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Abstract— Code review is an essential practice in software engineering to spot code defects in the early stages of software development. 

Modern code reviews (e.g., acceptance or rejection of pull requests with Git) have become less formal than classic Fagan's inspections, 

lightweight, and more reliant on individuals (i.e., reviewers). However, reviewers may encounter mentally demanding challenges during the 

code review, such as code comprehension difficulties or distractions that might affect the code review quality. This work proposes a novel 

approach that evaluates the quality of code reviews in terms of bug-finding effectiveness and provides the reviewers with a clear message of 

whether the review should be repeated, indicating the code regions that may not have been well-reviewed. The proposed approach utilizes 

biometric information collected from the reviewer during the review process using non-intrusive biofeedback devices (e.g., smartwatches). 

Biometric measures such as Heart Rate Variability (HRV) and task-evoked pupillary response are captured as a surrogate of the cognitive state 

of the reviewer (e.g., mental workload) and inexpensive desktop eye-trackers compatible with the software development settings. This work 

uses Artificial Intelligence techniques to predict the cognitive load from the extracted biomarkers and classify each code region according to 

a set of features. The final evaluation considers various factors such as code complexity, time of the code review, the experience level of the 

reviewer, and other factors. Our experimental results show the approach could predict the review quality with 87.77%±4.65 accuracy and a 

Spearman correlation coefficient of 0.85 (p-value < 0.001) between the predicted and the actual review performance. This evaluation validates 

the cognitive load measurement using electroencephalography (EEG) signals as ground truth for the HRV and pupil signals. 

Index Terms— Artificial Intelligence, Biometrics, Code inspections and walkthroughs, Human factors 

——————————   ◆   —————————— 

1 INTRODUCTION
  

oftware development is an intensive intellectual task. It con-

sists of knowledge activities related to understanding the prob-

lem and designing an adequate solution. Therefore, human cog-

nition plays a crucial role in software development. This high re-

liance on human cognition is a significant factor in software fra-

gility and proneness to faults. For instance, analysis from a large 

set of industrial data reported [1] shows that 87% of the severe 

software defects in deployed code are caused by human cognitive 

failures, regardless of the software development process. 

Software faults or defects (often called bugs) are one of the 

most persistent challenges of software reliability. Despite the 

modern tools available for developers and the intensive research 

on software reliability and quality, the general statistics for soft-

ware developed (most of them related to software for critical ap-

plications) show high bug density figures, ranging from 1 to 5 

bugs per 1000 lines of delivered code [2][3][4]. This problem is 

amplified by the constant pressure to minimize the time-to-mar-

ket and due to the dramatic increase in code size witnessed by 

modern software. More lines of code (LoC) mean more bugs, as 

attested by the fact that the number of LoC is generally used as 

the most reliable metric to predict bug count in software products 

[5]. Knowing the high impact of software in our society, software 

bugs represent the most chronic and challenging problem, which 

might cause considerable negative consequences on the final 

product/service resulting from the software.  

Among the large arsenal of techniques used to improve soft-

ware quality, software inspections and, more specifically, code 

reviews are a well-established practice in software development. 

Classic code reviews [6][7] consist of the manual inspection of 

the source code by a group of reviewers to improve the overall 

quality of the software and detect software defects, among other 

quality aspects such as compliance to code standards.  

Modern code reviews [8][9] are essentially asynchronous (no 

inspection meetings), based on proprietary tools, and have be-

come more lightweight, more informal, and, consequently, much 

more dependent on individual skills rather than on the inspection 

group capacity. At Google [9], “even very large (code) changes 

on average require fewer than two reviewers.”  

If the code is reviewed by a single reviewer (or even by two), 

the quality of the review, and particularly the effectiveness in 

finding bugs, is highly dependent on the skills of the reviewer, 

but also on other very human aspects such as engagement level, 

distractions, fatigue, stress, and attention shifts. These are well-

known sources of human cognitive errors [10][11] that may 

cause reviewers not to find bugs or point out non-existent bugs.  

In addition to all these unavoidable reasons for individual re-

viewer failure in finding bugs, difficulties in understanding the 

code under review are one of the major issues faced by reviewers 

[8][12][13]. A very recent study [14] reports that when “review-

ing code changes, about 41% of the respondents feel confusion 

at least half of the time, and only 10% do not feel confusion”. If 

reviewers often have problems understanding the code, the effec-

tiveness of bug findings will be affected. 
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We propose the use of biometrics data collected from the 

reviewer (using non-intrusive sensors) and Artificial Intelli-

gence (AI) techniques to estimate the engagement and how 

well the reviewer has covered and understood the different 

regions of the code under review, providing an evaluation of 

the quality of the review in terms of bug finding effectiveness.  

It is well-known that the code review purposes are not limited 

to bug finding; it also aims at improving code quality, and re-

moving code smells, improving compliance with coding stand-

ards, improving team cohesion, training young programmers/re-

viewers, among other goals. However, bug finding is often con-

sidered the top goal of code reviews. For example, in [8] the re-

sults of an extensive survey show that “almost all the managers 

included “finding defects” as one of the reasons for doing code 

reviews; for 44% of the managers, it is the top reason. Concern-

ing surveyed developers/testers, “finding defects” is the first mo-

tivation for code review for 383 of the programmers (44%), sec-

ond motivation for 204 (23%), and third for 96 (11%).” 

A key aspect of modern code reviews is the use of specialized 

tools to facilitate code review. Established software companies 

have developed or adopted their tools, embodying the workflow 

process of their specific flavor of code reviews. Prominent ex-

amples of such tools are Critique (Google) [9], CodeFlow (Mi-

crosoft) [8], Phabricator (Facebook) [15]. Many other code re-

view tools are currently available (see a survey of the "12 Best 

Code Review Tools for Developers - 2021 Edition" in [16][15]).  

Notably, most of these code review tools also try to assess the 

quality of the code review through a process or product-oriented 

metrics such as comments quality, quality of the feedback pro-

vided, code (patch) quality, inspection rate, and LoC covered, 

among others [17]. Still, all of them fail in a crucial aspect: they 

do not evaluate the quality of the code review work provided by 

individual reviewers in terms of bug-finding effectiveness. Fill-

ing this gap is precisely the goal of the proposed approach.   

This paper proposes a new approach to systematically evalu-

ate the quality of modern code reviews in terms of bug-finding 

effectiveness at the code region level of granularity (a region is a 

small set of code lines, typically around ten LoC). This evalua-

tion provides immediate feedback to code reviewers or develop-

ers on possible code regions/lines that were not well covered by 

the review. It also provides the reasons why such a review may 

have left bugs undetected. The reviewers could use this infor-

mation to promptly improve the code review through a second 

pass over specific parts of the code under review, or project man-

agers can ask for a second independent review. 

The proposed approach uses well-established biometric tech-

niques that use psychophysiological measures such as heart rate 

variability (HRV) and the pupillary response (pupillometry) to 

assess cognitive load while executing specific tasks and inher-

ently infer the difficulty and mental effort associated with such 

tasks [18][19][20]. We also use the domain knowledge to extract 

useful features from the psychophysiological measures (feature 

engineering). Then, we adapted a multimodality augmented set 

of features, including other non-biometric features such as the 

code complexity, the reviewer experience, the number of revisits 

to a code region, and the code reading time. We use knowledge 

domain and data-driven algorithms (i.e., Kruskal-Wallis and Re-

lief features selection) to select the best multimodal features. The 

best-chosen features are fed into k-nearest neighbors (KNN) and 

Logistic Regression classifiers (LR) — known for their explain-

ability— to classify each code region as being either well-

reviewed or not, with an explanation on why the code region was 

not well-reviewed.   

We have evaluated the proposed approach through a con-

trolled experiment including 21 code reviewers equipped with 

biometric sensors while performing a code review of four code 

snippets. The paper makes the following contributions:  

• Proposes a new approach to evaluate the quality of code re-

views individually (i.e., code reviewer), leveraging biometric 

measures and AI techniques to improve bug-finding effec-

tiveness in the code review evaluation process.  

• Evaluates the accuracy, precision, and recall of the proposed 

approach in a controlled experiment that uses code reviewers, 

actual code, realistic bugs, instrumentation to gather the bio-

metric signals used to assess the reviewer's cognitive load.  

• Validates the reviewer's cognitive load (assessed through 

non-intrusive devices) using Electroencephalography (EEG). 

• Analyses the cognitive load of code reviewers at a fine-gran-

ularity (i.e., code region level), which is beyond the state-of-

the-art in biometrics applied to task-level code analysis.  

The paper is organized as follows: Section 2 presents relevant 

interdisciplinary background and covers the state-of-the-art of 

the pertinent topics. Section 3 details the proposed approach. 

Section 4 addresses the experimental setup to evaluate the pro-

posal. Section 5 shows the analysis and classification of Biomet-

rics. Section 6 discusses the results and the viability of the ap-

proach. Section 7 discusses the threats to the validity, and Section 

8 summarizes the takeaway messages and outlines future work. 

2 BACKGROUND AND LITERATURE REVIEW 

Evaluating the code review process using physiological signals 

and pursuing a data-driven approach spans software engineering 

and cognitive & neuroscience, and AI. This section overviews 

the relevant topics and summarizes the state-of-the-art related to 

the proposed approach. For details on physiological features and 

their relationship with cognition, please see Supplement 1. 

2.1 Code Reviews 

The asynchronous style of code reviews emerged in the early 

2000s, mainly in the context of OSS projects. In these ap-

proaches, reviewers can see the code and the code changes and 

can discuss specific lines of the code while the author of the code 

addresses the reviewer's comments. This flavor of light and asyn-

chronous reviews has been brought by various tools that have 

emerged to help authors of patches to submit them for review 

before being integrated (i.e., merged) into the shared software. 

As mentioned before, the modern style of code reviews has 

also been shaped by well-established companies that have devel-

oped their tools and review environments [8][9][15]. With such 

tools, the developer completes a change in the code and creates 

a review request, including a description of the change and spec-

ifying the candidate reviewer (or reviewers) that will receive 

such a request. Reviewers get notified via email to open the tool 

and review those changes. Additionally, reviewers can annotate 

these code lines containing the change with their comments. 

Many commercial code review tools are currently available 

(see [16]). Most rely on the Git distributed version control system 

or even on cloud-based hosting services such as GitHub. These 

tools adopted the pull-based development model, and when de-

velopers need to make a change or add new code, they fork an 

existing Git repository and make those changes in their fork. The 

review tools embed the code review process in the pull request 

https://github.com/HaythamHijazi/Supplement
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workflow to facilitate the dialog between reviewers and develop-

ers and ensure that the code review is performed as expected. 

Ford et al. [21] show that deciding upon pull request (acceptance 

or rejection) depends on the social and technical aspects of the 

pull request initiator. In other words, to accept the review, you 

should look at the reviewer's (i.e., request initiator) profile and 

expertise. This result demonstrates to which extent the code re-

view process is becoming more personal dependent. It means that 

helping reviewers with the proposed approach, which calls their 

attention to code that needs a second look, seems quite useful.  

In practice, software companies adopt variants of code re-

views. However, there are fundamental characteristics to achieve 

high-quality reviews. For instance, in classic reviews, Ackerman 

et al. [22] state that effective code reviews should be carried out 

by knowledgeable peers whose primary purpose is to find defects 

in the software product. Some key metrics mentioned [22] as es-

sential for the effectiveness of the code review process include 

the average preparation effort per code unit; the average exami-

nation rate and effort per code unit; the average explanation rate 

per code unit; the average number of defects detected per code 

unit; the average number of defects per unit of code. These met-

rics point to reviewing best practices but fulfilling such best prac-

tices at the individual reviewer level is not easy to guarantee. 

Best practices in modern code review [23] advise reviewers 

to ask themselves several questions before starting the review: 

do I understand the code? Does this code function as I expect? 

Does this code comply with regulatory requirements? It is also 

recommended not to review longer than 60 minutes and no more 

than 400 LoC at a time.   

As we see from the examples above, code reviews rely on the 

individual capacities and skills of reviewers, knowing that in 

modern code reviews this dependency on the reviewers' skills is 

higher since only one peer typically reviews the code. The ap-

proach proposed in this paper addresses this dependency on the 

individual reviewer’s skills, as well as on other human factors 

such as fatigue, stress, distractions, difficulties in code compre-

hension, to improve bug finding effectiveness through the eval-

uation of the code review and prompt feedback to the reviewer. 

An important aspect of attesting to the relevance of the prob-

lem targeted by our proposal is to examine available studies on 

the effectiveness of code reviews concerning uncovered bugs. 

Shull et al. [87] surveyed the bug detection coverage of classic 

code reviews observed in eight studies and concluded that it is 

reasonable to expect code reviews to detect an average of 60% 

of the bugs. However, among the studies surveyed in [87], we 

can observe that the effectiveness of code reviews in bug detec-

tion can range from 19% up to 93%, depending on many factors. 

Since modern code reviews are more informal than classic 

code reviews and do not rely on a group of inspectors and an 

inspection meeting, it is expected that the effectiveness of mod-

ern code reviews in finding bugs is lower than the average 60% 

reported by the analysis of the eight papers surveyed in [87]. An 

empirical study investigating modern code review quality for 

Mozilla found an overall of 54% of code reviews missed bugs in 

the approved commits. Interestingly, similar values were found 

consistently throughout the different modules analyzed in [24]. 

Concerning the type of defects detected by code reviews, an em-

pirical study [25] classified the defects of nine industrial (C/C++) 

and 23 students (Java) code reviews and found that from 71% to 

77% of the defects found are related to software evolvability as-

pects (code organization, solution approach, code formatting 

such as brackets usages and indentation, etc.) and do not affect 

code functionality (in any case, they are defects).  

Code review effectiveness in bug detection of 60% (in aver-

age) for classic code reviews (but with a wide bug detection 

range from 19% up to 93%) Error! Reference source not 

found. and an average of 54% of bug detection for modern code 

reviews [24] show that there is a large room for improvement.  

Several works suggest that personal (i.e., individual depend-

ent) aspects play an important role in review quality, which con-

curs with our proposal of assessing individual reviewers’ engage-

ment and cognitive load using non-intrusive biometrics to help 

predict bug finding effectiveness. Baysal et al. [26] showed that 

non-technical factors such as "personal" dimensions affect code 

review time and the outcome of the review process. Kemerer et 

al. [27] indicated that defect detection and removal effectiveness 

depend on the individual review rate. Shull et al. [28] argued that 

inspections led by reading techniques are more effective at re-

vealing defects. Hatton [29] showed that reviewers tended to 

show different defect detection capabilities and stated that the 

worst reviewer was ten times less effective than the best one. This 

result is consistent with the results of the eight studies surveyed 

(see section 3.6 of [87]). Kononenko et al. [17] also studied the 

characteristics of the good review, as perceived by developers, 

and found that personal metrics such as reviewer workload and 

experience play a relevant role in the code review quality. Nota-

bly, the authors of [17] also showed that human factors such as 

reviewer mood, personality, experience level, skills, productiv-

ity, and stress level are the most significant determining factors 

in the code review quality. Personal factors such as the reviewers' 

experience and workloads are also suggested as promising pre-

dictors of the code review quality in [24].  

Al-Saiyd [30] took a further step in those human aspects and 

considered source code comprehension an essential part of the 

software maintenance process, including code reviews. The au-

thor [30] showed that code comprehension efforts highly rely on 

the reviewer's skills and experience and other factors, including 

the programming language and the code size/structure. In the 

same context, Huang et al. [31] argued that reviewers must spend 

a significant amount of time understanding the code during the 

code review process. Difficulties in understanding the code un-

der review as a result of reviewers’ confusion (i.e., reviewers do 

not understand something in the software) are pointed as a major 

factor in [14]. These works support our idea of associating review 

quality with the effectiveness of the code comprehension by the 

reviewer, with the significant difference that in our proposal, we 

infer code comprehension using biometrics features. 

Although abundant studies have been conducted to assess de-

velopers' code comprehension (e.g., [32][33]), there is a lack of 

empirical studies that objectively assess the reviewer code com-

prehension and associate it with the review quality in terms of 

bug detection. Psychological and observational works on soft-

ware developers and reviewers rely on indirect techniques to as-

sess programmers' code comprehension, such as comparing task 

performance, surveys or articulating developers' thoughts in 

think-aloud protocols [30][31]. These techniques use self-report-

ing methods and require considerable efforts in transcription and 

data analysis, which might be inconsistent in the end. 

2.2 Biometrics and Cognitive Neuroscience in SE 

Recently, academia started to leverage cognitive neuroscience 

and AI in software development to understand the underlying 

cognitive mechanisms of human intelligence tasks in software 
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development. In a recent comprehensive survey [34], the authors 

proposed the term NeuroSE to "describe a research field in soft-

ware engineering (SE) that makes use of neurophysiological 

methods and knowledge to understand software development 

better." This survey shows an exponential growth of the number 

of publications in NeuroSE since 2014, reaching 89 papers by 

mid-2020 (the period reported in [34]).  Most of these studies 

report-controlled experiments often using heavy medical imag-

ing equipment such as magnetic resonance imaging (fMRI) (see 

[34] for a comprehensive review) that obviously cannot be used 

in real software development settings. But these studies are es-

sential to understand basic cognitive mechanisms related to hu-

man error and bug making/discovering in software code devel-

opment and constitutes a relevant ground for the proposal of in-

novative software engineering approaches that move NeuroSE 

from controlled experiments into real-world software develop-

ment setups, such as the approach proposed in this paper. 

One of the first fMRI studies on programmers' mental effort 

in comprehending code is presented in [35]. In [36], the authors 

characterize the brain mechanisms involved in understanding 

natural language texts and source code, comparing the brain 

mechanisms involved in each case. A study identifying specific 

brain regions involved in code comprehension and syntax error 

identification, specifically the regions of language processing, 

working memory, and attention, is reported in [37].  

The study of reviewers' brain activity during code inspections 

is addressed explicitly by our previous works in [38][39][40]. In 

particular, [39] suggests that the activity levels of the insula re-

gion of the brain are directly related to the quality of the bug de-

tection, establishing a direct relationship of a brain signal with a 

code reviewing skill, and opening the possibility of using the ac-

tivity of that brain structure as a predictor of accuracy of bug 

finding tasks. These findings have been confirmed and expanded 

in a second and more comprehensive fMRI study [40] 

Wearable devices such as wrist-located sensors, bracelets, and 

smartwatches represent a fast-expanding industry of biometric 

devices that are primarily used in sports, fitness, and well-being 

applications but can also be used as base sensors to assess re-

viewer's cognitive load and engagement in reviewing tasks, as 

proposed in this paper. 

Although the use of EEG, HRV, and pupillometry as sources 

of cognitive information from programmers and reviewers is rel-

atively recent in the research literature, eye-tracking has been 

highly researched in the context of software development. More 

specifically, in the context of code review, Uwano et al. [41] used 

eye-tracking to characterize the performance of reviewers by an-

alyzing their fixation data and eye movements while performing 

the review. The results indicated that reviewers who do not spend 

enough time scanning the code would likely spend more time in 

defect detection. Sharif et al. [42] replicated and expanded 

Uwano et al.’s work [41] to investigate how individuals find de-

fects in source code by characterizing eye movements.  The au-

thors showed that the scanning time extracted from an eye-

tracker is significantly correlated with defect detection time and 

visual effort on lines with defects. 

Chandrika et al. [43] also used eye-tracking to understand the 

eye gaze behavior required for code review by both skilled and 

unskilled programmers. It was found that skilled subjects (i.e., 

better reviewers) tend to have eye-tracking traits such as better 

code coverage and attention span to error lines and comments. A 

recent work [44] conducted a study on 35 software engineers 

performing 40 code reviews while measuring their eye gaze. The 

authors could distinguish between time spent skimming the code 

vs. carefully reading it relying on eye-tracking. According to 

[45], careful reading is defined as "two standard deviations lower 

than the mean rate per person." 

Although to the best of our knowledge, there are no previous 

works in the literature proposing the use of biometrics to evaluate 

code reviews in terms of bug-finding effectiveness, as proposed 

in our paper, several previous works established the feasibility of 

key aspects of our proposal. Vrzakova et al. [46] address the af-

fect recognition of the code reviewers using physiological signals 

and mechanical signals (i.e., typing), showing that it is possible 

to unveil the reviewer state (valence and arousal). Several works 

have shown that it is possible to differentiate among several cog-

nitive states such as stress and cognitive load [47][48]. Detecting 

cognitive distractions (a cognitive state strongly related to human 

errors) has been an essential goal for the automotive industry, and 

eye-tracking sensors have proven effective [49]. Works from 

Fritz, Muller, et al. show that it is possible to assess task difficulty 

in software development [50] and to optimize software testing 

through the prediction of code quality using programmers' cog-

nitive load captured using HRV [51].  

Our early works combine HRV, Pupillography, and eye-track-

ing to annotate code lines with the programmer's cognitive states 

collected while attempting to comprehend such code lines 

[52][53]. In [52], it was possible to conclude that the changes in 

cognitive load were mainly associated with the appearance of 

outliers above the mean value. In [53], we concluded that one of 

the features that is possible to extract (Low_freq/High_freq) 

showed high variations during small sections of code (similar in 

size to the code regions in the present paper) where the high cog-

nitive load was expected. Once again, to capture this high varia-

bility (outliers), transforms need to be used. 

Since we use data-driven approaches to classify the code re-

view quality, it is relevant to examine previous works that used 

biometrics and data-driven approaches to assess programmers’ 

cognitive load and code comprehension. In [51], a Random For-

est classifier was used with HRV and EDA features to predict 

code quality. Floyd et al. [36] employed a Binary Gaussian Pro-

cess classifier with fMRI and show that tasks involving program-

ming languages and natural languages activate different brain ar-

eas, showing that it is possible to classify which task a participant 

is undertaking (code comprehension, code review and prose re-

view) based on brain activity. Fucci et al. [32] replicated the 

study presented in  [36] using lightweight EEG and EDA devices 
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and evaluated a comprehensive set of data-driven classifiers in-

cluding Naive Bayes, K-Nearest Neighbors, Decision Tree, 

SVM, Neural Networks, Rule-based, Random Forest, and Boost-

ing and showed that it is possible to distinguish between the dif-

ferent tasks (code versus natural language comprehension) with 

this much lighter setup.  Lee et al. [54] used EEG and eye-track-

ing and a Support Vector Machine classifier to predict program-

mer expertise (novice/expert) and task difficulty (easy/difficult). 

It is worth mentioning the exploratory nature of these previ-

ous works that used data-driven classifiers and the fact that most 

of them used high intrusive sensors such as EEG and fMRI that 

cannot be applied in real software development setups. The work 

presented in [51] is an interesting exception, as it predicts the 

quality of code using low intrusive sensors and random forest 

classifiers. 

In the proposed approach, presented in the next section, we 

use both domain knowledge and data-driven feature selection 

methods are applied. We are particularly interested in using ex-

plainable classification models like the KNN and the LR. The 

KNN is interestingly explainable, whereas the LR is relatively 

explainable through the odd ratio changes relative to features. 

3 THE PROPOSED APPROACH 

Figure 1 shows the key elements of the proposed approach. 

First, the code under review is divided into non-overlapping code 

regions to apply the code review quality assessment to relatively 

small code snippets that we call code regions instead of applying 

the technique to the entire code under review. If at least one code 

region is evaluated as not being well-reviewed that will be 

enough to classify the entire code review as not satisfactory and 

recommend a second look (i.e., a second review). 

 The definition of code regions in the code under review in-

cludes the following goals: 

• Resolution of the technique: code regions define the basic 

grain of resolution of the technique to allow the precise iden-

tification of specific code lines that have not been well-re-

viewed for bug finding. 

• Non-overlapping and syntactically consistent blocks of 

code: code regions do not split syntactic code constructs, al-

lowing an automatic process (using formal grammar) to de-

fine regions in the code under review. 

• Human scale in terms of readability: code regions repre-

sent code lines with a suitable size and complexity for a hu-

man reader. For example, the size of code regions must be 

limited to a given cap (in the evaluation of the technique 

presented in the paper, code regions have an average size of 

8.9 lines of code and a maximum of 14 code lines).  

This division of the code under review into regions is 

achieved using a parser to construct an abstract syntax tree during 

syntactic analysis and split it into sub-trees at the top-level con-

structs of the language. It is worth mentioning that the parser 

does not split syntactic code constructs. In other words, it does 

not break a block of statements inside a while/for loop and does 

not break apart the if portion from the else part of an if-else con-

struct (i.e., the beginning and end of a given region are at the 

same nesting level).  

Once the code is organized in regions, the complexity metrics 

of each region (Vg and LoC) are calculated using complexity 

metric tools to classify each region according to the complexity 

of the code snippet. The assessment of how well the reviewer 

understands each code region uses rule-based and explainable 

classifiers. For example, if the code lines the reviewer is looking 

at (obtained from the eye-tracker) are complex, and the cognitive 

load of the reviewer (data provided by biometrics) is low, this 

suggests that the reviewer is just skimming through the code 

snippet and is not making a real effort to understand such com-

plex code. Or, as another example, if the complexity of the code 

region is low and the cognitive load of the reviewer while look-

ing at those code lines is high, it suggests that the reviewer is 

having difficulties in comprehending such code or is distracted 

or mentally busy with something else. In both cases, the chances 

of overlooking bugs in the review of such code regions are high. 

It is worth mentioning that field studies show that bugs in de-

ployed software may reside in low complexity code as much as 

in high complex code [14] [55], meaning that even simple code 

must be reviewed with the same care of complex code. 

The eye-tracker is used to know when the reviewer looks at 

each code region and calculate region reading time and number 

of revisits. The reviewers' cognitive load is assessed from the 

physiologic signals collected by biometric sensors (i.e., ECG and 

Pupillography), which are processed for mapping the biomarkers 

with the corresponding code regions.  

Feature engineering techniques are used to mine the raw data 

for meaningful features according to the knowledge in the do-

main. The features include the code complexity, the reviewer ex-

perience level, the code region reading time, the code region re-

visits, and the cognitive load indexed by the HRV and the Pupil 

features. The selected features are used to classify the code re-

gions according to the code review quality, whether good or bad 

(see the middle-right part of Figure 1). The overall quality of re-

view is then provided with the indication of the code regions that 

 
Fig. 1. Schematic Diagram of the Approach 
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should be better reviewed and an explanation achieved using ex-

plainable AI. 

Our approach uses AI techniques to assess the quality and 

coverage of the code review by estimating how well the reviewer 

has comprehended different code snippets of the software under 

review. The AI role begins with the feature engineering of bi-

omarkers extracted from the biosensors, classification, and deci-

sion optimization. The features are selected in a knowledge-

driven and data-driven approach using Kruskal-Wallis (KW) 

based feature selection and Relief feature selection techniques 

[56][57].  KW is a computationally efficient non-parametric fea-

ture selection technique. It tests if two classes have an equal me-

dian and gives the value of P (low P values are selected for their 

discriminative power). On the other hand, the relief method is 

sensitive to feature interaction where it assigns weights to fea-

tures based on finding k-nearest neighbors for the same class fea-

tures and k-nearest misses for the other class. The classification 

is performed using an explainable conditional rule-based classi-

fier and a simple explainable classification model based on the 

KNN and the Logistic Regression. 

Concerning acquiring the heart signals for the HRV assess-

ment, our proposal for developing concrete tools for real code 

reviewing scenarios is to use non-intrusive and wearable sensors 

that can be fully integrated with the software development envi-

ronment. These sensors use wrist located Photoplethysmography 

(PPG) [58], typically done with bracelets/watches, which allow 

the assessment of reviewers' cognitive load using Pulse Rate Var-

iability (PRV). PRV is like HRV, with the difference that it is 

based on the heart signals inferred through PPG instead of using 

a direct electric signal (from ECG sensors) such as in HRV.  

Although we envisage the use of bracelets or watches with 

PPG for future concrete applications of the approach, in the eval-

uation of the approach presented in this paper, we used ECG sen-

sors for the acquisition of the heart signals and to perform HRV 

assessment of the cognitive load. Since this paper is mainly fo-

cused on the validation of the concept (and not on the evaluation 

of a concrete tool implementing the proposed approach), we de-

cided to use ECG sensors to ensure that we evaluate the idea 

using clean electric heart signals, removing the need of extra care 

in the experiments to ensure correct and consistent positioning of 

PPG watches in the wrists of the reviewers.  

The feasibility of using PPG instead of ECG sensors was em-

pirically shown by Pinheiro et al. [59]. They concluded that PRV 

could be a good alternative for HRV with significant correlations 

above 82% for time and frequency domain features. The results 

in [59] have also been attested by a recent and detailed study pre-

sented in [60]. The small delay (below 50 milliseconds [60]) in-

troduced by PPG is not relevant for the proposed application.  

The task-evoked pupillary response (pupillography) 

[20][61]is available in most eye-tracking systems, which are now 

more compatible with programming settings. The third type of 

wearable sensor that can also be used to measure electrodermal 

activity (EDA), also known as galvanic skin response, is known 

for its capacity of discriminating stress from cognitive load 

[47][48]. It is worth mentioning that in the experimental evalua-

tion done in the current study, we have not used EDA (but, obvi-

ously, the use of EDA as an additional source to assess the re-

viewer's cognitive state is totally in line with our proposal).  

The final key element of the proposed approach (see the box 

at the right-hand side of Figure 1) is the rule-based and data-

driven classification model that receives the best-selected fea-

tures from HRV, Pupillography, the complexity of the code re-

gion, time of reading the code region, and the number of code 

region revisits. The classifier then predicts the quality of the re-

view of each code region to provide the indication of whether the 

reviewer should review the code of a given region again or not. 

The design of the rule-based classification model considered 

established best practices of code reviews as described/proposed 

in [22][23] [26][27][28][29][41][44], as well as the expert opin-

ion of the co-authors of the paper that have considerable experi-

ence in code reviews. Both best practices and expert opinion 

align with the current proposal's fundamental idea that relies on 

perceiving the reviewer's code comprehension as the crucial in-

dicator of the effectiveness of a review. Table I summarizes the 

five criteria used to set up our rules, supported by a brief descrip-

tion of each one, and links each criterion with the code review 

Table I CRITERIA USED TO EVALUATE THE CODE REVIEW QUALITY IN EACH CODE REGION 

CRITERIA  DESCRIPTION EFFECTS ON CODE REVIEW QUALITY 

Reviewer's 

Cognitive Load 
The main goal of assessing cognitive 
load (CL) is to infer to what extent the 

reviewer comprehended the code under 

review. CL is derived from the HRV (or 
PRV) and Pupillography features.  

Extensive research has established a link between cognitive load assessment and code 
comprehension level [62]. Comprehension is a critical factor in an effective code review 

process. Bacchelli and Bird concluded that understanding is the main challenge when 

doing code reviews [8]. Dunsmore, Roper, and Wood supported the positive correlation 
between code comprehension and review effectiveness and quality [63] empirically. 

The complexity 

of the Code 

Region 

Based on the cyclomatic complexity met-

ric (Vg) and lines of code (LoC) 

The impact of code complexity on the difficulties perceived by reviewers in comprehend-

ing the code and detecting all bugs is not well established. However, Muller and Fritz in 

[51] used the code complexity metric and other features to predict code quality con-

cerns. Nonetheless, our studies [52][64] show that code complexity does not always cor-
relate with the subjective developers' perception of difficulty in comprehending code. 

Reviewer's Ex-

pertise 

The expertise here is in the context of 

programming skills. A written C exam 
was performed to distinguish between 

standards and experts.  

Sauer et al. [65] identified individuals' expertise as a primary key to improving code re-

view effectiveness. Other examples [66][67] showed a positive correlation between code 
review expertise and the number of defects found in the software, hence the code review 

quality.  

No of Revisits 

to the Code 

Region 

The number of revisits refers to the num-

ber of times the reviewer regresses to a 
specific code region. The number of re-

visits is extracted from the eye-tracker. 

Many studies linked the quality of reading the code with revisits or regression (e.g., 

[33][68]) In [68] Busjahn et al. show that difficult texts induce more frequent regressions. 
Usually, complex code takes more revisits from expert reviewers, which is interpreted as 

good review practice.  However, this is not always the case. Good code readers are char-

acterized by few revisits and short fixations in simple code review tasks.  

Time Spent 

Reviewing the 

Code Region 

(Reviewing 

Time) 

The sum of times spent in all (re)visits of 

the reviewer in a code region, including 
reading, comprehending, and analyzing 

the code to find bugs (extracted from the 

eye-tracker).  

Uwano et al. [41] show that the scan pattern reflects the cognitive action in code review. 

They show that the quality of the scan should significantly influence the individual effi-
ciency of detecting bugs in the review.  Authors show that the duration of scan time on 

specific code lines may indicate the strength of the reviewer and thus a high-quality re-

view.  
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quality established in the literature.  

In this approach, we use two classification models: the 

Knowledge-Driven rule-based Classification Model (KCM) and 

the Data-driven rule-based Classifier Model (DCM). The KCM 

has predefined rules defined by experts, as shown below in Table 

II, while the DCM is based on the data-driven machine learning 

classifiers, namely the KNN and the Logistic Regression. 

Table II shows the rules used in the evaluation of this ap-

proach. We understand that there is a wide range of possibilities 

for the definition of the set of rules and, very important, for the 

definition of the thresholds that determine the different catego-

ries of each criterion (e.g., reviewer's cognitive load high or low, 

code region simple or complex, reviewer expert or standard, 

etc.). Naturally, we know that many other alternatives do exist, 

particularly the ones that consider more categories for each cri-

terion instead of just a simple Boolean approach. Furthermore, 

we can also consider additional criteria such as the reviewer’s 

familiarity with the code, in addition to the five criteria shown in 

Table II. All these possibilities should be analyzed and evaluated. 

However, to keep the size of this paper within acceptable limits, 

we only propose the 32 rules using a Boolean approach for the 

different criteria. 

TABLE II. CODE REVIEW EVALUATION RULES 

Rule 

No. 

Cogni-

tive 

Load 

Region 

Com-

plexity 

Reviewer 

Expertise 

No. 

Re-

visits 

  Reading 

Time 

Quality of 

Review 

1 High High High High High Good 

2 High High High High Low Bad 

3 High High High Low High Good 

4 High High High Low Low Bad 

5 High High Low High High Good 

6 High High Low High Low Bad 

7 High High Low Low High Bad 

8 High High Low Low Low Bad 

9 High Low High High High Good 

10 High Low High High Low Good 

11 High Low High Low High Bad 

12 High Low High Low Low Good 

13 High Low Low High High Bad 

14 High Low Low High Low Bad 

15 High Low Low Low High Good 

16 High Low Low Low Low Bad 

17 Low High High High High Good 

18 Low High High High Low Bad 

19 Low High High Low High Good 

20 Low High High Low Low Bad 

21 Low High Low High High Bad 

22 Low High Low High Low Bad 

23 Low High Low Low High Bad 

24 Low High Low Low Low Bad 

25 Low Low High High High Good 

26 Low Low High High Low Good 

27 Low Low High Low High Good 

28 Low Low High Low Low Bad 

29 Low Low Low High High Good 

30 Low Low Low High Low Bad 

31 Low Low Low Low High Good 

32 Low Low Low Low Low Bad 

Most of the rules are relatively intuitive and easy to under-

stand even by non-experts. For example, suppose the time spent 

reviewing a code region is below a given threshold (see Section 

5.3 for the choice of threshold values used in the evaluation), 

then the review is most likely classified as a bad review. It is 

considered that the reviewer did not understand the code (it 
 

1 https://github.com/HaythamHijazi/Supplement   

would be impossible in such a short amount of time), especially 

if the reviewer is not an expert. Or, as another example, if the 

code is complex, the reviewer's cognitive load is low, and the re-

viewer is not an expert, the quality of the review for that code 

region is classified as low, no matter the number of revisits or the 

reviewing time. The rationale of this conclusion is that a low cog-

nitive load in non-expert reviewers indicates they are not trying 

to understand the complex code of such a region. 

The reasoning supporting some of the rules is not so trivial, 

such as the number of revisits to the code region that follows 

some observations provided in [69]. For example, depending on 

the expertise of the reviewer, the complexity of the code, and the 

reviewer's cognitive load, a high number of revisits may indicate 

a careful review (e.g., when the code is complex, the cognitive 

load is high, and the reviewer is expert) or may show that the 

reviewer is insecure and does not understand the code well (e.g., 

when the reviewer is a non-expert, the cognitive load is high, and 

the code is complex).  

The rules validation was performed by a panel of developers 

and code reviews experts in the following steps: 

• List all the possible combinations of features contributing to 

the code review quality (cognitive load, experience, review-

ing time, revisits, and code complexity).  

• Revisit the combinations independently based on their code 

review experience and best practices in code review reports. 

• The experts discussed each decision taking the average of 

their choices in the final form of the rules.  

• Coverage testing: this test aims to explore each rule’s fre-

quency of occurrence in the dataset.  

• The rule results were compared with the actual performance 

of the reviewers for further validation. 

In any case, these rules represent expert opinion on the most 

plausible outcome (i.e., quality of the review) for the different 

combinations of the five criteria presented in Table I and used in 

Table II. In some cases, the impact of each criterion on the rules 

is quite debatable. Take, for example, the criterion “No. of revis-

its to the code region”. If the number of revisits is high, it could 

mean hesitation of the reviewer or just the opposite, as the re-

viewer may be thoroughly confirming the content of the code re-

gion. As described in Table II (line 5), this individual criterion 

must be interpreted together with the expertise of the reviewer, 

the complexity of the code, and even with the cognitive load 

while analyzing the code region. 

The second model used in this paper is the data-driven rule-

based classification. In this model, we experimented with look-

ing at the approach from a different angle. We provide the clas-

sifiers with the best-selected features using Relief and Kruskal-

Wallis-based feature selection techniques, train the model, and 

predict the code review performance at the code-region level.  

4 EXPERIMENTAL SETUP AND DESIGN 

This section describes the controlled experiment designed to 

evaluate the proposed approach's accuracy. All the relevant data 

related (with the information related to individual participants 

fully anonymized) is available in this GitHub link1 as supplemen-

tary material for this paper.  

4.1 General Experimental Setup and Participants 

The experiment was designed to monitor the cognitive load 
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of reviewers using HRV and pupil signals while performing code 

reviews of different complexity. The Ethical Committee of the 

Faculty of Medicine of the University of Coimbra approved the 

study, following the Declaration of Helsinki and the standard 

procedures for studies involving human subjects. The subjects 

provided written informed consent, and all the data was anony-

mized. ECG was collected using BiosignalsPlux from Plux, and 

the pupil diameter was collected using an SMI eye tracker. Par-

ticipants also wore an EEG cap (with 64 channels) for validation 

purposes to confirm that reviewers' mental effort was measured 

accurately. The left side of Figure 2 shows the EEG cap with 64 

channels, and the right side shows the ECG sensors attached to 

the subject to evaluate the proposed approach. 

The subjects consisted of 21 male programmers/reviewers, 

ranging from 19 to 40 years, with an average of 22 years. These 

programmers participated on a volunteer basis and were selected 

from a pool of 49 candidates through an interview-based screen-

ing process focused on assessing their C programming skills. 

Three volunteers were professionals from the software industry 

(real code reviewers), and they have worked on code reviews 

during their careers. The other volunteers were Ph.D. and MSc 

students (from computer science fields) who have sufficient pro-

gramming and code review knowledge. Despite this mixture of 

professionals and students, the goal of the screening was to avoid 

selecting programming beginners. Additionally, we used a writ-

ten C programming test (see supplementary material1) to eval-

uate the programming skills of participants and filter out volun-

teers classified as "beginner" and would not realistically repre-

sent professionals in the industry (i.e., standards and experts on 

C programming). The 21 participants were classified into two 

skill levels: Standard: 16 participants and Expert 5 Participants. 

Participants who scored more than 7 out of 10 in the C test were 

considered Experts, while those who scored 4 to 7 out of 10 were 

considered Standard Reviewers. Participants that scored less 

than 4 (novices) were not considered. 

The Review tasks were presented to participants using Vizard 

software2, assuring the same conditions to all participants. For 

each participant (reviewer), the experiment is composed of 4 

consecutive runs, having a review task per run (one of the four 

programs is selected at random). Each run starts with a fixation 

cross shown in the middle of the screen for 30 seconds (i.e., a 

minimum stimulus in all runs) to get a baseline cognitive activity. 

Then three tasks are presented to the participant: natural lan-

guage reading (a literary excerpt), a neutral and straightforward 

(bug-free) code reading, and one code review task. To avoid 

skewing the experiment results, within each run, the order of the 

tasks was randomized. The order of the four code reviewing tasks 
 

2  https://www.worldviz.com/vizard-virtual-reality-software 

in each run was also randomized.  

The natural language reading and neutral code tasks served to 

gauge the neutral cognitive load of each participant to calibrate 

and compare to the biometric readings when that participant was 

engaged in code reviews. Subjects were explicitly told about the 

goals of each type of task, and the neutral code tasks were iden-

tified as having no bugs. Subjects were asked just to read the 

code. The code review tasks were also explicitly marked as code 

that may or may not have bugs, and no hint was given about the 

bugs themselves. 

Each review task was presented to the subject as a set of 

screens containing the code. The first screens showed a brief de-

scription of the code's goals and algorithm being reviewed, 

which is coherent with the actual code review tasks in the indus-

try, where reviewers are given as much information as possible 

about the code. The subjects were free to move from one screen 

to another at any time. For visibility reasons, each screen con-

tained at most 20 lines of code, and the lines were numbered. The 

subjects analyze the code, and if they suspect that a given line 

includes a bug, they will mark that line, which indicates a suspi-

cion of a bug. Subjects could additionally activate a button "bug" 

further to confirm their suspicion about that line of code. The bug 

suspicion could be canceled at any time by marking the line once 

again and then activating a button "clear. "All controls available 

to the subject for line selection (e.g., buttons, etc.) were virtual, 

i.e., buttons drawn on the screen. The only physical device used 

in the experiments was a joystick used as a pointing device.  

The review of the four programs (122 code lines) for each 

participant took about 1 hour, which is typically the maximum 

time recommended for industry code reviews. The participants 

and the four programs reviewed in the controlled experiment 

generated 84 code reviews (24 reviews were discarded due to 

missing one or more measurements from HRV and Pupil read-

ings resulting from setup problems that affected the acquisition 

of data in some runs and were only detected afterward). Consid-

ering that each program under review included one or more code 

regions, the remaining 60 reviews generated a total of 149 code 

regions reviews, which is a reasonable number of samples to 

show the approach's feasibility. 

One of the limitations in this stage is having all subjects as 

males. Unfortunately, in the call for voluntaries for this experi-

ment, we could not recruit any female code reviewer, which is a 

consequence of the strong gender imbalance in the software de-

velopment area, especially in tasks such as code programing and 

reviewing. 

4.2 Code Review Tasks 

The programs used in the code review tasks include both iter-

ative and recursive programs. One simple and one medium/high 

complexity for each category to avoid skewing the experiment 

results based on code paradigm or size (shown in Table III). The 

code size was limited by the amount of time it was feasible to 

maintain the subject in the experiment before the accumulated 

tiredness started to influence the results. The programs were the 

following: 

1. Bucket Sort ("bsort") implements a sorting algorithm. It is 

medium-size, iterative, and complex (Vg = 10). This is an 

Fig. 2. Experimental Setup EEG and ECG sensors 

https://www.worldviz.com/vizard-virtual-reality-software


This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

AUTHOR ET AL.:  TITLE 9 

 

example of data processing that one encounters when a 

library for data manipulation is unavailable. 

2. Fibonacci ("fibo") is the implementation of the algorithm that 

generates the Fibonacci sequence. It is small, purely 

recursive, and very simple (Vg = 2). Recursive algorithms are 

harder to find in the industry. However, many industry-

relevant languages rely on recursive algorithms, such as 

Haskell and Elixir. 

3. Hondt ("hondt") is implementing the Hondt algorithm for 

seat allocation after an election. This task is iterative, small-

sized, and medium complex (Vg = 5).  

4. Matrix Determinant ("matdet") implements the recursive 

algorithm that computes the determinant of square matrices. 

It is medium-sized, mostly recursive (Vg = 10). The matrix 

determinant is an example of complex nested code controlled 

by many variables, including recursive logic. 

The following table shows different features of the given pro-

grams: 
TABLE III. CODE REVIEW TASKS 

Task Type LoC Complexity No. of bugs 

bsort iterative 42 Vg = 10 4 

fibo recursive 9 Vg = 2 1 

hondt iterative 32 Vg = 5 4 

matdet recursive 39 Vg = 10 4 

Realistic types of bugs that can be found in deployed soft-

ware-based on findings of previous works (e.g., [70][71]) cover 

the most frequent ODC defect types [70][72], both Missing and 

Wrong cases. The bugs inserted do not cause syntactic errors and 

are not related to obscure aspects of language or libraries. In-

stead, they represent realistic software defects. The size of the 

programs limits the number of realistic bugs that can be inserted, 

which was one bug for Fibonacci and four bugs for each of the 

remaining programs. 

4.3 Code Regions Defined in Each Program 

As mentioned, the first step of the proposed approach is to (log-

ically) divide the program under review into non-overlapping 

code regions. Every region is a coherent sequence of code lines. 

Code regions represent the reviewing unit evaluated by the pro-

posed approach. We defined the regions of each program using a 

parser, and the complexity metrics were calculated using the 

Eclipse Matriculator plugin. Table IV shows the key features of 

the regions considered in the four programs under review. 
TABLE IV. CODE REGIONS 

Program Region Loc Vg No of bugs 

bsort Region 1 7 4 2 

bsort Region 2 8 2 0 

bsort Region 3 11 5 1 

bsort Region 4 11 3 1 

fibo Region 5 8 2 1 

hondt Region 6 2 1 1 

hondt Region 7 11 3 2 

hondt Region 8 12 3 1 

matdet Region 9 9 4 0 

matdet Region 10 14 4 3 

matdet Region 11 6 3 1 

matdet Region 12 8 2 0 

Notice that not all the code lines indicated in Table III were 

included in the regions shown in Table IV. The following chunks 

of code were not considered: a) function prototypes and b) lines 

of variables declaration without initialization at the very begin-

ning of functions. We are aware that some bugs might occur at 

either point. However, because of the code complexity metrics 

computation, we left these code lines unpartitioned, and we did 

not insert any bugs in these two exceptions. 

5 BIOMETRIC SIGNALS ANALYSIS AND CODE 

REGIONS CLASSIFICATION 

This section describes the preprocessing and the analysis per-

formed on the biometric signals to capture the cognitive load in 

the biometric measures. We also show the two methods applied 

to classify each code region as either bad or well-reviewed. The 

classification is performed per code region after mapping the bi-

ometric measures to each code region using the timestamp index.  

5.1  HRV Analysis and Features 

The ECG signals were recorded at a sampling frequency of 

10kHz (much higher than the required Nyquist frequency to 

avoid aliasing). After down-sampling the data to 1kHz, we used 

a standard Pan-Tompkins segmentation algorithm to extract the 

R-R intervals [73]. The spectral power ECG's R-R interval vari-

ability was assessed using 25 seconds, and a sliding window 

shifted with 1-sec increments.  

Our goal is to detect whenever a difficulty occurs in under-

standing a code region. Since code regions under review consist 

of multiple LoC, the 25 seconds time window used to assess the 

R-R interval variability and extract the HRV features is adequate, 

even for code regions that have just a few LoC. The 25 second 

time window is also enough to accommodate the natural delays 

(e.g., the delay between stimuli and heart response) into consid-

eration. In [74], it is stated that it takes about 5 seconds to in-

crease HR after the onset of sympathetic stimuli and almost 20-

30 seconds to reach its steady peak level. The power spectrum 

was computed using Burg's autoregressive power spectrum ap-

proach [75]. To capture the sympathetic and parasympathetic ac-

tivations, several features from the time and frequency domain 

have been computed (e.g., absolute and relative area/peak of the 

spectrum low frequency, high frequency, and their ratio). From 

these features, several transforms (mean, std. deviation, median, 

min, max, and quantiles and peaks) have been calculated to ac-

cess a discriminant HRV index for each code region under anal-

ysis. In the first batch of evaluation (i.e., rule-based classifica-

tion), we used that correlate best with the complexity of the re-

gion being analyzed, namely, the 0.75 quantiles of the relative 

area of the spectra high-frequency interval (fsHRV).   

As input to the rule-based classifier, since the selected feature 

presented a negative correlation, the log(1/fsHRV) was calcu-

lated within each code region and used to surrogate the cognitive 

load. This negative correlation was expected because the mental 

workload is associated with sympathetic activation (an increase 

of low frequencies) and parasympathetic withdrawal (decrease 

of high frequencies) [76]. 

 For the sake of interpretability in the rule-based-classifier, we 

started with a minimal number of HRV features by selecting the 

most discriminant. However, in the comprehensive evaluation to 

unveil other HRV features, we used Kruskal-Wallis-based feature 

selection and Relief feature selection techniques [56][57]. The 

selected features represented the HRV time domain, such as the 

Approximate Entropy, which changes concomitantly with acute 

responses to cognitive load and stress, as shown in [77]. The 

HRV frequency domain peaks quantile (0.75 and 0.95). Some ul-

tra-short features such as SDNN and RMSSD were used for fine-

grained analysis (e.g., [78]). 

5.2 Pupil signals Analysis and Feature 

 Eye pupil response is recognized as an indicator of cognitive 
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and mental efforts. Researchers in [20][61], for example, estab-

lished the evident association between pupil activity and atten-

tional, cognitive efforts. Kahneman and Beatty described in [79] 

that when a person recalls something from memory or attempts 

to parse sentences, the pupil dilates slightly and returns to its nor-

mal size after the task is done. This reaction was called task-

evoked pupillary response (TEPR) [20]. In our work, the fre-

quency domain features of the pupil diameter change have been 

calculated using the same approach used in the HRV analysis, 

along with its transforms, as described in the previous section, 

and the extracted features transforms were used in the setup of 

the proposed classification models that will be illustrated in the 

next section. 

5.3 Code Review Quality Classification 

After performing the pre-processing and the analysis on the 

biometric signals, we map those signals to each code region of 

the programs using synchronous timestamps. We know from the 

eye-tracker at what time the reviewer was looking at a specific 

code region. This timestamp helps to map the biometric signals 

(i.e., measures) to each corresponding code region. We perform 

the code region classification from two perspectives: the 

knowledge-driven rule-based classification model (KCM), built 

according to the rules shown in Table II, and the data-driven clas-

sification model (DCM) using the KNN and Logistic Regression 

classifiers, which were chosen for explainability purposes.  KNN 

is known as an instance-based, highly accurate classifier that 

does not need a training phase. Likewise, Logistic Regression is 

chosen because it is easy to implement, interpret, and suitable for 

the limited set of data we currently have.  

As for the KCM, to classify the code review, the rules defined 

in Table II have been applied using thresholds that experts in the 

domain defined to each feature shown in Table V. After the 

thresholds had been identified, all the features indicated in Table 

V were labeled "High" or "Low" for each code region. We ap-

plied the rules in Table II to the data we collected in the con-

trolled experiment.  

The output results of the model are computed using the stand-

ard classification performance metrics and conditional ratio met-

rics. For example, if we consider the code region reviews that are 

classified as good while the reviewer has detected all bugs, the 

formula will be:  

 𝑃(𝐺𝑜𝑜𝑑 𝑟𝑒𝑣 | 𝑎𝑙𝑙 𝑏𝑢𝑔𝑠 𝑑𝑒𝑡𝑒𝑐𝑡) =  
𝑃 (𝐶𝑙𝑎𝑠𝑠𝑓.  𝑔𝑜𝑜𝑑 ∩ 𝑎𝑙𝑙 𝑏𝑢𝑔𝑠 𝑑𝑒𝑡𝑒𝑐𝑡. )

𝑃 (𝐶𝑙𝑎𝑠𝑠𝑓.  𝑔𝑜𝑜𝑑 𝑟𝑒𝑣)
 (1) 

The ideal case is to predict a good code review when the 

reviewer has detected all bugs in the code region (and to pre-

dict bad code review when not all bugs have been detected).  

As we can see also from Table V, in KCM, the best biometric 

features that represent the cognitive load of reviewers are the 

LF/HF ratios of the HRV. In contrast, the DCM approach is built 

on the KNN and Logistic Regression. Since this approach is data-

driven, the biometric features were upgraded to include 791 HRV 

and Pupil response features. Those biometric features were aug-

mented with a) code region reviewing time, b) code complexity, 

c) the number of revisits of the code region. The augmented fea-

tures vector is then fed into a feature selection module using the 

Kruskal-Wallis-based feature selection and Relief feature selec-

tion techniques mentioned earlier. The best ten selected features 

were: HRV frequency domain peaks mean, the code complexity, 

the HRV frequency domain peaks quantile 0.95 and the LF/HF 

ratio, the pupil diameter peaks median, the HRV time-domain 

SDNN, and RMSDD, the pupil diameter peaks mean, the pupil 

diameter quantile 0.85, the expertise, the time inside the area, and 

the revisits.   

The classification classes were derived using the f-beta meas-

ure [80] of the subjects' performance. F-beta represents the har-

mony between the precision and the recall of the participant’s 

TABLE V. KCM FEATURES AND THRESHOLDS 

Feature Threshold 

Cognitive Load − LOW: <=1 .5 * baseline (mean/median of the text reading phase) 

− HIGH: > 1.5 * baseline (mean/median of the text reading phase) 

Code complexity − LOW - simple code: Vg <=4 

− HIFG - complex code: Vg >= 5 

Expertise − LOW - standard reviewer: score of written test > 4 and < 7 out of 10 

− HIGH - expert reviewer: score of a written C test >= 7 out of 10 

No of revisits − LOW: No of Revisits < 15:  

− HIGH: No of Revisits>15 

Reviewing time − LOW:  Region complexity low and reviewer's expertise low and reading time (sec) < 4 * LoC of the region 

− HIGH: Region complexity low and reviewer's expertise low and reading time (sec) >= 4* LoC of the region 

− LOW:  Region complexity low and reviewer's expertise high and reading time (sec) < 2 * LoC of the region 

− HIGH: Region complexity low and reviewer's expertise high and reading time (sec) >= 2 * LoC of the region 

− LOW:  Region complexity high and reviewer's expertise low and reading time (sec) < 15 * LoC of the region 

− HIGH: Region complexity high and reviewer's expertise low and reading time (sec) >=15* LoC of the region 

− LOW:  Region complexity high and reviewer's expertise high and reading time (sec) < 10 * LoC of the region 

− HIGH: Region complexity high and reviewer's expertise high and reading time (sec) >=10 *LoC of the region 

Comments 

Cognitive load is assessed through the LF/HF variability of the HRV and pupillography. The threshold was decided through analysis of the data col-

lected from all the participants in the experiment using 1.5* baseline (mean/median of the text reading phase) as threshold criteria. 

Code complexity is measured using cyclomatic complexity (Vg). The threshold was decided using common practices concerning the complexity of the 

code in unit testing and code reviewing. 

Reviewer's expertise was previously assessed by a screening interview and a written C programming test that produced a score on a 0 to 10 scale. The 

threshold was decided by the experts (co-authors) that defined the written C programming test. Low expertise corresponds to the Standard reviewers, and 

high expertise correspond to the expert reviewers 

Revisits are counted using the eye tracker and indicate the number of times the reviewer went back to the code region to review it again. The threshold 

was decided considering 1.5*mean number of revisits of all subjects in the experiment 

Reviewing time is measured directly through the eye tracker. The thresholds were decided by experts considering several criteria that influence the read-

ing time, such as the code complexity, the reviewer expertise, and the number of code lines.  
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performance. Therefore, f-beta would characterize the essence of 

missing bus/identifying wrong bugs. The following formula 

gives the f-beta measure: 

𝑓𝑏𝑒𝑡𝑎 =  
(1 + 𝑏𝑒𝑡𝑎2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝑏𝑒𝑡𝑎2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
                               (2) 

 With beta = 2, we are giving more weight to the recall than the 

precision. This priority is because the false negatives (i.e., miss-

ing bugs) should be penalized in the code review evaluation. In 

real environments, companies can present different priories (i.e., 

different beta).   

We hypothesize that missed bugs (even wrongly identified 

bugs) would be a matter of code comprehension challenges, 

stress, or distractors that would affect the code review quality and 

reviewer’s focus. Because we are using a binary classification 

problem, a set of thresholds was tested to return a value of either 

0 or 1 from the f-beta values. A threshold of 0.70 was determined 

after empirical experiments (testing thresholds against classifiers 

accuracy) and visualization of the data distribution visualization. 

We noticed that 0.7 is the closest value to dividing the data dis-

tribution between the good/bad performing participants. We ob-

served that those who scored more than 0.7 on the f-beta measure 

had reasonably acceptable performance in terms of false nega-

tives and false positives. In other words, the label of features is 

considered one or good review when the f-beta>= 0.70 and 0 or 

bad review otherwise.  

6 RESULTS AND DISCUSSION 

Before evaluating the accuracy of the proposed approach with 

both KCM and DCM models, we analyzed each participant's per-

formance in terms of bugs found, as shown in Figure 3 below.  

We noticed a wide amplitude of results, ranging from 0 precision 

and 0 recall to more than 0.9 precision and more than 0.75 in the 

recall. Participants 5, 6, and 11 performed the worst; participants 

15, 16, 17, 18 (Experts) performed the best, having an above-

average performance in terms of recall. The remaining ones show 

a well-dispersed across these extremes.  

Experts were 49% better than the average of precision of all 

participants and 91% better than the participants’ average of re-

call, confirming previous works that measured big differences in 

the quality of individual reviews [65][66][67].  Figure 3 shows 

us an interesting scenario to study as we can use the disparity of 

participants to relate to differences in the HRV and pupil signals 

collected during the experiments. In the end, the proposed ap-

proach would be particularly useful when the reviewers are not 

experts, which is the case for most of the reviewers used in our 

experiment. In fact, non-experienced reviewers tend to miss bugs 

in code reviews, which means that the review quality evaluation 

provided by our approach could be a useful tool telling the re-

viewers to repeat the review process in certain code regions.  

From a task view, Figure 4 shows the average performance of 

participants (in terms of precision and recall) of finding the bugs 

is highly dependent on the program under review. We notice that 

the most straightforward program (i.e., “Fibo”) has the best per-

formance across the participants. In contrast, problematic pro-

grams such as the “Bsort” and the “Hondt” have relatively low 

performance, especially in the recall. Going deeper in the analy-

sis, we observed that the complex programs such as the Matdet 

and the Bsort had the highest mental effort according to the 

NASA-TLX [81] that was distributed among participants (i.e., 

after each task participants scored their subjective assessment of 

mental effort, pressure with time, task fulfillment, and discom-

fort). In contrast, Fibo had the least mental effort score and the 

highest feeling of task fulfillment.  

6.1 KCM Evaluation 

To evaluate the knowledge-Driven Rule-Based Classification 

Model (KCM), we attempt to show that assessing the fine-grain 

code comprehension of the reviewer in each code region and ap-

plying a set of rules can give us an automated technique (i.e., the 

proposed approach) to evaluate the quality of code reviews and 

identifying code regions that should be reviewed again. After 

classifying the cognitive load in each code region of the pro-

grams, we applied the rules shown in Table II, defined by a panel 

of experts in the domain. We calculated the results by taking the 

average of all code regions in the programs. The results are dis-

played in Table VI.  

Fig. 4. Performance of participants across programs 

Fig. 3. Individual Performance of participants in Code Review tasks 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2022.3158543,
IEEE Transactions on Software Engineering

12 IEEE TRANSACTIONS ON JOURNAL NAME,  MANUSCRIPT ID 

 

Note that we know the number of bugs effectively detected 

by the reviewers in each code region. Thus, we could calculate 

necessary evaluation measures such as the True Positives (found 

the bug) and False Negatives (missed the bug). These measures 

enabled us to label each code region as either: “not all bugs were 

detected” or “all bugs were detected.” These labels helped us 

evaluate the rules by comparing the prediction of the rules (i.e., 

good/bad review) with the label (i.e., ground truth). The ideal 

case would be achieving 100% in columns A and B in Table VI. 

Column A indicates that the rule predicts the review as bad when-

ever a reviewer leaves some bugs undetected. Column B shows 

that the rules predict the review as good whenever a reviewer 

detects all bugs in the code region.  

TABLE VI. KCM EVALUATION 

PO-

GRAM 
A B C D 

ALL  84.62%±0.57 47.97%±0.88 15.38%±0.06 52.03%±0.08 

BSORT 84.21%±1.03 37.93%±1.37 15.79%±0.10 62.07%±0.14 

FIBO 100.00%±0.00 76.92%±2.2 0.00%±0.00 23.08%±0.22 

HONDT 100.00%±0.00 19.44%±012 0.00%±0.00 80.56%±0.12 

MATDET 66.67%±1.33 68.89%±1.33 33.33%±0.13 31.11%±0.13 

A: Predicted bad/ not all bugs were detected 

B: Predicted good/ all bugs were detected 

C: Predicted bad/ all bugs were detected 

D: Predicted good/ not all bugs were detected 

As we observe in Table VI, the KCM approach predicts the 

review as bad 84.62% of the time in all the programs, when the 

reviewer left some bugs undetected (i.e., it is needed to review 

the code again). Concerning each program, KCM indicates the 

review as bad 84.21% when the reviewer left some bugs unde-

tected in the “Bsort.” We can also observe that in “Fibo” and 

“Hondt,” KCM indicates that 100% of the time, the approach 

marks the review as bad when not all the bugs were detected. 

Column C and Column D in Table VII should, in the ideal case, 

indicate low percentages. Column C represents that the KCM 

would predict the review as bad, but the reviewer has detected all 

the bugs. KCM indicated this case 15.38% of the time in all the 

programs. 

In contrast, Column D shows that KCM would predict the re-

view as good, but the reviewer missed some bugs. We can see 

that KCM was not as successful in this case as it was in Column 

A, especially in “Bsort” and “Hondt.” In “Hondt,” the first sec-

tion has just two lines of code with one bug. Most of the review-

ers missed that bug in the two lines of “Hondt.” However, the 

KCM predicted the region as “Good” most of the time as review-

ers in this simple region had good reading time with relatively 

low revisits. Still, in the end, they could not detect that tricky bug 

injected within the two lines.   

We conclude that KCM could perform well in most of the 

programs (84.62% of accuracy in the most important result, 

which is classifying the review as bad when in fact, the reviewer 

did not find all the bugs), but not in all of them. The analysis 

shows that thresholds defined by experts may sometimes fail to 

capture the actual performance of the reviewer due to the dy-

namic nature of programs under review, expertise, code com-

plexity, and other factors. Furthermore, some code regions (i.e., 

regions 2, 9, and 12) are bug-free. Thus, the label of these regions 

is always “all bugs were detected,” either if the KCM predicted 

“good” or “bad” for the review quality, which complicates, even 

more, the task of predicting the quality of code region reviews 

for the results in column D.  

It is worth noting that we are using a Boolean approach for 

each criterion (i.e., cognitive load high/low, code complexity 

high/low, etc.), which makes the definition of the thresholds very 

critical for the result. Thus, in our data-driven approach (i.e., 

DCM), we are examining the role of AI techniques to dynami-

cally set the thresholds and unveil the hidden structure of the 

data. In the next section, we show the evaluation of the DCM. 

6.2 DCM Evaluation 

Here we evaluate the data-driven rule-based classification model 

(DCM) built on the K-nearest neighbors (KNN) and Logistic Re-

gression (LR) classifier. We examined two different cross-vali-

dation techniques. First, we used the hold-out cross-validation, 

where the data was split into 33% testing and 67% training and 

validation. Second, we applied Leave One Subject Out Cross 

Validation to ensure the capacity of the model to generalize 

whenever an unseen subject is tested. The model received bio-

metric and non-biometric features selected by Kruskal and Relief 

techniques. The biometric features from HRV and Pupil response 

included the following:  a) HRV SDNN, b) HRV RMSDD, c) 

Very Low Frequency of HRV peaks and LF/HF ratio, d) Very 

Low Frequency of spectrum of normalized pupil peak, e) Median 

of pupil peaks. 

The non-biometric features included the code complexity, the 

expertise level, the reading time, and the number of revisits. The 

multimodal features were labeled using the f-beta measure labels 

(Formula 2) in each code region. The predicted values of the clas-

sifiers were used to derive the exact measures of the KCM shown 

in Table VII (columns A, B, C, and D) to compare the two mod-

els. The following table shows the performance of the DCM ap-

proach. 

TABLE VII. DCM EVALUATION 

PRGRAM A B C D 

K-NEAREST NEIGHBORS (KNN) 

ALL  84.85%±5.94 70.27%±7.57 15.15%±5.94 29.73%±7.57 

BSORT 87.10%±5.55 66.67%±7.81 12.90%±5.55 33.33%±7.81 

FIBO 100.00%±0.00 90.91%±4.76 0.00%±0.00 9.09%±4.76 

HONDT 94.74%±3.7 85.71%±5.8 5.26%±3.70 14.29%±5.80 

MATDET 61.54%±8.06 77.14%±6.96 38.46%±8.06 22.86%±6.96 

LOGISTIC REGRESSION (LR) 
ALL  86.57%±5.65 68.00%±7.73 13.43%±5.65 33.00%±7.79 

BSORT 92.31%±4.41 50.00%±2.28 7.69%±4.41 50.00%±7.28 

FIBO 100.00%±0.00 90.91%±4.76 0.00%±0.00 9.09%±4.76 

HONDT 95.24%±3.53 80.00%±6.63 4.76%±3.53 20.00%±6.63 

MATDET 64.71%±7.92 83.87%±6.09 35.29%±7.92 16.13%±6.09 

A: Predicted bad/ not all bugs were detected 

B: Predicted good/ all bugs were detected 

C: Predicted bad/ all bugs were detected 

D: Predicted good/ not all bugs were detected 

DCM evaluation in Table VII shows that the approach pre-

dicts the reviews as bad 84.85% and 86.57% when the reviewer 

left some bugs undetected in the whole set of programs by KNN 

and LR, respectively. Although this value is like the one obtained 

using KCM, the value in the remaining columns of Table VII pre-

sents much better performance. In column B, DCM predicts that 

the review is good 70.27% and 68.00% of the time when the re-

viewer detected all the bugs in the code regions as classified by 

KNN and LR. The results in column C are also quite good, 
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showing that classifiers’ decisions tend not to suggest reviewing 

again (i.e., classify as bad review) when all bugs have been de-

tected, only in 15.15% and 13.43% of the cases classified by the 

KNN and the LR the code regions as bad reviews when the re-

viewer has discovered all the bugs.  

It is worth mentioning that these results were obtained at the 

code review level, which is a fine grain evaluation of the review 

quality. Although the reviewers' subjective assessment per-

formed through the NASA-TLX revealed that they feel accom-

plished about their task in “Fibo,” the approach could efficiently 

predict the regions where they could not detect all the bugs as 

badly reviewed. 

Concerning each program, DCM tells us that 87.10% and 

92.30% of the review is predicted bad by the KNN and the LR, 

respectively, when the reviewer missed some bugs in the “Bsort.” 

We can also observe that in “Hondt,” the KNN and the LR clas-

sifiers predict 94.74% and 95.24%, respectively, of the time, the 

review as bad when the reviewer missed some bugs. Interest-

ingly, in Matdet, we could notice how KCM outperformed the 

DCM in predicting bad reviews.  

Nonetheless, we could relate the good performance of the 

DCM from the capacity of the KNN to perform well, given the 

limited dataset and number of features. The LR also showed the 

ability to tune the thresholds to decide the class as either 0 for 

bad review or 1 for the good review. In the case of DCM, the 

thresholds are dynamically updated and adapted to each re-

viewer’s patterns.  In Table VIII, we show the general perfor-

mance of the KNN and the LR classifiers from the standard form 

of classification performance, including the accuracy, precision, 

recall, and the F1-score. The recall here embeds a critical perfor-

mance metric which is the True Negative. True Negatives, as de-

scribed earlier, represent the missed bugs in the code regions. 

TABLE VIII. CLASSIFIERS PERFORMANCE 

Class  Precision  Recall  F1-score 

K-nearest neighbors (k=3) 

Bad review  80.00%±4.02 70.00%%±0.11 74.10%±0.21 

Good review 60.01%%±1.24 72.00%%2.30 66.20%%±0.78 

Accuracy  70.30%%±0.34 

Logistic Regression     

Bad review  81.00%±1.33 78.00%±0.11 77.10%±0.21 

Good review 65.31%%±2.30 72.00%%0.80 71.60%%±0.89 

Accuracy  73.70%%±1.60   

From the table above, the recall tells that 70.00% and 78.00% 

of the time, the classifiers correctly predicted the "bad review" 

from the actual bad reviews, with 70.30% and 73.70% KNN and 

LR accuracy, respectively. The chance level was calculated after 

shuffling the features with the labels 100 times randomly; the 

score of the random classification was significantly less than the 

accuracies mentioned in Table VIII with a p-value: 0.004. The p-

value here is the classic p-value in hypothesis testing and repre-

sents the probability that the classification score would be ob-

tained by chance. 

 The predicted values of code review performance were tested 

against the actual values of the reviewer’s performance. Using 

the Spearman ranking correlation test, the rho value= 0.85 and 

with p-value= 0.001, which indicates a strong association be-

tween the predicted and actual values. Spearman was used due to 

the non-normality of the data distribution shown by Shapiro-

Wilk’s method.  

6.3 Overall Code Review Evaluation and Explainability 

of The Results 

This section describes how the overall outcome of the code re-

view evaluation comes to the user.  

In KCM, if the triggered rule (in Table II) indicates a bad re-

view in one of the code regions, the approach localizes that code 

region through the eye-tracker and identifies it as a “red region” 

that should be reviewed again. The approach is conservative as it 

is enough to have one region to classify the whole review as a 

“bad” (and, for example, reject the proposed change to the code 

in a pull request). 

 It is easy in KCM to justify the rejection of the review be-

cause we know the rules defined by the experts. Imagine, for ex-

ample, that a non-expert reviewer reviewed a complex code re-

gion, and this reviewer’s cognitive load was low while reviewing 

that code. If this reviewer performed an insufficient number of 

revisits to that complex code region and did not read that code 

carefully (low reviewing time in the region), then the approach 

will trigger rule 24 in Table II. (rule with the combination men-

tioned before) and classify this code region as “bad” reviewed. 

Thus, the code review evaluation outcome would indicate that 

the reviewer should consider the entire review again while show-

ing the problematic code regions.  

In DCM, we do not have such predefined rules to justify the 

rejection or the acceptance of a code review. However, it is worth 

noting that in practical terms, when the global classification of 

the code review is classified as bad, the indication of the specific 

code regions that caused such classification is helpful infor-

mation to tell the reviewer which code lines should be reviewed 

again. In practice, the approach will allow both KCM and DCM 

to operate depending on the software company priorities (e.g., 

accuracy vs. high interpretability).  

Nevertheless, KNN and LR are considered explainable mod-

els. Although KNN has no parameters to learn, and thus, not in-

terpretable on the modular level, it can explain the prediction at 

the local level. For example, we can observe the k neighbors clas-

sifier that was used to obtain the prediction of the code review. 

The locality of the model interpretation is relevant as we deal 

with the code region's level of granularity. The outcome of the 

approach can tell the code reviewer that, for instance, the code 

region was predicted as badly reviewed as it resides within a re-

gion of cases that have a high cognitive load and low complexity 

code region.  

Regarding the LR interpretability, the LR uses the logistic 

function to transform the weighted sum into probability between 

0 and 1. The way to interpret the LR is to witness the prediction 

changes when one of the features increases by 1 unit. The ratio 

of the two predictions (before and after increasing the feature 

value) can be an index of the feature importance in producing the 

prediction decision at the end.   

6.4 Results validation using EEG 

Our work hypothesizes that biomarkers extracted from HRV 

and Pupillography using biometric sensors could surrogate the 

cognitive load induced by the mental effort in the code review 

task. We hypothesize that using reviewers’ cognitive load meas-

ured using HRV and Pupillography from non-intrusive wearable 

sensors (i.e., compatible with software development environ-

ments) is accurate enough to assure the feasibility of the pro-

posed approach.  Since the ANS signals do not flow directly from 

the brain (such as EEG signals) but rather from the peripheral 

expressions of the ANS, we believe it is essential to validate the 
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accuracy of the cognitive load measured using HRV and Pupil-

lography when compared to the measurements obtained using 

EEG. Although plenty of papers show that HRV and Pupillog-

raphy can be used to measure cognitive load (e.g., [18][19][20]) 

we want to ensure further that they can be applied to intellectu-

ally complex and abstract tasks such as code reviews. Medeiros 

et al. [82] showed that EEG biomarkers could be used to fine-

tune or validate the results obtained with ANS signals, which can 

be acquired using non-intrusive wearable devices. 

This section presents an additional layer to the validation of 

the results using EEG biomarkers. EEG can be a robust measure 

to understand brain mechanisms behind mental tasks such as 

code comprehension and code reviews. To examine this valida-

tion empirically, a 64-channel EEG cap was used to record brain 

activity during the experiment that included the code review 

tasks described in Section 5.2.  A standard preprocessing pipeline 

was performed to guarantee a reasonable signal-to-noise ratio of 

the neural signals for the remaining analysis. The preprocessing 

comprised different steps (see [82] for more details): (i) reduc-

tion of MR-induced EEG artifacts (gradient artifact and pulse ar-

tifact) due to the nature of the experimental protocol designed; 

(ii) standard pipeline where filtering, noisy channels interpola-

tion, re-referencing, and blind source separation steps were per-

formed to remove additional typical EEG artifacts (i.e., noise in 

the signal due to power lines and other equipment).  

After the preprocessing of the EEG signals was performed, a 

feature engineering phase was completed. From the 60 prepro-

cessed EEG signals, different standard features reported in cog-

nitive state assessment studies were extracted for further analy-

sis. In the context of cognitive state assessment, the most promi-

nent and explored features are related to the spectral band power 

from the EEG bands (Delta, Theta, Alpha, Beta, and Gamma). In 

the feature extraction, linear univariate features (statistical fea-

tures, Hjorth parameters, and spectral power features) and non-

linear univariate features (Higuchi fractal dimension and Hurst 

exponent) were considered and extracted using a 1-second win-

dow with an 80% overlap. Then, second-order features (maxi-

mum, minimum, mean, standard deviation, and median) were 

computed to capture and enhance the software programmer's 

mental state.  In the end, a total of 10,500 features were extracted 

(60 channels x 35 types of features x 5 second-order features). 

If we use the EEG features to train the same classification 

model used by the ANS biomarkers (with the same labels) and 

we achieve similar performances (i.e., accuracy, precision, and 

recall), we can claim that EEG could verify the ANS biomarkers 

captured through non-intrusive biofeedback devices. To achieve 

this, we performed the following: a) a total of 10500 EEG 

features that correspond to each code region were fed into the 

Kruskal-Wallis-based feature selection, and Relief feature selec-

tion techniques, then the top 5 features from each technique were 

selected. The best features were as follows: 

1) The maximum ratio of Theta Power / Beta Power from 

electrode C1. 

2) The maximum ratio of Theta Power / Beta Power from 

electrode TP8. 

3) The median of the relative power of Theta from elec-

trode C6.  

4) The maximum ratio of Theta Power / Beta Power from 

electrode P2 

5) Median of the ratio Theta Power / Gamma Power from 

electrode PO3 

As we can see from the selected features, the Theta band is 

dominating in all the features. This result complies with the stud-

ies that associated Theta band with the mental workload or the 

error making see [83].  

We used the leave-one-subject-out cross-validation 

(LOSOCV) to assess the proposed model. Selecting LOSOCV 

could ensure the capacity of the model to generalize whenever 

unseen instances of data appear in the testing. These selected 

EEG features in isolation of the other features (i.e., code com-

plexity, experience, scan time, revisits) were fed into the same 

classifiers to train the EEG features on the same label used in 

code regions classification. Likewise, the top selected ANS fea-

tures were provided to the KNN and the LR using the same cross-

validation technique (i.e., LOSOCV). We analyzed both classifi-

ers (EEG and ANS classifier) to compare the performances.  

The null hypothesis (H0) states that no significant difference 

exists between the two classifiers in terms of performance. In 

contrast, the alternative hypothesis (H1) states there is a signifi-

cant difference between the two classifiers’ performance. To test 

the hypothesis, we used the T-test (after testing the normality us-

ing Shapiro Wilk) at two significance levels of α = 0.05 and 0.01. 

The results failed to reject H0 with a p-value of 0. 45. Thus, we 

conclude that both classifiers equivalently perform, and there 

would be no significant differences in their performance.  

Figure 5 shows that both EEG classifiers and ANS classifiers 

(HRV and Pupillography) are performing similarly. Both classi-

fiers correctly marked the "bad" review using either EEG or the 

ANS biomarkers with high recall in both classifiers (i.e., the EEG 

and the ANS). The same classifiers were tested against randomly 

shuffled features/targets, and the performance was significantly 

less than the original classification results with a P- value=0.03 

As we can see from the performance, using ANS biomarkers ex-

tracted from available biofeedback devices can surrogate the 

cognitive load of the individuals. In other words, the ANS bi-

omarkers could capture the cognitive load induced by the code 

comprehension and review as well as the EEG biomarkers could 

do. This result aligns with what Medeiros et al. [82] have 

achieved, showing that EEG can assess programmers' cognitive 

load accurately. Still, its intrusiveness compared to ANS signals 

is less prevalent in practice and natural software development en-

vironments. 

7 THREATS TO VALIDITY 

Although the evaluation results of the approach are promis-

ing, there are some limitations in our experimental evaluation 

that we discuss in the next paragraphs as possible threats to our 

approach validity.  

Fig. 5. EEG and ANS performance comparison in the same code regions 
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Internal Validity: in our study, internal validity issues deal 

with the data acquisition environment. Data were acquired in a 

controlled experiment with the typical constraints of laboratory 

environments. Although we have assured all the participants that 

their performance as code reviewers were not under evaluation 

in any circumstances, it is impossible to avoid the “feeling of be-

ing observed”, which could be amplified by the biometric sensors 

and the eye tracker. A real code review environment, in contrast, 

can be more dynamic with extra mind-wandering tasks (e.g., 

switching between tasks and interruptions). However, our focus 

was to evaluate the accuracy of the proposed approach, which, in 

our view, justifies the controlled code review environment used 

in our experiments.  

 Construct Validity: this study's construct validity touches on 

different aspects. First, the rules we used to assess the quality of 

code reviews were limited to 32 rules. The derivation of rules 

was based on different sources of information, such as our own 

experience in the field, opinions of experts from the industry, es-

tablished best practices of modern code reviews, and related lit-

erature. We believe that more refined rules may allow a more ac-

curate evaluation of the quality of the code reviews.  

Second, the number of categories used for each criterion in 

the rules and the thresholds that differentiate each category im-

pact the quality of the code review evaluation. In our experi-

ments, we used a Boolean approach for each criterion of the rules 

(e.g., only two levels: low or high). Although we think this will 

impact the results, most likely, the use of more refined rules, 

more levels for the criteria, and refined thresholds would lead to 

even better results for the accuracy of the proposed approach.  

Third, the source code used for the code review tasks might 

not perfectly represent real-world software. Although having dif-

ferent complexity and including both iterative and recursive par-

adigms, the four programs used are relatively small compared to 

the existing software. Naturally, a controlled experiment cannot 

use extensive code samples as the duration of the task asked of 

the participants would be prohibitively long.  

Fourth, one of the vital construct validity issues deals with 

heart measurement accuracy. ECG cannot be used to acquire 

heart measurements in a real software environment. Various 

studies (e.g., [59]) show that it is feasible to use PPG based on 

bracelets and smartwatches as an alternative to ECG to extract 

HRV/PRV features. 

Fifth, the use of KNN could be efficient in the low dimension-

ality of data and could be explainable in this limited setting. The 

LR could also provide some explainability without getting in-

sights into the interaction of features. Nevertheless, in the next 

round of data acquisition, regression algorithms such as the Mul-

tivariate adaptive regression spline (MARS) might be an alterna-

tive due to its simplicity, ability to model non-linear data, and 

explainability with higher dimensionality.  

External Validity:  first, in the modeling phase, as we used 

the features mentioned in this study, the threat of obtaining a 

training-serving skew might present when deploying a future 

code review tool in a realistic software development environ-

ment. New features could be added in the serving time (i.e., de-

ployment), or a change in the data type of features would occur, 

and many other skews (e.g., feature distribution skew) could hap-

pen; however, in ML end-to-end open-source platforms like Ten-

sorFlow [84], there are various solutions to this threat, such as 

TensorFlow Data Validation (TDF) which monitors the ML 

model during the deployment for any data skew anomaly.  

Second, the limited number of subjects (i.e., 21) is considered 

a challenge in this study. Although most software engineering 

studies that use neurophysiological methods use a similar num-

ber of participants (see the comprehensive survey published in 

2021 [34]), the difficulty in using many participants in these 

kinds of studies is a real problem. Moreover, male preponderance 

in the experiment represents one of the external validity issues 

8 CONCLUSION AND FUTURE WORK 

 Modern code reviews are highly dependent on individual re-

viewers’ performance to identify bugs and other quality problems 

in the software under review. Natural human limitations such as 

reviewers’ distraction, fatigue, or difficulties in fully compre-

hending the code under review have a clear negative impact on 

the quality of code reviews and may leave bugs undetected.   

We propose an innovative approach that monitors the re-

viewer’s performance at code line reviewing level (considering 

small code snippets called code regions) and evaluates the over-

all quality of the code reviews by providing three relevant out-

comes: a) an overall evaluation with a clear indication of whether 

the review should be repeated or not, b) pointers to code regions 

that may not have been well-reviewed, and c) an explanation of 

why the review of the pointed code regions was considered not 

satisfactory. 

The proposed approach uses biometric information to assess 

the cognitive state of the reviewer (particularly, cognitive load) 

during the code review process. This can be accomplished 

through non-intrusive devices (e.g., smartwatches and bracelets) 

that capture biomarkers such as Heart Rate Variability (HRV) and 

Pupillography to assess the reviewer’s cognitive load, and an in-

expensive desktop eye tracker to associate the measured re-

viewer’s cognitive load to the reviewing of specific code regions.  

The evaluation of code review quality of each code region of 

the software under review is achieved by combining the infor-

mation on the reviewer’s cognitive load with other code reviews 

quality factors such as the code complexity of that region, the 

number of revisits to that region, the reviewing time of the re-

gion, and the experience level of the reviewer. The review of each 

code region is classified as Good or Bad in terms of bug-finding 

effectiveness. The proposed approach assumes the conservative 

approach of classifying the whole code review as Bad (i.e., needs 

to be repeated) if one or more code regions under review are clas-

sified as bad. 

The proposed approach was implemented as part of a con-

trolled experiment to evaluate the accuracy of the approach. The 

goal was to validate the accuracy of the classifications of code 

region reviews as Good or Bad, as this is the central element to 

consider the proposed approach useful. We believe the approach 

is valid if the code regions classified as badly reviewed contain 

undetected bugs, justifying the need for a second review. The im-

plementation of the proposed approach relies heavily on Artifi-

cial Intelligence to assess the reviewer’s cognitive load and, more 

specifically, to classify the code region reviews. Two types of 

classifiers were considered in the approach evaluation: a 

Knowledge-Driven rule-based Classification Model (KCM) and 

the Data-driven rule-based Classifier Model (DCM). 

The controlled experiment included 21 code reviewers that 

reviewed four programs of different types and complexity. Pro-

grams were seeded with real bugs to have a ground truth to eval-

uate the actual performance of the reviewers in finding the bugs. 

Results show that the data-driven classifiers (DCM) provided, in 
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general, better results than the knowledge-driven classifier. On 

average, for all the code regions of all the four programs, our 

results show that 85.65% and 87.77% of the code region re-

views classified by KNN and LR, respectively, as Bad corre-

spond to code regions where the reviewers left one or more bugs 

undetected (i.e., it is necessary to repeat the review) and 78.14% 

and 74.56%  of the code region reviews classified by KNN and 

LR, respectively, as Good correspond to code regions where the 

reviewers detected all the bugs. 

Since the proposed approach's accuracy depends on the re-

viewers’ cognitive load assessed by HRV and Pupillography, we 

also compared the cognitive load assessed through HRV and Pu-

pillography with the cognitive reference load assessed using an 

assessment EEG cap with 64 channels. Results show no signifi-

cant difference, which means that the low-intrusive HRV and Pu-

pillography are accurate enough to be used in practice to assess 

reviewers’ cognitive load. 

Future research directions may allow to expand and im-

prove further these positive results. Firstly, we are currently de-

veloping a real-world implementation of the proposed approach 

as an extension of the GitHub code reviewing tool (see a first 

description of the tool architecture and screenshots in [85]). The 

goal is to use such a tool in real code review environments to 

allow us to evaluate other aspects of the proposed approach, 

namely the reviewer’s reactions and utilization of the tool.  

A second research direction consists of including additional 

sources of information to characterize reviewers’ cognitive state 

in a better way (e.g., differentiate cognitive load, stress fatigue, 

and other states). For example, EDA (electrodermal activity) is a 

promising additional source. It is non-intrusive and is referred to 

in the literature as an excellent biometric source to assess stress.  

A third research direction is to refine the levels and thresholds 

considered for the different criteria used in the evaluation rules 

of code reviews. For example, we can consider several levels for 

the reviewer's cognitive load, the complexity of code regions, the 

reviewers’ expertise, etc., instead of the two levels alternative 

(i.e., low or high) used in the present evaluation. Having several 

levels of reviewer’s expertise, code region complexity, review-

ers' cognitive load, etc., would make the definition of the set of 

rules much more sophisticated. Fuzzy logic reasoning could be 

used where there are no crisp values but membership functions 

that enable a more realistic human type of reasoning 

A fourth research line is related to the evaluation of the com-

plexity of the code regions, as metrics such as Vg and LoC do 

not capture well code complexity from a human perspective. The 

promising idea is to use cognitive weights established for the dif-

ferent code constructs [86] to compose a more effective measure 

of code region complexity.  

Although HRV and Pupil response were good predictors for 

the reviewer cognitive load using the KNN and the LR in the 

DCM approach, we believe that future work should focus on the 

extraction and fusion of other features that are known in the lit-

erature to reflect the changes in cognitive load, such as the fre-

quency domain features of the pupil diameter variability as well 

as features extracted from the EDA sensor and context infor-

mation. By fusing these features, we aim to achieve a more ro-

bust surrogate of the reviewer’s cognitive state and, therefore, 

more precise application of the proposed rules. Furthermore, we 

believe that future work should consider other cognitive states of 

the reviewers, such as stress, distraction, and fatigue, and not 

only the cognitive load imposed by code comprehension 

difficulties. 

An interesting aspect to include in future work is to integrate 

the defect classification (i.e., functional and evolvability) with 

the evaluation metrics, as proposed in [25].  

Finally, we are confident that the interdisciplinary nature of 

the proposed approach and the encouraging results obtained in 

the evaluation presented in this paper have a good potential to 

open new research avenues in the assessment of code compre-

hension and improvement of software reliability. 
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