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Abstract: State estimators, including observers and Bayesian filters, are a class of model-based
algorithms for estimating variables in a dynamical system given the sensor measurements of related
system states. They can be used to derive fast and accurate estimates of system variables that cannot
be measured directly (‘soft sensing’) or for which only noisy, intermittent, delayed, indirect, or
unreliable measurements are available, perhaps from multiple sources (‘sensor fusion’). In this paper,
we introduce the concepts and main methods of state estimation and review recent applications in
improving the sustainability of manufacturing processes across sectors including industrial robotics,
material synthesis and processing, semiconductor, and additive manufacturing. It is shown that state
estimation algorithms can play a key role in manufacturing systems for accurately monitoring and
controlling processes to improve efficiencies, lower environmental impact, enhance product quality,
improve the feasibility of processing more sustainable raw materials, and ensure safer working
environments for humans. We discuss current and emerging trends in using state estimation as
a framework for combining physical knowledge with other sources of data for monitoring and
controlling distributed manufacturing systems.

Keywords: state observer; Kalman filter; particle filter; sustainable manufacturing; soft sensor;
digital twin

1. Introduction

Sustainable manufacturing is currently a very significant principle that industries
must adopt due to many factors driven by environmental issues, including more stringent
legislation, higher energy costs, and consumer preference for environmentally benign prod-
ucts and services [1]. Manufacturing processes have a direct impact on the consumption of
natural resources and their resultant emissions [2]. The emergence of Industry 4.0 provides
significant opportunities for the development of intelligent manufacturing environments
that have greater production flexibility and resource efficiency [3]. The deployment of
sensors, Internet of Things (IoT), and Cyber-Physical Systems (CPS) within manufacturing
is predicted to contribute to addressing some of the global challenges with respect to
resource and energy efficiency [4]. Greater sensorisation of manufacturing processes is a
central pillar of the Industry 4.0 concept and is critical to improving resource efficiency
and sustainability. The ability to monitor key process variables in real-time enables a tight
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control of processes to avoid defects; eliminates waste of raw materials and energy in
producing scrap; prevents harmful environmental emissions; and facilitates processing
of more sustainable but difficult to process raw materials such as recyclates. However, it
is not always feasible to physically measure critical variables in real-time due to, e.g., a
lack of an available sensor technology, lack of sensor accessibility, high cost, poor accuracy,
high latency, etc. In this case, concepts such as soft sensing and data and sensor fusion
may provide a solution, enabling the variable(s) of interest to be inferred from available
information in a connected cyber-physical system. Often, this may be achieved by using
purely data-based approaches via Machine Learning; however, this will often require a
large amount of historical training data, high computational resources for model training,
and typically results in models that do not generalise well to different systems/raw materi-
als and which may exhibit poor long-term robustness. An alternative in some situations is
to use an observer-based state estimation method, whereby the future value of the system
states is predicted based on the current value according to some model of the system.
Then, in the next time step, the estimate is updated with measurement data available
from the system—which may be indirectly related to the variables of interest and/or of
limited reliability. This ‘predict-correct’ structure, as illustrated in Figure 1, exploits an
often approximate, physical model of the system to derive an algorithm which provides
sufficiently accurate and fast estimates with limited need for training data and with good
robustness to variations in the process over time.

Figure 1. Predict-correct structure of state estimators.

State estimators can be deterministic (‘observers’) or stochastic (Bayesian filters such
as the Kalman filter and its extensions). In the stochastic case, uncertainties in models and
measurements are explicitly handled to derive an optimal estimate of the variable(s) of
interest together with a measure of the uncertainty in the estimate. These state estimation
methods have been applied to navigation problems since the late 1960s, with the Kalman
filter famously considered a key factor in the success of the Apollo 11 moon landing [5].
The Kalman filter is the optimal state reconstructor for linear systems subject to white
noise; however, this optimality is lost with nonlinear systems and/or systems with non-
Gaussian noise distributions [6]. In recent decades, increasing computational power has
facilitated more sophisticated algorithms, which deal better with nonlinear systems and
more complex uncertainty distributions, that are fundamental to recent developments in
self-driving cars for example [7]. The concepts are less well known in some aspects of the
manufacturing community; however, we show in this review that several studies indicate
the potential of various state estimation methods in manufacturing processes, moving from
automation of a defined task (Industry 3.0) to a wider systems-level approach (Industry
4.0). As manufacturing enterprises are currently undergoing a period of considerable
disruption, driven on the one hand by an urgent need to enhance sustainability and,
on the other hand, enabled by progress in sensorisation, connectivity, and computation,
state estimation concepts can in future play a greater role in driving improvements in the
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flexibility and quality of manufacturing processes as well as reducing energy consumption
and waste generation.

This paper provides an accessible introduction to the key concepts and methods of state
estimation with a comprehensive review of the application of such methods to improving
the sustainability of manufacturing processes and systems across a range of industrial
sectors including the following: material processing, machining, additive manufacturing,
semiconductor manufacturing, and industrial robotics. Current trends in combining state
estimation concepts with Machine Learning and/or physics-based computational models
are highlighted. We discuss the future potential for state estimators to be incorporated into
‘digital twin’ approaches for improving the sustainability of manufacturing processes.

2. State Estimation Methods
2.1. State Observers

Originating in control theory, a state space model is a specific model structure whereby
a dynamic system is described by inputs u, outputs y, and state variables x related by
first order differential equations (continuous case) or difference equations (discrete case).
State variables are variables of the system for which values evolve over time depending on
the current value of the variables and any external input to the system. For example, in
modelling a d.c. motor, motor position and speed are suitable state variables to capture
the system’s dynamics in response to changes in input voltage. The complete state space
model comprises the ‘state equation’ (or ‘system model’), which describes the evolution of
the values of the state variables, and a ‘measurement equation’ (or ‘measurement model’),
which describes the relationship between the state variables and measurements (outputs)
of the system over time. Equation (1) illustrates the general form of a state space model for
a discrete linear system. We focus here on the discrete case due to the dominance of digital
systems in manufacturing. In simple terms, the values of the state variables at the next time
step are predicted by the state equation from the current values of the variables and the
current value of any input to the system. The relationship between the actual measurements
of the system and the state variables is described by the measurement equation.

x(k + 1) = A x(k) + B u(k)

y(k) = C x(k) + D u(k)
(1)

Observability of a system relates to the ability to reconstruct the values of all the state
variables from the measurements and the input in a finite time. Obviously, this requires that
the unmeasured states are not independent from the measurements, which can be checked
by the construction of an observability matrix derived from system A and C matrices.
Provided a system is indeed observable, an observer can be constructed as in Figure 2,
which depicts the discrete time Luenberger observer [8]. The values of the state variables at
the next time step are predicted from the current values and the input via the state equation,
and the measured values are then predicted from the estimated values of the state variables.
In the next time step, the predicted and measured values are compared and the error is fed
back to correct the estimates of the state variables.

x̂(k + 1) = A x(k) + B u(k) + L (y(k)− ŷ(k)) (2)

Provided that the measurement equation is accurate (which is usually the case, as
typically the measurements are a subset of entire state variables), the estimates converge to
the true values. The gain feedback matrix L requires careful design such that convergence
can be ensured to occur more rapidly than the dynamics of the plant (i.e., faster than
the values of the variables are themselves changing) but without introducing excessive
noise into the estimates. The Luenberger observer is a full-order observer, i.e., it estimates
the values of all the state variables and not only the unmeasured ones. Reduced-order
observers, in contrast, use system measurements to estimate only the ‘hidden’ states. They
are more complicated to design but can result in better performance [9].
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The estimator equation for the Luenberger observer is given by (2).

Figure 2. The Luenberger observer.

Luenberger observers are, however, usually unable to estimate plant states in the pres-
ence of unknown disturbance signals or model uncertainties. The sliding mode observer
(SMO) has emerged as one of the most popular approaches in recent years to deal with
such issues. A sliding mode observer feeds back the output estimation error via a nonlinear
switching term rather than via a simple gain matrix. Essentially there is a suite of feedback
control laws and a decision rule. The decision rule, termed the switching function, has as
its input some measure of the current system behaviour and produces as an output, the
particular feedback law which should be used at that instant in time. Provided a bound on
the magnitude of the disturbances is known, the ability to generate a sliding motion on
the error between the measured plant output and the output of the observer ensures that
an SMO can force the output estimation error to converge to zero in finite time, while the
observer states converge asymptotically to the system states. Consider 3 as an uncertain
linear system, where ξ is an unknown but a bounded function representing the disturbance.

ẋ(t) = Ax(t) + Bu(t) + Dξ(t, y, u)

y(t) = Cx(t)
(3)

An observer can be defined as in (4), where e = z− x, G1, and Gn are gain matrices and v is
the discontinuous ‘injection’ term, which is designed to force the trajectories of the state
estimation error onto the sliding surface. The behaviour of the system varies on either side
of the sliding surface. Details of designing the sliding motion and surface can be found
in [10].

ż(t) = Az(t) + Bu(t)− G1 Ce(t) + Gn v (4)

An advantage of the SMO is that the applied observer injection signal (equivalent signal)
can be used for the identification of the mismatch between the actual system and the
observer model. This equivalent signal has been used in many applications such as fault
detection and condition monitoring [11].

Sliding mode observers have also been developed for uncertain nonlinear systems; for
details on designing an SMO for second and high order systems, see [12–14].

Although sliding mode is currently one of the most popular approaches, many dif-
ferent methods of nonlinear observer design have been proposed. The interested reader
is referred to recent reference [15], which provides an overview of the general designs
available in the literature.
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2.2. Kalman Filter and Extensions

The Kalman filter (KF) is essentially a stochastic observer, that is, it explicitly models
the uncertainty in the state equation and in the measurements and utilises Bayesian infer-
ence to determine the optimum estimate of the states (in the sense that the uncertainty is
minimised) [16]. Compared to the linear discrete state observer, the Kalman filter state and
measurement equations (Equation (5)) contain noise terms. w(k) represents the uncertainty
in the model (‘process noise’) while e(k) represents the measurement noise associated with
sensor readings. All noise terms are assumed to be normally distributed.

x(k + 1) = A x(k) + B u(k) + G w(k)

y(k) = C x(k) + D u(k) + e(k)
(5)

Bayes law (Equation (6)) determines a posterior probability distribution p(x | y)
from the product of a prior distribution p(x) and the ‘likelihood’ distribution p(y | x),
which arises from measurements. In the context of the Kalman filter, the likelihood is the
probability distribution for the observed measurements y at sample k as a function of the
state variables x at sample k through the measurement equation.

p(x | y) ∝ p(x)p(y | x) (6)

The concept is illustrated with a simple one-dimensional example in Figure 3. The
previous estimate of the state variables, x̂k−1|k−1 (i.e., the estimate of x at sample k − 1
given all the information up to and including sample k− 1), and its covariance Pk−1|k−1 is
propagated through state Equation (5) to produce x̂k|k−1 (i.e., the estimate of x at sample k
given all the information up to and including sample k− 1). This step is sometimes referred
to as the ‘time update’. Estimate x̂k|k−1 has a larger covariance Pk|k−1 as more uncertainty
is introduced due to the process noise term w(k) in the state equation. This estimate is
the prior distribution at sample k. The new measurement data y at sample k yields the
likelihood function p(yk|xk). The optimal (minimum variance) estimate of x at sample k
x̂k|k is then determined by combining the prior and the likelihood in the ‘measurement
update’ step.

Figure 3. One-dimensional illustration of the operation of the Kalman filter.

The Kalman estimation equation can be written in terms of the Kalman gain matrix K:

x̂(k|k) = x̂(k|k− 1) + K (y(k)− ŷ(k)) (7)

where ŷ(k) is the predicted measurement vector (obtained by substituting x̂(k|k− 1) into
the measurement equation (Equation (5)). The Kalman gain matrix K is designed to
minimise posterior error covariance P(k|k). If the process noise w(k) is low, the predicted
measurement is trusted more than the actual measurements. However, if the measurement
noise e(k) is low, then the predicted measurement will be more heavily corrected. The
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Kalman estimator equation (Equation (7)) has a similar ‘predict-correct’ structure relative to
the Luenberger observer estimation equation (Equation (2)). However, the KF has functions
beyond the observation of unmeasured states as it also allows for the optimal fusion of
multiple sources of measurement data according to their uncertainty.

The Kalman Filter applies to linear systems with an assumption that model uncertainty
and sensor noise can be described by a Gaussian distribution. A challenge in the practical
implementation is that the covariance matrices of the process and measurement noises
must be provided a priori, and this is a difficult task, particularly for the process noise
which is usually difficult to quantify [17]. To fulfill the requirement of achieving the filter
optimality, an adaptive Kalman filter (AKF) can be utilised for tuning noise covariance
matrices [6]. Adaptive filters are based on dynamically adjusting the parameters of the
supposedly optimum filter based on the estimates of the unknown parameters. Another
solution to circumvent the system noise matrix specification is to parameterise the gain and
include its elements in the estimation process [18].

The Kalman Filter has been extended to non-linear systems under two main ap-
proaches. The first, the Extended Kalman Filter (EKF), involves the linearisation of non-
linear system equations using a Taylor series expansion and then applying the usual KF
recursions [19]. The classic EKF involves retaining only the first order terms of the Taylor
series expansion; however, if the system behaviour is significantly nonlinear over the sam-
ple period or the noise is high, then better performance may be achieved by including the
second derivative term in the Taylor series expansion. A drawback is that the determination
of the first and second-order derivative terms can be computationally intensive [20].

An alternative approach is to use a nonlinear transformation, and the Unscented
Kalman Filter (UKF) [21], which utilises the unscented transform, has emerged as a popular
alternative to the EKF. The unscented transform involves generating sigma points from the
distribution of the model input parameters. In the case of UKF, these points are the mean of
the state estimates and symmetric deviations around the mean which are computed from
the covariance matrix. These sigma points are then propagated through the nonlinear model
and the mean and covariance of the model output (predicted state estimates or predicted
measurements) are estimated by applying weights to the sigma points after the nonlinear
mapping, as illustrated in Figure 4. UKF has the advantage of not requiring the formation of
derivative terms as needed for the EKF, and it may result in better performance depending
on the form of the nonlinearity in the system. It should be noted that the optimality of the
Kalman filter is lost with EKF, UKF, or any higher-order filter.

Figure 4. Two-dimensional illustration of the unscented transform to estimate the mean and co-
variance of state estimates in the UKF ‘time update’. Sigma points are generated from the noise
distribution following the last measurement update Pk|k and propagated through the nonlinear state
equation f (x). The mean and covariance of the state estimates x̂k+1|k are estimated by a weighted
sum of the sigma points following the nonlinear transformation.

The Kalman Filter and EKF and UKF extensions have limitations in very high di-
mensional nonlinear systems (i.e., having a large number n of state variables), since it
is necessary to calculate the n × n covariance matrix at each recursion, requiring a large
amount of time, high-capacity storage, and high-speed processors [22]. The ensemble
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Kalman filter (EnKF), originally developed in modelling geophysical systems, instead
estimates the full covariance matrix using a sample of evolved states (the ‘ensemble’) [23].
EnKF is a Monte Carlo-based application of KF, propagating only the mean of an ensemble
of N < n state estimations through KF recursions. The resulting mean and covariance matri-
ces are then estimated from the evolved samples. This method has reduced computational
complexity and can be applied to nonlinear state-space models and non-Gaussian noise.
For linear Gaussian systems, if N→ ∞, EnKF converges to the KF results [24].

2.3. Particle Filter

The particle filter was developed to deal with systems having multi-modal probability
distributions, i.e., as opposed to the estimates having a normal (Gaussian) probability
distribution, and there may be a distribution with more than one peak [25–27]. In navigation
problems, where the technique emerged, this would arise where there may be more than
one likely map location for a target vehicle based on the information available. In this
scenario, a numerical approximation of the distribution which can be propagated through
the prediction and correction recursions is needed. This can be performed by representing
the probability distribution of the state estimates as a set of samples or ‘particles’ via
Monte Carlo methods (repeated random sampling). Figure 5 illustrates the principles of
the particle filter in five general stages, which can be described as follows:

1. Weighted particles from last measurement update (usually sampled from a uniform
distribution on initialization).

2. Bootstrap resampling: Take N samples with replacement from the set, where the
probability of selection is proportional to the weighting. All new samples have equal
weighting so that the distribution is represented by particle density rather than weight.

3. Each particle is propagated through the state equation adding noise generated by
sampling from the distribution for the process noise w(k) to provide time updates
(prediction at t = k + 1).

4. Measurement update: The predicted measurements given by the particles are com-
pared to the true measurements to update the weights.

5. The states are estimated by, e.g., a maximum a posteriori (MAP) estimate of the
approximated posterior distribution.

Figure 5. Schematic illustrating the basic principles of a particle filter.
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Particle filter methods are very flexible, easy to implement, and present an attractive
approach to approximate the posterior distributions when the model is nonlinear and when
the sources of noise are not Gaussian. The main constraint of particle filter methods is that
they are computationally demanding; however, they have been used in practical applica-
tions in systems with up to four state variables [28]. They are used in self-driving cars for
Simultaneous Localisation and Mapping (SLAM) tasks and also have applications in image
processing, econometrics, and in industrial fault detection and diagnostics applications. For
more in-depth readings on the theory and implementations of the particle filter, the reader
is referred to the following excellent resources by Gustafsson [28–30]. Table 1 summarises
the advantages and limitations of the main types of state estimator.

Table 1. Comparison of different state estimators.

State Estimator Advantages Limitations

Luenberger observer 1. Simple to design and implement
2. Suitable for well-defined linear systems

1. Poor estimation in the presence
of model uncertainties

Reduced-Order observer 1. Better Performance
2. Lower computational cost Complicated to design

Sliding Mode Observer

1. Suitable for linear
and nonlinear systems
2. High robustness
3. Fault detection capabilities

1. Chattering of the estimator
2. Complexity of the design

Kalman Filter
1. Suitable for noisy systems
2. Allows fusion of different
measurement sources

1. Suitable for linear system
2. Not Suitable for
non-Gaussian noise
3. Not suitable for
high order systems

Adaptive Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for unknown noise covariance

1. Suitable for linear system
2. Not suitable for
non-Gaussian noise
3. Not suitable for high
order systems

Extended Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for nonlinear systems

1. High computational time
2. Not suitable for
high order systems

Unscented Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for nonlinear systems
4. Lower computational cost

Not suitable for
high order systems

Ensemble Kalman Filter

1. Suitable for noisy systems
2. Allows fusion of different
measurement sources
3. Suitable for nonlinear systems
4. Low computational cost
5. Suitable for high
order systems

Not suitable for
non-Gaussian noise

Particle Filter
1. Suitable for multimodal
probability distributions
2. Suitable for nonlinear systems

High computational time
and cost

3. Application of State Estimators in Improving Manufacturing Sustainability
3.1. Industrial Robotics

As the global manufacturing industry enters its fourth revolution, innovations such
as robotics, combined with artificial intelligence (AI) and IoT, are considered a corner-
stone of competitive manufacturing, which aims to combine high productivity, quality,
and adaptability at minimal cost [31]. Industrial robots were first used commercially on
assembly lines in the early 1960s. Essentially, these devices were primitive in that they were
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sensorless, featured limited programmability, mostly featuring hydraulic and pneumatic
arms, and were primarily used for heavy lifting. Throughout the late 1960s and early
1970s, industrial robotics gradually shifted toward handling and precision work as the
need for the automation of manpower-intensive tasks in manufacturing increased. Eventu-
ally, smaller electric robots with advanced controls, microprocessors, miniaturized motors,
gyros, and servos were realised, which were ideal for lighter assembly tasks, e.g., bolt and
nut tightening. As a natural progression, the capabilities of robots expanded further to
include tasks such as material transferring, painting, and arc welding, replacing humans in
certain dangerous and hazardous scenarios, by the late 1970s [32].

Advancements in sensors and machine vision, coupled with a substantial reduction in
the costs of computer hardware, have resulted in a steep advancement in industrial robotic
capabilities. Through the application of high precision sensors, e.g., force sensors, vision
and lasers, etc, combined with suitable observers and estimators and high computational
power, enhanced high fidelity perception of the robot workspace as well as the surrounding
environment became possible. Features attainable through such accurate reliable per-
ception include enhanced safety through collision detection and the implementation of
effective human–robot collaboration, which ultimately paves the way forward towards
more sustainable manufacturing.

Traditionally, industrial robots operate within a safety fence without any human inter-
action. Cobots are relatively small manipulators that are specially designed to operate safely
in close proximity or even in direct contact with humans, sharing workspace. This effec-
tively results in bringing together the best of each partner, robot and human, by combining
coordination, dexterity and cognitive capabilities of humans with the robots’ accuracy,
agility, and the ability to produce repetitive work [33]. They utilise advanced technology,
including force-limited joints and computer vision to detect the presence of humans in their
environment. Cobots are often much smaller and lighter than traditional industrial robots,
are easily moveable, and trainable to perform specific tasks. Robots’ external perception re-
lies on sensing technology; thus,capturing accurate sensor information is vital for ensuring
robotic security and improving human–machine interaction performance. Amongst other
sectors, the manufacturing industry has benefited significantly by using mobile robots to
increase efficiencies and reduce costs while operating autonomously alongside humans [34].
However, to allow the mobile robot to navigate its environment, self-localization is critical
in autonomous mobile robots. SLAM algorithms serve exactly this purpose and are the
most widely used strategy for self localization in an unknown environment through contin-
uously constructing and/or updating the map of the environment while keeping track of
the robot in the environment [35]. SLAM comprises the simultaneous (i) estimation of the
state of a robot equipped with onboard sensors and (ii) the construction of a map (grid of
obstacles) of the environment as perceived by onboard robot sensors. While the robot state
is normally described by its pose (position and orientation), the map is a representation of
aspects of interest (e.g., position of landmarks and obstacles) describing the environment in
which the robot is able to operate.

In [36], the main methods of sensor data fusion for cobot environment perception
are classified as ‘AI’ or ‘stochastic’. The latter group encompassing Bayesian filtering and
Dempster–Shafer evidence theory, while the former includes fuzzy algorithms, neural
networks, and fuzzy-neuro approaches. Kalman filtering has been applied for robot
positioning [37–39], while the particle filter is shown to provide accurate positioning
together with a consistent mapping of the 3D environment of the robot via simultaneous
localisation and mapping [34,40–43]. In their recent review, Ding et al. [36] concluded that
stochastic algorithm approaches are accurate and mature while AI approaches currently
have limitations in practical cobot applications.

Recently, Li et al. [44] developed an Augmented Reality (AR) teleoperation method
to monitor and control a robot in real-time using a Kalman filter. Precise teleoperation
can facilitate the use of robots in applications where high precision is required and in
environments where human safety is compromised. In this work, a LeapMotion sensor is
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used to track the movement of the operator’s hands for gesture detection while a Kinect V2
camera measures the corresponding motion velocities in 3D. The authors used a Kalman
filtering (KF) algorithm to fuse the position and velocity signals to teleoperate a Baxter
robot in real-time. It was shown that, with the application of the KF sensor fusion, the
performance index is improved on average by about 33%. It is concluded that the proposed
teleoperation strategy has better tracking performance after the application of the KF-based
sensor fusion.

It has been demonstrated that both the Kalman filter and particle filter are highly
beneficial approaches for sensor fusion in industrial robotics and currently have advantages
over AI-based approaches. Sensor fusion via these Bayesian filtering methods results in
robotic systems with higher precision, speed, and adaptability and safer robot–human
interaction, ultimately leading to more efficient manufacturing processes and reducing the
exposure of human workers to hazardous environments.

3.2. Chemical Process Industries

While state observer concepts were initially applied and developed in tasks related to
localisation, tracking, and navigation, such as in the field of robotics, the same algorithms
were later applied to various other state estimation problems. In particular, state estimation
methods have been of considerable interest in process industries since the 1990s. Many
industrial chemical processes have a high degree of variability and a large number of
process variables requiring measurement and control in real-time. However, online mea-
surement of many variables of interest, such as reactant concentrations, etc., is not possible
using physical sensors and as such require sensorless control. A ‘soft sensor’ measurement
can yield lower cost, increased reliability, lower maintenance requirements, and thereby
increased sustainability [45].

State estimation concepts in monitoring and controlling industrial chemical processes
has been the subject of previous reviews [46–48]. Here, we focus on recent examples of
state estimation as a form of sensorless measurement in improving the sustainability of
polymerisation as an important source of raw materials for manufacturing industries.

Polymerisation

Polymerisation is a chemical process for the synthesis of polymers, which are long-
chained molecules made of repeating monomer units. Although traditionally synthesised
from petroleum-based products, much research activity is ongoing to replace such poly-
mers with those derived from more sustainable and ecofriendly plant sources such as
polylactide (PLA), which can be synthesised from natural feedstocks including corn starch,
rice, potatoes, sugar beet, and seaweed [49]. The process of manufacturing polymers via
chemical polymerisation has inherent nonlinear and time-varying dynamics, which are a
challenge to control [50]. Various studies have been carried out to model and control the
dynamics of the polymerisation processes to improve yield, improve product quality and
reproducibility, and enhance safety and sustainability [51].

Salas et al. [52] applied an EKF for the approximation of the nonlinear behaviour
in semi-batch polymerisation to track the molecular weight (Mw) trajectories. Molecular
weight is critical to the properties of the resulting polymer product but can only be directly
measured offline using time-consuming techniques such as gel permeation chromatogra-
phy (GPC). They used a state-space mathematical model for the free radical polymerisation
process and followed the proposed approach by Crowley [53] for the calculation of molecu-
lar weight distribution (MWD). They tested the method in an open-loop system to estimate
Mw and MWD and good estimation capability was confirmed with offline GPC analysis.
They compared the closed-loop control of the polymerisation process using a PID controller
with and without EKF state estimation. The result showed that, with the incorporation
of the EKF, there was approximately a 50% reduction in the absolute error between the
actual and the set point of the Mw trajectory after the initialisation of the experiment.
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The experiments confirm that the nonlinear state estimation provides an opportunity of
achieving full polymer characterization in real-time.

Zhao et al. [54] proposed a method using data fusion and cubature KF for nonlinear
state estimation with delayed measurement. The cubature KF is equivalent to a UKF with
specific parameters for generating sigma points. For the delayed measurement, they intro-
duced and compared two data fusion methods, excluding mutual information (EMI) and
covariance intersection (CI). These data fusion methods were then combined with cubature
KF to incorporate delayed measurements, for example, measurements from offline testing
which are only available post-production. They implemented their proposed method in the
nonlinear chemical polymerisation process. The results illustrated that the combination
of EMI and cubature KF has a higher speed, while CI is more accurate for nonlinear and
complex systems. Under classic state estimation approaches, data from delayed, offline
measurements cannot be incorporated, although these are usually more accurate. The pro-
posed method offers a potential framework to improve the accuracy of real-time estimation
of unmeasured process states by exploiting these delayed measurements.

Luo et al. [55] studied batch-to-batch polymerisation and proposed an adaptive
hinging hyperplane (AHH) model for the process, which is a type of piecewise linear
model for nonlinear systems. A MIMO (multi-input multi-output) model was developed
to predict the process behaviour. They used a KF to reduce the measurement noise, which
corrects the AHH predictions of the current batch by applying information gathered from
previous batches. A sequential quadratic programming method (SQP) was applied to solve
the optimal control of each batch. The method was implemented for the polymerisation
of styrene to achieve the desired values for number-average and weight-average chain
length. The method resulted in improved accuracy and stability for the estimated process
behaviours.

Recently, Rangegowda et al. [56], used a new approach, receding-horizon KF (RHKF),
to estimate the state of methyl methacrylate polymerisation. RHKF is a combination of
moving window-based methods, such as moving horizon estimator (MHE), and Bayesian
estimators. It has the advantages of both methods, including simultaneous smoothing and
filtering with a relatively low computational cost. The RHKF applies simultaneous state
and parameter estimation in a moving window. They also compared partial likelihood
and complete likelihood parameter estimations for the measurement update in RHKF.
Results in polymerisation illustrated that RHKF based on complete likelihood parameter
estimations performed better, and this method required much less computational time and
produced accurate state estimations.

3.3. Material Forming Processes

The sustainability of raw material supply is an urgent, global challenge. Economies
must adapt to become more climate-change resilient, more resource efficient, and to remain
competitive. As a fundamental step in the lifecycle of many products and systems, efficiency
in material processing is paramount, as is increasing the capability in processing ‘circular’
materials derived from waste and products which have reached the end of life. This
presents new challenges for producers with raw material properties typically being more
variable and making the manufacture of consistent quality products more challenging. In
this section, we review the application of state estimation methods in material processing
towards zero-defect sustainable manufacturing.

3.3.1. Injection Moulding

Injection moulding involves melting a polymer and injecting it at high pressure into a
mould. It is one of the most used industrial processes for the formation of polymer products.
Improvements in monitoring and control of the process can reduce energy consumption
and waste generation as well as enable the processing of more complex, sustainable raw
material streams [57].
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Liu et al. [58] used an EKF to improve the part quality in a micro-injection moulding
process by controlling the pressure signature. The pressure signature is generated by a
pressure transducer as the plastic melt passes through the nozzle. Electromagnetic noise
on the pressure signature can lead to short-shot (under-filling the mould) or flashing
(overfilling the mould) because of the incorrect control of injection volume. The authors
proposed an adaptive EKF based on F-distribution to track the pressure signature around
the nozzle. The experimental results on a real microinjection moulding process showed that
the adaptive EKF performed well in eliminating the noise and tracking the true pressure
signature at both high and low injection speeds. Cao et al. [59] combined KF with iterative
learning control to consider the effect of disturbances and random noises from batch-to-
batch in repetitive processes such as injection moulding. First, they used a KF to estimate the
current batch based on the information from previous batches—they called this estimation
a ‘coarse guess’. They then refined it with iterative learning control. They proposed two
different types of optimal control and two different types of suboptimal controllers to
save memory and computational cost. They developed a linear steady-state model for the
air shot phase in injection moulding and compared these four optimal controllers with
conventional KF in 100 batches. The result illustrated that, unlike the standard KF, the four
optimal and suboptimal controllers (combining conventional KF with iterative learning
control) are able to reject the batch-to-batch noises and disturbances in injection moulding.

In the injection moulding process, in order to change from the filling phase (velocity
control scheme) to the packing phase (pressure control scheme), a switchover point exists.
The switchover point is determined empirically by experiments; however, if applied at
the wrong time, the cavity pressure profile is affected, resulting in defects in the injection-
moulded parts. Stemmler et al. [60] proposed a cross-phase controller method to eliminate
this switch-over point and replaced it with a continuous pressure trajectory. They first
derived a model for the filling and packing stages of the process. Then, the model was
piece-wise linearised. The proposed model was applied in an EKF to estimate the states in
an MPC (Model Predictive Controller) for optimization. Based on EKF predictions, the MPC
specifies the controller output corresponding with the reference input. The comparison
of the proposed approach to a PID controller in an actual injection moulding process
resulted in the superior performance of the cross-phase controller method. Recently, they
further developed the work to propose a model-based norm-optimal iterative learning
controller to track a desired reference for the cavity pressure (based on PVT-optimisation)
to optimise the part’s weight during an injection moulding cycle [61]. They used the piece-
wise linearised steady-state model for injection moulding based on their previous work [60].
EKF was applied to track the desired cavity pressure and to estimate the process state.
The experimental setup with the embedded pressure sensors resulted in manufacturing
injection moulded parts that weighed 50% less than the non-optimised ones. The approach
has the potential to achieve significantly higher efficiency in raw material use.

Chen et al. [62] proposed a method to detect the presence of a foreign body in an
injection mould and minimised the ‘detected distance’ (i.e., the amount which a detected
foreign body is compressed by the mould closure). Such a system can prevent damage to
the mould, which results in defective parts, downtime, and costly repair. A state-space
model is derived for the toggle mechanism, driven by a servo system (which closes the
mould), and an EKF was used to filter the electric current readings of the drive for the
toggle mechanism, which was then used to self-adapt the mould protection system to keep
the current in a safe range. The system showed a reduction in the detected distance of
foreign bodies of 22%. As damaged tools result in the fabrication of poor-quality parts and
harm to the entire injection moulding machine, this approach can enhance the lifespan of
the equipment as well as reduce scrap.
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3.3.2. Other Forming Processes

Extrusion is a continuous process for forming polymer or metal products by forcing
the material through a die to achieve a certain geometrical profile of the part. In polymer
extrusion, it is essential to find the appropriate operating conditions for each feed material,
as incorrect operating conditions can waste large amounts of energy, time, and material.
Melt viscosity is one of the most important parameters relating to the product quality,
but it is challenging to measure online parameters with physical sensors. Liu et al. [63]
implemented a non-linear state observer approach to estimate the melt viscosity. Viscosity
and pressure were modelled by a Genetic Algorithm (GA)-based dynamic Gray-box model
with NFIR (nonlinear finite impulse response) structure. The viscosity was predicted from
the process input parameters, and the predicted viscosity was then used to estimate the
barrel pressure. The error between the predicted and measured barrel pressure was used
to correct the viscosity estimation. The proposed method was applied to a real extrusion
process with six different polymers and resulted in an RMS (root mean square) error of less
than 1%. The method is proposed for use in the production of consistent products from
recycled polymer feedstock despite having inherently variable viscosity behaviour.

Amoaoui et al. [64] developed an observer for the liquid composite molding process,
which is a method for fabricating large composite parts with complex geometries, such as
in the aerospace industry. This process suffers from issues of void formation at the flow
front during resin impregnation, which reduces mechanical performance. An observer was
developed for monitoring the system pressure (output) and the permeability (unmeasured
state), which is inaccessible to physical measurements. They first derived a steady-state
model for the process and designed a non-linear state observer using Lyapunov theory and
a linear matrix inequalities technique. The performance of the observer was demonstrated
by using simulation, which showed that the estimated permeability values converge to
the true state values. Application of the method to real-time monitoring of void formation
has the potential to reduce the production of scrap parts which do not meet the required
specifications.

Remelting is a process to produce homogeneous metal ingots. The ingots should be
defect-free with a fully dense and desired grain structure, as defects cannot be removed
with heat treatment post-production. Achieving the desired grain structure requires precise
control of temperatures in the process. Ahn et al. [65] investigated the temperature
distribution in the electrode of the electroslag remelting process. They proposed a reduced-
order melting model for the process and estimated the temperature using three different
estimators; EKF, UKF, and steady-state nonlinear estimators. The controller with UKF
had the best performance as it had less overshoot and responded better to disturbances.
Lopez et al. [66] studied the Vacuum Arc Remelting Process, used in aerospace applications.
A dynamic model capturing the melting and solidification stages was used and the goal
was to track the solidification front. For state estimation, a PF was applied to the system.
However, the system is nonlinear and noisy with low signal to noise ratio, meaning a lot of
particles were required for high accuracy. They applied the PF with a GPU containing a
large number of processors to enable parallelisation. The PF outperformed KF when used
with a large number of particles, but with a high computational cost.

To improve resource efficiency and reduce weight, there is a demand for increasingly
thin yet high strength steel sheeting. In automotive and aerospace sectors, a reduction
in weight has a direct impact on reducing the energy consumption and carbon emissions
associated with transport. However, metal forming processes are a challenge to control and
model because of strong nonlinearity, complex material behaviour, and high variability
due to varying raw material and lubrication properties, tool wear, etc. The mechanical
properties of steel sheets are determined by the temperature profile during cooling which
affects the resulting microstructure. The precise control of the cooling curve is, therefore,
extremely important but is hampered by the difficulty in physically monitoring the temper-
ature distribution. Various studies have been performed to estimate the internal spatial
temperature distribution in sheet rolling using state estimation concepts.
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Zheng et al. [67] used EKF to estimate the transient temperature distribution in the hot-
rolled strip cooling process. They developed a nonlinear high-dimension (14 state variables)
state-space model from a thermodynamic model of partial differential equations using a
2D finite volume scheme. The validation of the method with numerical simulation resulted
in an accurate temperature estimation with EKF. Speicher et al. [68] used full and reduced
EKF to estimate plate temperature in heavy plate rolling based on a few thermocouple
measurements. They used a similar approach to discretise a partial differential equation
model of thermodynamics using a finite difference method. As the quantification of the
process noise is the major practical challenge in implementing an EKF, they propose a
systematic method for tuning of the process noise covariance matrix via an analysis of the
extended dynamic system. The approach was tested in an industrial rolling mill and shown
to successfully estimate the temperature distribution. The reduced and full EKF performed
similarly in estimation, however the reduced EKF simplifies the simulation and reduces
computational time.

Kloeser et al. [69] examined the spatiotemporal estimation of temperature distribution
in the hot sheet metal-forming process. Rather than using a course grid finite difference
method to derive the state-space model, they instead designed a dynamical Reduced Order
Model (ROM) from a high-dimensional thermo-mechanical model by proper orthogonal
decomposition (POD). Starting with a refined model of several thousand states, they use
POD to project the states onto a reduced order state space model, which preserves the
most important dynamics in the system. A disturbance model was added to the EKF to
address simplifications and modelling errors. The approach was validated in a simulation
of the hole-flanging process by a reduction in the number of states from 17,000 down to
30. The experimental results confirmed the approach in the estimation of spatial-temporal
temperature distribution in realtime by using sparse local temperature measurements.

Havinga et al. [70] used a PF with online force measurements to estimate the physical
state (sheet thickness, friction, angle after bending, etc.) of the product in a metal forming
process based on force measurements. They built a 2D FEM model of the bending process
and then applied POD along with Radial Basis Function interpolation to create a fast model.
The proposed approach was used in the numerical simulation of the bending process and
successfully predicted the state changes based on variations in process forces.

The applications of state estimators in polymer synthesis and material processing and
the resulting potential impact on sustainability are summarised in Table 2.

Table 2. State-estimators used to improve material synthesis and forming processes.

Process Industry Method Desired Output Sustainability Impact Refs

Polymerisation Cubature KF Concentrations and molecular
weight distribution (MWD)

Inline monitoring of the process and
efficiency improvement [54]

Polymerisation PID and EKF Molecular weight (Mw) Better estimation of process,less waste
and higher process quality [52]

Polymerisation KF Number-average and
weight-average chain length

Better estimation of process and
efficiency improvement [55]

Polymerisation Receding-horizon KF State of methyl methacrylate
polymerisation

Less computational time and efficiency
improvement [56]

Micro-injection moulding EKF Pressure signature Improvement in part quality and less
material waste [58]

Injection moulding KF and iterative learning
control State estimation Improvement in machine control and

part quality and efficiency [59]

Injection moulding EKF and MPC Pressure trajectory Improvement in part quality and
process [60]
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Table 2. Cont.

Process Industry Method Desired Output Sustainability Impact Refs

Injection moulding EKF Cavity pressure Production of lighter parts and less
raw material use [61]

Injection moulding EKF Detected distance Increase the tool life and efficiency
improvement [62]

Polymer Extrusion Nonlinear State Observer Melt viscosity
Part quality enhancement Ability to
process recycled materials less waste

and rework
[63]

Liquid composite molding State observer Pressure and permeability Part quality and process efficiency
enhancement by less waste and rework [64]

Electroslag Remelting Linear KF Temperature distribution Defect-free ingots and efficiency
improvement [65]

Vacuum Arc Remelting PF Solidification front Production of defect-free ingots
without heat treatment [66]

Hot-rolled Strip Cooling EKF Transient Temperature
distribution

Better control of microstructure
resource efficiency and quality. [67]

Heavy Plate Rolling Full and reduced EKF Plate temperature Better control of microstructure.
Reduction in material use and weight [68]

Hot Sheet Metal Forming EKF Spatial-temporal Temperature
distribution

Prediction of material properties and
reduction in material use and weight [69]

Metal Forming PF Physical properties (thickness,
bend angle, etc.)

Improvement in production accuracy
and efficiency [70]

3.4. Machining Processes

Machining processes include milling, grinding, turning, drilling, etc., which contribute
about 5% of the gross domestic product (GDP) in the developed world [71]. A significant
factor in the cost of machining has been associated with suboptimal tooling setups, with
cutting tool failure contributing to almost 20% of the machining downtime [72]. Machining
processes are less efficient and consume unnecessary energy while working with faulty
tooling. Machining processes account for approximately 33% of primary energy use in the
manufacturing industry globally [73], but approximately only 25% of the energy consumed
accounts for actual cutting [74]. Researchers have explored various methods to improve
efficiency within the industry, with particular emphasis on improving monitoring methods
for the condition of tools and various part quality indicators. The application of state
estimation methods for predicting tool wear and part quality estimation in machining
processes has become more prevalent over the past 10–15 years.

Tool wear is an important aspect of machining processes, as worn tools result in
unnecessary energy consumption, waste generation, and process downtime. A number of
researchers have explored the use of state observers and Bayesian methods with mathemat-
ical models of tool wear within machining processes.

Niaki et al. [75] developed a discrete linear model from a mechanistic model of tool
wear to be used with a Kalman filter. While the true dynamic behavior of tool wear is
nonlinear at the initial stages, linear at intermediate stages, and nonlinear at the final stages
before catastrophic failure [76], their work focused only on the linear stage. From the
mechanistic model of cutting, a linear relationship is derived between power consumption
and tool wear. In-line measurements of spindle current allow for power consumption
estimation, which is used to correct tool wear and tool wear rate estimates. In an experi-
mental trial, the designed Kalman filter resulted in a maximum average error of 10% of tool
flank wear using this low-cost method. Tiwari et al. [77] further extended the KF scheme
proposed by Niaki [75] in an end milling process to incorporate machine vision measure-
ments of the surface texture of the cut surfaces. Linear regression was used to formulate a
measurement model of flank wear with the cutting force and image histogram variance
as the measurement vector y. An alternative measurement model excluding cutting force
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was also tested. In experimental trials, both KF implementations were able to predict the
progression of tool failure, providing better accuracy than the standalone regression model
(without the mechanistic model of tool wear progression). Both models provided adequate
estimates of the flank wear, meaning that the force measurement could be neglected.

Zhang et al. [78] proposed the use of Least Squares Support Vector Machines (LS-
SVM) in a Kalman Filter for tool wear estimation, also incorporating visual images into the
measurement update. LS-SVM is used to train a tool wear prediction model from cutting
conditions, cutting time and wear position based on a historical data set. A KF framework
is implemented to ‘correct’ the LS-SVM model predictions using observed tool wear from
visual images (LS-KF model). Because the model process noise and the measurement noise
covariances are assumed to be fixed, the Kalman gain converges to a steady-state KF, which
occurs after six time-steps. The steady-state KF was then used to update the LS-SVM
model without actual tool wear images (LS-KF-S model). The KF approach significantly
improved the prediction errors relative to the open-loop LS-SVM model alone. While the
best performance is achieved using continual visual measurements of tool wear in the
LS-KF model, LS-KF-S also provided good estimation performance. In this case, the KF
framework facilitates significant improvements in LS-SVM predictions with a small set of
images to correct the model.

Sadhukhan et al. [79] presented an unscented Kalman Filter (UKF) for flank wear
estimation in a turning process. A discrete flank wear model is developed where two com-
ponents of flank wear due to abrasion and diffusion are considered as state variables. The
system model parameters are determined from experimental data. A linear measurement
equation, derived via linear regression from the experimental data set, relates the state
variables to the measured cutting force. Both a UKF and Extended Kalman Filter (EKF)
were compared for tool wear estimation in a simulation. The simulation of both methods
showed that flank wear estimation by UKF outperformed that of EKF with a 50% reduction
in the error of UKF estimates relative to EKF.

The application of a particle filter framework for tool wear monitoring has been ex-
plored in a series of works [80–84]. A PF method for tool wear estimation in a milling
process was proposed in [80] and further developed in [81]. This work proposes a physics-
based analytical tool wear model for the prediction of the tool wear state, with the model
parameters described by uniform probability distributions. A particle filter-based scheme is
investigated to estimate the model parameters and the tool state based on online measure-
ment. Tool vibration signals and force measurements are used as indirect measurements of
the actual tool wear state. First, various features of the signal measurements (statistical,
frequency-domain, and time-frequency domain) were extracted and analysed for the rela-
tionship with tool wear using an experimental dataset. It was found that wavelet energy in
the x-direction of the force measurement has a strong linear correlation with the tool wear
and, hence, it was selected as a single measurement for use in a particle filter measurement
update. In [81], both an autoregressive (AR) model and support vector regression (SVR)
were investigated to formulate the measurement model in order to predict the online mea-
surement from the estimated tool wear state. In general, SVR outperformed the AR model.
The use of a PF with an SVR or AR measurement model improved tool wear prediction by
2% compared to a PF using a simple linear measurement model. In [82], a similar scheme
was explored with the addition of evaluating various dimension reduction techniques for
improving the signal feature selection step of formulating an SVR measurement model.
Principal Component Analysis (PCA), kernel Principal Component Analysis (k-PCA), and
Locally Preserving Protection were explored with the best performance yielded by k-PCA.
The performance of two different PF algorithms was explored in [84]. A Local Search Parti-
cle Filter (LSPF) is compared against a conventional sequential importance resampling (SIR)
method. LSPF showed a reduction in prediction error by over 30% in comparison to the
standard SIR approach, which suffered from the particle population diminishing too soon.
In [83], the system model allows for time-varying machining settings and uses a particle
filter for joint state and parameter estimation. A refined particle resampling strategy is
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proposed for the implementation of the PF. In this work, the online measurements include
acoustic emission (AE) data. Changes in the distribution of vibration and AE data were
interpreted as indicators of tool wear. This method allows for good accuracy of tool wear
prediction under changing settings of feed rate, cutting depth, and cutting speed.

Bayesian estimation methods have also been used to estimate the surface roughness
of parts while they are being machined. Conventionally, surface roughness is measured
post-manufacturing, which can result in waste due to rejects detected too late for corrective
action to be taken. Moliner-Hereida et al. [85] examined three approaches for surface
roughness monitoring of machined parts in real-time. In the first, they used an open-
loop system to estimate surface roughness on the assumption that the surface roughness
increases at a constant rate (as the cutting tool wears over time). In the open-loop scheme,
the surface roughness is estimated based on an empirical model of the relationship between
cutting parameters, surface roughness, and power consumption. In the second scheme,
a steady-state Kalman filter was used for surface roughness estimation (i.e., both the
process noise and the measurement noise covariances are assumed to be constant). The
system model predicts both surface roughness and power consumption—again under the
assumption that both increase at a constant rate, which depends on the cutting parameters.
Actual power consumption measurements are obtained every ten parts and allow for the
correction of state estimates. The third scheme incorporated surface roughness readings
from a profilometer in addition to power consumption information at the same rate of
every ten parts. The profilometer checks the surface roughness post-machining. All three
approaches were compared in a simulation study. While the Kalman Filter implementation
in scheme two improved results over the open loop system, significantly better performance
was achieved by also including profilometer measurements.

Zhang et al. [86] examined tool wear estimation and surface roughness prediction in a
micro-milling process with a particle filtering approach. An improved analytical surface
generation model was developed from analysis of the process geometry-kinematics. The
theoretical trajectory of tool wear including the non-linear behaviour of tool run-out was
predicted. Using the particle filter framework, predicted tool wear was updated with tool
vibration and dynamic cutting force measurements. The resulting stochastic model of
the cutting process was used to predict surface roughness under five different machining
conditions. The influences of the machining parameters on the stochastic surface generation
were also analyzed. The model allows for the prediction of machined surface quality prior to
the costly micro milling operations, and provides a basis for the optimization of machining
parameters to improve quality and efficiency.

Table 3 summarises the studies undertaken using various state estimators in machining
processes with the resulting impact on sustainability.

The application of state estimation approaches as presented in this section, has demon-
strated greater accuracy in condition and part quality monitoring in machining processes
compared to using open loop models. In many cases the proposed Bayesian filtering
frameworks incorporate machine learning methods into the measurement update for deal-
ing with complex high dimensional data, such as vibration and acoustic emission signals
and visual images. The application of Bayesian inference is shown to improve over the
use of machine learning approaches alone. The improved condition and part monitoring
performance can result in greater control over the process, resulting in reduced downtimes
due to unexpected tool failures and a reduction in energy use and waste generation from
faulty tooling and components [87].
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Table 3. State-estimator methods used improve sustainability of machining processes.

Machining Process Method Desired Output Sustainability Impact Refs

Milling KF Tool flank wear Estimation of tool life
and tool changes schedule [75]

End-Milling KF Remaining tool life Estimation of tool life, efficient
tool changes and reduced waste [77]

Milling Least Square SVM and KF Remaining tool life Improve tool life prediction
and process efficiency [78]

Turning Unscented KF Remaining tool life Tool life prediction, tool changes
and process efficiency [79]

Milling PF Wear width of the tool Tool width estimation, tool change
scheduling and process efficiency [80]

Milling PF Remaining tool life Tool life prediction, tool change
scheduling and process efficiency [81]

Milling Augmented PF Estimation of tool degradation Tool life estimation and process
efficiency [82]

Milling PF Tool life estimation Tool life monitoring, tool change
scheduling and process efficiency [83]

Milling Local Search PF Tool life estimation Tool life monitoring, tool change
scheduling and process efficiency [84]

Milling Model-based KF Surface roughness Improved part quality and
efficiency improvement [85]

Micro-Milling PF Surface roughness and
Surface topology

Improved part quality
and reduced waste [86]

3.5. Semiconductor Manufacturing

Semiconductors have an invaluable role to play in meeting global climate goals as they
are intrinsic to solar panels, wind turbines, electric vehicles, and many other green tech-
nologies. However, as the demand for computer chips continues to grow, semiconductor
manufacturing itself has many challenges with regard to sustainability, as it requires signifi-
cant input of energy and water and creates hazardous waste [88]. A recent analysis showed
that the greatest source of carbon emissions in computing is from hardware manufacturing
and infrastructure [89]. As a result, there is increasing attention on approaches to minimise
resources and generation of waste in semiconductor manufacturing. State estimation plays
an important role to this end as a persistent challenge in semiconductor manufacturing
control is the lack of critical in situ sensors to provide real time information on the wafer
status for feedback control and optimisation.

Semiconductor processing consists of many different operations to create the finished
product. Due to physical constraints, it is not feasible to conduct the high precision
metrology needed for quality validation until after a step is completed. However, processes
such as lithography are subject to many sources of variation caused by environmental
changes, regular maintenance, and operational drift over time. Therefore, metrology steps
are integrated into the production line to minimise the delay as much as possible [90].
Typically, each main processing step utilises ‘run-to-run’ (R2R) control, which integrates
process control theory with statistical process control (SPC). In R2R, wafer measurements
following a run of a unit process are used to update the process settings for the next
run in order to achieve the required quality targets. The basic structure of a run-to-run
controller consists of a process model, a state estimator, and a control law. The successful
implementation of R2R control in commercial facilities has been achieved for processes
including chemical mechanical polishing, chemical deposition, and plasma etching and
it has proven that it can efficiently improve the product yield and reduce scrap, rework,
and cycle time [91]. Exponential weighted moving average (EWMA) control (composed of
EWMA filtering followed by a deadbeat controller) is the established method of R2R control
and has been shown to be optimal for processes subject to integrated moving average (IMA)
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disturbances, which is the most common type of disturbance signal in semiconductor
manufacturing. Kim et al. [92] explored a Kalman filter based R2R controller and compared
performance against an EWMA controller for minimising variation in the quality variables
of the product under different types of process disturbance signals. The Kalman filter
provides the optimal one-run-ahead prediction of the model parameters perturbed by the
disturbance, and the controller computes the control input for the next run to compensate
for the effect of the disturbance. For IMA and integrated white noise (IWA) disturbances,
the EWMA and Kalman filters have the same structure and show identical performance.
However, for integrated auto-regressive (IAR) and auto-regressive integrated moving
average (ARIMA)-type disturbances, the Kalman filter R2R controller outperformed the
EWMA controller.

Disturbance observers aim to identify the specific nature of a disturbance in a system
and to subtract this from the control input in order to reject disturbance. This involves
feeding the output y of a plant through an inverse model of the plant and subtracting the
input signal u to estimate the disturbance signal. Disturbance observers have been shown
to be effective in high precision motion control for mechatronic stages in semiconductor
processes including lithography and chip packaging [93–96]. The disturbance observer
concept has also been applied to run-to-run control to deal with some of the shortcomings
of EWMA control. If there is severe aging of a production tool or the process drifts, EWMA
control produces an offset in the process output, which can be corrected by different means
such as a predictor corrector controller (PCC) or double EWMA controller. Lee et al. [97,98]
proposed an output disturbance observer (ODOB) structure as a unified framework for
these controllers and provided a systematic method to obtain the optimal parameters for
guaranteed optimal nominal performance. They showed in simulation studies that the
performance of the controllers was improved using this method.

A challenge for R2R control is the trend towards high-mix manufacturing; i.e., a single
machine may process several different products at different times, and products with the
same specification may be fabricated on different machines in different lots. This led to
the introduction of ‘threaded’ R2R control, which partitions historical data into different
‘threads’ based on the specific manufacturing context (tool, product, etc.). However, as
product mixes are becoming increasingly diversified, this can result in too many threads,
some of which have insufficient data. A long delay between adjacent lots in one thread
may make the estimation unreliable for infrequently manufactured products. Furthermore,
a lack of information sharing on data relating to tool degradation means that all the threads
using the same tool must address this shift disturbance separately [99]. To address this,
several non-threaded state estimation methods have been proposed, which involve an
observer to identify the contribution from different production contexts. Of these methods,
the Kalman filter is one of the most important [91]. Haririchi et al. [99] proposed a modified
Kalman filter to overcome the problem that in a non-threaded system, the model structure
can be such that the system states may not be completely observable. Wang et al. [100]
proposed a modified, simple-to-implement Kalman filter scheme (involving periodic reset
of the P covariance matrix) that considers the fact that if a context item is not involved
in a process run, then its state does not change. The method was shown to be robust to
uncertainty in the disturbance parameter and to outperform the conventional KF scheme
for common IMA-type disturbances.

A drawback of KF methods is that the nominal performance of the controller can only
be maintained when the disturbance model is known. In recent work, an extended state
observer (ESO) was investigated for R2R control in semiconductor manufacturing [101].
ESO algorithm disturbances, including plant-model mismatch, are lumped into a total
disturbance, which is set as a new state. An advantage of ESO is that the disturbance can
be reconstructed without an accurate model. A threaded ESO R2R controller was shown
to outperform other threaded approaches in a photolithography process fabricating five
different products. The authors further developed a discrete sliding mode observer for the
same process, which estimates disturbance without using a process model. The system
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was shown to outperform EWMA and double EWMA controllers in the rejection of IMA
disturbances with a shift or drift (as occurs in tool aging). It also performed better under
plant–model mismatch and had better tolerance for metrology delay [102].

Tsai et al. [103] developed a discrete sliding mode observer to estimate the core tem-
perature of multi-layer metal plates in semiconductor manufacturing process for real-time
(rather than run-to-run) thermal control. While the middle and top layers are monitored by
thermocouples, the middle layer is not accessible to physical measurement. This can result
in either excessive heating, which can damage the material, or heating which is insufficient
to result in the desired metal phase change. A state space model was developed from
the physics of the heat transfer processes. A sliding mode observer was proposed due to
the high robustness of the approach to plant-model mismatch and external disturbances.
The system was shown via experiment to accurately estimate the core temperature of the
system despite being influenced by unknown external cooling temperatures.

In summary, state estimation has a powerful role in semiconductor manufacturing
due to the problems in achieving physical measurements relative to the required precision
in situ. State estimation methods are combined with SPC approaches in run-to-run control
to minimise the effect of process disturbances. Sophisticated algorithms have been devised,
which can enable tight quality tolerances to be achieved, despite many sources of varia-
tion in fabrication sites having a high product mix. Most recent developments show the
potential for good performance without an accurate model of the process disturbances,
making practical implementation more feasible. Due to the high environmental impact of
semiconductor manufacturing (energy and water use, and toxic waste products), the ability
to produce wafer products ‘right first time’ can reduce scrap, rework, resource use, and
emissions.

3.6. Additive Manufacturing

Additive manufacturing (AM) is the fabrication of objects from computer-aided de-
sign (CAD) data by translating 3D CAD data into 2D cross-sectional profiles. Material
is then deposited layer-by-layer following the form of the generated 2D cross-sections,
which fuse to form the 3D object. Early applications of additive manufacturing were for
rapid prototyping of non-functional models. However, with advances in materials and
technology, AM is now widely used in various industries to produce products that offer
both form and function, and it is no longer limited to basic model creation [104].

AM processes are near net-shape; that, is the initial fabrication of the product is very
close in size and shape to the final requirements, meaning minimal material removal is
required. Compared to conventional and subtractive manufacturing such as machining,
additive manufacturing is significantly more resource efficient and can reduce the need for
additional, energy-intensive post-processing steps [105]. The main advantage of AM over
conventional machining methods is that it can produce complex parts with geometries not
possible through conventional methods with a high degree of precision. AM can be used to
manufacture one-off bespoke products, such as customised medical devices, cost-effectively
and close to the point of use, eliminating distribution steps. However, challenges remain
in production of defect-free parts by AM processes and the development of inline process
monitoring and control of critical features is still at an early stage, with most commercial
systems having only open-loop temperature regulation schemes [106].

There are different types of AM processing techniques, which can be classified into
seven general categories: powder bed fusion, material jetting, vat polymerization, sheet lam-
ination, fused deposition modelling, binder jetting, and directed energy deposition [107].
Within these, there are three main classes that have the greatest application in manufactur-
ing processes, namely Powder Bed Fusion (PBF), Directed Energy Deposition (DED), and
Fused Deposition Modelling (FDM) (see Figure 6).

In the PBF process, the parts are built from a bed of powder particles (polymer or
metal) that are fused together selectively by a heat source, layer by layer. This heat source
can be a laser or electron beam [108]. The DED process fabricates components by melting
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the material, in the form of powder or wire, with a focused laser beam [109]. The last class,
FDM, also known as fused filament fabrication (FFF), feeds a polymer filament through a
nozzle, which heats it to a molten state. This molten filament extrudes through the nozzle,
which deposits the polymer onto a build plate based on the 2D cross-sectional layers of the
3D design [110].

These three classes have a lot of process parameters and design criteria which affect
the quality of the additively manufactured parts. These include material selection and
properties, melt pool temperature, melt pool width, laser power, support structure design,
bed adhesion, layer height, wall thickness, infill parameters, etc. A number of recent studies
have explored improving the quality of the process and final printed parts with real-time
monitoring by using KF, PF, and other state observers to improve on the limitations of
physical measurement.

Figure 6. Classes of AM widely used in manufacturing industries.

Monitoring and control of processing temperatures is one the most vital factors in
metal AM since it affects metallurgic phase formation and thereby the microstructure of the
printed part [111]. The energy to melt the material in PBF and DED processes is localised
in a small melt pool, and as a result, the temperature gradients are extremely large. This
causes differential thermal contraction and local micro-distortions, which can integrate to
form large milliscale distortions [112]. It is not possible to place a physical temperature
sensor on the surface being built; thus, temperature measurement must always be remote.
Most commercial systems have a thermocouple in the build plate but the temperature here
is hundreds of degrees lower than at the melting plane. Some more expensive systems use
digital camera-based pyrometer systems to monitor the melt pool or to obtain a thermal
image of the top surface.

In a low-cost approach, Oakes et al. [113] proposed a two-step Kalman filter in Laser
Metal Deposition (a DED method) to monitor the melt pool temperature in a closed-loop
model-based controller. They compared the performance of a temperature controller with
and without KF on two different temperature references (time-varying and constant). A
comparison of the results showed a reduction in average absolute error by almost 32% and
23% for the constant and time-varying references, respectively. Despite the high system
uncertainty, KF performed well in estimation of the melt pool temperature.

Research undertaken by Jiang et al. [114] used a Kalman filter to control the tempera-
ture of the powder bed in a PBF process. They introduced a multi-zone temperature control
in which nine temperatures from different locations of the powder bed were extracted by in-
frared cameras and each of them were fed back to a separate PID controller. They compared
the results: first to a single loop controller that used only one average temperature reference
and one PID controller; and secondly, to a Model Predictive Control (MPC) controller. For
all methods, KF was used to filter the measurements with large noise covariances. They
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demonstrated that multi-zone control has a superior performance compared to single-loop
and provided similar performance as MPC. However, it had the advantage that it reduced
the computational cost in comparison to MPC.

In addition to control of temperature, research has also been performed on the control
of other quality factors within AM processes. Lopez et al. [115] studied uncertainty
identification and propagation in the prediction of melt pool width in a Laser PBF process.
They further developed a thermal model from a laser cladding process [116] to be applied
to PBF for melt pool width prediction. They validated their model using a case study of
printed overhanging structures and showed how thermographic monitoring is effective in
uncertainty identification and reduction. A KF was used for process estimation using the
noisy measurements of melt pool width. The approach has the potential to be applied to
control the melt pool dimensions in real-time.

The high laser power in PBF evaporates and fuses the metal powder. If the boiling
point is reached, a vapour plume arises in the melt pool that causes the formation of a void
in the printed parts. The evaporation also generates sparks, known as spatter, that can lead
to instability in the melt pool and discontinuity at the surface. Hence, real-time monitoring
of plume and spatter can aid better control of the process to avoid such defects [117].
Zhang et al. [118] monitored and extracted various features from the melt pool in laser
PBF, including plume and spatter, with an off-axis vision monitoring system employing a
high-speed camera. The contrast of images from the camera was enhanced using an optical
filter. They introduced a novel image processing method to segregate melt pool, plume, and
spatter from each other. They also used KF tracking to find the exact location of the melt
pool. Various features such as melt pool intensity, plume area, plume orientation, spatter
area, direction and velocity were extracted in four different single-track scenarios using
this approach. These features are the potential indicators that assist with the investigation
of and decisions on printed part quality.

As the temperature history directly influences phase formation, the ability to estimate
the complete temperature history of the entire part, and not only the melt pool, would be
extremely valuable for process validation and precise control over resulting part properties.
Wood et al. [106] conducted investigations using state observation for the estimation of
temperature states throughout the printed part itself from the measurement of surface
temperature in the laser PBF process. Here, a Finite Element Method (FEM) was utilised
to model the complex spatio-temporal temperature dynamics of the process. A high-
dimensional state-space model (196 state variables) was extracted from the FE model,
from which the KF temperature state observer was defined. They successfully estimated
temperature evolution in several simulated test parts.

They further developed their work in later research to estimate internal temperature
distribution and proposed a two-dimensional linear model with FEM not only for a laser
heat source (L-PBF) but also for electron beam PBF (E-PBF) [119]. They applied an en-
semble KF to this system to deal with high dimensionality. In their research, the EnKF
estimates temperature by correcting the linear model temperature prediction to agree with
measurements extracted from a Finite Element model in lieu of physical measurement
data. In simulation tests, they assessed the EnKF estimation error for E-PBF and L-PBF
systems when the assumed material properties matched the FEM simulation and when
they differed. Figure 7 presents the L∞-norm of the temperature errors (i.e., comparison
of the maximum errors) for E-PBF (labelled 3) and L-PBF (labelled four) for the open
loop and EnKF estimates for 304 stainless steel (SS) at low temperature (Figure 7a) and
elevated temperature (Figure 7b). The EnKF scheme presented up to a 44% reduction in
the L∞-norm of the temperature field error relative to the open-loop FE model predictions
when the material properties differed. The method has the potential for exploitation in a
closed-loop control scheme to modulate laser power in order to ensure that the desired
microstructure is achieved despite uncertainty in the raw material properties.
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Figure 7. Comparison of L∞-norm error of open loop with EnKF for E-PBF (3), L-PBF (4) with
(a) 304 SS at low temperature and (b) high temperature

Several studies have also been conducted to investigate the processing parameters and
part quality of polymer printed parts. Kim et al. [120] proposed a digital twin method for
part temperature measurement in FDM. Similarly to the work of Wood et al. [106,119], they
defined a spatio-temporal thermal model here using the finite difference method. They
fused this model with sensor data (IR camera) using a linear KF to estimate temperature.
The verification of the method was performed with a virtual experiment setup, which
demonstrated that this closed-loop approach can estimate the temperature and related
uncertainties accurately.

Garanger et al. [121] proposed an optimal control law to control the mechanical
properties in leaf springs produced by fused deposition modelling. They printed the
stacked leaves with a simple FDM printer using PLA filament and used a KF framework
to estimate the stiffness of parts. The KF was applied to update the stiffness estimates
following a physical test of the stiffness of each printed leaf. The proposed KF method
resulted in higher accuracy in stiffness estimation in comparison with an unfiltered open-
loop prediction model. They later followed a similar approach to estimate the stiffness in a
printed cantilever beam [122]. They proposed a dynamic model for the printing process
of the beam and fused this model with force sensor data in an optimal control law with
KF. Comparison with an open-loop system showed an improvement in predicted stiffness
error of about 94% and a reduction in noise by almost 80%.

Table 4 summarises the studies that have been performed to date in AM with state
estimators and their related sustainability impacts. State estimators enable inline moni-
toring of process parameters which cannot be directly measured or for which only noisy
measurements are available. Enhanced monitoring of the process and online estimation of
part quality indicators can reduce defects in the printed parts such as delamination and
warpage. Hence, as the failures are predictable, there will be less wasted material, energy,
and time and greater practical realisation of the benefits of AM.

Table 4. State-estimators used to improve sustainability of AM processes.

AM Process Method Desired Output Sustainability Impact Refs

DED Two-step KF Melt pool temperature Better estimation of the process
and efficiency improvement [113]

PBF PID and KF Temperature of powder bed Enhance the profits by
reduction of computational cost [114]

Laser PBF KF Melt pool width
Part quality
and efficiency enhancement
by less waste and rework

[115]

Laser PBF Image processing and KF Various features of melt pool,
plume, and spatter

Part quality
and efficiency enhancement
by less waste and rework

[118]

Laser PBF State-observer Temperature estimation of
underlying layers of the part

Higher precision part
and less rework [106]
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Table 4. Cont.

AM Process Method Desired Output Sustainability Impact Refs

E-PBF and L-PBF Ensemble KF Internal Temperature fields Higher part quality
and waste reduction [119]

FDM Linear KF Printed part Temperature Uncertainty estimation and
process quality enhancement [120]

Polymer AM KF Stiffness of the printed part
Part quality
and efficiency enhancement
by less waste and rework

[121]

Polymer AM KF Stiffness of a printed cantilever beam
Part quality
and efficiency enhancement
by less waste and rework

[122]

4. Discussion

State estimation is an important concept in manufacturing, providing a suite of tools
for improved monitoring and control of manufacturing systems. In this review, we have
highlighted recent advances and applications of state estimation in industrial robotics,
chemical processes, material forming, machining, semiconductor manufacturing, and
additive manufacturing sectors. In particular, Bayesian filtering concepts have emerged
as a popular approach to estimate system variables which cannot be measured directly
or for which only noisy, uncertain, and/or latent information is available. Compared to
deterministic state observer approaches, the Bayesian methods have enhanced flexibility
in facilitating the incorporation of knowledge about the uncertainty of both system and
measurement models and different sources of data about the process. This means that
not only is the most accurate estimate of the system states derived under a probabilistic
framework but also a measure of the associated uncertainty is derived, which provides
useful information to operators and manufacturing managers about the appropriateness of
corrective action. Particle filtering is more flexible than the Kalman filter as it can deal with
non-Gaussian probability distributions, and advances in computing power mean that it is
now a feasible approach in systems where dimensionality is relatively low. Kalman filtering
and particle filtering have been shown to improve the precision, speed, and perception of
industrial robotics, improving the capability of robots to work alongside humans for more
efficient, flexible, and safer manufacturing processes. These Bayesian filtering methods
have also found wide application in the estimation of product quality variables in material
synthesis and processing (see Table 2), tool condition and part quality monitoring in
machining processes (Table 3), compensation of process disturbances in high precision
semiconductor manufacturing (Section 3.5), and for quality monitoring and control in
additive manufacturing processes (Table 4). Below, we outline the main challenges and
limitations in the implementation of state estimation approaches in manufacturing and
discuss emerging and future trends in the context of sustainable manufacturing.

4.1. Limitations and Practical Issues

A problem with the practical implementation of Bayesian methods is that model
uncertainty is often difficult to quantify, particularly with regard to process noise. In
practice, the measurement noise is usually estimated from experimental data (comparing
sensor measurements to known ground truth values) and the process noise covariance is
tuned until good filtering performance is achieved. In operation, the estimates should be
monitored for divergence over time—if the difference between the predicted measurements
and actual measurements is significantly higher than the expected covariance, then the
reason for the divergence should be investigated. If it is due to sensor errors (outliers
and missing data) or numerical issues, then the filter should be restarted. However, if
divergence is due to model errors then the filter should be redesigned. Reference [28]
provides useful information on troubleshooting these practical issues. A useful starting
point for model uncertainty analysis is to examine the sensitivity of model predictions for
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initial conditions and/or model parameters. A sensitivity analysis will reveal what model
outputs are most influenced by different states/parameters and can reveal weaknesses
in the information flow—for example, to identify where in the process sensors should be
located and if additional sensor data are needed (see for example [123–125]. That said,
the Bayesian filtering approaches have limitations where the actual nature of the system
uncertainty is unknown, as is the case with manufacturing systems which may be subject
to different sources of variability in the interval between measurement data being available.
This arises particularly in the case of semiconductor manufacturing where high precision
metrology for analysis of part quality can only be conducted after each run and used to
update the process settings for the next run. In this context, the application of a disturbance
observer framework (where the system output measurements are input to an inverse model
of the plant to estimate the disturbance signal directly) has been found to be useful in
improving control performance. Furthermore, the sliding mode observer, which has the
property of high robustness to unknown disturbances, has shown excellent potential for
practical applications where accurate models of process disturbances are unavailable.

4.2. Spatio-Temporal Monitoring

While state observers and Bayesian filters have traditionally been used to estimate
system states which vary over time at a particular point, recent developments have ex-
tended the approach to observe dynamic variables which are spatially distributed—taking
inspiration from approaches applied in geostatistics. This has been investigated in addi-
tive manufacturing and metal forming where a number of works have applied Bayesian
filtering methods to estimation of spatio-temporal temperature dynamics [119,120]. In
these processes, physical measurements of temperature are limited by physical accessibil-
ity. However, the temperature profile is directly related to the quality of both metal and
polymer parts affecting microstructure and void formation in the former, and the resulting
residual stresses and warpage in both. Due to complex spatio-temporal dynamics, the
system model in these cases is derived from numerical finite element models. In metal
forming, this has been addressed by either (i) using a course 2D grid with low spatial
resolution or (ii) using a reduced order model which allows for a more complex model and
higher spatial resolution but preserves only the most important dynamics of the system.
In AM, a very high number of state variables from an FE approach were preserved and
an Ensemble Kalman Filter (EnKF) proposed to deal with the high dimensionality [120].
However, this work is still in its early stages and has only been tested in simulation and on
2D models to date.

4.3. Relationship between State Estimators and Machine Learning in Manufacturing

The literature points to an emerging trend in combining machine learning with model-
based state estimation, and this been pursued in monitoring and control of machining
processes in particular. Physics-based models of cutting have been exploited to predict the
progression of tool wear and increasing surface roughness in milling and turning processes,
while available machine measurements such as cutting force power consumption are used
to correct predictions. However, increasingly indirect measurements including visual
images, vibration signals, and acoustic emission data are used to provide information on
the tool and/or part state, and it can be difficult to derive physical relationships between
changes in these types of signals and the wear of the tool. A number of recent works
have, therefore, applied machine learning to develop a suitable measurement model for
applications in a Bayesian filtering framework. Notably, the combination of a system
model which predicts the progression of tool wear and/or part roughness together with
measurement information from the process is shown to outperform machine learning
models on their own [78]. In the case of robot perception, Bayesian filtering is also currently
regarded as a more accurate and mature approach than AI-based methods such as ANN
and neuro-fuzzy approaches [36].
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4.4. Systems-Level Approach

A trend in recent works on state estimation in manufacturing is a greater tendency
towards a more holistic systems level approach to evaluating, optimising, and controlling
a manufacturing system. It is shown that a predict-correct state estimation framework
can perform the following: (1) incorporate post production inspection and QA data into
real-time monitoring and process control (e.g., [54]); (2) exploit historical data for process
modelling via machine learning where physical relationships are not well defined; and
(3) integrate computational models typically used for product design/process setup into
the process monitoring and control scheme. State estimation algorithms have also been
applied to the issue of cybersecurity in the context of industrial Internet of Things. While
IoT is an enabling technology for the capture, sharing, storage, and utilisation of data in
distributed industrial control systems, it also makes industrial processes vulnerable to
cyber attacks, which can result in economic and environmental damage as well as risks to
human safety and health. In [126], a Kalman filter is proposed for time-series prediction of
process states in a petroleum gas oil treatment process. KF is shown in the simulation to be
effective for rapid anomaly detection in a framework which facilitates automated control
action to correct the plant operation to safe levels. Other research works examined Kalman
filter-based fault detection and isolation methods to enhance the cyber security of water
treatment plants and found that these state estimation methods excel in certain types of
attack but have limitations in others and cannot always effectively isolate and correct the
system [127,128]. There remain several challenges in secure state estimation and control
of cyber-physical systems, and further research on data-driven and AI-based secure state
estimation approaches is anticipated [129].

4.5. State Estimation and ‘Digital Twins’

A digital twin is a computational representation of a physical process where there
is exchange of data in real-time between the real and virtual processes. Digital twins are
seen to be a vital tool for design, optimisation, control, virtual testing, and predictive
maintenance of industrial processes [130]. A digital twin must be capable of processing real-
time data for monitoring a system, and ideally can generate optimal control inputs to the
system to ensure product quality and process efficiency. However for many manufacturing
processes, an accurate computational model requires complex systems of partial differential
equations, which can only be solved via finite element and computational fluid dynamics
(CFD) approaches. These approaches are widely developed and deployed for exploring
process design and setup; however the high computational resources required mean that
such models cannot typically be deployed in real-time for the purposes of monitoring
and control. Hence, the development of methods to generate low-dimensional ‘surrogate’
models from high-fidelity computational models of nonlinear, multi-physics, and multi-
scale dynamic systems for use as a digital twin is currently a very active area of research.
State estimation algorithms can then provide a framework for the integration of such
models with available sensor data for process monitoring and control. Surrogate models
or ‘emulators’ can be developed using machine learning to derive a simpler and faster
model from physics-based models, with Gaussian Process regression (GPR or ‘kriging’)
being one of the most successful [130]. A Kalman filtering framework for the spatio-
temporal dynamics of uncertain systems captured by Gaussian process models using
a network of distributed sensors has recently been proposed and may have significant
potential for complex, distributed manufacturing systems[131]. An alternative emerging
approach to develop model surrogates which can be used in real-time state estimation
and process control, is the model order reduction approach (MOR) approach. MOR aims
to compute a reduced order model (ROM) of low dimension that captures the important
characteristics of the original high dimensional model. Under this approach the physics of
the problem is embedded in the reduced-order representation, typically using a projection-
based method such as proper orthogonal decomposition (POD), which requires less training
data and greater generalisation capacity relative to purely data-driven machine learning
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approaches [132–134]. Such methods have recently been explored for state estimation in
structural health monitoring [135], hydraulic systems [136,137] and, as discussed here,
metal forming [69,70]. The extension of the state observer/Bayesian filter framework to
utilise surrogate model approaches has great potential for process monitoring and control
of complex manufacturing problems with uncertain spatial dynamics, for example, in
additive manufacturing, and promises to be a rewarding avenue for future research.

5. Conclusions

A review of recent works in the development and application of state estimation
methods in manufacturing demonstrates that such algorithms play an important role in
soft sensing and sensor fusion to improve product quality; reduce material use, waste,
and downtime; and improve efficiency and safety in manufacturing. As manufacturing
industries are under increasing pressure to improve sustainability through greater resource
efficiency, reduction in pollutants and greater use of ‘circular’ materials, state estimation
algorithms can be an important tool to use alongside developments in sensorisation, com-
puting, and IoT in advanced manufacturing. Bayesian filtering, in particular, is a popular
and flexible approach capable of integrating physical knowledge and various data sources
of information in an optimal manner. The framework provides a natural way to synthesise
both physics and data-based modelling approaches with real-time data in a connected
cyber-physical system under the Industry 4.0 concept. Recent works have highlighted
how state estimation algorithms such as the Kalman filter can incorporate complex partial
differential equation models through a variety of approaches for real-time monitoring and
control of systems with spatial and temporal dynamics. Further research on the integration
of state estimation methods in digital twin approaches promises to be a vital tool in the
optimisation and control of complex manufacturing systems.
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The following abbreviations are used in this manuscript:

IoT Internet of Things;
SMO Sliding Mode Observer;
KF Kalman Filter;
EKF Extended Kalman Filter;
EnKF Ensemble Kalman Filter;
UKF Unscented Kalman Filter;
PF Particle Filter;
SLAM Simultaneous Localisation and Mapping;
AI Artificial Intelligence;
ROS Robot Operating System;
AMCL Adaptive Monte Carlo Localisation;
Mw Molecular Weight;
EMI Excluding Mutual Information;
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CI Covariance Intersection;
MPC Model Predictive Controller;
APF Augmented Particle Filter;
AHH Adaptive Hinging Hyperplane;
RHKF Receding Horizon Kalman Filter;
PID Proportional Integral Derivative;
LS-SVM Least Square Support Vector Machine;
SSKF Steady-State Kalman Filter;
SVR Support Vector Regression;
GDP Gross Domestic Product;
PCA Principle Component Analysis;
K-PCA Kernel Principle Component Analysis;
LSPF Local Search Particle Filter;
R2R Run to Run;
SPC Statistical Process Control;
EWMA Exponential Weighted Moving Average;
IMA Integrated Moving Average;
IAR Integrated auto-regressive;
PCC Predictor Corrector Controller;
ESO Extended State Observer;
AM Additive Manufacturing;
CAD Computer-aided Design;
PBF Powder Bed Fusion;
DED Directed Energy Deposition;
FDM Fused Deposition Modelling;
FFF Fused Filament Fabrication;
L-PBF Laser beam Powder Bed Fusion;
E-PBF Electron beam Powder Bed Fusion;
FEM Finite Element Method;
MOR Model Order Reduction;
ROM Reduced Order Model;
POD Proper Orthogonal Decomposition.
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