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Cancer is one of the leading causes of death worldwide, which brings an urgent need for its
effective treatment. However, cancer is highly heterogeneous, meaning that one cancer
can be divided into several subtypes with distinct pathogenesis and outcomes. This is
considered as the main problem which limits the precision treatment of cancer. Thus,
cancer subtypes identification is of great importance for cancer diagnosis and treatment. In
this work, we propose a deep learning method which is based on multi-omics and
attention mechanism to effectively identify cancer subtypes. We first used similarity
network fusion to integrate multi-omics data to construct a similarity graph. Then, the
similarity graph and the feature matrix of the patient are input into a graph autoencoder
composed of a graph attention network and omics-level attention mechanism to learn
embedding representation. The K-means clustering method is applied to the embedding
representation to identify cancer subtypes. The experiment on eight TCGA datasets
confirmed that our proposed method performs better for cancer subtypes identification
when compared with the other state-of-the-art methods. The source codes of our method
are available at https://github.com/kataomoi7/multiGATAE.
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1 INTRODUCTION

Cancer is one of the leading causes of death worldwide and is a serious threat to human health (Sung
et al., 2021). Cancer is extremely heterogeneous, and distinct molecular subtypes have different
clinical outcomes (Zhao and Yan, 2019). The goal of cancer subtype identification is to discover
patient groups with different clinical outcomes, thus facilitating personalized treatment (Liang et al.,
2021). For instance, four potential molecular subtypes of gastric cancer, i.e., EBV, MSI, GS, and CIN,
were uncovered by The Cancer Genome Atlas (TCGA) project (Bass et al., 2014), and each of these
four molecular subtypes has specific clinical significance signatures (Sohn et al., 2017). Therefore,
cancer subtype identification is of great importance.

The rapid development of high throughput sequencing technology has made a massive amount of
omics data from the different levels available. This provides an opportunity to investigate the
heterogeneity of cancer and to identify cancer subtypes (Zhao et al., 2019). Since omics data lack
labels associated with cancer subtypes, cancer subtype identification is usually addressed using
clustering (Xu et al., 2019). Earlier studies usually used only single-omics data; however, single-omics
data provide only a very limited view on cancer subtype identification (Gomez-Cabrero et al., 2014;
Le Van et al., 2016). Thus, many researchers integrate multi-omics data to identify cancer subtypes.
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Yang et al. (2021a) proposed a computational method called
Deep Subspace Mutual Learning (DSML). DSML constructed
branching models for each type of omics data and then
constructed a main stem model to optimize the feature
representation learned from single-omics data. Finally, spectral
clustering was applied to the learned representation to identify
cancer subtypes. Chaudhary et al. (2018) applied an autoencoder
to process multi-omics data to gain low-dimensional features,
then the features were further filtered using Cox-PH analysis.
Finally, K-means was applied to the resulting features to cluster
cancer subtypes. While using multi-omics data provides a
comprehensive view, it also introduces additional
computational costs.

Apart from the differences in the used data, some studies have
typically focused on analyzing the features of omics data and the
distribution of each data type to identify cancer subtypes. Shen
et al. (2009) proposed an integrative clustering method named
iCluster. iCluster models the subtypes of cancer as latent variables
which can be simultaneously estimated from the omics data. Yang
et al. (2021) introduced a deep-learning method named Subtype-
GAN for cancer subtyping. Subtype-GAN consists of three
modules: encoder, decoder, and discriminator. The encoder
takes multi-omics data as input and encodes them into low-
dimensional representation. The decoder reconstructs the
original input using the low-dimensional representation. The
discriminator is used to force the representation encoded by
the encoder to follow the prior Gaussian distribution. Finally,
Consensus GMM clustering is applied to the low-dimensional
representation to determine the most appropriate clustering
number and to predict the subtype results. However, these
methods are limited by strong assumptions on the distribution
of the omics data (Song et al., 2021). Noise in the omics data may
affect the results of cancer subtyping. Similarity-based
approaches for multi-omics data can avoid this problem (Song
et al., 2021). Wang et al. (2014) proposed a method named
Similarity Network Fusion (SNF) for integrating multi-omics
data. SNF first generates a sample similarity network for each
type of data and then iteratively fuses these similarity networks.
Zhao and Yan (2019) proposed a cancer subtyping method
named Molecular and Clinical Networks Fusion (MCNF),
which integrates multi-omics and clinical data. MCNF first
applies unsupervised random forest to multi-omics and
clinical data to generate a patient affinity network and then
uses random walk to fuse the patient affinity networks. After
obtaining the fused network, PAM clustering is used to identify
the cancer subtypes. Yang et al. (2021b) introduced a clustering
method, Deep Subspace Fusion Clustering (DSFC), for cancer
subtype prediction. DSFC calculates data self-expressiveness to
generate a patient similarity network, and then fuses these patient
similarity networks to gain a combined network. Finally, spectral
clustering is performed on the combined similarity network to
find cancer subtypes. Similarity-based approaches usually just use
the omics data to generate a similarity network, and completely
disregard the feature information of the omics data in subsequent
calculations. This may lead to incomplete subtype results.

To make full use of the feature information of the omics data
and the similarity graph, a graph-based neural network was used

because it takes both the feature information as well as the
similarity graph into consideration (Wu et al., 2021). In this
work, we proposed a deep-learning method named multiGATAE
for cancer subtype identification. multiGATAE first applies
multi-omics data to construct a similarity graph and then
establish a graph autoencoder network which is composed of a
graph attention network and an omics-level attention mechanism
to obtain the embedding representation. Finally, the K-means
clustering method is applied to the embedding representation to
identify cancer subtypes. multiGATAE was compared with serval
state-of-the-art methods on eight public cancer datasets, and the
results demonstrated that our proposed method performs better.

The remainder of this article is organized as follows. In section
2, we present the proposed method. The datasets we used and the
experiment results are shown in section 3. In section 4, we
conclude this article and discuss the future work.

2 MATERIALS AND METHODS

In this section, the details of our proposed-method multiGATAE
are described. Our proposed method consists of three parts.
Firstly, a similarity graph is constructed by integrating multi-
omics data. Then, the similarity graph and omics data are input to
a graph autoencoder composed of a graph attention network and
omics-level attention mechanism to learn the embedding
representation. Finally, the K-means method is applied to the
embedding representation to identify the cancer subtypes. The
workflow of multiGATAE is shown in Figure 1.

2.1 Construction of Similarity Graph
A network fusion method named SNF (Wang et al., 2014) was
used to construct the similarity graph. SNF first generated specific
similarity graphs for each omics, and then iteratively integrated
them to construct the combined similarity graph. Suppose that
there are n patients and m views (such as mRNA, miRNA, and
DNAmethylation). The similarity graph is defined as a graph G =
(V, E), where V is the set of patients \{x1, x2, x3 . . . , xn\} and the
edges E correspond to the similarity between vertices v ∈ V. The
edge weights are represented by an n × n similarity matrixW, and
W is computed by Eq. 1.

Wi,j � exp −ϕ
2 xi, xj( )
αγi,j

⎛⎝ ⎞⎠ (1)

where α is a hyperparameter, ϕ (xi, xj) is the Euclidean distance
between patients xi, and xj, and γi,j is used to eliminate the scaling
problem. In order to compute the fused matrix from multiple
types of data, the similarity matrix is normalized as Eq. 2.

Pi,j �
Wi,j

2∑k≠i Wi,k
j ≠ i

1
2

j � i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (2)

assuming Ni is a set of xi ’s neighbors. Then, the local affinity
matrix S is calculated by Eq. 3.
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Si,j �
Wi,j∑k∈Ni

Wj,k
j ∈ Ni

0 otherwise

⎧⎪⎪⎨⎪⎪⎩ (3)

Let Pt
(h) represent the normalized similarity matrix of h-th

type data (1 ≤ h ≤ m) in the t-th iteration; Pt
(h) is updated

according to Eq. 4.

P h( )
t+1 � S h( )

∑
k≠h

P k( )
t

m − 1
⎛⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎠ S h( )( )T (4)

where S(h) represents the local affinity matrix of the h-th type
data. Through this process of continuous iterative fusion, the
combined similarity graph, which contains complementary
information from three omics datasets, is finally obtained and
then taken as the input of multiGATAE to learn the embedding
representation.

2.2 Embedding Representation Learning
Cancer subtype identification is a typical clustering problem
because of the lack of labels associated with the cancer
subtypes (Xu et al., 2019). A key problem of clustering is how
to capture the feature information of the nodes and the
relationship between the nodes (Wang et al., 2019). A graph-
based neural network may be able to solve this problem because it
considers both the feature information of the nodes as well as the
similarity relationships (Wu et al., 2021). In this work, we
constructed a graph autoencoder composed of a graph
attention network and omics-level attention mechanism to
learn the embedding representation. We first introduce the
Graph Convolutional Network (GCN) (Kipf and Welling,
2016a). The aim of the GCN is to learn a latent representation

Z based on the node feature matrix X, which describes every node
in the graph, and a similarity matrix A, which encodes the
similarities between the nodes. The layer-wise propagation rule
of GCN can be formulated as Eq. 5.

ZL � σ ~D
−1
2 ~A ~D

−1
2ZL−1WL−1( ) (5)

where ~A = A + E, which is a similarity matrix adding self-
connections. ~D is the diagonal node degree matrix of ~A. σ(·) is
a nonlinear activation function. ZL is the output of the L layer.
However, a limitation of GCN is that it does not assign different
weights to different nodes in the neighborhood (Veličković et al.,
2017). In a practical situation, different neighbor nodes may play
different roles for the current node. Therefore, we chose to use
GAT (Veličković et al., 2017) which aggregates the neighbor nodes
through the self-attention mechanism (Vaswani et al., 2017) and
enables the adaptive assignment of weights to different neighbors.
GAT first computes the attention coefficients by Eq. 6

eij � α Wxi,Wxj( ) (6)
where α(·) is a shared attentional mechanism, and xi and xj
represent the features of node i and node j, respectively. The
attention coefficients indicate the importance of node j’s features
to node i. To make the attention coefficients comparable across
different nodes, the softmax function is used to normalize them:

αij � softmax eij( ) (7)
The normalized attention coefficients are then used to

compute the final output Z as Eq. 8

ZL � σ αij
~D
−1
2 ~A ~D

−1
2ZL−1WL−1( ) (8)

FIGURE 1 | Workflow of multiGATAE. (A) Construction of similarity graph. (B) Embedding representation learning. (C) Cancer subtype clustering.
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In order to make the output Z more approximate to the
similarity graph A, we propose an omics-level attention
mechanism to aggregate the output of multi-omics. The
attention score is defined as Eq. 9

wi � vT tanh Wz · Zi +Wa · A( ) (9)
where wi and Zi represent the attention score and the output of
omics i. v,Wz,, andWa are trainable vectors. As mentioned above,
we normalize the omics-level attention scores using the softmax
function as Eq. 10

βi � softmax wi( ) (10)
We then obtain the final representation Zfinal by aggregating

the output of multi-omics as Eq. 11.

Zfinal � ∑ βiZi( ) (11)
The final representation Zfinal is input into the decoder to

reconstruct the original similarity graph. The decoder is defined
as Eq. 12 (Kipf and Welling, 2016b).

Â � τ ZfinalZfinalT( ) (12)

After the neural network optimization is completed, a
standard clustering method named K-means (Ding and He,
2004) is applied to the final representation Zfinal to identify
cancer subtypes.

3 EXPERIMENTS AND RESULTS

To evaluate the performance of our proposed-method
multiGATAE, we compared it with eight state-of-the-art
clustering methods, namely, DLSF (Zhang et al., 2022), subtype-
WESLR (Song et al., 2021), SNF (Wang et al., 2014), NEMO
(Rappoport and Shamir, 2019), iClusterBayes (Mo et al., 2018),
moCluster (Meng et al., 2016), LRAcluster (Wu et al., 2015), and
PFA (Shi et al., 2017) on eight public cancer multi-omics datasets.
Here, we first introduce the details of these eight state-of-the-art
methods, then we introduce the datasets used in this section and
show the experiment results on these eight datasets.

• NEMO is a multi-omics clustering method based on the
neighborhood. NEMO first constructs inter-patient
similarity network for each omics and then integrates
these networks into one network. Finally, the network is
used for clustering.

• iClusterBayes adopts latent variables to capture the inherent
structure of multi-omics datasets. The latent variable space
is then used to identify cancer subtypes.

• moCluster investigates the joint patterns among multi-
omics datasets. It uses multi-block multivariate analysis
to define a set of latent variables and passes it to the
clustering method to identify the cancer subtypes.

• LRAcluster discovers shared latent subspaces of the multi-
omics data based on the integrative probabilistic model.

The shared latent subspaces can be applied to identify
subtypes.

• SNF is a network fusion method. It generates similarity
networks for single-omics data and fuses these independent
similarity networks into a combined network. This
combined network can be used for cancer clustering.

• PFA is a pattern fusion analysis framework. It can capture
intrinsic structure from multi-omics data for cancer
clustering.

• subtype-WESLR uses a weighted ensemble strategy to fuse
base clustering obtained by distinct methods as prior
knowledge and maps each omics data into a common
latent subspace. The common latent subspace is
optimized iteratively to identify cancer subtypes.

• DLSF is a novel cancer clustering method based on deep
neural network. It uses a cycle autoencoder which has a
shared self-expressive layer to merge latent representation at
each omics level into a fused representation at the multi-
omics level. The fused representation can be used to identify
cancer subtypes.

3.1 Data Set and Data Preprocessing
Eight TCGA cancer public datasets including kidney renal clear
cell carcinoma (KIRC), breast invasive carcinoma (BRCA),
colon adenocarcinoma (COAD), skin cutaneous melanoma
(SKCM), lung squamous cell carcinoma (LUSC),
glioblastoma multiforme (GBM), liver hepatocellular
carcinoma (LIHC), and ovarian serous cystadenocarcinoma
(OV) were used in this work. They were downloaded from
TCGA (Cancer Genome Atlas Research Network, 2008), and
each of them contains four types of data: miRNA expression,
mRNA expression, DNA methylation, and clinical profiles.
These three datasets are preprocessed by the following steps.
Outlier removal is the first step. The features with missing values
in more than 20% samples were deleted. Similarly, samples
which have more than 20% features were removed. Finally, 206
samples in KIRC, 623 in BRCA, 214 in COAD, 439 in SKCM,
271 in GBM, 337 in LUSC, 404 in LIHC, and 290 in OV
remained in this step. The next step is missing-data
imputation. K nearest neighbor (Troyanskaya et al., 2001)
imputation had been applied to impute the missing values.
Finally, all of these datasets were normalized as Eq. 13:

~f � f − E f( )�������
Var f( )√ (13)

where E(f) is the mean of f, and Var(f) is the variance of f.

3.2 Optimal Number of Clusters
Since the K-means clustering method cannot automatically
determine the optimal number of clusters, a silhouette width
(Rand, 1971) was adopted to find the optimal clustering number.
The parameters of our proposed method were also adjusted
according to the silhouette width. We determined the optimal
hidden layers, learning rate (Lr), and the dropout according to the
grid search method. The optimal hidden layers were 2, Lr was
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0.01, and dropout was 0.5, which achieved the best silhouette
width and were finally applied in this work. In addition, for the
compared methods, the parameters as given in their original

articles were slightly modified to make themmore suitable for our
dataset. The silhouette width that our proposed method achieved
on the eight datasets is shown in Figure 2.

FIGURE 2 | Silhouette width multiGATAE achieved on the eight datasets.
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Since the sample size of the cancer omics data is not very
large, an excessive number of clusters may introduce bias.
Thus, the number of clusters adopted in this work ranged from
two to 10. The range of the silhouette width was from −1 to 1,
and the closer it was to 1 meant the better the clustering
performance was. We can see from Figure 2 that within a
certain range, the silhouette width exhibited an increasing
tendency. After reaching the optimal cluster number, the
silhouette width started to gradually decrease. Specifically,
for the KIRC datasets, the silhouette width achieved was the
best when the cluster number was set to 4. This meant that the
best clustering results were obtained when KIRC was clustered
into four subtypes. Similarly, the BRCA was finally clustered
into five subtypes, the COAD into three subtypes, the SKCM
into three subtypes, the GBM into four subtypes, the LUSC
into three subtypes, the LIHC into three subtypes, and the OV
dataset into three subtypes. We can see that all the optimal
numbers are within five, and this may indicate that the amount
of available data was not sufficient to identify numerous cancer
subtypes.

3.3 Comparison With Other Methods
To validate the performance of our proposed-method
multiGATAE, we compared it with eight state-of-the-art
methods on eight cancer datasets. Due to the lack of labels for
the omics data, the negative log10 p-value and C-index of log-rank
test were used as the metric. The log-rank test of the Cox regression
(Hosmer and Lemeshow, 1999) is a statistical model and is used to
assess the difference in survival profiles between subtypes. The
p-value represents whether the observed differences are significant.
If the p-value is less than 0.05, the observed subtypes are considered
significantly different. To facilitate comparison, the negative and
log operations were performed. The C-index was used to assess the
predictive performance of the survival model. The results are
shown in Table 1.

It can be seen from Table 1 that our proposed-method
multiGATAE achieved the best performance on most
datasets. Specifically, on the KIRC dataset, the negative
log10 p-value that multiGATAE achieved was 5.30, which
is 0.54 higher than the best remaining method subtype-
WESLR. As for COAD, SKCM, LUSC, and OV datasets,
the multiGATAE achieved 0.69, 0.52, 0.3, and 1.96
improvements compared with the best remaining method.
As for the C-index, except for KIRC and BRCA, multiGATAE
outperformed the compared methods on the other datasets.
This demonstrates that the subtypes identified by our
proposed method are indeed survival distinct. To illustrate
the difference between the subtypes identified by our
proposed method clearly, the survival curves for the eight
cancer datasets are shown in Figure 3. As can be seen in
Figure 3, except for BRCA, the cancer subtypes identified by
our method on the other seven datasets all exhibit
significantly different survival curves. The survival curve
was significantly different between the subtypes, and this
difference became progressively greater with time, indicating
that the probability of survival varies between subtypes. For
example, in the case of KRIC, subtype 3 showed a very low
survival probability compared to the other subtypes when the
time was above 1,000. This suggests that our method could
identify groups of patients with different prognoses and help
with precision treatment.

3.4 Analysis of Identified Subtypes on Lung
Squamous Cell Carcinoma
In order to further validate our proposed method, we selected
LUSC for a relevant biological analysis of identified subtypes.
There were three subtypes identified by our proposed method,
and in order to discover the differences at the molecular level
between these three subtypes, we performed differential

TABLE 1 | Results of comparison methods and the proposed method, the first value is cluster number and the second is the negative log10 p-value.

Metric Algorithm KIRC BRCA COAD SKCM GBM LUSC LIHC OV

p-value NEMO 3/4.48 4/0.31 4/0.96 4/2.74 3/2.96 3/2.15 3/1.60 3/0.05
iClusterBayes 4/2.51 5/1.06 4/0.09 4/1.85 3/0.22 3/1.24 3/1.11 3/1.48
moCluster 3/2.82 5/3.31 3/1.04 4/2.98 3/1.96 3/2.31 2/1.02 3/1.60
LRAcluster 3/2.07 5/2.23 4/1.17 3/3.25 3/2.00 3/2.35 3/0.39 3/2.96
SNF 3/3.40 4/2.82 3/1.07 4/2.31 3/2.92 3/2.03 3/1.54 3/1.15
PFA 2/2.08 5/2.89 3/1.00 4/2.64 2/2.23 3/1.04 2/2.64 3/0.05
subtype-WESLR 4/4.76 5/5.24 4/2.43 5/5.00 3/3.84 5/2.30 4/5.21 3/3.44
DLSF 4/2.76 3/1.89 4/0.05 5/3.85 5/4.53 3/0.11 3/3.15 4/0.03
multiGATAE 4/5.30 5/1.68 3/3.12 3/5.52 4/4.0 3/2.60 3/3.51 3/5.40

C-index NEMO 0.654 0.526 0.557 0.56 0.533 0.565 0.535 0.514
iClusterBayes 0.617 0.535 0.552 0.542 0.515 0.516 0.557 0.536
moCluster 0.626 0.588 0.543 0.566 0.538 0.576 0.553 0.56
LRAcluster 0.597 0.539 0.579 0.562 0.551 0.572 0.541 0.584 2
SNF 0.638 0.587 0.568 0.565 0.544 0.566 0.538 0.543
PFA 0.581 0.544 0.57 0.564 0.538 0.52 0.555 0.567
subtype-WESLR 0.66 0.595 0.632 0.58 0.559 0.587 0.594 0.581
DLSF 0.623 0.627 0.539 0.578 0.582 0.527 0.575 0.563
multiGATAE 0.618 0.574 0.644 0.594 0.587 0.614 0.599 0.61

Bold values indicates the best values.
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mRNA expressions by R package limma (Smyth, 2005). The
differentially expressed mRNAs are shown by the heat map in
Figure 4. As we can see from Figure 4, there are mRNAs which

are significantly differentially expressed. This demonstrates
that the subtypes identified by our proposed method have
molecular-level differences.

FIGURE 3 | Survival curves for eight cancer datasets.
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3.5 Effectiveness of Multi-Omics Data
In this work, we used multi-omics data in order to obtain a
comprehensive view on cancer subtype identification. To
investigate the difference in results between single-omics
and multi-omics data, we carried out experiments with
single-omics data. The results are shown in Table 2. It can

be seen from Table 2 that multiGATAE with multi-omics data
performed better than using single-omics data. This suggests that
integrating multi-omics data helps to capture a better embedded
expression and thus identify more stable cancer subtypes. Besides,
theDNAmethylation data showed relatively better results compared
with the other omics data. This may indicate that the DNA

FIGURE 4 | Differentially expressed mRNAs of the LUCS subtypes. (A) Subtype 0 and subtype 1. (B) Subtype 0 and subtype 2. (C) Subtype 1 and subtype 2.

TABLE 2 | Results of multi-omics and single-omics, the first value is cluster number and the second is the negative log10 p-value.

KIRC BRCA COAD SKCM GBM LUSC LIHC OV

mRNA 4/1.31 3/0.20 3/0.24 3/1.52 4/1.27 3/0.38 3/0.8 3/0.97
DNA methylation 3/1.75 3/0.71 3/0.73 3/1.69 4/1.71 3/0.03 3/0.87 3/2.85
miRNA 4/1.57 4/0.39 3/0.98 3/1.98 4/1.24 4/0.53 3/0.667 3/1.35
Multi-omics 4/5.30 5/1.68 3/3.12 3/5.52 4/4.0 3/2.60 3/3.51 3/5.40
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methylation data contains more information that facilitates cancer
subtype identification.

4 CONCLUSION

Cancer is a highly heterogeneous disease that causes a large number of
deaths every year. Cancer subtype identification aims to identify
groups of patients with different clinical outcomes for precise
treatment. In this work, we proposed a novel cancer subtype
identification method named multiGATAE. multiGATAE first
constructed a similarity graph by integrating multi-omics data, and
then input the similarity graph and the omics data into a graph
autoencoder networkwhich is composed of a graph attention network
and an omics-level attention mechanism to obtain the embedding
representation. Once gaining the embedding representation, the
K-means clustering method was applied to it to identify subtypes.
multiGATAE was compared with eight state-of-the-art methods on
eight public cancer datasets. The results demonstrate that our
proposed method can identify distinct subtypes with different
survival outcomes. In the future, we consider integrating more data
to develop our method. In addition, when learning embedding
representation, taking clustering losses into consideration is also a
way to improve our method.
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