difference is half a period, i.e., the sign is
opposite. Therefore, the phase error can be compensated for the help of the Hilbert transform.

Let ψM = (ψ +ψH
)
/2 be the average phase of the space domain and transform domain. The

deviation between the average phase and true phase can be obtained by Eqs. (7) and (11) as

ΔφM = 1
2
arctan

[
G2
N−1 sin (2Nφ)

1−G2
N−1 cos (2Nφ)

]
. (12)

It can be seen from Eq. (12) that the phase error of the average phase is still a periodic
distribution, and its frequency is twice the phase error of the spatial domain. By solving the
derivative of the phase errors in Eqs. (7), (11), and (12), the corresponding maximum phase error
is obtained. Because |GN−1|< 1, the maximum phase error of the average phase is smaller than
that of the spatial domain and transform domain. Fig. 1 shows the phase-error distribution curve
of the corresponding average phase. It can be seen that this is less than the phase error of the
two domains.

0 2 4 6 8 10

phase(rad)

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

ph
as

e 
er

ro
r(

ra
d)

Spatial domain
Transform domain
Average phase

Figure 1: Phase error comparison

2.3 Image Denoising Based on Spiral Phase Function
In an ideal state, the effect of Hilbert transform recovery is good, and there is no need to

introduce auxiliary images for processing, but in the Hilbert transform fringe image, there is still
a small amount of noise mixed in the eigenmode function components. If one simply applies
global mean filtering to the fringes, the overall image will become blurred. Instead of improving
the quality, it will reduce the resolution. Moreover, in order to adapt to the needs of images,
the Hilbert transform is extended to a two-dimensional space, and its sign function will cause
high anisotropy, which cannot meet the requirement of scale invariance. Combining the spiral
phase function φ (u, v) in the spatial frequency domain, a scale-invariant two-dimensional symbol
function is proposed as

SP (u, v)= u+ jv√
u2+ v2

= exp [jφ (u, v)] (13)
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According to Eq. (13), the two-dimensional Hilbert transform operator can be derived as

sH =−j exp (−jβ)F−1 {SP (u, v)F [s (x, y)]} (14)

The optimization of the Hilbert transform based on the spiral phase is as follows.

(1) Use the Hilbert spiral to calculate the amplitude distribution of each selected BIMF
component and smooth it.

(2) Set a threshold to identify the noise area, and specify that the part whose amplitude
distribution is lower than the threshold is noise; the part above the threshold is ignored and
not processed.

(3) Smooth the image locally. The identified noise part is subjected to local mean filtering,
and the non-noise part is directly used for image reconstruction without processing.

3 Experimental Results and Analysis

To verify the performance of the algorithm, we constructed a structured light 3D measure-
ment system composed of a DLP digital projector BenQ es6299 projector with 1920 × 1200
resolution, Canon E550D digital camera, and Lenovo T470 notebook computer, as shown in
Fig. 2. The period of the projection grating fringe was 50 pixels, the horizontal distance from the
projection system to the imaging system d= 150 mm, and the distance from the imaging system
to the reference surface L= 1500 mm. All experiments were carried out on this system.

Figure 2: Experimental environment

The system first generated projection grating fringes, where N= 60, A= 150, B= 70. We used
simulated fringes to project onto the measurement object, as shown in Fig. 3.

Figs. 4 and 5 show the sinusoidal fringe curve without phase compensation and the generated
object profile, respectively. Figs. 6 and 7 are the sinusoidal fringe curve and the generated object
contour after phase compensation using the Hilbert transform, respectively. After compensation,
the phase error was reduced, but due to the influence of other error sources, such as sensor noise,
quantization error, and ambient light interference, the extracted object contour still had a small
amount of error. Figs. 8 and 9 are respectively the sinusoidal fringe curve and the generated object
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profile after phase compensation using the method in this paper. Because the image quality was
improved before the Hilbert transform, the phase error of the sine fringe was greatly reduced, the
object contour became smooth, and the noise was eliminated.

Figure 3: Image with stripe structured light

Figure 4: Sinusoidal fringe curve without phase compensation

To more accurately reflect the effect of phase recovery, the relative error RMSE and image
quality factor Q are introduced as evaluation criteria. The relative error RMSE is the expected
value of the square of the image error,

RMSE =
√√√√ 1
m ∗ n

m∗n∑
i

(xi− yi)2 (15)
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where x and y are the original signal and compensation signal, respectively, and m∗n is the image
size. The image quality factor does not depend on external observation conditions. It is a standard
to evaluate whether the image is distorted and an objective indicator for evaluating the quality of
image restoration. It is defined as

Q= 4σxyxy(
σ 2
x + σ 2

y

)(
x2+ y2

) (16)

Figure 5: Object profile in cross-sectional direction

Figure 6: Sinusoidal fringes using Hilbert transform
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where x and y are the average values of the original signal and compensated signal, respectively;
σx and σy are the variances of the two images; and σx,y is their covariance. The range of Q
is [−1, 1]. When Q is equal to 1, it is the optimal value, i.e., when the variances of the two
images are equal, the best value is used. At this time, the image compensation effect is the best.
In addition, the time consumed by various methods to restore the phase is also counted. The
specific data is shown in Tab. 1.

Figure 7: Object profile in cross-sectional direction

Figure 8: Sinusoidal fringe curve using this method
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Figure 9: Object profile in cross-sectional direction

Table 1: Comparison of phase recovery of various methods

Phase recovery method Relative error Quality factor Time

No compensation 0.034 0.678 5.24
Hilbert transform 0.020 0.745 3.82
Method of this article 0.012 0.820 3.74

4 Conclusions

Gamma nonlinearity may result in phase error in a structured light 3D reconstruction system.
The phase model and phase error model of gamma distortion are derived from the analysis of the
relationship between the gamma distortion and phase error. A nonlinear phase error compensation
method based on a Hilbert transform was proposed, making use of the property of the Hilbert
transform that induces a phase shift of 2π to a signal, and comparing the nonlinear phase error
in the spatial domain and the Hilbert transform domain. By combining the method with the spiral
phase algorithm to further improve the image quality, rapid phase compensation was realized to
improve the quality of the reconstructed phase.
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