
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

 Quality Evaluation of Modern Code Reviews Through Intelli-

gent Biometric Program Comprehension

Haytham Hijazi, Joao Duraes, Ricardo Couceiro, João Castelhano, Raul Barbosa, Júlio Medeiros,
Miguel Castelo-Branco, Paulo de Carvalho, Henrique Madeira

Abstract— Code review is an essential practice in software engineering to spot code defects in the early stages of software development.

Modern code reviews (e.g., acceptance or rejection of pull requests with Git) have become less formal than classic Fagan's inspections,

lightweight, and more reliant on individuals (i.e., reviewers). However, reviewers may encounter mentally demanding challenges during the

code review, such as code comprehension difficulties or distractions that might affect the code review quality. This work proposes a novel

approach that evaluates the quality of code reviews in terms of bug-finding effectiveness and provides the reviewers with a clear message of

whether the review should be repeated, indicating the code regions that may not have been well-reviewed. The proposed approach utilizes

biometric information collected from the reviewer during the review process using non-intrusive biofeedback devices (e.g., smartwatches).

Biometric measures such as Heart Rate Variability (HRV) and task-evoked pupillary response are captured as a surrogate of the cognitive state

of the reviewer (e.g., mental workload) and inexpensive desktop eye-trackers compatible with the software development settings. This work

uses Artificial Intelligence techniques to predict the cognitive load from the extracted biomarkers and classify each code region according to

a set of features. The final evaluation considers various factors such as code complexity, time of the code review, the experience level of the

reviewer, and other factors. Our experimental results show the approach could predict the review quality with 87.77%±4.65 accuracy and a

Spearman correlation coefficient of 0.85 (p-value < 0.001) between the predicted and the actual review performance. This evaluation validates

the cognitive load measurement using electroencephalography (EEG) signals as ground truth for the HRV and pupil signals.

Index Terms— Artificial Intelligence, Biometrics, Code inspections and walkthroughs, Human factors

—————————— ◆ ——————————

1 INTRODUCTION

oftware development is an intensive intellectual task. It con-

sists of knowledge activities related to understanding the prob-

lem and designing an adequate solution. Therefore, human cog-

nition plays a crucial role in software development. This high re-

liance on human cognition is a significant factor in software fra-

gility and proneness to faults. For instance, analysis from a large

set of industrial data reported [1] shows that 87% of the severe

software defects in deployed code are caused by human cognitive

failures, regardless of the software development process.

Software faults or defects (often called bugs) are one of the

most persistent challenges of software reliability. Despite the

modern tools available for developers and the intensive research

on software reliability and quality, the general statistics for soft-

ware developed (most of them related to software for critical ap-

plications) show high bug density figures, ranging from 1 to 5

bugs per 1000 lines of delivered code [2][3][4]. This problem is

amplified by the constant pressure to minimize the time-to-mar-

ket and due to the dramatic increase in code size witnessed by

modern software. More lines of code (LoC) mean more bugs, as

attested by the fact that the number of LoC is generally used as

the most reliable metric to predict bug count in software products

[5]. Knowing the high impact of software in our society, software

bugs represent the most chronic and challenging problem, which

might cause considerable negative consequences on the final

product/service resulting from the software.

Among the large arsenal of techniques used to improve soft-

ware quality, software inspections and, more specifically, code

reviews are a well-established practice in software development.

Classic code reviews [6][7] consist of the manual inspection of

the source code by a group of reviewers to improve the overall

quality of the software and detect software defects, among other

quality aspects such as compliance to code standards.

Modern code reviews [8][9] are essentially asynchronous (no

inspection meetings), based on proprietary tools, and have be-

come more lightweight, more informal, and, consequently, much

more dependent on individual skills rather than on the inspection

group capacity. At Google [9], “even very large (code) changes

on average require fewer than two reviewers.”

If the code is reviewed by a single reviewer (or even by two),

the quality of the review, and particularly the effectiveness in

finding bugs, is highly dependent on the skills of the reviewer,

but also on other very human aspects such as engagement level,

distractions, fatigue, stress, and attention shifts. These are well-

known sources of human cognitive errors [10][11] that may

cause reviewers not to find bugs or point out non-existent bugs.

In addition to all these unavoidable reasons for individual re-

viewer failure in finding bugs, difficulties in understanding the

code under review are one of the major issues faced by reviewers

[8][12][13]. A very recent study [14] reports that when “review-

ing code changes, about 41% of the respondents feel confusion

at least half of the time, and only 10% do not feel confusion”. If

reviewers often have problems understanding the code, the effec-

tiveness of bug findings will be affected.

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

S

————————————————

• H.Hijazi is with CISUC, University of Coimbra, Coimbra, Portugal,
Email: haytham@dei.uc.pt

• J. Duraes is with CISUC, University of Coimbra and Polytechnic Insti-
tute of Coimbra, Coimbra, Portugal, email: jduraes@isec.pt

• R. Couceiro is with CISUC, University of Coimbra, Coimbra, Portugal,
Email: rcouceir@dei.uc.pt

• J. Castelhano is with ICNAS, University of Coimbra, Coimbra, Portugal,
Email: joaocastelhano@uc.pt

• R. Barbosa is with CISUC, University of Coimbra, Coimbra, Portugal,
Email: rbarbosa@dei.uc.pt

• J. Medeiros is with CISUC, University of Coimbra, Coimbra, Portugal,
Email: juliomedeiros@dei.uc.pt

• M. Branco, ICNAS/CIBIT, University of Coimbra, Coimbra, Portugal
Email: mcbranco@fmed.uc.pt

• P. Carvalho is with CISUC, University of Coimbra, Coimbra, Portugal,
Email: carvalho@dei.uc.pt

• H. Madeira is with CISUC, University of Coimbra, Coimbra, Portugal,
Email: henrique@dei.uc.pt

mailto:haytham@dei.uc.pt
mailto:jduraes@isec.pt
mailto:rcouceir@dei.uc.pt
mailto:joaocastelhano@uc.pt
mailto:rbarbosa@dei.uc.pt
mailto:juliomedeiros@dei.uc.pt
mailto:mcbranco@fmed.uc.pt
mailto:carvalho@dei.uc.pt
mailto:henrique@dei.uc.pt

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

We propose the use of biometrics data collected from the

reviewer (using non-intrusive sensors) and Artificial Intelli-

gence (AI) techniques to estimate the engagement and how

well the reviewer has covered and understood the different

regions of the code under review, providing an evaluation of

the quality of the review in terms of bug finding effectiveness.

It is well-known that the code review purposes are not limited

to bug finding; it also aims at improving code quality, and re-

moving code smells, improving compliance with coding stand-

ards, improving team cohesion, training young programmers/re-

viewers, among other goals. However, bug finding is often con-

sidered the top goal of code reviews. For example, in [8] the re-

sults of an extensive survey show that “almost all the managers

included “finding defects” as one of the reasons for doing code

reviews; for 44% of the managers, it is the top reason. Concern-

ing surveyed developers/testers, “finding defects” is the first mo-

tivation for code review for 383 of the programmers (44%), sec-

ond motivation for 204 (23%), and third for 96 (11%).”

A key aspect of modern code reviews is the use of specialized

tools to facilitate code review. Established software companies

have developed or adopted their tools, embodying the workflow

process of their specific flavor of code reviews. Prominent ex-

amples of such tools are Critique (Google) [9], CodeFlow (Mi-

crosoft) [8], Phabricator (Facebook) [15]. Many other code re-

view tools are currently available (see a survey of the "12 Best

Code Review Tools for Developers - 2021 Edition" in [16][15]).

Notably, most of these code review tools also try to assess the

quality of the code review through a process or product-oriented

metrics such as comments quality, quality of the feedback pro-

vided, code (patch) quality, inspection rate, and LoC covered,

among others [17]. Still, all of them fail in a crucial aspect: they

do not evaluate the quality of the code review work provided by

individual reviewers in terms of bug-finding effectiveness. Fill-

ing this gap is precisely the goal of the proposed approach.

This paper proposes a new approach to systematically evalu-

ate the quality of modern code reviews in terms of bug-finding

effectiveness at the code region level of granularity (a region is a

small set of code lines, typically around ten LoC). This evalua-

tion provides immediate feedback to code reviewers or develop-

ers on possible code regions/lines that were not well covered by

the review. It also provides the reasons why such a review may

have left bugs undetected. The reviewers could use this infor-

mation to promptly improve the code review through a second

pass over specific parts of the code under review, or project man-

agers can ask for a second independent review.

The proposed approach uses well-established biometric tech-

niques that use psychophysiological measures such as heart rate

variability (HRV) and the pupillary response (pupillometry) to

assess cognitive load while executing specific tasks and inher-

ently infer the difficulty and mental effort associated with such

tasks [18][19][20]. We also use the domain knowledge to extract

useful features from the psychophysiological measures (feature

engineering). Then, we adapted a multimodality augmented set

of features, including other non-biometric features such as the

code complexity, the reviewer experience, the number of revisits

to a code region, and the code reading time. We use knowledge

domain and data-driven algorithms (i.e., Kruskal-Wallis and Re-

lief features selection) to select the best multimodal features. The

best-chosen features are fed into k-nearest neighbors (KNN) and

Logistic Regression classifiers (LR) — known for their explain-

ability— to classify each code region as being either well-

reviewed or not, with an explanation on why the code region was

not well-reviewed.

We have evaluated the proposed approach through a con-

trolled experiment including 21 code reviewers equipped with

biometric sensors while performing a code review of four code

snippets. The paper makes the following contributions:

• Proposes a new approach to evaluate the quality of code re-

views individually (i.e., code reviewer), leveraging biometric

measures and AI techniques to improve bug-finding effec-

tiveness in the code review evaluation process.

• Evaluates the accuracy, precision, and recall of the proposed

approach in a controlled experiment that uses code reviewers,

actual code, realistic bugs, instrumentation to gather the bio-

metric signals used to assess the reviewer's cognitive load.

• Validates the reviewer's cognitive load (assessed through

non-intrusive devices) using Electroencephalography (EEG).

• Analyses the cognitive load of code reviewers at a fine-gran-

ularity (i.e., code region level), which is beyond the state-of-

the-art in biometrics applied to task-level code analysis.

The paper is organized as follows: Section 2 presents relevant

interdisciplinary background and covers the state-of-the-art of

the pertinent topics. Section 3 details the proposed approach.

Section 4 addresses the experimental setup to evaluate the pro-

posal. Section 5 shows the analysis and classification of Biomet-

rics. Section 6 discusses the results and the viability of the ap-

proach. Section 7 discusses the threats to the validity, and Section

8 summarizes the takeaway messages and outlines future work.

2 BACKGROUND AND LITERATURE REVIEW

Evaluating the code review process using physiological signals

and pursuing a data-driven approach spans software engineering

and cognitive & neuroscience, and AI. This section overviews

the relevant topics and summarizes the state-of-the-art related to

the proposed approach. For details on physiological features and

their relationship with cognition, please see Supplement 1.

2.1 Code Reviews

The asynchronous style of code reviews emerged in the early

2000s, mainly in the context of OSS projects. In these ap-

proaches, reviewers can see the code and the code changes and

can discuss specific lines of the code while the author of the code

addresses the reviewer's comments. This flavor of light and asyn-

chronous reviews has been brought by various tools that have

emerged to help authors of patches to submit them for review

before being integrated (i.e., merged) into the shared software.

As mentioned before, the modern style of code reviews has

also been shaped by well-established companies that have devel-

oped their tools and review environments [8][9][15]. With such

tools, the developer completes a change in the code and creates

a review request, including a description of the change and spec-

ifying the candidate reviewer (or reviewers) that will receive

such a request. Reviewers get notified via email to open the tool

and review those changes. Additionally, reviewers can annotate

these code lines containing the change with their comments.

Many commercial code review tools are currently available

(see [16]). Most rely on the Git distributed version control system

or even on cloud-based hosting services such as GitHub. These

tools adopted the pull-based development model, and when de-

velopers need to make a change or add new code, they fork an

existing Git repository and make those changes in their fork. The

review tools embed the code review process in the pull request

https://github.com/HaythamHijazi/Supplement

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 3

workflow to facilitate the dialog between reviewers and develop-

ers and ensure that the code review is performed as expected.

Ford et al. [21] show that deciding upon pull request (acceptance

or rejection) depends on the social and technical aspects of the

pull request initiator. In other words, to accept the review, you

should look at the reviewer's (i.e., request initiator) profile and

expertise. This result demonstrates to which extent the code re-

view process is becoming more personal dependent. It means that

helping reviewers with the proposed approach, which calls their

attention to code that needs a second look, seems quite useful.

In practice, software companies adopt variants of code re-

views. However, there are fundamental characteristics to achieve

high-quality reviews. For instance, in classic reviews, Ackerman

et al. [22] state that effective code reviews should be carried out

by knowledgeable peers whose primary purpose is to find defects

in the software product. Some key metrics mentioned [22] as es-

sential for the effectiveness of the code review process include

the average preparation effort per code unit; the average exami-

nation rate and effort per code unit; the average explanation rate

per code unit; the average number of defects detected per code

unit; the average number of defects per unit of code. These met-

rics point to reviewing best practices but fulfilling such best prac-

tices at the individual reviewer level is not easy to guarantee.

Best practices in modern code review [23] advise reviewers

to ask themselves several questions before starting the review:

do I understand the code? Does this code function as I expect?

Does this code comply with regulatory requirements? It is also

recommended not to review longer than 60 minutes and no more

than 400 LoC at a time.

As we see from the examples above, code reviews rely on the

individual capacities and skills of reviewers, knowing that in

modern code reviews this dependency on the reviewers' skills is

higher since only one peer typically reviews the code. The ap-

proach proposed in this paper addresses this dependency on the

individual reviewer’s skills, as well as on other human factors

such as fatigue, stress, distractions, difficulties in code compre-

hension, to improve bug finding effectiveness through the eval-

uation of the code review and prompt feedback to the reviewer.

An important aspect of attesting to the relevance of the prob-

lem targeted by our proposal is to examine available studies on

the effectiveness of code reviews concerning uncovered bugs.

Shull et al. [87] surveyed the bug detection coverage of classic

code reviews observed in eight studies and concluded that it is

reasonable to expect code reviews to detect an average of 60%

of the bugs. However, among the studies surveyed in [87], we

can observe that the effectiveness of code reviews in bug detec-

tion can range from 19% up to 93%, depending on many factors.

Since modern code reviews are more informal than classic

code reviews and do not rely on a group of inspectors and an

inspection meeting, it is expected that the effectiveness of mod-

ern code reviews in finding bugs is lower than the average 60%

reported by the analysis of the eight papers surveyed in [87]. An

empirical study investigating modern code review quality for

Mozilla found an overall of 54% of code reviews missed bugs in

the approved commits. Interestingly, similar values were found

consistently throughout the different modules analyzed in [24].

Concerning the type of defects detected by code reviews, an em-

pirical study [25] classified the defects of nine industrial (C/C++)

and 23 students (Java) code reviews and found that from 71% to

77% of the defects found are related to software evolvability as-

pects (code organization, solution approach, code formatting

such as brackets usages and indentation, etc.) and do not affect

code functionality (in any case, they are defects).

Code review effectiveness in bug detection of 60% (in aver-

age) for classic code reviews (but with a wide bug detection

range from 19% up to 93%) Error! Reference source not

found. and an average of 54% of bug detection for modern code

reviews [24] show that there is a large room for improvement.

Several works suggest that personal (i.e., individual depend-

ent) aspects play an important role in review quality, which con-

curs with our proposal of assessing individual reviewers’ engage-

ment and cognitive load using non-intrusive biometrics to help

predict bug finding effectiveness. Baysal et al. [26] showed that

non-technical factors such as "personal" dimensions affect code

review time and the outcome of the review process. Kemerer et

al. [27] indicated that defect detection and removal effectiveness

depend on the individual review rate. Shull et al. [28] argued that

inspections led by reading techniques are more effective at re-

vealing defects. Hatton [29] showed that reviewers tended to

show different defect detection capabilities and stated that the

worst reviewer was ten times less effective than the best one. This

result is consistent with the results of the eight studies surveyed

(see section 3.6 of [87]). Kononenko et al. [17] also studied the

characteristics of the good review, as perceived by developers,

and found that personal metrics such as reviewer workload and

experience play a relevant role in the code review quality. Nota-

bly, the authors of [17] also showed that human factors such as

reviewer mood, personality, experience level, skills, productiv-

ity, and stress level are the most significant determining factors

in the code review quality. Personal factors such as the reviewers'

experience and workloads are also suggested as promising pre-

dictors of the code review quality in [24].

Al-Saiyd [30] took a further step in those human aspects and

considered source code comprehension an essential part of the

software maintenance process, including code reviews. The au-

thor [30] showed that code comprehension efforts highly rely on

the reviewer's skills and experience and other factors, including

the programming language and the code size/structure. In the

same context, Huang et al. [31] argued that reviewers must spend

a significant amount of time understanding the code during the

code review process. Difficulties in understanding the code un-

der review as a result of reviewers’ confusion (i.e., reviewers do

not understand something in the software) are pointed as a major

factor in [14]. These works support our idea of associating review

quality with the effectiveness of the code comprehension by the

reviewer, with the significant difference that in our proposal, we

infer code comprehension using biometrics features.

Although abundant studies have been conducted to assess de-

velopers' code comprehension (e.g., [32][33]), there is a lack of

empirical studies that objectively assess the reviewer code com-

prehension and associate it with the review quality in terms of

bug detection. Psychological and observational works on soft-

ware developers and reviewers rely on indirect techniques to as-

sess programmers' code comprehension, such as comparing task

performance, surveys or articulating developers' thoughts in

think-aloud protocols [30][31]. These techniques use self-report-

ing methods and require considerable efforts in transcription and

data analysis, which might be inconsistent in the end.

2.2 Biometrics and Cognitive Neuroscience in SE

Recently, academia started to leverage cognitive neuroscience

and AI in software development to understand the underlying

cognitive mechanisms of human intelligence tasks in software

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

development. In a recent comprehensive survey [34], the authors

proposed the term NeuroSE to "describe a research field in soft-

ware engineering (SE) that makes use of neurophysiological

methods and knowledge to understand software development

better." This survey shows an exponential growth of the number

of publications in NeuroSE since 2014, reaching 89 papers by

mid-2020 (the period reported in [34]). Most of these studies

report-controlled experiments often using heavy medical imag-

ing equipment such as magnetic resonance imaging (fMRI) (see

[34] for a comprehensive review) that obviously cannot be used

in real software development settings. But these studies are es-

sential to understand basic cognitive mechanisms related to hu-

man error and bug making/discovering in software code devel-

opment and constitutes a relevant ground for the proposal of in-

novative software engineering approaches that move NeuroSE

from controlled experiments into real-world software develop-

ment setups, such as the approach proposed in this paper.

One of the first fMRI studies on programmers' mental effort

in comprehending code is presented in [35]. In [36], the authors

characterize the brain mechanisms involved in understanding

natural language texts and source code, comparing the brain

mechanisms involved in each case. A study identifying specific

brain regions involved in code comprehension and syntax error

identification, specifically the regions of language processing,

working memory, and attention, is reported in [37].

The study of reviewers' brain activity during code inspections

is addressed explicitly by our previous works in [38][39][40]. In

particular, [39] suggests that the activity levels of the insula re-

gion of the brain are directly related to the quality of the bug de-

tection, establishing a direct relationship of a brain signal with a

code reviewing skill, and opening the possibility of using the ac-

tivity of that brain structure as a predictor of accuracy of bug

finding tasks. These findings have been confirmed and expanded

in a second and more comprehensive fMRI study [40]

Wearable devices such as wrist-located sensors, bracelets, and

smartwatches represent a fast-expanding industry of biometric

devices that are primarily used in sports, fitness, and well-being

applications but can also be used as base sensors to assess re-

viewer's cognitive load and engagement in reviewing tasks, as

proposed in this paper.

Although the use of EEG, HRV, and pupillometry as sources

of cognitive information from programmers and reviewers is rel-

atively recent in the research literature, eye-tracking has been

highly researched in the context of software development. More

specifically, in the context of code review, Uwano et al. [41] used

eye-tracking to characterize the performance of reviewers by an-

alyzing their fixation data and eye movements while performing

the review. The results indicated that reviewers who do not spend

enough time scanning the code would likely spend more time in

defect detection. Sharif et al. [42] replicated and expanded

Uwano et al.’s work [41] to investigate how individuals find de-

fects in source code by characterizing eye movements. The au-

thors showed that the scanning time extracted from an eye-

tracker is significantly correlated with defect detection time and

visual effort on lines with defects.

Chandrika et al. [43] also used eye-tracking to understand the

eye gaze behavior required for code review by both skilled and

unskilled programmers. It was found that skilled subjects (i.e.,

better reviewers) tend to have eye-tracking traits such as better

code coverage and attention span to error lines and comments. A

recent work [44] conducted a study on 35 software engineers

performing 40 code reviews while measuring their eye gaze. The

authors could distinguish between time spent skimming the code

vs. carefully reading it relying on eye-tracking. According to

[45], careful reading is defined as "two standard deviations lower

than the mean rate per person."

Although to the best of our knowledge, there are no previous

works in the literature proposing the use of biometrics to evaluate

code reviews in terms of bug-finding effectiveness, as proposed

in our paper, several previous works established the feasibility of

key aspects of our proposal. Vrzakova et al. [46] address the af-

fect recognition of the code reviewers using physiological signals

and mechanical signals (i.e., typing), showing that it is possible

to unveil the reviewer state (valence and arousal). Several works

have shown that it is possible to differentiate among several cog-

nitive states such as stress and cognitive load [47][48]. Detecting

cognitive distractions (a cognitive state strongly related to human

errors) has been an essential goal for the automotive industry, and

eye-tracking sensors have proven effective [49]. Works from

Fritz, Muller, et al. show that it is possible to assess task difficulty

in software development [50] and to optimize software testing

through the prediction of code quality using programmers' cog-

nitive load captured using HRV [51].

Our early works combine HRV, Pupillography, and eye-track-

ing to annotate code lines with the programmer's cognitive states

collected while attempting to comprehend such code lines

[52][53]. In [52], it was possible to conclude that the changes in

cognitive load were mainly associated with the appearance of

outliers above the mean value. In [53], we concluded that one of

the features that is possible to extract (Low_freq/High_freq)

showed high variations during small sections of code (similar in

size to the code regions in the present paper) where the high cog-

nitive load was expected. Once again, to capture this high varia-

bility (outliers), transforms need to be used.

Since we use data-driven approaches to classify the code re-

view quality, it is relevant to examine previous works that used

biometrics and data-driven approaches to assess programmers’

cognitive load and code comprehension. In [51], a Random For-

est classifier was used with HRV and EDA features to predict

code quality. Floyd et al. [36] employed a Binary Gaussian Pro-

cess classifier with fMRI and show that tasks involving program-

ming languages and natural languages activate different brain ar-

eas, showing that it is possible to classify which task a participant

is undertaking (code comprehension, code review and prose re-

view) based on brain activity. Fucci et al. [32] replicated the

study presented in [36] using lightweight EEG and EDA devices

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 5

and evaluated a comprehensive set of data-driven classifiers in-

cluding Naive Bayes, K-Nearest Neighbors, Decision Tree,

SVM, Neural Networks, Rule-based, Random Forest, and Boost-

ing and showed that it is possible to distinguish between the dif-

ferent tasks (code versus natural language comprehension) with

this much lighter setup. Lee et al. [54] used EEG and eye-track-

ing and a Support Vector Machine classifier to predict program-

mer expertise (novice/expert) and task difficulty (easy/difficult).

It is worth mentioning the exploratory nature of these previ-

ous works that used data-driven classifiers and the fact that most

of them used high intrusive sensors such as EEG and fMRI that

cannot be applied in real software development setups. The work

presented in [51] is an interesting exception, as it predicts the

quality of code using low intrusive sensors and random forest

classifiers.

In the proposed approach, presented in the next section, we

use both domain knowledge and data-driven feature selection

methods are applied. We are particularly interested in using ex-

plainable classification models like the KNN and the LR. The

KNN is interestingly explainable, whereas the LR is relatively

explainable through the odd ratio changes relative to features.

3 THE PROPOSED APPROACH

Figure 1 shows the key elements of the proposed approach.

First, the code under review is divided into non-overlapping code

regions to apply the code review quality assessment to relatively

small code snippets that we call code regions instead of applying

the technique to the entire code under review. If at least one code

region is evaluated as not being well-reviewed that will be

enough to classify the entire code review as not satisfactory and

recommend a second look (i.e., a second review).

 The definition of code regions in the code under review in-

cludes the following goals:

• Resolution of the technique: code regions define the basic

grain of resolution of the technique to allow the precise iden-

tification of specific code lines that have not been well-re-

viewed for bug finding.

• Non-overlapping and syntactically consistent blocks of

code: code regions do not split syntactic code constructs, al-

lowing an automatic process (using formal grammar) to de-

fine regions in the code under review.

• Human scale in terms of readability: code regions repre-

sent code lines with a suitable size and complexity for a hu-

man reader. For example, the size of code regions must be

limited to a given cap (in the evaluation of the technique

presented in the paper, code regions have an average size of

8.9 lines of code and a maximum of 14 code lines).

This division of the code under review into regions is

achieved using a parser to construct an abstract syntax tree during

syntactic analysis and split it into sub-trees at the top-level con-

structs of the language. It is worth mentioning that the parser

does not split syntactic code constructs. In other words, it does

not break a block of statements inside a while/for loop and does

not break apart the if portion from the else part of an if-else con-

struct (i.e., the beginning and end of a given region are at the

same nesting level).

Once the code is organized in regions, the complexity metrics

of each region (Vg and LoC) are calculated using complexity

metric tools to classify each region according to the complexity

of the code snippet. The assessment of how well the reviewer

understands each code region uses rule-based and explainable

classifiers. For example, if the code lines the reviewer is looking

at (obtained from the eye-tracker) are complex, and the cognitive

load of the reviewer (data provided by biometrics) is low, this

suggests that the reviewer is just skimming through the code

snippet and is not making a real effort to understand such com-

plex code. Or, as another example, if the complexity of the code

region is low and the cognitive load of the reviewer while look-

ing at those code lines is high, it suggests that the reviewer is

having difficulties in comprehending such code or is distracted

or mentally busy with something else. In both cases, the chances

of overlooking bugs in the review of such code regions are high.

It is worth mentioning that field studies show that bugs in de-

ployed software may reside in low complexity code as much as

in high complex code [14] [55], meaning that even simple code

must be reviewed with the same care of complex code.

The eye-tracker is used to know when the reviewer looks at

each code region and calculate region reading time and number

of revisits. The reviewers' cognitive load is assessed from the

physiologic signals collected by biometric sensors (i.e., ECG and

Pupillography), which are processed for mapping the biomarkers

with the corresponding code regions.

Feature engineering techniques are used to mine the raw data

for meaningful features according to the knowledge in the do-

main. The features include the code complexity, the reviewer ex-

perience level, the code region reading time, the code region re-

visits, and the cognitive load indexed by the HRV and the Pupil

features. The selected features are used to classify the code re-

gions according to the code review quality, whether good or bad

(see the middle-right part of Figure 1). The overall quality of re-

view is then provided with the indication of the code regions that

Fig. 1. Schematic Diagram of the Approach

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

should be better reviewed and an explanation achieved using ex-

plainable AI.

Our approach uses AI techniques to assess the quality and

coverage of the code review by estimating how well the reviewer

has comprehended different code snippets of the software under

review. The AI role begins with the feature engineering of bi-

omarkers extracted from the biosensors, classification, and deci-

sion optimization. The features are selected in a knowledge-

driven and data-driven approach using Kruskal-Wallis (KW)

based feature selection and Relief feature selection techniques

[56][57]. KW is a computationally efficient non-parametric fea-

ture selection technique. It tests if two classes have an equal me-

dian and gives the value of P (low P values are selected for their

discriminative power). On the other hand, the relief method is

sensitive to feature interaction where it assigns weights to fea-

tures based on finding k-nearest neighbors for the same class fea-

tures and k-nearest misses for the other class. The classification

is performed using an explainable conditional rule-based classi-

fier and a simple explainable classification model based on the

KNN and the Logistic Regression.

Concerning acquiring the heart signals for the HRV assess-

ment, our proposal for developing concrete tools for real code

reviewing scenarios is to use non-intrusive and wearable sensors

that can be fully integrated with the software development envi-

ronment. These sensors use wrist located Photoplethysmography

(PPG) [58], typically done with bracelets/watches, which allow

the assessment of reviewers' cognitive load using Pulse Rate Var-

iability (PRV). PRV is like HRV, with the difference that it is

based on the heart signals inferred through PPG instead of using

a direct electric signal (from ECG sensors) such as in HRV.

Although we envisage the use of bracelets or watches with

PPG for future concrete applications of the approach, in the eval-

uation of the approach presented in this paper, we used ECG sen-

sors for the acquisition of the heart signals and to perform HRV

assessment of the cognitive load. Since this paper is mainly fo-

cused on the validation of the concept (and not on the evaluation

of a concrete tool implementing the proposed approach), we de-

cided to use ECG sensors to ensure that we evaluate the idea

using clean electric heart signals, removing the need of extra care

in the experiments to ensure correct and consistent positioning of

PPG watches in the wrists of the reviewers.

The feasibility of using PPG instead of ECG sensors was em-

pirically shown by Pinheiro et al. [59]. They concluded that PRV

could be a good alternative for HRV with significant correlations

above 82% for time and frequency domain features. The results

in [59] have also been attested by a recent and detailed study pre-

sented in [60]. The small delay (below 50 milliseconds [60]) in-

troduced by PPG is not relevant for the proposed application.

The task-evoked pupillary response (pupillography)

[20][61]is available in most eye-tracking systems, which are now

more compatible with programming settings. The third type of

wearable sensor that can also be used to measure electrodermal

activity (EDA), also known as galvanic skin response, is known

for its capacity of discriminating stress from cognitive load

[47][48]. It is worth mentioning that in the experimental evalua-

tion done in the current study, we have not used EDA (but, obvi-

ously, the use of EDA as an additional source to assess the re-

viewer's cognitive state is totally in line with our proposal).

The final key element of the proposed approach (see the box

at the right-hand side of Figure 1) is the rule-based and data-

driven classification model that receives the best-selected fea-

tures from HRV, Pupillography, the complexity of the code re-

gion, time of reading the code region, and the number of code

region revisits. The classifier then predicts the quality of the re-

view of each code region to provide the indication of whether the

reviewer should review the code of a given region again or not.

The design of the rule-based classification model considered

established best practices of code reviews as described/proposed

in [22][23] [26][27][28][29][41][44], as well as the expert opin-

ion of the co-authors of the paper that have considerable experi-

ence in code reviews. Both best practices and expert opinion

align with the current proposal's fundamental idea that relies on

perceiving the reviewer's code comprehension as the crucial in-

dicator of the effectiveness of a review. Table I summarizes the

five criteria used to set up our rules, supported by a brief descrip-

tion of each one, and links each criterion with the code review

Table I CRITERIA USED TO EVALUATE THE CODE REVIEW QUALITY IN EACH CODE REGION

CRITERIA DESCRIPTION EFFECTS ON CODE REVIEW QUALITY

Reviewer's

Cognitive Load
The main goal of assessing cognitive
load (CL) is to infer to what extent the

reviewer comprehended the code under

review. CL is derived from the HRV (or
PRV) and Pupillography features.

Extensive research has established a link between cognitive load assessment and code
comprehension level [62]. Comprehension is a critical factor in an effective code review

process. Bacchelli and Bird concluded that understanding is the main challenge when

doing code reviews [8]. Dunsmore, Roper, and Wood supported the positive correlation
between code comprehension and review effectiveness and quality [63] empirically.

The complexity

of the Code

Region

Based on the cyclomatic complexity met-

ric (Vg) and lines of code (LoC)

The impact of code complexity on the difficulties perceived by reviewers in comprehend-

ing the code and detecting all bugs is not well established. However, Muller and Fritz in

[51] used the code complexity metric and other features to predict code quality con-

cerns. Nonetheless, our studies [52][64] show that code complexity does not always cor-
relate with the subjective developers' perception of difficulty in comprehending code.

Reviewer's Ex-

pertise

The expertise here is in the context of

programming skills. A written C exam
was performed to distinguish between

standards and experts.

Sauer et al. [65] identified individuals' expertise as a primary key to improving code re-

view effectiveness. Other examples [66][67] showed a positive correlation between code
review expertise and the number of defects found in the software, hence the code review

quality.

No of Revisits

to the Code

Region

The number of revisits refers to the num-

ber of times the reviewer regresses to a
specific code region. The number of re-

visits is extracted from the eye-tracker.

Many studies linked the quality of reading the code with revisits or regression (e.g.,

[33][68]) In [68] Busjahn et al. show that difficult texts induce more frequent regressions.
Usually, complex code takes more revisits from expert reviewers, which is interpreted as

good review practice. However, this is not always the case. Good code readers are char-

acterized by few revisits and short fixations in simple code review tasks.

Time Spent

Reviewing the

Code Region

(Reviewing

Time)

The sum of times spent in all (re)visits of

the reviewer in a code region, including
reading, comprehending, and analyzing

the code to find bugs (extracted from the

eye-tracker).

Uwano et al. [41] show that the scan pattern reflects the cognitive action in code review.

They show that the quality of the scan should significantly influence the individual effi-
ciency of detecting bugs in the review. Authors show that the duration of scan time on

specific code lines may indicate the strength of the reviewer and thus a high-quality re-

view.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 7

quality established in the literature.

In this approach, we use two classification models: the

Knowledge-Driven rule-based Classification Model (KCM) and

the Data-driven rule-based Classifier Model (DCM). The KCM

has predefined rules defined by experts, as shown below in Table

II, while the DCM is based on the data-driven machine learning

classifiers, namely the KNN and the Logistic Regression.

Table II shows the rules used in the evaluation of this ap-

proach. We understand that there is a wide range of possibilities

for the definition of the set of rules and, very important, for the

definition of the thresholds that determine the different catego-

ries of each criterion (e.g., reviewer's cognitive load high or low,

code region simple or complex, reviewer expert or standard,

etc.). Naturally, we know that many other alternatives do exist,

particularly the ones that consider more categories for each cri-

terion instead of just a simple Boolean approach. Furthermore,

we can also consider additional criteria such as the reviewer’s

familiarity with the code, in addition to the five criteria shown in

Table II. All these possibilities should be analyzed and evaluated.

However, to keep the size of this paper within acceptable limits,

we only propose the 32 rules using a Boolean approach for the

different criteria.

TABLE II. CODE REVIEW EVALUATION RULES

Rule

No.

Cogni-

tive

Load

Region

Com-

plexity

Reviewer

Expertise

No.

Re-

visits

 Reading

Time

Quality of

Review

1 High High High High High Good

2 High High High High Low Bad

3 High High High Low High Good

4 High High High Low Low Bad

5 High High Low High High Good

6 High High Low High Low Bad

7 High High Low Low High Bad

8 High High Low Low Low Bad

9 High Low High High High Good

10 High Low High High Low Good

11 High Low High Low High Bad

12 High Low High Low Low Good

13 High Low Low High High Bad

14 High Low Low High Low Bad

15 High Low Low Low High Good

16 High Low Low Low Low Bad

17 Low High High High High Good

18 Low High High High Low Bad

19 Low High High Low High Good

20 Low High High Low Low Bad

21 Low High Low High High Bad

22 Low High Low High Low Bad

23 Low High Low Low High Bad

24 Low High Low Low Low Bad

25 Low Low High High High Good

26 Low Low High High Low Good

27 Low Low High Low High Good

28 Low Low High Low Low Bad

29 Low Low Low High High Good

30 Low Low Low High Low Bad

31 Low Low Low Low High Good

32 Low Low Low Low Low Bad

Most of the rules are relatively intuitive and easy to under-

stand even by non-experts. For example, suppose the time spent

reviewing a code region is below a given threshold (see Section

5.3 for the choice of threshold values used in the evaluation),

then the review is most likely classified as a bad review. It is

considered that the reviewer did not understand the code (it

1 https://github.com/HaythamHijazi/Supplement

would be impossible in such a short amount of time), especially

if the reviewer is not an expert. Or, as another example, if the

code is complex, the reviewer's cognitive load is low, and the re-

viewer is not an expert, the quality of the review for that code

region is classified as low, no matter the number of revisits or the

reviewing time. The rationale of this conclusion is that a low cog-

nitive load in non-expert reviewers indicates they are not trying

to understand the complex code of such a region.

The reasoning supporting some of the rules is not so trivial,

such as the number of revisits to the code region that follows

some observations provided in [69]. For example, depending on

the expertise of the reviewer, the complexity of the code, and the

reviewer's cognitive load, a high number of revisits may indicate

a careful review (e.g., when the code is complex, the cognitive

load is high, and the reviewer is expert) or may show that the

reviewer is insecure and does not understand the code well (e.g.,

when the reviewer is a non-expert, the cognitive load is high, and

the code is complex).

The rules validation was performed by a panel of developers

and code reviews experts in the following steps:

• List all the possible combinations of features contributing to

the code review quality (cognitive load, experience, review-

ing time, revisits, and code complexity).

• Revisit the combinations independently based on their code

review experience and best practices in code review reports.

• The experts discussed each decision taking the average of

their choices in the final form of the rules.

• Coverage testing: this test aims to explore each rule’s fre-

quency of occurrence in the dataset.

• The rule results were compared with the actual performance

of the reviewers for further validation.

In any case, these rules represent expert opinion on the most

plausible outcome (i.e., quality of the review) for the different

combinations of the five criteria presented in Table I and used in

Table II. In some cases, the impact of each criterion on the rules

is quite debatable. Take, for example, the criterion “No. of revis-

its to the code region”. If the number of revisits is high, it could

mean hesitation of the reviewer or just the opposite, as the re-

viewer may be thoroughly confirming the content of the code re-

gion. As described in Table II (line 5), this individual criterion

must be interpreted together with the expertise of the reviewer,

the complexity of the code, and even with the cognitive load

while analyzing the code region.

The second model used in this paper is the data-driven rule-

based classification. In this model, we experimented with look-

ing at the approach from a different angle. We provide the clas-

sifiers with the best-selected features using Relief and Kruskal-

Wallis-based feature selection techniques, train the model, and

predict the code review performance at the code-region level.

4 EXPERIMENTAL SETUP AND DESIGN

This section describes the controlled experiment designed to

evaluate the proposed approach's accuracy. All the relevant data

related (with the information related to individual participants

fully anonymized) is available in this GitHub link1 as supplemen-

tary material for this paper.

4.1 General Experimental Setup and Participants

The experiment was designed to monitor the cognitive load

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

of reviewers using HRV and pupil signals while performing code

reviews of different complexity. The Ethical Committee of the

Faculty of Medicine of the University of Coimbra approved the

study, following the Declaration of Helsinki and the standard

procedures for studies involving human subjects. The subjects

provided written informed consent, and all the data was anony-

mized. ECG was collected using BiosignalsPlux from Plux, and

the pupil diameter was collected using an SMI eye tracker. Par-

ticipants also wore an EEG cap (with 64 channels) for validation

purposes to confirm that reviewers' mental effort was measured

accurately. The left side of Figure 2 shows the EEG cap with 64

channels, and the right side shows the ECG sensors attached to

the subject to evaluate the proposed approach.

The subjects consisted of 21 male programmers/reviewers,

ranging from 19 to 40 years, with an average of 22 years. These

programmers participated on a volunteer basis and were selected

from a pool of 49 candidates through an interview-based screen-

ing process focused on assessing their C programming skills.

Three volunteers were professionals from the software industry

(real code reviewers), and they have worked on code reviews

during their careers. The other volunteers were Ph.D. and MSc

students (from computer science fields) who have sufficient pro-

gramming and code review knowledge. Despite this mixture of

professionals and students, the goal of the screening was to avoid

selecting programming beginners. Additionally, we used a writ-

ten C programming test (see supplementary material1) to eval-

uate the programming skills of participants and filter out volun-

teers classified as "beginner" and would not realistically repre-

sent professionals in the industry (i.e., standards and experts on

C programming). The 21 participants were classified into two

skill levels: Standard: 16 participants and Expert 5 Participants.

Participants who scored more than 7 out of 10 in the C test were

considered Experts, while those who scored 4 to 7 out of 10 were

considered Standard Reviewers. Participants that scored less

than 4 (novices) were not considered.

The Review tasks were presented to participants using Vizard

software2, assuring the same conditions to all participants. For

each participant (reviewer), the experiment is composed of 4

consecutive runs, having a review task per run (one of the four

programs is selected at random). Each run starts with a fixation

cross shown in the middle of the screen for 30 seconds (i.e., a

minimum stimulus in all runs) to get a baseline cognitive activity.

Then three tasks are presented to the participant: natural lan-

guage reading (a literary excerpt), a neutral and straightforward

(bug-free) code reading, and one code review task. To avoid

skewing the experiment results, within each run, the order of the

tasks was randomized. The order of the four code reviewing tasks

2 https://www.worldviz.com/vizard-virtual-reality-software

in each run was also randomized.

The natural language reading and neutral code tasks served to

gauge the neutral cognitive load of each participant to calibrate

and compare to the biometric readings when that participant was

engaged in code reviews. Subjects were explicitly told about the

goals of each type of task, and the neutral code tasks were iden-

tified as having no bugs. Subjects were asked just to read the

code. The code review tasks were also explicitly marked as code

that may or may not have bugs, and no hint was given about the

bugs themselves.

Each review task was presented to the subject as a set of

screens containing the code. The first screens showed a brief de-

scription of the code's goals and algorithm being reviewed,

which is coherent with the actual code review tasks in the indus-

try, where reviewers are given as much information as possible

about the code. The subjects were free to move from one screen

to another at any time. For visibility reasons, each screen con-

tained at most 20 lines of code, and the lines were numbered. The

subjects analyze the code, and if they suspect that a given line

includes a bug, they will mark that line, which indicates a suspi-

cion of a bug. Subjects could additionally activate a button "bug"

further to confirm their suspicion about that line of code. The bug

suspicion could be canceled at any time by marking the line once

again and then activating a button "clear. "All controls available

to the subject for line selection (e.g., buttons, etc.) were virtual,

i.e., buttons drawn on the screen. The only physical device used

in the experiments was a joystick used as a pointing device.

The review of the four programs (122 code lines) for each

participant took about 1 hour, which is typically the maximum

time recommended for industry code reviews. The participants

and the four programs reviewed in the controlled experiment

generated 84 code reviews (24 reviews were discarded due to

missing one or more measurements from HRV and Pupil read-

ings resulting from setup problems that affected the acquisition

of data in some runs and were only detected afterward). Consid-

ering that each program under review included one or more code

regions, the remaining 60 reviews generated a total of 149 code

regions reviews, which is a reasonable number of samples to

show the approach's feasibility.

One of the limitations in this stage is having all subjects as

males. Unfortunately, in the call for voluntaries for this experi-

ment, we could not recruit any female code reviewer, which is a

consequence of the strong gender imbalance in the software de-

velopment area, especially in tasks such as code programing and

reviewing.

4.2 Code Review Tasks

The programs used in the code review tasks include both iter-

ative and recursive programs. One simple and one medium/high

complexity for each category to avoid skewing the experiment

results based on code paradigm or size (shown in Table III). The

code size was limited by the amount of time it was feasible to

maintain the subject in the experiment before the accumulated

tiredness started to influence the results. The programs were the

following:

1. Bucket Sort ("bsort") implements a sorting algorithm. It is

medium-size, iterative, and complex (Vg = 10). This is an

Fig. 2. Experimental Setup EEG and ECG sensors

https://www.worldviz.com/vizard-virtual-reality-software

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 9

example of data processing that one encounters when a

library for data manipulation is unavailable.

2. Fibonacci ("fibo") is the implementation of the algorithm that

generates the Fibonacci sequence. It is small, purely

recursive, and very simple (Vg = 2). Recursive algorithms are

harder to find in the industry. However, many industry-

relevant languages rely on recursive algorithms, such as

Haskell and Elixir.

3. Hondt ("hondt") is implementing the Hondt algorithm for

seat allocation after an election. This task is iterative, small-

sized, and medium complex (Vg = 5).

4. Matrix Determinant ("matdet") implements the recursive

algorithm that computes the determinant of square matrices.

It is medium-sized, mostly recursive (Vg = 10). The matrix

determinant is an example of complex nested code controlled

by many variables, including recursive logic.

The following table shows different features of the given pro-

grams:
TABLE III. CODE REVIEW TASKS

Task Type LoC Complexity No. of bugs

bsort iterative 42 Vg = 10 4

fibo recursive 9 Vg = 2 1

hondt iterative 32 Vg = 5 4

matdet recursive 39 Vg = 10 4

Realistic types of bugs that can be found in deployed soft-

ware-based on findings of previous works (e.g., [70][71]) cover

the most frequent ODC defect types [70][72], both Missing and

Wrong cases. The bugs inserted do not cause syntactic errors and

are not related to obscure aspects of language or libraries. In-

stead, they represent realistic software defects. The size of the

programs limits the number of realistic bugs that can be inserted,

which was one bug for Fibonacci and four bugs for each of the

remaining programs.

4.3 Code Regions Defined in Each Program

As mentioned, the first step of the proposed approach is to (log-

ically) divide the program under review into non-overlapping

code regions. Every region is a coherent sequence of code lines.

Code regions represent the reviewing unit evaluated by the pro-

posed approach. We defined the regions of each program using a

parser, and the complexity metrics were calculated using the

Eclipse Matriculator plugin. Table IV shows the key features of

the regions considered in the four programs under review.
TABLE IV. CODE REGIONS

Program Region Loc Vg No of bugs

bsort Region 1 7 4 2

bsort Region 2 8 2 0

bsort Region 3 11 5 1

bsort Region 4 11 3 1

fibo Region 5 8 2 1

hondt Region 6 2 1 1

hondt Region 7 11 3 2

hondt Region 8 12 3 1

matdet Region 9 9 4 0

matdet Region 10 14 4 3

matdet Region 11 6 3 1

matdet Region 12 8 2 0

Notice that not all the code lines indicated in Table III were

included in the regions shown in Table IV. The following chunks

of code were not considered: a) function prototypes and b) lines

of variables declaration without initialization at the very begin-

ning of functions. We are aware that some bugs might occur at

either point. However, because of the code complexity metrics

computation, we left these code lines unpartitioned, and we did

not insert any bugs in these two exceptions.

5 BIOMETRIC SIGNALS ANALYSIS AND CODE

REGIONS CLASSIFICATION

This section describes the preprocessing and the analysis per-

formed on the biometric signals to capture the cognitive load in

the biometric measures. We also show the two methods applied

to classify each code region as either bad or well-reviewed. The

classification is performed per code region after mapping the bi-

ometric measures to each code region using the timestamp index.

5.1 HRV Analysis and Features

The ECG signals were recorded at a sampling frequency of

10kHz (much higher than the required Nyquist frequency to

avoid aliasing). After down-sampling the data to 1kHz, we used

a standard Pan-Tompkins segmentation algorithm to extract the

R-R intervals [73]. The spectral power ECG's R-R interval vari-

ability was assessed using 25 seconds, and a sliding window

shifted with 1-sec increments.

Our goal is to detect whenever a difficulty occurs in under-

standing a code region. Since code regions under review consist

of multiple LoC, the 25 seconds time window used to assess the

R-R interval variability and extract the HRV features is adequate,

even for code regions that have just a few LoC. The 25 second

time window is also enough to accommodate the natural delays

(e.g., the delay between stimuli and heart response) into consid-

eration. In [74], it is stated that it takes about 5 seconds to in-

crease HR after the onset of sympathetic stimuli and almost 20-

30 seconds to reach its steady peak level. The power spectrum

was computed using Burg's autoregressive power spectrum ap-

proach [75]. To capture the sympathetic and parasympathetic ac-

tivations, several features from the time and frequency domain

have been computed (e.g., absolute and relative area/peak of the

spectrum low frequency, high frequency, and their ratio). From

these features, several transforms (mean, std. deviation, median,

min, max, and quantiles and peaks) have been calculated to ac-

cess a discriminant HRV index for each code region under anal-

ysis. In the first batch of evaluation (i.e., rule-based classifica-

tion), we used that correlate best with the complexity of the re-

gion being analyzed, namely, the 0.75 quantiles of the relative

area of the spectra high-frequency interval (fsHRV).

As input to the rule-based classifier, since the selected feature

presented a negative correlation, the log(1/fsHRV) was calcu-

lated within each code region and used to surrogate the cognitive

load. This negative correlation was expected because the mental

workload is associated with sympathetic activation (an increase

of low frequencies) and parasympathetic withdrawal (decrease

of high frequencies) [76].

 For the sake of interpretability in the rule-based-classifier, we

started with a minimal number of HRV features by selecting the

most discriminant. However, in the comprehensive evaluation to

unveil other HRV features, we used Kruskal-Wallis-based feature

selection and Relief feature selection techniques [56][57]. The

selected features represented the HRV time domain, such as the

Approximate Entropy, which changes concomitantly with acute

responses to cognitive load and stress, as shown in [77]. The

HRV frequency domain peaks quantile (0.75 and 0.95). Some ul-

tra-short features such as SDNN and RMSSD were used for fine-

grained analysis (e.g., [78]).

5.2 Pupil signals Analysis and Feature

 Eye pupil response is recognized as an indicator of cognitive

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

and mental efforts. Researchers in [20][61], for example, estab-

lished the evident association between pupil activity and atten-

tional, cognitive efforts. Kahneman and Beatty described in [79]

that when a person recalls something from memory or attempts

to parse sentences, the pupil dilates slightly and returns to its nor-

mal size after the task is done. This reaction was called task-

evoked pupillary response (TEPR) [20]. In our work, the fre-

quency domain features of the pupil diameter change have been

calculated using the same approach used in the HRV analysis,

along with its transforms, as described in the previous section,

and the extracted features transforms were used in the setup of

the proposed classification models that will be illustrated in the

next section.

5.3 Code Review Quality Classification

After performing the pre-processing and the analysis on the

biometric signals, we map those signals to each code region of

the programs using synchronous timestamps. We know from the

eye-tracker at what time the reviewer was looking at a specific

code region. This timestamp helps to map the biometric signals

(i.e., measures) to each corresponding code region. We perform

the code region classification from two perspectives: the

knowledge-driven rule-based classification model (KCM), built

according to the rules shown in Table II, and the data-driven clas-

sification model (DCM) using the KNN and Logistic Regression

classifiers, which were chosen for explainability purposes. KNN

is known as an instance-based, highly accurate classifier that

does not need a training phase. Likewise, Logistic Regression is

chosen because it is easy to implement, interpret, and suitable for

the limited set of data we currently have.

As for the KCM, to classify the code review, the rules defined

in Table II have been applied using thresholds that experts in the

domain defined to each feature shown in Table V. After the

thresholds had been identified, all the features indicated in Table

V were labeled "High" or "Low" for each code region. We ap-

plied the rules in Table II to the data we collected in the con-

trolled experiment.

The output results of the model are computed using the stand-

ard classification performance metrics and conditional ratio met-

rics. For example, if we consider the code region reviews that are

classified as good while the reviewer has detected all bugs, the

formula will be:

 𝑃(𝐺𝑜𝑜𝑑 𝑟𝑒𝑣 | 𝑎𝑙𝑙 𝑏𝑢𝑔𝑠 𝑑𝑒𝑡𝑒𝑐𝑡) =
𝑃 (𝐶𝑙𝑎𝑠𝑠𝑓. 𝑔𝑜𝑜𝑑 ∩ 𝑎𝑙𝑙 𝑏𝑢𝑔𝑠 𝑑𝑒𝑡𝑒𝑐𝑡.)

𝑃 (𝐶𝑙𝑎𝑠𝑠𝑓. 𝑔𝑜𝑜𝑑 𝑟𝑒𝑣)
 (1)

The ideal case is to predict a good code review when the

reviewer has detected all bugs in the code region (and to pre-

dict bad code review when not all bugs have been detected).

As we can see also from Table V, in KCM, the best biometric

features that represent the cognitive load of reviewers are the

LF/HF ratios of the HRV. In contrast, the DCM approach is built

on the KNN and Logistic Regression. Since this approach is data-

driven, the biometric features were upgraded to include 791 HRV

and Pupil response features. Those biometric features were aug-

mented with a) code region reviewing time, b) code complexity,

c) the number of revisits of the code region. The augmented fea-

tures vector is then fed into a feature selection module using the

Kruskal-Wallis-based feature selection and Relief feature selec-

tion techniques mentioned earlier. The best ten selected features

were: HRV frequency domain peaks mean, the code complexity,

the HRV frequency domain peaks quantile 0.95 and the LF/HF

ratio, the pupil diameter peaks median, the HRV time-domain

SDNN, and RMSDD, the pupil diameter peaks mean, the pupil

diameter quantile 0.85, the expertise, the time inside the area, and

the revisits.

The classification classes were derived using the f-beta meas-

ure [80] of the subjects' performance. F-beta represents the har-

mony between the precision and the recall of the participant’s

TABLE V. KCM FEATURES AND THRESHOLDS

Feature Threshold

Cognitive Load − LOW: <=1 .5 * baseline (mean/median of the text reading phase)

− HIGH: > 1.5 * baseline (mean/median of the text reading phase)

Code complexity − LOW - simple code: Vg <=4

− HIFG - complex code: Vg >= 5

Expertise − LOW - standard reviewer: score of written test > 4 and < 7 out of 10

− HIGH - expert reviewer: score of a written C test >= 7 out of 10

No of revisits − LOW: No of Revisits < 15:

− HIGH: No of Revisits>15

Reviewing time − LOW: Region complexity low and reviewer's expertise low and reading time (sec) < 4 * LoC of the region

− HIGH: Region complexity low and reviewer's expertise low and reading time (sec) >= 4* LoC of the region

− LOW: Region complexity low and reviewer's expertise high and reading time (sec) < 2 * LoC of the region

− HIGH: Region complexity low and reviewer's expertise high and reading time (sec) >= 2 * LoC of the region

− LOW: Region complexity high and reviewer's expertise low and reading time (sec) < 15 * LoC of the region

− HIGH: Region complexity high and reviewer's expertise low and reading time (sec) >=15* LoC of the region

− LOW: Region complexity high and reviewer's expertise high and reading time (sec) < 10 * LoC of the region

− HIGH: Region complexity high and reviewer's expertise high and reading time (sec) >=10 *LoC of the region

Comments

Cognitive load is assessed through the LF/HF variability of the HRV and pupillography. The threshold was decided through analysis of the data col-

lected from all the participants in the experiment using 1.5* baseline (mean/median of the text reading phase) as threshold criteria.

Code complexity is measured using cyclomatic complexity (Vg). The threshold was decided using common practices concerning the complexity of the

code in unit testing and code reviewing.

Reviewer's expertise was previously assessed by a screening interview and a written C programming test that produced a score on a 0 to 10 scale. The

threshold was decided by the experts (co-authors) that defined the written C programming test. Low expertise corresponds to the Standard reviewers, and

high expertise correspond to the expert reviewers

Revisits are counted using the eye tracker and indicate the number of times the reviewer went back to the code region to review it again. The threshold

was decided considering 1.5*mean number of revisits of all subjects in the experiment

Reviewing time is measured directly through the eye tracker. The thresholds were decided by experts considering several criteria that influence the read-

ing time, such as the code complexity, the reviewer expertise, and the number of code lines.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 11

performance. Therefore, f-beta would characterize the essence of

missing bus/identifying wrong bugs. The following formula

gives the f-beta measure:

𝑓𝑏𝑒𝑡𝑎 =
(1 + 𝑏𝑒𝑡𝑎2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝑏𝑒𝑡𝑎2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 (2)

 With beta = 2, we are giving more weight to the recall than the

precision. This priority is because the false negatives (i.e., miss-

ing bugs) should be penalized in the code review evaluation. In

real environments, companies can present different priories (i.e.,

different beta).

We hypothesize that missed bugs (even wrongly identified

bugs) would be a matter of code comprehension challenges,

stress, or distractors that would affect the code review quality and

reviewer’s focus. Because we are using a binary classification

problem, a set of thresholds was tested to return a value of either

0 or 1 from the f-beta values. A threshold of 0.70 was determined

after empirical experiments (testing thresholds against classifiers

accuracy) and visualization of the data distribution visualization.

We noticed that 0.7 is the closest value to dividing the data dis-

tribution between the good/bad performing participants. We ob-

served that those who scored more than 0.7 on the f-beta measure

had reasonably acceptable performance in terms of false nega-

tives and false positives. In other words, the label of features is

considered one or good review when the f-beta>= 0.70 and 0 or

bad review otherwise.

6 RESULTS AND DISCUSSION

Before evaluating the accuracy of the proposed approach with

both KCM and DCM models, we analyzed each participant's per-

formance in terms of bugs found, as shown in Figure 3 below.

We noticed a wide amplitude of results, ranging from 0 precision

and 0 recall to more than 0.9 precision and more than 0.75 in the

recall. Participants 5, 6, and 11 performed the worst; participants

15, 16, 17, 18 (Experts) performed the best, having an above-

average performance in terms of recall. The remaining ones show

a well-dispersed across these extremes.

Experts were 49% better than the average of precision of all

participants and 91% better than the participants’ average of re-

call, confirming previous works that measured big differences in

the quality of individual reviews [65][66][67]. Figure 3 shows

us an interesting scenario to study as we can use the disparity of

participants to relate to differences in the HRV and pupil signals

collected during the experiments. In the end, the proposed ap-

proach would be particularly useful when the reviewers are not

experts, which is the case for most of the reviewers used in our

experiment. In fact, non-experienced reviewers tend to miss bugs

in code reviews, which means that the review quality evaluation

provided by our approach could be a useful tool telling the re-

viewers to repeat the review process in certain code regions.

From a task view, Figure 4 shows the average performance of

participants (in terms of precision and recall) of finding the bugs

is highly dependent on the program under review. We notice that

the most straightforward program (i.e., “Fibo”) has the best per-

formance across the participants. In contrast, problematic pro-

grams such as the “Bsort” and the “Hondt” have relatively low

performance, especially in the recall. Going deeper in the analy-

sis, we observed that the complex programs such as the Matdet

and the Bsort had the highest mental effort according to the

NASA-TLX [81] that was distributed among participants (i.e.,

after each task participants scored their subjective assessment of

mental effort, pressure with time, task fulfillment, and discom-

fort). In contrast, Fibo had the least mental effort score and the

highest feeling of task fulfillment.

6.1 KCM Evaluation

To evaluate the knowledge-Driven Rule-Based Classification

Model (KCM), we attempt to show that assessing the fine-grain

code comprehension of the reviewer in each code region and ap-

plying a set of rules can give us an automated technique (i.e., the

proposed approach) to evaluate the quality of code reviews and

identifying code regions that should be reviewed again. After

classifying the cognitive load in each code region of the pro-

grams, we applied the rules shown in Table II, defined by a panel

of experts in the domain. We calculated the results by taking the

average of all code regions in the programs. The results are dis-

played in Table VI.

Fig. 4. Performance of participants across programs

Fig. 3. Individual Performance of participants in Code Review tasks

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

Note that we know the number of bugs effectively detected

by the reviewers in each code region. Thus, we could calculate

necessary evaluation measures such as the True Positives (found

the bug) and False Negatives (missed the bug). These measures

enabled us to label each code region as either: “not all bugs were

detected” or “all bugs were detected.” These labels helped us

evaluate the rules by comparing the prediction of the rules (i.e.,

good/bad review) with the label (i.e., ground truth). The ideal

case would be achieving 100% in columns A and B in Table VI.

Column A indicates that the rule predicts the review as bad when-

ever a reviewer leaves some bugs undetected. Column B shows

that the rules predict the review as good whenever a reviewer

detects all bugs in the code region.

TABLE VI. KCM EVALUATION

PO-

GRAM
A B C D

ALL 84.62%±0.57 47.97%±0.88 15.38%±0.06 52.03%±0.08

BSORT 84.21%±1.03 37.93%±1.37 15.79%±0.10 62.07%±0.14

FIBO 100.00%±0.00 76.92%±2.2 0.00%±0.00 23.08%±0.22

HONDT 100.00%±0.00 19.44%±012 0.00%±0.00 80.56%±0.12

MATDET 66.67%±1.33 68.89%±1.33 33.33%±0.13 31.11%±0.13

A: Predicted bad/ not all bugs were detected

B: Predicted good/ all bugs were detected

C: Predicted bad/ all bugs were detected

D: Predicted good/ not all bugs were detected

As we observe in Table VI, the KCM approach predicts the

review as bad 84.62% of the time in all the programs, when the

reviewer left some bugs undetected (i.e., it is needed to review

the code again). Concerning each program, KCM indicates the

review as bad 84.21% when the reviewer left some bugs unde-

tected in the “Bsort.” We can also observe that in “Fibo” and

“Hondt,” KCM indicates that 100% of the time, the approach

marks the review as bad when not all the bugs were detected.

Column C and Column D in Table VII should, in the ideal case,

indicate low percentages. Column C represents that the KCM

would predict the review as bad, but the reviewer has detected all

the bugs. KCM indicated this case 15.38% of the time in all the

programs.

In contrast, Column D shows that KCM would predict the re-

view as good, but the reviewer missed some bugs. We can see

that KCM was not as successful in this case as it was in Column

A, especially in “Bsort” and “Hondt.” In “Hondt,” the first sec-

tion has just two lines of code with one bug. Most of the review-

ers missed that bug in the two lines of “Hondt.” However, the

KCM predicted the region as “Good” most of the time as review-

ers in this simple region had good reading time with relatively

low revisits. Still, in the end, they could not detect that tricky bug

injected within the two lines.

We conclude that KCM could perform well in most of the

programs (84.62% of accuracy in the most important result,

which is classifying the review as bad when in fact, the reviewer

did not find all the bugs), but not in all of them. The analysis

shows that thresholds defined by experts may sometimes fail to

capture the actual performance of the reviewer due to the dy-

namic nature of programs under review, expertise, code com-

plexity, and other factors. Furthermore, some code regions (i.e.,

regions 2, 9, and 12) are bug-free. Thus, the label of these regions

is always “all bugs were detected,” either if the KCM predicted

“good” or “bad” for the review quality, which complicates, even

more, the task of predicting the quality of code region reviews

for the results in column D.

It is worth noting that we are using a Boolean approach for

each criterion (i.e., cognitive load high/low, code complexity

high/low, etc.), which makes the definition of the thresholds very

critical for the result. Thus, in our data-driven approach (i.e.,

DCM), we are examining the role of AI techniques to dynami-

cally set the thresholds and unveil the hidden structure of the

data. In the next section, we show the evaluation of the DCM.

6.2 DCM Evaluation

Here we evaluate the data-driven rule-based classification model

(DCM) built on the K-nearest neighbors (KNN) and Logistic Re-

gression (LR) classifier. We examined two different cross-vali-

dation techniques. First, we used the hold-out cross-validation,

where the data was split into 33% testing and 67% training and

validation. Second, we applied Leave One Subject Out Cross

Validation to ensure the capacity of the model to generalize

whenever an unseen subject is tested. The model received bio-

metric and non-biometric features selected by Kruskal and Relief

techniques. The biometric features from HRV and Pupil response

included the following: a) HRV SDNN, b) HRV RMSDD, c)

Very Low Frequency of HRV peaks and LF/HF ratio, d) Very

Low Frequency of spectrum of normalized pupil peak, e) Median

of pupil peaks.

The non-biometric features included the code complexity, the

expertise level, the reading time, and the number of revisits. The

multimodal features were labeled using the f-beta measure labels

(Formula 2) in each code region. The predicted values of the clas-

sifiers were used to derive the exact measures of the KCM shown

in Table VII (columns A, B, C, and D) to compare the two mod-

els. The following table shows the performance of the DCM ap-

proach.

TABLE VII. DCM EVALUATION

PRGRAM A B C D

K-NEAREST NEIGHBORS (KNN)

ALL 84.85%±5.94 70.27%±7.57 15.15%±5.94 29.73%±7.57

BSORT 87.10%±5.55 66.67%±7.81 12.90%±5.55 33.33%±7.81

FIBO 100.00%±0.00 90.91%±4.76 0.00%±0.00 9.09%±4.76

HONDT 94.74%±3.7 85.71%±5.8 5.26%±3.70 14.29%±5.80

MATDET 61.54%±8.06 77.14%±6.96 38.46%±8.06 22.86%±6.96

LOGISTIC REGRESSION (LR)
ALL 86.57%±5.65 68.00%±7.73 13.43%±5.65 33.00%±7.79

BSORT 92.31%±4.41 50.00%±2.28 7.69%±4.41 50.00%±7.28

FIBO 100.00%±0.00 90.91%±4.76 0.00%±0.00 9.09%±4.76

HONDT 95.24%±3.53 80.00%±6.63 4.76%±3.53 20.00%±6.63

MATDET 64.71%±7.92 83.87%±6.09 35.29%±7.92 16.13%±6.09

A: Predicted bad/ not all bugs were detected

B: Predicted good/ all bugs were detected

C: Predicted bad/ all bugs were detected

D: Predicted good/ not all bugs were detected

DCM evaluation in Table VII shows that the approach pre-

dicts the reviews as bad 84.85% and 86.57% when the reviewer

left some bugs undetected in the whole set of programs by KNN

and LR, respectively. Although this value is like the one obtained

using KCM, the value in the remaining columns of Table VII pre-

sents much better performance. In column B, DCM predicts that

the review is good 70.27% and 68.00% of the time when the re-

viewer detected all the bugs in the code regions as classified by

KNN and LR. The results in column C are also quite good,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 13

showing that classifiers’ decisions tend not to suggest reviewing

again (i.e., classify as bad review) when all bugs have been de-

tected, only in 15.15% and 13.43% of the cases classified by the

KNN and the LR the code regions as bad reviews when the re-

viewer has discovered all the bugs.

It is worth mentioning that these results were obtained at the

code review level, which is a fine grain evaluation of the review

quality. Although the reviewers' subjective assessment per-

formed through the NASA-TLX revealed that they feel accom-

plished about their task in “Fibo,” the approach could efficiently

predict the regions where they could not detect all the bugs as

badly reviewed.

Concerning each program, DCM tells us that 87.10% and

92.30% of the review is predicted bad by the KNN and the LR,

respectively, when the reviewer missed some bugs in the “Bsort.”

We can also observe that in “Hondt,” the KNN and the LR clas-

sifiers predict 94.74% and 95.24%, respectively, of the time, the

review as bad when the reviewer missed some bugs. Interest-

ingly, in Matdet, we could notice how KCM outperformed the

DCM in predicting bad reviews.

Nonetheless, we could relate the good performance of the

DCM from the capacity of the KNN to perform well, given the

limited dataset and number of features. The LR also showed the

ability to tune the thresholds to decide the class as either 0 for

bad review or 1 for the good review. In the case of DCM, the

thresholds are dynamically updated and adapted to each re-

viewer’s patterns. In Table VIII, we show the general perfor-

mance of the KNN and the LR classifiers from the standard form

of classification performance, including the accuracy, precision,

recall, and the F1-score. The recall here embeds a critical perfor-

mance metric which is the True Negative. True Negatives, as de-

scribed earlier, represent the missed bugs in the code regions.

TABLE VIII. CLASSIFIERS PERFORMANCE

Class Precision Recall F1-score

K-nearest neighbors (k=3)

Bad review 80.00%±4.02 70.00%%±0.11 74.10%±0.21

Good review 60.01%%±1.24 72.00%%2.30 66.20%%±0.78

Accuracy 70.30%%±0.34

Logistic Regression

Bad review 81.00%±1.33 78.00%±0.11 77.10%±0.21

Good review 65.31%%±2.30 72.00%%0.80 71.60%%±0.89

Accuracy 73.70%%±1.60

From the table above, the recall tells that 70.00% and 78.00%

of the time, the classifiers correctly predicted the "bad review"

from the actual bad reviews, with 70.30% and 73.70% KNN and

LR accuracy, respectively. The chance level was calculated after

shuffling the features with the labels 100 times randomly; the

score of the random classification was significantly less than the

accuracies mentioned in Table VIII with a p-value: 0.004. The p-

value here is the classic p-value in hypothesis testing and repre-

sents the probability that the classification score would be ob-

tained by chance.

 The predicted values of code review performance were tested

against the actual values of the reviewer’s performance. Using

the Spearman ranking correlation test, the rho value= 0.85 and

with p-value= 0.001, which indicates a strong association be-

tween the predicted and actual values. Spearman was used due to

the non-normality of the data distribution shown by Shapiro-

Wilk’s method.

6.3 Overall Code Review Evaluation and Explainability

of The Results

This section describes how the overall outcome of the code re-

view evaluation comes to the user.

In KCM, if the triggered rule (in Table II) indicates a bad re-

view in one of the code regions, the approach localizes that code

region through the eye-tracker and identifies it as a “red region”

that should be reviewed again. The approach is conservative as it

is enough to have one region to classify the whole review as a

“bad” (and, for example, reject the proposed change to the code

in a pull request).

 It is easy in KCM to justify the rejection of the review be-

cause we know the rules defined by the experts. Imagine, for ex-

ample, that a non-expert reviewer reviewed a complex code re-

gion, and this reviewer’s cognitive load was low while reviewing

that code. If this reviewer performed an insufficient number of

revisits to that complex code region and did not read that code

carefully (low reviewing time in the region), then the approach

will trigger rule 24 in Table II. (rule with the combination men-

tioned before) and classify this code region as “bad” reviewed.

Thus, the code review evaluation outcome would indicate that

the reviewer should consider the entire review again while show-

ing the problematic code regions.

In DCM, we do not have such predefined rules to justify the

rejection or the acceptance of a code review. However, it is worth

noting that in practical terms, when the global classification of

the code review is classified as bad, the indication of the specific

code regions that caused such classification is helpful infor-

mation to tell the reviewer which code lines should be reviewed

again. In practice, the approach will allow both KCM and DCM

to operate depending on the software company priorities (e.g.,

accuracy vs. high interpretability).

Nevertheless, KNN and LR are considered explainable mod-

els. Although KNN has no parameters to learn, and thus, not in-

terpretable on the modular level, it can explain the prediction at

the local level. For example, we can observe the k neighbors clas-

sifier that was used to obtain the prediction of the code review.

The locality of the model interpretation is relevant as we deal

with the code region's level of granularity. The outcome of the

approach can tell the code reviewer that, for instance, the code

region was predicted as badly reviewed as it resides within a re-

gion of cases that have a high cognitive load and low complexity

code region.

Regarding the LR interpretability, the LR uses the logistic

function to transform the weighted sum into probability between

0 and 1. The way to interpret the LR is to witness the prediction

changes when one of the features increases by 1 unit. The ratio

of the two predictions (before and after increasing the feature

value) can be an index of the feature importance in producing the

prediction decision at the end.

6.4 Results validation using EEG

Our work hypothesizes that biomarkers extracted from HRV

and Pupillography using biometric sensors could surrogate the

cognitive load induced by the mental effort in the code review

task. We hypothesize that using reviewers’ cognitive load meas-

ured using HRV and Pupillography from non-intrusive wearable

sensors (i.e., compatible with software development environ-

ments) is accurate enough to assure the feasibility of the pro-

posed approach. Since the ANS signals do not flow directly from

the brain (such as EEG signals) but rather from the peripheral

expressions of the ANS, we believe it is essential to validate the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

accuracy of the cognitive load measured using HRV and Pupil-

lography when compared to the measurements obtained using

EEG. Although plenty of papers show that HRV and Pupillog-

raphy can be used to measure cognitive load (e.g., [18][19][20])

we want to ensure further that they can be applied to intellectu-

ally complex and abstract tasks such as code reviews. Medeiros

et al. [82] showed that EEG biomarkers could be used to fine-

tune or validate the results obtained with ANS signals, which can

be acquired using non-intrusive wearable devices.

This section presents an additional layer to the validation of

the results using EEG biomarkers. EEG can be a robust measure

to understand brain mechanisms behind mental tasks such as

code comprehension and code reviews. To examine this valida-

tion empirically, a 64-channel EEG cap was used to record brain

activity during the experiment that included the code review

tasks described in Section 5.2. A standard preprocessing pipeline

was performed to guarantee a reasonable signal-to-noise ratio of

the neural signals for the remaining analysis. The preprocessing

comprised different steps (see [82] for more details): (i) reduc-

tion of MR-induced EEG artifacts (gradient artifact and pulse ar-

tifact) due to the nature of the experimental protocol designed;

(ii) standard pipeline where filtering, noisy channels interpola-

tion, re-referencing, and blind source separation steps were per-

formed to remove additional typical EEG artifacts (i.e., noise in

the signal due to power lines and other equipment).

After the preprocessing of the EEG signals was performed, a

feature engineering phase was completed. From the 60 prepro-

cessed EEG signals, different standard features reported in cog-

nitive state assessment studies were extracted for further analy-

sis. In the context of cognitive state assessment, the most promi-

nent and explored features are related to the spectral band power

from the EEG bands (Delta, Theta, Alpha, Beta, and Gamma). In

the feature extraction, linear univariate features (statistical fea-

tures, Hjorth parameters, and spectral power features) and non-

linear univariate features (Higuchi fractal dimension and Hurst

exponent) were considered and extracted using a 1-second win-

dow with an 80% overlap. Then, second-order features (maxi-

mum, minimum, mean, standard deviation, and median) were

computed to capture and enhance the software programmer's

mental state. In the end, a total of 10,500 features were extracted

(60 channels x 35 types of features x 5 second-order features).

If we use the EEG features to train the same classification

model used by the ANS biomarkers (with the same labels) and

we achieve similar performances (i.e., accuracy, precision, and

recall), we can claim that EEG could verify the ANS biomarkers

captured through non-intrusive biofeedback devices. To achieve

this, we performed the following: a) a total of 10500 EEG

features that correspond to each code region were fed into the

Kruskal-Wallis-based feature selection, and Relief feature selec-

tion techniques, then the top 5 features from each technique were

selected. The best features were as follows:

1) The maximum ratio of Theta Power / Beta Power from

electrode C1.

2) The maximum ratio of Theta Power / Beta Power from

electrode TP8.

3) The median of the relative power of Theta from elec-

trode C6.

4) The maximum ratio of Theta Power / Beta Power from

electrode P2

5) Median of the ratio Theta Power / Gamma Power from

electrode PO3

As we can see from the selected features, the Theta band is

dominating in all the features. This result complies with the stud-

ies that associated Theta band with the mental workload or the

error making see [83].

We used the leave-one-subject-out cross-validation

(LOSOCV) to assess the proposed model. Selecting LOSOCV

could ensure the capacity of the model to generalize whenever

unseen instances of data appear in the testing. These selected

EEG features in isolation of the other features (i.e., code com-

plexity, experience, scan time, revisits) were fed into the same

classifiers to train the EEG features on the same label used in

code regions classification. Likewise, the top selected ANS fea-

tures were provided to the KNN and the LR using the same cross-

validation technique (i.e., LOSOCV). We analyzed both classifi-

ers (EEG and ANS classifier) to compare the performances.

The null hypothesis (H0) states that no significant difference

exists between the two classifiers in terms of performance. In

contrast, the alternative hypothesis (H1) states there is a signifi-

cant difference between the two classifiers’ performance. To test

the hypothesis, we used the T-test (after testing the normality us-

ing Shapiro Wilk) at two significance levels of α = 0.05 and 0.01.

The results failed to reject H0 with a p-value of 0. 45. Thus, we

conclude that both classifiers equivalently perform, and there

would be no significant differences in their performance.

Figure 5 shows that both EEG classifiers and ANS classifiers

(HRV and Pupillography) are performing similarly. Both classi-

fiers correctly marked the "bad" review using either EEG or the

ANS biomarkers with high recall in both classifiers (i.e., the EEG

and the ANS). The same classifiers were tested against randomly

shuffled features/targets, and the performance was significantly

less than the original classification results with a P- value=0.03

As we can see from the performance, using ANS biomarkers ex-

tracted from available biofeedback devices can surrogate the

cognitive load of the individuals. In other words, the ANS bi-

omarkers could capture the cognitive load induced by the code

comprehension and review as well as the EEG biomarkers could

do. This result aligns with what Medeiros et al. [82] have

achieved, showing that EEG can assess programmers' cognitive

load accurately. Still, its intrusiveness compared to ANS signals

is less prevalent in practice and natural software development en-

vironments.

7 THREATS TO VALIDITY

Although the evaluation results of the approach are promis-

ing, there are some limitations in our experimental evaluation

that we discuss in the next paragraphs as possible threats to our

approach validity.

Fig. 5. EEG and ANS performance comparison in the same code regions

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 15

Internal Validity: in our study, internal validity issues deal

with the data acquisition environment. Data were acquired in a

controlled experiment with the typical constraints of laboratory

environments. Although we have assured all the participants that

their performance as code reviewers were not under evaluation

in any circumstances, it is impossible to avoid the “feeling of be-

ing observed”, which could be amplified by the biometric sensors

and the eye tracker. A real code review environment, in contrast,

can be more dynamic with extra mind-wandering tasks (e.g.,

switching between tasks and interruptions). However, our focus

was to evaluate the accuracy of the proposed approach, which, in

our view, justifies the controlled code review environment used

in our experiments.

 Construct Validity: this study's construct validity touches on

different aspects. First, the rules we used to assess the quality of

code reviews were limited to 32 rules. The derivation of rules

was based on different sources of information, such as our own

experience in the field, opinions of experts from the industry, es-

tablished best practices of modern code reviews, and related lit-

erature. We believe that more refined rules may allow a more ac-

curate evaluation of the quality of the code reviews.

Second, the number of categories used for each criterion in

the rules and the thresholds that differentiate each category im-

pact the quality of the code review evaluation. In our experi-

ments, we used a Boolean approach for each criterion of the rules

(e.g., only two levels: low or high). Although we think this will

impact the results, most likely, the use of more refined rules,

more levels for the criteria, and refined thresholds would lead to

even better results for the accuracy of the proposed approach.

Third, the source code used for the code review tasks might

not perfectly represent real-world software. Although having dif-

ferent complexity and including both iterative and recursive par-

adigms, the four programs used are relatively small compared to

the existing software. Naturally, a controlled experiment cannot

use extensive code samples as the duration of the task asked of

the participants would be prohibitively long.

Fourth, one of the vital construct validity issues deals with

heart measurement accuracy. ECG cannot be used to acquire

heart measurements in a real software environment. Various

studies (e.g., [59]) show that it is feasible to use PPG based on

bracelets and smartwatches as an alternative to ECG to extract

HRV/PRV features.

Fifth, the use of KNN could be efficient in the low dimension-

ality of data and could be explainable in this limited setting. The

LR could also provide some explainability without getting in-

sights into the interaction of features. Nevertheless, in the next

round of data acquisition, regression algorithms such as the Mul-

tivariate adaptive regression spline (MARS) might be an alterna-

tive due to its simplicity, ability to model non-linear data, and

explainability with higher dimensionality.

External Validity: first, in the modeling phase, as we used

the features mentioned in this study, the threat of obtaining a

training-serving skew might present when deploying a future

code review tool in a realistic software development environ-

ment. New features could be added in the serving time (i.e., de-

ployment), or a change in the data type of features would occur,

and many other skews (e.g., feature distribution skew) could hap-

pen; however, in ML end-to-end open-source platforms like Ten-

sorFlow [84], there are various solutions to this threat, such as

TensorFlow Data Validation (TDF) which monitors the ML

model during the deployment for any data skew anomaly.

Second, the limited number of subjects (i.e., 21) is considered

a challenge in this study. Although most software engineering

studies that use neurophysiological methods use a similar num-

ber of participants (see the comprehensive survey published in

2021 [34]), the difficulty in using many participants in these

kinds of studies is a real problem. Moreover, male preponderance

in the experiment represents one of the external validity issues

8 CONCLUSION AND FUTURE WORK

 Modern code reviews are highly dependent on individual re-

viewers’ performance to identify bugs and other quality problems

in the software under review. Natural human limitations such as

reviewers’ distraction, fatigue, or difficulties in fully compre-

hending the code under review have a clear negative impact on

the quality of code reviews and may leave bugs undetected.

We propose an innovative approach that monitors the re-

viewer’s performance at code line reviewing level (considering

small code snippets called code regions) and evaluates the over-

all quality of the code reviews by providing three relevant out-

comes: a) an overall evaluation with a clear indication of whether

the review should be repeated or not, b) pointers to code regions

that may not have been well-reviewed, and c) an explanation of

why the review of the pointed code regions was considered not

satisfactory.

The proposed approach uses biometric information to assess

the cognitive state of the reviewer (particularly, cognitive load)

during the code review process. This can be accomplished

through non-intrusive devices (e.g., smartwatches and bracelets)

that capture biomarkers such as Heart Rate Variability (HRV) and

Pupillography to assess the reviewer’s cognitive load, and an in-

expensive desktop eye tracker to associate the measured re-

viewer’s cognitive load to the reviewing of specific code regions.

The evaluation of code review quality of each code region of

the software under review is achieved by combining the infor-

mation on the reviewer’s cognitive load with other code reviews

quality factors such as the code complexity of that region, the

number of revisits to that region, the reviewing time of the re-

gion, and the experience level of the reviewer. The review of each

code region is classified as Good or Bad in terms of bug-finding

effectiveness. The proposed approach assumes the conservative

approach of classifying the whole code review as Bad (i.e., needs

to be repeated) if one or more code regions under review are clas-

sified as bad.

The proposed approach was implemented as part of a con-

trolled experiment to evaluate the accuracy of the approach. The

goal was to validate the accuracy of the classifications of code

region reviews as Good or Bad, as this is the central element to

consider the proposed approach useful. We believe the approach

is valid if the code regions classified as badly reviewed contain

undetected bugs, justifying the need for a second review. The im-

plementation of the proposed approach relies heavily on Artifi-

cial Intelligence to assess the reviewer’s cognitive load and, more

specifically, to classify the code region reviews. Two types of

classifiers were considered in the approach evaluation: a

Knowledge-Driven rule-based Classification Model (KCM) and

the Data-driven rule-based Classifier Model (DCM).

The controlled experiment included 21 code reviewers that

reviewed four programs of different types and complexity. Pro-

grams were seeded with real bugs to have a ground truth to eval-

uate the actual performance of the reviewers in finding the bugs.

Results show that the data-driven classifiers (DCM) provided, in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

16 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

general, better results than the knowledge-driven classifier. On

average, for all the code regions of all the four programs, our

results show that 85.65% and 87.77% of the code region re-

views classified by KNN and LR, respectively, as Bad corre-

spond to code regions where the reviewers left one or more bugs

undetected (i.e., it is necessary to repeat the review) and 78.14%

and 74.56% of the code region reviews classified by KNN and

LR, respectively, as Good correspond to code regions where the

reviewers detected all the bugs.

Since the proposed approach's accuracy depends on the re-

viewers’ cognitive load assessed by HRV and Pupillography, we

also compared the cognitive load assessed through HRV and Pu-

pillography with the cognitive reference load assessed using an

assessment EEG cap with 64 channels. Results show no signifi-

cant difference, which means that the low-intrusive HRV and Pu-

pillography are accurate enough to be used in practice to assess

reviewers’ cognitive load.

Future research directions may allow to expand and im-

prove further these positive results. Firstly, we are currently de-

veloping a real-world implementation of the proposed approach

as an extension of the GitHub code reviewing tool (see a first

description of the tool architecture and screenshots in [85]). The

goal is to use such a tool in real code review environments to

allow us to evaluate other aspects of the proposed approach,

namely the reviewer’s reactions and utilization of the tool.

A second research direction consists of including additional

sources of information to characterize reviewers’ cognitive state

in a better way (e.g., differentiate cognitive load, stress fatigue,

and other states). For example, EDA (electrodermal activity) is a

promising additional source. It is non-intrusive and is referred to

in the literature as an excellent biometric source to assess stress.

A third research direction is to refine the levels and thresholds

considered for the different criteria used in the evaluation rules

of code reviews. For example, we can consider several levels for

the reviewer's cognitive load, the complexity of code regions, the

reviewers’ expertise, etc., instead of the two levels alternative

(i.e., low or high) used in the present evaluation. Having several

levels of reviewer’s expertise, code region complexity, review-

ers' cognitive load, etc., would make the definition of the set of

rules much more sophisticated. Fuzzy logic reasoning could be

used where there are no crisp values but membership functions

that enable a more realistic human type of reasoning

A fourth research line is related to the evaluation of the com-

plexity of the code regions, as metrics such as Vg and LoC do

not capture well code complexity from a human perspective. The

promising idea is to use cognitive weights established for the dif-

ferent code constructs [86] to compose a more effective measure

of code region complexity.

Although HRV and Pupil response were good predictors for

the reviewer cognitive load using the KNN and the LR in the

DCM approach, we believe that future work should focus on the

extraction and fusion of other features that are known in the lit-

erature to reflect the changes in cognitive load, such as the fre-

quency domain features of the pupil diameter variability as well

as features extracted from the EDA sensor and context infor-

mation. By fusing these features, we aim to achieve a more ro-

bust surrogate of the reviewer’s cognitive state and, therefore,

more precise application of the proposed rules. Furthermore, we

believe that future work should consider other cognitive states of

the reviewers, such as stress, distraction, and fatigue, and not

only the cognitive load imposed by code comprehension

difficulties.

An interesting aspect to include in future work is to integrate

the defect classification (i.e., functional and evolvability) with

the evaluation metrics, as proposed in [25].

Finally, we are confident that the interdisciplinary nature of

the proposed approach and the encouraging results obtained in

the evaluation presented in this paper have a good potential to

open new research avenues in the assessment of code compre-

hension and improvement of software reliability.

Acknowledgment
The authors thank the volunteers who took part in the con-

trolled experiment. The authors acknowledge that the BASE pro-

ject partially funded this work under Grant POCI - 01-0145 -

FEDER- 031581, in part by the Centro de Informática e Sistemas

da Universidade de Coimbra (CISUC), and in part by Coimbra

Institute for Biomedical Imaging and Translational Research

(CIBIT), Institute of Nuclear Sciences Applied to Health (IC-

NAS), the University of Coimbra under Grant PTDC/PSI-

GER/30852/2017 | CONNECT-BCI.

REFERENCES

[1]. Huang, F., Liu, B., Wang, S., & Li, Q. (2015). The impact of software

process consistency on residual defects. Journal of Software: Evolu-
tion and Process, 27(9), 625-646.

[2]. S. M. A. Shah, M. Morisio, and M. Torchiano, “The impact of process

maturity on defect density,” in Proceedings of the 2012 ACM-IEEE

International Symposium on Empirical Software Engineering and
Measurement. IEEE, 2012, pp. 315–318.

[3]. N. Honda and S. Yamada, “Empirical analysis for high quality sw de-

velopment,” Ameri. Jour. Op. Research, 2012.

[4]. H. Zhang, “An investigation of the relationships between lines of code

and defects,” in 2009 IEEE International Conference on Software
Maintenance. IEEE, 2009, pp. 274–283.

[5]. I. Sandu, A. Salceanu, and O. Bejenaru, “New approach of the cus-

tomer defects per lines of code metric in automotive SW development

applications,” in Journal of Physics: Conference Series, vol. 1065, no.
5. IOP Publishing, 2018.

[6]. M. E. Fagan, “Design and code inspections to reduce errors in program

development”, IBM System J. vol. 15, No. 3, pages 183–211, 1976.

[7]. J. Barnard and A. Price, "Managing code inspection information," in

IEEE Software, vol. 11, no. 2, pp. 59-69, March 1994, doi:
10.1109/52.268958.

[8]. Alberto Bacchelli and Christian Bird, “Expectations, Outcomes, and

Challenges of Modern Code Review”, International Conference on

Software Engineering. ICSE, 2013.

[9]. Sadowski, C., Söderberg, E., Church, L., Sipko, M., & Bacchelli, A.
(2018, May). Modern code review: a case study at Google. In Proceed-

ings of the 40th International Conference on Software Engineering:

Software Engineering in Practice, 2018.

[10]. James Reason, "Human Error," Cambridge University Press,

https://doi.org/10.1017/CBO9781139062367, 1990.

[11]. A. Fuqun Huang, B. Bin Liu, and C. Bing Huang, "A Taxonomy Sys-

tem to Identify Human Error Causes for Software Defects", 18th IS-

SAT Int. Conference on Reliability and Quality in Design, 2012.

[12]. Cohen J, Teleki S, Brown E (2006) Best kept secrets of peer code re-
view. Smart Bear Inc, Somerville D’Mello S, Graesser A (2014) Con-

fusion and its dynamics during device comprehension with breakdown

scenarios. Acta Psychol 151:106–116.

[13]. Tao Y, Dang Y, Xie T, Zhang D, Kim S (2012) How do software en-

gineers understand code changes?: an exploratory study in industry.

In: Proceedings of the ACM SIGSOFT 20th international symposium
on the foundations of software engineering. FSE ’12. ACM, New

York, pp 51:1–51:11.

[14]. Ebert, F., Castor, F., Novielli, N. et al., “An exploratory study on con-

fusion in code reviews”, Empirical Software Engineering, 26, 12 2021.

[15]. Joe Brockmeier, “A Look at Phabricator: Facebook’s Web-Based
Open Source Code Collaboration Tool”, ReadWrite blog, Sep. 28,

2011 (https://readwrite.com/2011/09/28/a-look-at-phabricator-face-

book/), accessed on Dec. 6, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.: TITLE 17

[16]. Shaumik Daityari, “12 Best Code Review Tools for Developers (2021

Edition)”, March 19, 2021, (https://kinsta.com/blog/code-review-
tools/), accessed on March 30, 2021.

[17]. O. Kononenko, O. Baysal, and M. Godfrey, “Code review quality:

how developers see it”, in Proceedings of the 38th International Con-

ference on Software Engineering, 2016.

[18]. J. Veltman and A. Gaillard, “Physiological workload reactions to in-
creasing levels of task difficulty,” Ergonomics, vol. 41, no. 5, 1998.

[19]. G. F. Walter and S. W. Porges, “Heart rate and respiratory responses

as a function of task difficulty: The use of discriminant analysis in the

selection of psychologically sensitive physiological responses,” Psy-
chophysiology, vol. 13, no. 6, 1976.

[20]. B. Pfleging, D. K. Fekety, A. Schmidt, et al., “A model relating pupil

diameter to mental workload and lighting conditions,” in Proc. of the

2016 CHI conference on human factors in computing systems, 2016.

[21]. D. Ford, M. Behroozi, A. Serebrenik, and C. Parnin, “Beyond the
Code Itself: How Programmers Really Look at Pull Requests”, 41st

ACM/IEEE International Conference on Software Engineering [ICSE

SEIS], May 2019, DOI: 10.1109/ICSE-SEIS.2019.00014

[22]. Ackerman, A. F., Buchwald, L. S., & Lewski, F. H. (1989), “Software

inspections: an effective verification process”, IEEE software, 6(3),

31-36, 1989.

[23]. Richard Bellairs, “Best Practices for Code Review”, Dec. 4, 2019,

https://www.perforce.com/blog/qac/9-best-practices-for-code-review,
accessed: 2022-03-01.

[24]. O. Kononenko, O. Baysal, L. Guerrouj, Y. Cao and M. W. Godfrey,

"Investigating code review quality: Do people and participation mat-

ter?," 2015 IEEE International Conference on Software Maintenance
and Evolution (ICSME), pp. 111-120, 2015.

[25]. M. V. Mäntylä and C. Lassenius, "What Types of Defects Are Really

Discovered in Code Reviews?," in IEEE Transactions on Software En-

gineering, vol. 35, no. 3, pp. 430-448, May-June 2009.

[26]. O. Baysal, O. Kononenko, R. Holmes, and M. W. Godfrey, “The in-
fluence of non-technical factors on code review”, In Proc. of the

Working Conference on Reverse Engineering, 2013.

[27]. C. F. Kemerer and M. C. Paulk. The impact of design and code reviews

on software quality: An empirical study based on psp data. IEEE
Trans. Softw. Eng., 35(4):534–550, July 2009.

[28]. F. Shull, I. Rus, and V. Basili. “Improving software inspections by

using reading techniques”, In International Conference on Software

Engineering, pages 726–727, 2001.

[29]. L. Hatton, “Testing the value of checklists in code inspections”, IEEE
Software, 25(4):82–88, 2008

[30]. A. N. Al-Saiyd, “Source code comprehension analysis in software

maintenance”, in 2017 2nd International Conference on Computer and

Communication Systems (ICCCS), 2017.

[31]. Y. Huang, N. Jia, X. Chen, K. Hong, and Z. Zheng, “Code Review
Knowledge Perception: Fusing Multi-Features for Salient-Class Loca-

tion”, IEEE Trans. on Software Engineering, 2020.

[32]. D. Fucci, D. Girardi, N. Novielli, L. Quaranta, F. Lanubile, “A repli-

cation study on code comprehension and expertise using lightweight
biometric sensors”, Proceedings of the 27th International Conference

on Program Comprehension, Pages 311–322, May 2019.

[33]. Jessup, S., Willis, S. M., Alarcon, G., Lee, M., “Using Eye-Tracking
Data to Compare Differences in Code Comprehension and Code Per-

ceptions between Expert and Novice Programmers”, In Proc. of the

54th Hawaii International Conference on System Sciences (p. 114).

[34]. B. Weber, T. Fischer, R. Riedl, “Brain and autonomic nervous system
activity measurement in software engineering: A systematic literature

review”, Journal of Systems and Software, March 2021.

[35]. T. Nakagawa, Y. Kamei, H. Uwano, et al., “Quantifying program-

mers’ mental workload during program comprehension based on cer-
ebral blood flow measurement: a controlled experiment,” in Compan-

ion Proc. of the 36th Int. Conf. on Software Engineering. ACM, 2014.

[36]. Floyd, B., Santander, T., & Weimer, W. (2017, May). Decoding the

representation of code in the brain: An fMRI study of code review and
expertise. In 2017 IEEE/ACM 39th International Conference on Soft-

ware Engineering (ICSE) (pp. 175-186). IEEE.

[37]. N. Peitek, J. Siegmund, S. Apel, C. Kastner, C. Parnin, A. Bethmann,

T. Leich, G. Saake, A. Brechmann, “A look into programmers’ heads,”
IEEE Transactions on Software Engineering, vol. 46, 2018.

[38]. J. Duraes, H. Madeira, J. Castelhano, et al., “Wap: Understanding the

brain at software debugging,” in 2016 IEEE 27th International Symp.

on Software Reliability Engineering (ISSRE). IEEE, 2016.

[39]. J. Castelhano, I. C. Duarte, C. Ferreira, J. Duraes, H. Madeira, and M.

Castelo Branco, “The role of the insula in intuitive expert bug detec-
tion in computer code: an fMRI study,” Brain imaging and behavior,

vol. 13, no. 3, pp. 623–637, 2019.

[40]. J. Castelhano, I. C. Duarte, J. Duraes, H. Madeira, M.Castelo-Branco,

"Reading and calculation neural systems and their weighted adaptive
use for programming skills”, Neural Plasticity, 2021.

[41]. Uwano, H., Nakamura, M., Monden, A., & Matsumoto, K. I., “Ana-

lyzing individual performance of source code review using reviewers'

eye movement”, In Proceedings of the 2006 symposium on Eye track-
ing research & applications, 2006.

[42]. Sharif, B., Falcone, M., & Maletic, J. I., “An eye-tracking study on the

role of scan time in finding source code defects”, In Proceedings of

the Symposium on Eye Tracking Research and Applications, 2012.

[43]. Chandrika, K. R., Amudha, J., & Sudarsan, S. D., “Recognizing eye
tracking traits for source code review”, In 2017 22nd IEEE Int. Conf.

on Emerging Technologies and Factory Automation (ETFA), 2017

[44]. Begel, A., & Vrzakova, H., “Eye movements in code review”, In Proc.

of the Workshop on Eye Movements in Programming (pp. 1-5), 2018.

[45]. Jason Cohen, “11 proven practices for more effective, efficient peer

code review”, IBM Developer, January 2011.

[46]. Vrzakova, H., Begel, A., Mehtätalo, L., & Bednarik, R. (2020), “Af-

fect Recognition in Code Review: An In-situ Biometric Study of Re-

viewer’s Affect”, Journal of Systems and Software, 159, 110434.

[47]. C. Setz, B. Arnrich, J. Schumm, et al., “Discriminating stress from
cognitive load using a wearable EDA device,” IEEE Tran. on infor-

mation technology in biomedicine, vol. 14, no. 2, pp. 410–417, 2009.

[48]. K. Kyriakou, B. Resch, G. Sagl, et al., “Detecting moments of stress

from measurements of wearable physiological sensors,” Sensors, vol.
19, no. 17, p. 3805, 2019.

[49]. Anh Son Le, Tatsuya Suzuki, and Hirofumi Aoki, “Evaluating driver

cognitive distraction by eye tracking: From simulator to driving”,

Transp. Research Interdisciplinary Perspectives journal, Vol. 4, 2020.

[50]. T. Fritz, A. Begel, S. C. Muller, et al., “Using psycho-physiological
measures to assess task difficulty in software development,” in Pro-

ceedings of the 36th International Conference on Software Engineer-

ing, ICSE, ACM, 2014, pp. 402–413.

[51]. S. C. Muller and T. Fritz, “Using (bio) metrics to predict code quality

online,” in 2016 IEEE/ACM 38th International Conference on Soft-

ware Engineering (ICSE). IEEE, 2016, pp. 452–463.

[52]. R. Couceiro, G. Duarte, J. Duraes, et al., “Pupillography as indicator

of programmers’ mental effort and cognitive overload,” in IEEE Int.
Conf. on Dependable Systems and Networks, IEEE, 2019.

[53]. R. Couceiro, R. Barbosa, G. Duraes Duarte, et al., “Spotting problem-

atic code lines using nonintrusive programmers’ biofeedback,” Inter-

national Symp. on Software Reliability Engineering, ISSRE, 2019.

[54]. Lee, S., Hooshyar, D., Ji, H. et al. Mining biometric data to predict
programmer expertise and task difficulty. Cluster Comput 21, 1097–

1107 (2018). https://doi.org/10.1007/s10586-017-0746-2

[55]. (16) R. Minelli, A. Mocci, and M. Lanza, “I know what you did last

summer: an investigation of how developers spend their time,” in Pro-
ceedings of the 2015 IEEE 23rd International Conference on Program

Comprehension. IEEE Press, 2015, pp. 25–35.

[56]. Ali Khan, S., Hussain, A., Basit, A., & Akram, S. (2014). Kruskal-
Wallis-based computationally efficient feature selection for face

recognition. The Scientific World Journal, 2014.

[57]. Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., & Moore,

J. H. (2018). Relief-based feature selection: Introduction and re-
view. Journal of biomedical informatics, 85, 189-203.

[58]. Xiao Zhang and Yongqiang Lyu and Xin Hu and Ziyue Hu and Yu-

anchun Shi and Hao Yin, “Evaluating Photoplethysmogram as a Real-

Time Cognitive Load Assessment during Game Playing”, Interna-
tional Journal of Human–Computer Interaction}, Vol. 34, No 8, 2018.

[59]. Pinheiro, N., Couceiro, R., Henriques, J., Muehlsteff, J., Quintal, I.,

Goncalves, L., & Carvalho, P. “Can PPG be used for HRV analysis?”,

38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC) (pp. 2945-2949), 2016.

[60]. Mejía-Mejía, Elisa et al. “Heart Rate Variability (HRV) and Pulse Rate

Variability (PRV) for the Assessment of Autonomic Responses.”

Frontiers in physiology vol. 11 779. 23 Jul. 202.

[61]. V. Peysakhovich, M. Causse, S. Scannella, and F. Dehais, "Frequency
analysis of a task-evoked pupillary response: Luminance-independent

measure of mental effort," International Journal of Psychophysiology,

vol. 97, pp. 30-37, 2015.

https://doi.org/10.1007/s10586-017-0746-2

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

18 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

[62]. Andrzejewska, M., & Skawińska, A, “Examining Students’ Intrinsic

Cognitive Load During Program Comprehension–An Eye Tracking
Approach”, Int. Conference on Artificial Intelligence in Education

(pp. 25-30). Springer, Cham, 2020.

[63]. Dunsmore, A., Roper, M., & Wood, M. (2000), “The role of compre-

hension in software inspection”, Journal of Systems and Soft-
ware, 52(2-3), 121-129.

[64]. R. Couceiro, G. Duarte, J. Duraes, J. Castelhano, C. Duarte, C.

Teixeira, et. al, “Biofeedback augmented software engineering: mon-

itoring of programmers' mental effort”, Int. Conference on Software
Engineering, New Ideas and Emerging Results, ICSE 2019.

[65]. Sauer, C., Jeffery, D. R., Land, L., & Yetton, P., “The effectiveness of

software development technical reviews: A behaviorally motivated

program of research”, IEEE Transactions on Software Engineer-
ing, 26(1), 1-14, 2000.

[66]. Rigby, P. C., & Storey, M. A., “Understanding broadcast based peer

review on open source software projects”, 33rd International Confer-

ence on Software Engineering (ICSE) (pp. 541-550). IEEE, 201.

[67]. Biffl, S., & Halling, M. (2002, June). Investigating the influence of
inspector capability factors with four inspection techniques on inspec-

tion performance. In Proceedings Eighth IEEE Symposium on Soft-

ware Metrics (pp. 107-117). IEEE

[68]. Busjahn, T., Schulte, C., & Busjahn, A. (2011, November). Analysis
of code reading to gain more insight in program comprehension.

In Proceedings of the 11th Koli Calling International Conference on

Computing Education Research (pp. 1-9).

[69]. R. Chandrika, J. Amudha and S. D. Sudarsan, "Recognizing eye track-
ing traits for source code review," 22nd IEEE Int. Conf. on Emerging

Technologies and Factory Automation (ETFA), pp. 1-8, 2017.

[70]. J. Duraes and H. Madeira “Emulation of SW Faults: A Field Data

Study and a Practical Approach”, IEEE Transactions on SW Engineer-
ing, vol. 32, no. 11, pp. 849-867, November 2006.

[71]. D. Cotroneo, L. Simone, P. Liguori, R. Natella, N. Bidokhti, “How

Bad Can a Bug Get? An Empirical Analysis ofSoftware Failures in the

OpenStack Cloud Computing Platform”, Proceedings of the 2019 27th
ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2019.

[72]. R. Chillarege, I.S. Bhandari, J.Chaar, and M.-Y. Wong, “Orthogonal

Defect Classification - A Concept for In-Process Measurements, IEEE
Transactions on Software Engineering 18(11):943 - 956, Dec. 199.

[73]. Sacha J., “Interaction between heart rate and heart rate variability”,

Annals Noninvasive Electrocardiology. 2014, 19:207–216.

[74]. McCraty, R., & Shaffer, F. Heart rate variability: new perspectives on

physiological mechanisms, assessment of self-regulatory capacity,
and health risk. Global adv. in health and medicine, 4(1), 2015

[75]. Burg, J.P. "Maximum Entropy Spectral Analysis", Proc. of the 37th

Meeting of the Society of Exploration Geophysicists, 1967.

[76]. Delliaux, S., Delaforge, A., Deharo, J. C., & Chaumet, G. (2019).

Mental workload alters heart rate variability, lowering non-linear dy-
namics. Frontiers in physiology, 10, 565.

[77]. Blons, E., Arsac, L. M., Gilfriche, P., McLeod, H., Lespinet-Najib, V.,

Grivel, E., & Deschodt-Arsac, V. (2019). Alterations in heart-brain in-
teractions under mild stress during a cognitive task are reflected in en-

tropy of heart rate dynamics. Scientific reports, 9(1), 1-10

[78]. Pereira, T., Almeida, P., Cunha, J., & Aguiar, A. (2017). Heart rate

variability metrics for fine-grained stress level assessment. Computer
methods and programs in biomedicine, 148, 71-80.

[79]. Daniel Kahneman, Jackson Beatty, “Pupil Diameter and Load on

Memory”, Science 23: Vol. 154, Issue 3756, pp. 1583-1585, 1966.

[80]. Y. Sasaki, "The truth of the F-measure", Teach Tutor Mater, vol. 1,

no. 5, 2007.

[81]. Hart, S. G. (2006, October). NASA-task load index (NASA-TLX); 20
years later. In Proceedings of the human factors and ergonomics soci-
ety annual meeting (Vol. 50, No. 9, pp. 904-908). Sage CA: Los An-
geles, CA: Sage publications.

[82]. Medeiros, J., Couceiro, R., Duarte, G., Duraes, J., Castelhano, J.,

Duarte, C., ... & Teixeira, C. (2021). Can EEG Be Adopted as a Neu-

roscience Reference for Assessing Software Programmers’ Cognitive
Load?. Sensors, 21(7), 2338, 2021.

[83]. Crk, I., & Kluthe, T., “Assessing the contribution of the individual al-

pha frequency (IAF) in an EEG-based study of program comprehen-

sion”, 38th Annual Int. Conf. of the IEEE Engineering in Medicine

and Biology Society (EMBC) (pp. 4601-4604). IEEE, 2016.

[84]. Dillon, J. V., Langmore, I., Tran, D., Brevdo, E., Vasudevan, S.,

Moore, D., ... & Saurous, R. A. (2017). Tensorflow distribu-
tions. arXiv preprint arXiv:1711.10604.

[85]. H. Hijazi, J. Cruz, J. Castelhano, R. Couceiro, M. Castelo-Branco, P.

d. Carvalho and H. Madeira, iReview: An Intelligent Code Review

Evaluation Tool using Biofeedback, in the 32nd International Sympo-
sium on Software Reliability Engineering (ISSRE 2021), 2021

[86]. Jain, Leena and Satinderjit Singh. “Designing The Code Snippets for

Experiments on Code Comprehension of Different Software Con-

structs.” Int. Journal of Computer Sciences and Engineering (2019).

[87]. F. Shull, V. Basili, B. Boehm, A. W. Brown, et al, “What We Have
Learned About Fighting Defects”, METRICS '02: Proceedings of the

8th International Symposium on Software Metrics, June 2002

Haytham Hijazi is a Ph.D. Research Fellow with the Center for Informatics
and Systems, University of Coimbra (CISUC), Portugal. His research inter-
ests include Artificial Intelligence, Biofeedback, and Software Engineering.
His current thesis work is focused on intelligent biofeedback systems for aug-
menting content comprehension.

Joao Duraes has been with the Software and Systems Engineering research
group of the Centre for Informatics and Systems of the University of Coimbra
since 1994. His research is mainly focused on software reliability, and his
contributions include novel techniques and models concerning software fault
injection, dependability benchmarking, and security evaluation.

Ricardo Couceiro has been a Research Member of the Center for Informat-
ics and Systems, University of Coimbra (CISUC) Since 2006. His research
interests include biomedical signal processing, pattern recognition, and mod-
eling applied to the analysis of cardiovascular systems.

João Castelhano Joao Castelhano is a Biomedical Engineer with a PhD in
Health sciences. He is currently a researcher at CIBIT/ICNAS - University
of Coimbra and is an expert in multimodal medical imaging data acquisition
and analysis.

Raul Barbosa is an Assistant Professor at University of Coimbra, where he
is a member of the Software and Systems Engineering group. His main re-
search interests focus on the design of dependable distributed systems, resil-
ience in cloud systems, software intensive systems, and assessment by com-
plementing experimental approaches with formal methods.

Júlio Medeiros is currently a Ph.D. student at the University of Coimbra.
His research interests include Signal Processing, Biofeedback, and Machine
Learning applied to understanding and mitigating human error in software
development tasks.

Miguel Castelo-Branco is the Director of the Coimbra Institute for Biomed-
ical Imaging and Translational Research (CIBIT). He has been the Director
of IBILI, a leading Vision Research Institute in Portugal. He is the Scientific
Coordinator of the National Functional Brain Imaging Scientific initiative.
He was also the Director of ICNAS, Medical Imaging Infrastructure, Univer-
sity of Coimbra. His achievements are well reflected in publications in top
General Journals, such as Nature and PNAS.

Paulo de Carvalho is currently an Associate Professor with Habilitation with
the University of Coimbra. His main research interests include intelligent al-
gorithms for personal health solutions and clinical decision support systems.
His publications include over 250 papers in refereed international journals
and conferences. He has been involved in several organizations and program
committees of international conferences in the health informatics domain and
he serves as editorial board member in several scientific journals. He is the
Director of the Working Group on Health Informatics of the IFMBE.

Henrique Madeira is Full Professor at the University of Coimbra, where he
has been involved in research on dependable computing since 1989. He has
coordinated or participated in dozens of research projects funded by the Por-
tuguese Government and by the European Union. His current funded projects
are in the areas of software quality and software reliability, verification and
validation, human factors in software engineering, and safety and security
evaluation Artificial Intelligence in safety-critical functions.

