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Abstract: The third most prevalent kind of congenital cardiac disease is atrial septal defects (ASD). Even 

with extensive shunts, the majority of individuals remain asymptomatic throughout their infancy. 

Echocardiogram, Chest X-ray, Electrocardiogram (ECG), Cardiac catheterization, MRI, and CT scan may 

all be used to detect the abnormality. Deep learning can be employed for automated estimation of the defect 

from the test result. The goal of this review paper is first to provide an insight into ASD, the methods for 

diagnosis, the application of deep learning models for distinguishing the defect, defect detection accuracy 

and algorithm parameters. 
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1. INTRODUCTION  

 Congenital heart disease is the most often 

occurring congenital ailment, accounting for 28% of 

all congenital birth abnormalities (CHD). In medium-

income nations, like as India, the care accessible for 

children with CHD is drastically different from that 

offered in high-income countries. Due to India's 

enormous population and insufficient resources, many 

children with CHD go undetected and mistreated. 

Over the previous three decades, India has made great 

progress in the care of children with CHD, but it is still 

woefully insufficient. To enhance the overall 

prognosis for children with CHD, interactions with 

doctors and other front-line health workers are 

required. Advocacy with health policymakers is 

critical to ensuring that greater resources are dedicated 

to the care of children with CHD at all levels of 

education [1]. A set of major cardiac problems that are 

present from birth is referred to as critical congenital 

heart disease (CCHD). The Atrial Septal Defect 

(ASD) is a defect in the atrial septum that allows blood 

to shunt between the two atria. It's one of the most 

prevalent congenital heart abnormalities [2], 

accounting for up to 10% of all congenital cardiac 

malformations and, together with the bicuspid aortic 

valve, the most often identified congenital heart defect 

in adults. The majority of children with ASD are 

detected by a pediatrician's unintentional observation 

of a heart murmur [3]. 

Artificial Intellect (AI) [4] is a wide term that refers to 

any computer programme (algorithms and models) 

that is designed to emulate human reasoning and 

intelligence. Deep learning (also known as deep 

structured learning) is a subset of artificial neural 

network-based machine learning algorithms. A 

computer model learns to do categorization tasks 
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directly from pictures, text, or sound in deep learning 

[4]. Models are trained utilising a huge quantity of 

labelled data and multilayer neural network 

topologies. The development of an effective deep 

learning model for the detection of ASD might be 

highly beneficial to patients and sonographers. Here, a 

computer model is created to do image-based 

identification tasks. This paper's contribution is to 

analyse the deep learning algorithms used for 

recognising ASD, which is motivated by this concern. 

The objective is to first give an understanding of ASD, 

as well as identification techniques and the use of deep 

learning models to detect the issue. 

 

2. Atrial Septal Defect 

 

 The typical human heart is a muscular organ 

that receives and pumps blood effectively. Because the 

body's tissues depend on the blood to provide 

sustenance (oxygen, glucose) and eliminate waste 

products, proper blood flow is critical to health 

(carbon dioxide). The cardiovascular system (heart, 

blood vessels) has two different circulatory systems 

under normal conditions: venous (right) and arterial 

(left)[5]. There are four chambers in the heart's 

interior: the atria, which hold blood, and the ventricles, 

which pump it out. The right ventricle transports the 

body's deoxygenated blood to the lungs through the 

right atrium. [1] Oxygenated blood from the lungs is 

circulated throughout the body via the left ventricle[2]. 

Four valves in the heart keep blood flowing in just one 

direction. Fetal lungs do not function as well as adult 

lungs do when it comes to oxygenating the blood. The 

placenta provides oxygen to the developing foetus 

within the mother's womb. The right atrium of the 

foetus is filled with oxygenated and deoxygenated 

blood. It contains three different structures that allow 

blood shunting from the right to left side of the heart[5] 

since the lungs require very little of this blood. Fetal 

lungs do not function as well as adult lungs do when it 

comes to oxygenating the blood. The placenta 

provides the foetus with oxygen. In the foetus, 

oxygenated and deoxygenated blood mix and settle in 

the right atrium, unlike in adults. These structures 

allow the foetus' heart to switch its flow from its right 

side over to its left[5] since the lungs need so little of 

this blood. The septum primum ("first partition"), a 

wedge of tissue that extends inferiorly, is formed as 

the apex of the atrium depresses between 3 and 4 

weeks of foetal development. A foramen called ostium 

primum ("first mouth/opening") forms along the free 

side of the crescent-shaped septum, which divides the 

right and left atriums during the fifth week. By the end 

of the sixth week, the septum primum's growing edge 

reduces the ostium primum to nothing. To generate the 

second ostium, holes emerge in the first septum 

primum at the same time ("second opening"). 

Consequently, blood flow from right to left opens up 

before the old one closes. At the same time, the septum 

secundum (second partition), a crescent-shaped wedge 

of tissue, emerges from the atrium's ceiling. It's located 

close to the septum primum on the right side of the 

right atrium. Contrary to the septum primum, the 

septum secundum grows posteriorly and is thick and 

muscular. Right atrium floor to the foramen ovale at 

the inferior section of the foramen ovale. As the foetus 

grows, blood flows from the right to the left atrium 

through the aortic artery; this occurs throughout much 

of the development of the heart. This shunt closes 

during delivery due to the abrupt dilation of the pulmo-

nary vasculature and the absence of flow via the 

umbilical vein. An atrial septal defect occurs when the 

septum secundum is insufficiently short to fully cover 

the ostium secundum after the septum primum and 

septum secundum are forced together at birth, 

allowing left-to-right atrial flow. The third most 

prevalent kind of congenital cardiac disease is atrial 

septal defects (ASD). Even with massive shunts, the 

majority of individuals remain asymptomatic 

throughout their childhood[3]. Figure 1 depicts the 

many morphological kinds of ASD [6] depending 

mostly on their location: 

 

 

Figure 1: The different morphological types of ASD 

[1] 

 

  

3. Methods for identification of ASD  

 

3.1 Cardiac Murmur 

 

The majority of children with ASD are discovered as 

a result of a pediatrician's unintentional identification 

of a heart murmur. Failure to thrive, feeding problems, 

dyspnea, or repeated lower respiratory infections are 
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all possible symptoms of a newborn with ASD[3]. The 

characteristic auscultatory findings in big ASD 

include a normal first heart sound and a broad and 

fixed second sound. The natural split of the second 

sound is normally well heard in healthy young 

children, but it might be accentuated and persistent in 

the recumbent posture, leading to suspicion of an 

ASD.  

 

3 3.2 Chest X-Ray  

 

X-ray radiography is one of the most widely used 

procedures for detecting and diagnosing a wide range 

of disorders. In hospital archives all across the globe, 

a vast number of radiography pictures and reports are 

accessible. Chest enlargement of the right heart 

chambers In ASD, an X-ray may detect a 

hemodynamically substantial shunt [3]. 

 

3.3 Electrocardiography (ECG) 

 

The electrocardiogram (ECG) is a transthoracic 

interpretation of the heart's electrical activity over 

time[7]. ASD is characterised by the absence of sinus 

arrhythmia. While partial right bundle branch block is 

a typical finding in ASD, the QRS tends to get longer 

as right ventricular volume overload increases. The 

patient's right atrial enlargement is commonly 

suggested by mild peaking of 'p' waves with little 

amplitude rise. The presence of substantial pulmonary 

hypertension and, in certain cases, pulmonary vascular 

disease is indicated by right axis deviation of the QRS 

[8]. The relevance of electrocardiographic evidence in 

the diagnosis of atrial septal defect is shown by 

Nermin Bayar et al. [9]. 

 

 

3.4 Echocardiography 

 

An echocardiogram (often known as a "echo") is a 

picture of the heart in motion. With the use of high-

frequency sound waves emanating from a hand-held 

wand placed on your chest, a sonographer may take 

pictures of the heart's valves and chambers and 

determine how well it pumps. Doppler 

ultrasonography and colour Doppler are often used in 

conjunction with echo to evaluate blood flow through 

the heart's valves [10]. The major method for the 

diagnosis and characterization of ASD is transthoracic 

echocardiography. The size, form, and position of the 

ASD, as well as its connection to neighbouring cardiac 

structures, should be delineated using several images 

[9]. The preferred imaging modalities include 

transesophageal echocardiography (TEE) and/or 

intracardiac echocardiography [11]. The usefulness of 

transthoracic (TTE) and transesophageal (TOE) 

echocardiography in the evaluation of different forms 

of atrial septal defect in adults was compared by Itzhak 

Kronzon et al [12]. TTE is the first-line imaging 

modality for the majority of adult patients with ASD, 

enabling reliable diagnosis, shunt measurement, and 

evaluation of haemodynamic implications, including 

pulmonary hypertension [6]. TOE is necessary for the 

correct assessment of defect size and shape before to 

or during transcatheter or surgical closure of ASD. 

 

3.5 Cardiac Catheterization 

 

It's a treatment that involves inserting a thin, flexible 

tube (catheter) into a blood artery and guiding it to the 

heart to diagnose or treat certain heart diseases. While 

invasive catheterization is not necessary for the 

diagnosis of ASD, it is the gold standard for shunt 

estimate [13]. Magnetic resonance imaging (MRI) 3.6 

(MRI) Magnetic resonance imaging (MRI) is a 

medical imaging technology that creates detailed 

pictures of organs and tissues using a magnetic field 

and computer-generated radio waves [14]. 

Computerized tomography (CT) 3.7 (CT) A CT scan 

combines a sequence of X-ray pictures collected from 

various angles throughout your body with computer 

processing to generate cross-sectional images (slices) 

of your bones, blood arteries, and soft tissues. CT scan 

pictures include more information than standard X-

rays [14]. 

 

4.  Deep learning for the recognition of ASD 

 

 In the past 20 years, mortality from 

congenital heart disease (CHD) has decreased by half 

in high-income countries (HICs), whereas disability 

and death have increased in low- and middle-income 

countries (LMICs). Increasing surgical treatment in 

these nations may cut fatalities from congenital heart 

disease by 58 percent. However, identifying patients 

as soon as possible is critical to achieving better 

results. Neural networks and other machine learning 

models have the ability to properly identify congenital 

heart disease without the need of skilled individuals. 

A key issue is the variety of the diagnostic modalities 

utilised to train these models, as well as the CHD 

diagnoses included in the research. [15]. Hoodbhoy et 

al. [16] created an intelligent predictive system for the 

prediction and detection of cardiac disease based on 

modern machine learning methods. Heart disease may 

be prevented with accurate prognosis, but it can also 

be deadly if the forecast is erroneous. Bharti et al.[17] 

examine the findings and analyses of the UCI Machine 

Learning Heart Disease dataset using various machine 

learning methods and deep learning. 94.2 percent 
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accuracy was achieved using a deep learning method. 

The intelligent detection of juvenile murmurs related 

to congenital heart disease (CHD) is shown by Jiaming 

Wang et al. [18]. To find the first and second heart 

sounds from a phonocardiogram (PCG) signal, a 

segmentation approach based on the discrete wavelet 

transform [19] paired with the Hadamard product was 

applied. Heart murmur diagnostic accuracy, 

sensitivity, and specificity were 93 percent, 93.5 

percent, and 91.7 percent, respectively. Finally, an 

intelligent diagnostic approach for paediatric CHD 

murmurs has been successfully established and may be 

utilised for online CHD screening in children. If a 

nonprofessional volunteer captures PCG signal using 

an electronic stethoscope in any other posture, the 

procedure may not perform properly. Medical image 

segmentation tries to make changes in anatomical or 

diseased features in pictures more visible; it is often 

used in computer-assisted diagnosis. With the 

advancement and widespread availability of medical 

imaging equipment, X-ray, computed tomography 

(CT), magnetic resonance imaging (MRI), and 

ultrasound have emerged as four important image-

assisted methods for clinicians to diagnose diseases, 

assess prognosis, and plan operations in medical 

facilities. It is required to segment certain critical items 

in medical pictures and extract characteristics from 

segmented regions to assist physicians in making 

correct diagnoses [4]. 

Convolutional neural networks (CNN) enable 

hierarchical feature representation of pictures in deep 

learning. 

Because CNNs used for feature learning are 

unaffected by picture noise, blur, contrast, and other 

factors, they provide outstanding medical 

segmentation results. Because medical picture 

segmentation tasks often need high precision images, 

supervised learning is the most favored method [4]. 

The U-Net, introduced by Ranneberger et al. [20], was 

the first high-impact encoder-decoder structure, and it 

has been extensively utilized for medical picture 

segmentation. The heart's magnetic resonance imaging 

(MRI) provides for both planar and volumetric 

evaluations of cardiac architecture, which may aid in 

the identification of an atrial septal defect (ASDs). Yu 

Lu et al. [21] employed a variant of the U-Net 

architecture, which is widely used in deep learning, to 

separate the right atrium in MRI images from ASD 

patients. Segmentation accuracy is improved by using 

the proposed method. There is a major problem with 

existing encoder–decoder networks since the skip 

connection and encoder–decoder link can't retain both 

details and semantic information simultaneously. 

Remaining and dense connections, as well as high 

resolution semantic data obtained by deep monitoring, 

may all be investigated. Because atrial septal defects 

produce a slight heart murmur, it can only be heard by 

chance. Although an ECG may aid in diagnosis, it is 

difficult to detect specific problems. Hiroki Mori et al. 

exhibited enhanced diagnosis accuracy for Atrial 

Septal Defect by combining electrocardiograms [23] 

with a suggested deep learning model that included a 

convolutional neural network (CNN) and long short-

term memory (LSTM) [22]. They made use of We 

employed a CNN and LTSMs-based deep learning 

model [24]. The accuracy, sensitivity, specificity, 

positive predictive value, and F1 score of the deep 

learning model were 0.89, 0.76, 0.96, 0.88, and 0.81, 

respectively. Two major restrictions were found when 

constructing the model. For starters, the amount of 

photos utilised for deep learning (DL) was rather tiny. 

The priming effect and the Hawthorne effect should be 

taken into account in the doctors' tests [25] [26]; each 

physician was instructed to determine whether the 

ECG was ASD or normal. This might have resulted in 

greater false positive and true positive ratios than if 

ASD had not been recognised as a possible condition. 

More accurate assessments may be feasible since the 

DL model can make a decision without being affected 

by such inputs. As a result, if these constraints are 

addressed in future research, the diagnostic quality of 

the proposed deep learning ECG approach might be 

significantly improved for clinical pre-examination 

ECG screening applications. Echocardiography, 

which uses ultrasound technology to capture high-

resolution images of the heart and its surrounding 

tissues, is the most often used imaging modality in 

cardiovascular medicine. Deep learning interpretation 

of echocardiograms was achieved using convolutional 

neural networks by Amirata Ghorbani et al. [27]. A 

deep learning algorithm used to echocardiography 

may identify local cardiac structures, measure heart 

function, and predict systemic phenotypes that impact 

cardiovascular risk but are difficult to detect using 

human interpretations. When it came to detecting 

pacemaker leads as well as left atrial and cardiac 

hypertrophy and end-systolic and diastolic volumes 

and ejection fraction, EchoNet, their deep learning 

network, got it right every time. This investigation 

shows that EchoNet pays attention to critical cardiac 

structures and places a high priority on hypothesis-

generating regions of interest while making 

predictions about complex symptoms. It’s critical to 

test for septal abnormalities accurately to help 

radiologists understand their findings. Deep learning 

was suggested by Siti Nurmaini et al. for the accurate 

identification of septal abnormalities in prenatal 

ultrasound pictures [28]. Multiple objects, such as the 

atria, ventricles, valves, and aorta, may be found in the 

embryonic heart. Furthermore, substantial variances 

might be caused by fuzzy borders (shadows) or a lack 

of uniformity in the acquisition procedure. Mask-
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RCNN (MRCNN) [29] is used in this work to handle 

foetal ultrasound pictures and to identify and segment 

abnormalities in heart walls with numerous objects. 

For multiclass heart chamber identification, the 

proposed MRCNN model performs well with 97.59 

percent accuracy in the right atrium, 99.67 percent 

accuracy in the left, 86.17% accuracy in the left 

ventricle, 98.83 percent accuracy in the right ventricle, 

and 99.97 percent accuracy in detecting heartbeats in 

the aorta, among other values. The proposed method 

provides for the reliable identification of septal 

anomalies in either the atria or the ventricles. In order 

to ensure the accuracy of the hole detection, experts 

have checked all of the data. The septal defect dataset 

has a well-known problem: it is a very small and 

exacting dataset. Transthoracic echocardiography 

(TTE) is the primary imaging tool for individuals with 

congenital heart disease. Transthoracic 

echocardiographic images of patients with congenital 

heart disease (CHD) may be improved by using 

acoustic shadowing removal techniques developed by 

Gerhard-Paul Diller et al. [31]. There were 

comparisons made between DL algorithms trained on 

CHD samples and those trained on normal cardiac 

samples. Deep neural network-based autoencoders 

[32] were developed to denoise and eliminate acoustic 

shadowing aberrations based on typical 

echocardiographic apical 4-chamber pictures, and 

performance was assessed by visual inspection and by 

calculating cross entropy. People with congenital heart 

disease and those with normal hearts may benefit from 

the use of autoencoders to reduce noise and eliminate 

artefacts, according to a new study. Models trained 

just on structurally normal cardiac samples work well 

in CHD, however the data show the necessity for 

specialized image augmentation systems trained 

specifically on CHD samples. 

 

5. Conclusion  

 Deep learning has shown a lot of promise in 

terms of detecting ASD. Deep learning-based 

algorithms have been found to be effective in defect 

identification throughout the preprocessing, feature 

extraction, feature selection, classification, and 

clustering processes. In terms of fault identification 

accuracy and algorithm parameters, the performance 

of several diagnostic approaches was discussed. In 

conclusion, we may infer that an effective deep 

learning model for the detection of ASD might be 

immensely beneficial to patients and sonographers. 
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