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Tor is vulnerable to flow correlation attacks, adversaries who can observe the traffic metadata (e.g., packet timing, size, etc.)
between client to entry relay and exit relay to the server will deanonymize users by calculating the degree of association. A recent
study has shown that deep-learning-based approach called DeepCorr provides a high flow correlation accuracy of over 96%. *e
escalating threat of this attack requires timely and effective countermeasures. In this paper, we propose a novel defense mechanism
that injects dummy packets into flow traces by precomputing adversarial examples, successfully breaks the flow pattern that CNNs
model has learned, and achieves a high protection success rate of over 97%. Moreover, our defense only requires 20% bandwidth
overhead, which outperforms the state-of-the-art defense. We further consider implementing our defense in the real world. We
find that, unlike traditional scenarios, the traffic flows are “fixed” only when they are coming, which means we must know the next
packet’s feature. In addition, the websites are not immutable, and the characteristics of the transmitted packets will change
irregularly and lead to the inefficiency of adversarial samples. To solve these problems, we design a system to adapt our defense in
the real world and further reduce bandwidth overhead.

1. Introduction

Tor is the most popular and low-latency anonymity network
that provides anonymous communication services for more
than two million people [1]. It includes over 3000 relays that
transmit massive encrypt packets and conceal client’s in-
formation. Every relay only knows its previous and latter
relay’s address.

But flow correlation attacks break this security model.
Network-level adversaries, i.e., autonomous systems (ASes)
have the power to observe traffic characteristics between
client to entry relay and exit relay to the destination server.
*ey can link these data (in particular packet timings and
packet sizes) to deanonymize users, as shown in Figure 1.
*e correlation algorithm used in the beginning studies is
usually a traditional method like Pearson correlation or
Cosine similarity. Recent research leverages a deep learning
model to correlate traffic characteristics with significantly
higher accuracies than existing algorithms.

Existing defense methods to detect or mitigate traffic
analysis attacks mainly focus on obfuscating encrypt packets,
trafficmorphing, changing network-level characteristics that
does not affect the deep-learning-based attack. And to our
best knowledge, existing defenses are all designed to mitigate
traffic analysis attacks like website fingerprint attacks or BGP
hijack attacks. *ere is no effective defense faced to flow
correlation attack.

Against this strong deep-learning-based attack, the
adversarial example is a natural choice for us to confuse
CNNs model. So, we explore how effective the adversarial
examples defend flow correlation attacks and how to im-
plement defense in the real world.

First, we reconstruct the targeted model that represents
state-of-the-art attack and gets the similar accuracy that
Milad Nasr et al. [10] mentioned. Second, we evaluate
various adversarial example methods’ effects including
FGSM, C&W, Deepfool, and BIM. *e experimental results
show that the success rate of applying adversarial examples
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to defeat the flow correlation model is more than 97% with
only 20% bandwidth overhead.

*ird, we try to implement our defense in the real world,
but we find that there are some challenges we have to face. (1)
*e websites are not immutable, so the characteristics of the
transmitted packets are not immutable. (2) *e traffic flows
are “fixed” only when they are coming, which means we
must know the next packet’s feature. (3)*e dummy packets
we add will go through entire circuit (client-> entry relay-
>middle relay-> exit relay-> server). *is has increased
bandwidth overhead. How can we reduce these extra
dummy packets after they have done their job?

To solve the first and second problem, we design a center
server that termly collects traffic characteristics of websites
and generates corresponding adversarial examples. To solve
third problem, we design a mechanism to drop redundant
dummy packets at the entry relay, which further reduces
bandwidth overhead.

*e key contributions of this work are as follows:

(1) We propose a novel defense mechanism against
deep-learning-based flow correlation attacks that
inject dummy packets into flow traces by pre-
computing adversarial examples.

(2) We further evaluate various adversarial example
methods’ effects, and the experimental results show
that even the worst method (FGSM) we used also
gain a protection success rate of over 90% with an
acceptable bandwidth overhead (30%).

(3) We analyze the challenges of applying our defense in
the real world and design a system to solve these
challenges, including center server, full-duplex
mode, and drop dummy packets mechanism.

*e rest of the paper is organized as follows: Section 2
introduces related work, including the development of traffic

analysis and adversarial examples. Section 3 describes our
proposed method in detail. Section 4 shows the details and
results of our experiment. In Section 5, we point out our
limitations and give future directions. In Section 6, we
conclude our work.

2. Related Work

2.1. Flow Correlation Attack and Defense. Flow correlation
attack was a type of traffic analysis attack, and the traffic
analysis attack was a type of side-channel attack. Side-
channel attacks always leveraged non-normal ways to infer
sensitive information from well-protected systems, such as
by observing traces (e.g., timing, power, or resource usage).
Diao et al. [2] launched inference attacks without any
permission in Android by interrupting timing analysis and
applying it to interrupt logs. Liu et al. [3] presented a side-
channel attack to infer user inputs on keyboards by
exploiting sensors in the smartwatch. Schuster et al. [4]
aimed to identify video information by using the deep-
learning model to classify encrypted video streams.

Flow correlation attacks as a significant side-channel
attack was applied in many fields. Shmatikov et al. [5] in-
vestigated an active attack called watermark attacks. *ey
modified the packet flows to “fingerprint” them and analyze
the tradeoffs between the amount of cover traffic, extra
latency, etc. In addition, they also proposed a defense
method by using adaptive padding. *e work of Paxson and
Zhang [6] made the traffic packets as a series of ON and OFF
patterns and used these data to correlate network flows.
Murdoch and Zieliński [8] developed and evaluated
Bayesian traffic analysis techniques to process sampled data.
Blum et al. [7] correlated the aggregate sizes of network
packets over time. Sun et al. [9] further combined the
asymmetric traffic analysis and BGP hijacking to dean-
onymize users.

Tor network

Correlator

Malicious RelayMalicious ISP

Fj
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Figure 1: *e main process of flow correlation attack on Tor. *e adversary intercepts Tor flows either by running malicious Tor relays or
eavesdropping on Internet ASes and IXPs.
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All the above papers used the static metric standard
statistical correlation metrics to correlate the vectors of flow
timings and sizes. And to gain a higher accuracy, they need
to observe the associated flow for five minutes or more. *e
time it take was too long to correlate lots of short-lived
connections. Nasr et al. [10] were the first one to use CNNs
models to learn a flow correlation function and achieve
drastically higher accuracies.

*ere was still a big gap in the defense of flow correlation
attacks, and Sun et al. [11] proposed a defense method that
mainly solved the BGP hijacking and reduced the chance of
adversary observed network traffic. *e obfs4 [12] as a Tor
official defense could randomly obfuscate packets time and
size but get a poor protection success rate with an unac-
ceptable bandwidth overhead. *e ScrambleSuit [43] was a
thin protocol layer above TCP whose obfuscated the
transported application data by using morphing techniques
and a secret exchanged out-of-band. It also had impact on
defending the flow correlation attacks but has the same
problem as obfs4.

*ere were some ways to improve classification model’s
ability of defending noisy labels. Liu et al. [47] proved that
any surrogate loss function could be used for classification
with noisy labels by using importance reweighting. Yu et al.
[45] considered the influence of noisy labels in transfer
learning and proposed a novel denoising conditional in-
variant component (DCIC) framework. Xia et al. [46]
presented granular-ball sampling that reduced the data size,
improved the data quality in noisy label, and get the same
classification accuracy on the original data sets. Noise fil-
tering is an effective method of dealing with label noise, but
most of them aimed at binary classification. Xia et al. [44]
presented a novel label noise filtering learning method for
multiclass classification. *ese methods mainly focus on the
scenario of noisy labels that could help adversary improve
their correlation model’s robustness and our methods aimed
at defending against flow correlation attacks by using
adversarial examples. Numan et al. [48] carried out a sys-
tematic review of clone detection techniques in static WSNs
and provided a comprehensive survey of the existing cen-
tralized and distributed schemes with their drawbacks and
challenges. Guo et al. [49] proposed a deep graph neural
network-based Spammer detection (DeG-Spam) model to
gain a better effect than baselines that could be a superior
choice to correlate with flow data.

2.2. Website Fingerprint Attack and Defense. *e scenario
and challenge for website fingerprint attacks are very similar
to our work. Adversaries get sensitive information about
websites such as domain or page content by analyzing
network characteristics. It used to be realized by the tra-
ditional machine learning method, but now the deep
learning method is gradually emerging.

Nowadays more andmore studies have been proposed to
defeat website fingerprint attacks. Some research focused on
the application layer [13–15], defenders changed the routing
algorithm or confused HTTP requests to make adversary
touch real traffic as little as possible. Application-layer

defense strategies were often difficult to implement because
the premise of their implementation was very harsh, such as
target websites only had HTTP protocols. And these
methods could not defend deep-learning-based attacks (less
than 60% protection success rate). Other researches focused
on the network layer. *ey aimed to fool the classification
model by inserting dummy packets. In the earlier studies
[16–18], they used constant rate padding to reduce infor-
mation leakage caused by time intervals and traffic volume.
However, these methods always require high bandwidth
overhead of 150%. A recent study [19] found that inserting
packages between two packets with a large time gap would
reduce the bandwidth overhead.*ey were also useless when
applied in defending deep-learning-based attacks (only
achieve 9% and 28% protection success rate). Finally, there
was a super sequence defense method called Walkie-talkie
[20], which committed to finding a longer package trace that
contains subsequences of different website traces. But it only
gets a 50% protection success rate against DNN attacks. In
general, no method can maintain a high success rate with a
small amount of bandwidth overhead. All related works are
present in Table 1.

2.3. Adversarial Examples. Adversarial examples are a series
of methods to fool machine learning models, such as deep
neural networks. *ey add perturbations to the clean input,
forward it to the classifie,r and get an unexpected result.
How to generate adversarial perturbations becomes a hot
topic in computer vision, natural language processing, etc.
*ere were many prior works that had shown first-order
gradient-based attacks to be fairly effective in fooling DNN-
based models in both image [21–27], audio [28–30], and text
[31–33] domains. *e idea of such adversarial attacks was to
find a good trajectory that maximally changed the value of
the model’s output and pushed the sample towards a low-
density region. However, to our best knowledge, there is no
paper to apply adversarial examples in defending deep-
learning-based flow correlation attacks.

3. Method

In this section, we introduce the target model and the
specific details of defending against deep-learning-based
flow correlation attacks with adversarial examples. Next, we
will show our system that were designed to implement
defense in the real world.

3.1. Target Model. We reconstruct the idea of Milad Nasr
et al. to perform traffic correlation attacks. *ey use a
convolutional neural network (CNN) model to learn a
correlation function for Tor’s noisy network. It is composed
of two convolutional layers and three fully connected layers.
*e input is a flow pair called Fi,j, which represents two
bidirectional network flows i and j. *e specific of Fi,j can be
described as follows:

Fi,j � T
u
i ; T

u
j ; T

d
i ; T

d
j ; S

u
i ; S

u
j ; S

d
i ; S

d
j􏽨 􏽩, (1)
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where T is the vector of interpacket delays, S is the vector of
packet size, and u and d stand for “upstream” and
“downstream,” respectively (e.g., Su

i represents the upstream
packet size of i ).

*e model hyperparameters we choose are consistent
with Milad Nasr, which are presented in Table 2. To take a
first look at the performance, we train our model using data
set that publishes with the paper [10]. It includes 50, 000
pairs of associated flow pairs and 50, 000 × 24, 999 ≈ 1.24 ×

109 pairs of nonassociated flow pairs. And we gain a similar
performance as described in the paper.

DeepCorr is able to achieve such high accuracy using
only 300 packets of each flow. It tells us that we must take
action to prevent AS/ISP level adversaries from compro-
mising the anonymity and privacy of Tor users. In the next
chapter, we will introduce the defense effect of the adver-
sarial sample against flow correlation attack model and the
system we designed to make the defense method applicable
to the real world.

3.2. Adversarial Samples against Flow Correlation Attack.
Due to the popularity of artificial intelligence and deep
learning, adversarial samples have appeared in various
scenarios and practical applications. But in many cases,
adversarial samples are usually used as a means of attack to
escape detection models. In our experiments, adversarial
samples are used as a means of defense to fight adversaries
who eavesdropping or analyzing users’ traffic.*erefore, our
defense strategies focus on improving the protection success
rate, every small increase will have a huge impact on the

adversaries. Because traffic flows are very large, the adversary
who eavesdropping traffic will take a lot of manual analysis
time if the attack success rate cannot reach 95%, which
almost means that this method of attack is no longer
meaningful. *is is the first difference between applying
adversarial samples in defending flow correlation attacks
and other traditional fields. In addition, every clean image or
text is “fixed” before adding perturbation. However, traffic
flows will be “fixed” only when it’s coming. *at means we
must know the next packet’s feature and add corresponding
adversarial perturbation. *is is the second difference

Table 1: *e related work of flow correlation attack, flow correlation defense, and website fingerprint defense.

Scheme Method Innovation points Authors Drawbacks

Flow correlation
attack

Watermark
attacks

Modified the packet flows to
“fingerprint” them. Shmatikov et al. [5]

Require high privileges and
break the original

communication easily.

Timing based Use the traffic patterns to correlate
flows. Paxson and Zhang [6] Low accuracy.

Bayesian traffic
analysis

Developed Bayesian traffic analysis
techniques to process sampled data.

Murdoch and Zieliński
[8]

Cannot correlate lots of short-
lived connections.

Fine-grained
level detection

Correlated the aggregate sizes of
network packets over time. Blum et al. [7] Low accuracy.

Asymmetric
traffic analysis

Further combined the asymmetric
traffic analysis and BGP hijacking to

deanonymize users
Sun et al. [9] Only useful for BGP hijacking.

Deep learning
based

Use CNNs models to learn a flow
correlation function and achieve
drastically higher accuracies.

Nasr et al. [10] Require hardware support.

Flow correlation
defense

Counter-
RAPTOR

Reduced the chance of adversary
observed network traffic. Sun et al. [11] Only useful for defending BGP

hijacking.

Obfs4 Randomly obfuscate packets time and
size. Tor project. [12] Unacceptable bandwidth

overhead.

ScrambleSuit Use morphing techniques. Winter et al. [43] Unacceptable bandwidth
overhead.

Website
fingerprint
defense

Application layer
defense

Changed the routing algorithm or
confused HTTP requests.

Wladimir et al. [13]
Giovanni et al. [14]
Henri et al. [15]

Hard to implement in real
world.

Network layer
defense

Fool the classification model by
inserting dummy packets.

Juarez et al. [19] Wang
et al. [20]

Cannot defend the deep-
learning-based attack.

Table 2: *e model hyperparameters of target model.

Layer Details

Convolution layer 1

Kernel num: 2000
Kernel size: (2, 30)

Stride: (2, 1)
Activation: Relu

Max pool 1 Window size: (1, 5)
Stride: (1, 1)

Convolution layer 2

Kernel num: 1000
Kernel size: (2; 10)

Stride: (4, 1)
Activation: Relu

Max pool 2 Window size: (1, 5)
Stride: (1, 1)

Fully connected 1 Size: 3000, activation: Relu
Fully connected 2 Size: 800, activation: Relu
Fully connected 3 Size: 100, activation: Relu
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between applying adversarial sample in defending flow
correlation attacks and other traditional fields.

To generate adversarial example, we use different
methods: FGSM [34], C&W [36], Deepfool [37], and BIM
[35]. *e reason for choosing these four methods is to get a
more comprehensive evaluation including gradient-based
methods and optimization-based methods.

*e fast gradient sign method (FGSM) was proposed by
Goodfellow et al. in 2015. *is algorithm performs a single
gradient ascent step as the following formula:

x∗ � x + η sign ∇xL(g(x;θ), y)( 􏼁, (2)

x is the original input sample, g(x; θ) presents the model
parameterized by θ, y is the label corresponding to the x, and
the L(g(x; θ), y) is the loss function of the classifier.∇x is the
gradient of the given loss L, whichmeans the direction where
the loss increases the most.

We can control bandwidth overhead from small to large
by adjusting param η.

Optimization-based attack C&W was proposed by
Carlini & Wagner in 2017. *is algorithm generates
adversarial perturbation based on certain constraints as the
following formula:

min‖δ‖
2
p s.t.g(x + δ)≠y and x + δ ∈ X, (3)

x is also the original input sample and the added pertur-
bation is constrained by Lp to keep small. *e g(x + δ) is
the obtained result under constraint conditions.

*e basic iterative method (BIM) was proposed by
A. Kurakin in 2016, it increases the loss of the classifier by
adjusting the direction after each step. It iteratively com-
putes as following:

Ii+1
ρ � Clipϵ I

i
ρ + α sign ∇J θ, Ii

ρ, ℓ􏼐 􏼑􏼐 􏼑􏽮 􏽯, (4)

Ii
ρ presents the perturbed input at the ith iteration and
Clipϵ .{ } clips the input in its argument at ϵ and α determines
the step size. *e BIM algorithm starts with I0ρ � Ic and runs
for the number of iterations determined by the formula
⌊min(ϵ + 4, 1.25ϵ)⌋.

Deepfool was proposed by Moosavi-Dezfooli, it perturbs
the input by a small vector, which is computed to take the
resulting image to the boundary of the polyhedron at each
iteration. *e final perturbation is accumulated by pertur-
bations added in each iteration when the original decision
boundaries of the network change their label.

All these adversarial sample methods are designed to add
perturbations to the area of the entire image. But in our scene,
we can only change the traffic characteristics between client
and entry relay. So, we can only change the part of matrix data.
In addition, the ways we add perturbations are by padding
packet to change packet size and inserting dummy packets to
change interpacket delays. *us, the value of our adversarial
perturbation will always be positive. In order to achieve these
requirements, we add extra constraints as follows:

St.
P> 0,

x ∈ S, S � T
u
i ; T

d
i ; S

u
i ; S

d
i􏽮 􏽯,

⎧⎨

⎩ (5)

where P presents the perturbations value we add, x presents
the input, and S presents the area we can change.

3.3. Implement Defense in the Real World. When we think
about the actual implementation of our defense in the real
world, we must face other challenges. First, the websites are
not immutable, and the manager could deploy new func-
tionality, update index pages, launch new activities, etc. So,
the characteristics of the transmitted packets will change
irregularly and lead to the inefficiency of adversarial samples.
Second, we have talked about the limit of adding pertur-
bation in Section 3.2, and we know that only traffic between
client and entry relay can be changed. Under this circum-
stance, we will consider two modes naturally: full-duplex
and simplex, who is better? *ird, due to network fluctu-
ations, packets might be delayed or received quicker, which
will cause the precomputing adversarial examples loss its
effect. To meet these requirements, we design a system
consisting of some components, as shown in Figure 2.

To solve the first problem, we create “traffic consensus”
concept that derives from Tor consensus [38] and stores in a
center server. Users can fetch this traffic consensus before
connecting to the destination server and add perturbation
into live traffic according to the content of traffic consensus.
In this traffic consensus, we build the mapping relationship
that has the key of website domain and value of corre-
sponding traffic characteristics.

*ere is an automatic crawler system that collects traffic
characteristics termly behind this traffic consensus. Our
center server has a Tor client that will request Wn websites
that users mostly access like Alexa top 50,00 every T time
and check the live status by status code. In addition, wemade
our exit Tor traffic tunnel through our own SOCKS proxy
server. *us, we can capture ingress Tor flows and the egress
Tor flows. If the monitored website is live, dump the traffic
file p by tcpdump. Next, we will process p and extract traffic
characteristics including the first 300 packets’ size and de-
lays. Finally, we will use these data to generate adversarial
samples and write them to the traffic consensus with
the website domain. *e specific details are shown as Al-
gorithm 1.

To solve the second problem, we need to consider dif-
ferences between full-duplex and simplex. *e simplex
means that only inserting dummy packets into flows from
client to entry relay, it could be done more easily because we
can add perturbation at Tor client directly. But it brings
other problems: the area where we can add perturbation is
further limited and bandwidth overhead is too large to bear.

*e full-duplex means we can add perturbation form
client to entry relay and entry relay to client. It has more area
to add perturbation than simplex. However, the dummy
packets we add will go through entire circuit (client-> entry
relay->middle relay-> exit relay-> server). *is has defi-
nitely increased bandwidth overhead.*us, we design a drop
dummy packets mechanism to further reduce bandwidth
overhead. *e goal of our approach is to letting adversaries
to eavesdrop on dummy packets, and the circuit does not
pass through dummy packets. *erefore, we should have a
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reasonable method to drop dummy packets at the entry relay.
We introduce a new control cell INFO, which is referred to in
this paper [13]. *is cell will record the order of transmitted
packets and be send to entry relay before communication
begins. Once the entry relay receives INFO cell, it will drop
the extra dummy packets that we add at Tor client according
to the cell INFO information and send the packets that truly
participate in communication to the middle relay.

In addition, the circuit from entry to the client is
controlled by entry relay, which means adding

perturbation is finished by entry relay. We must provide
anonymity that entry relay should not know about users’
information of visiting websites. To achieve this goal, our
idea is inspired by the rendezvous cookie applied in Tor
onion services [39] to establish a connection between the
user and an onion service. *e users will send a cell that
consists of the website domain, which will be visited, a
cookie that is a 20-byte cryptographic nonce chosen
randomly by the users, and the entry relay’s IP to the
center server. Once center server receives this cell, it will
send the perturbation according to the traffic consensus
and the cookie generated by users to the entry relay. *e
entry will store this cookie and perturbation. When users
begin to connect to the entry relay with the cookie, the
entry relay will compare the cookie that it stores with the
cookie that users send. If they are the same, the entry relay
will add perturbation into flows to the client. For the third
problem, because we already have the drop dummy
packets mechanism and full-duplex mode, the only thing
what we must do is buffering subsequent cells until the
missing cell arrives at the entry relay.

Implementation: we did not implement all components,
because it is a large project that needs the entire Tor
community’s help to modify Tor source code. But we have
designed a set of plans as mentioned above and done a lot of
experiments to prove the feasibility of our defense including
various adversarial samples methods’ effect, traffic consen-
sus used time, the advantage of full-duplex brings less
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Figure 2: *e overview of our system and the entire process of protecting users to request websites from flow correlation attacks.

Input: Cycle T, Time t, Website Groups Wn, Traffic File p,
Adversarial Samples Method A

Output: Traffic consensus
(1) While t % T � � 0
(2) For website w in Wn do
(3) If w is live then
(4) Dump p from ingress and egress Tor flows
(5) Extract traffic characteristics M from p

(6) Adversarial samples S � A (M)
(7) Write S to the traffic consensus {w: S}
(8) Else
(9) Continue
(10) End if
(11) End while

ALGORITHM 1: Traffic consensus generate algorithm.
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bandwidth overhead, etc. We will show the results in detail
in the next section.

4. Results

In this section, we perform a systematic evaluation of our
work. Specifically, we compare various adversarial example
methods’ effects and efficiency against the flow correlation
attack model. In our system, we have talked about the ad-
vantage and challenges that full-duplex brings, we will
further show that our methods’ high performance. In ad-
dition, we will compare our defense with the state-of-the-art
method, and we will test our defense against the traditional
flow correlation attack method.

4.1. Data Set. Tor Flow Correlation Data set: in our ex-
periments, we choose to use the public data set of DeepCorr
[40]. *is data set contains a large number of Tor flows that
are captured by visiting Top Alexa ’s websites. *e storage
form in the data set is pickle file, which contains the packet
size and interpacket delays. Meanwhile, flow pair that be-
longs to the same Tor connection(associated flow) is labeled
with 1, and the flow pair that belongs to arbitrary Tor
connections(nonassociated flow) is labeled with 0. We
evaluate our system’s performance with 9000 flows.

Sirinam and Rimmer Data set: to our best knowledge, the
public flow correlation attack data set has only one that is
released by Nasr et al. [10]. But we have pointed our sce-
narios and challenges are very similar to website fingerprint
attacks.*us, we use two well-knownWF data sets including
Sirinam et al. [41] and Rimmer et al. [42] to evaluate our
system’s performance. *ey both contain Tor users’ flow
pairs and their corresponding websites. *e specific details
of these two data sets are presented in Table 3.

4.2. Experiment Results. We test FGSM, C&W, Deepfool,
and BIM on the same test data set that contains 9000 flows
and compares their protection success rate with the same
bandwidth overhead (all use the L∞ perturbation norm).
Except for DeepCorr flow correlation attack, we also test our
defense against traditional flow correlation attacks including
RAPTOR, Pearson, and Cosine. Table 4 shows the result, and
we can see even the worst method FGSM could get the 71.2%
protection success rate with only 25% bandwidth overhead,
and it is also effective against traditional flow correlation
attacks. We must point that because the Pearson and Cosine
methods use the static metric to measure the correlation, any
slight perturbation will have a big impact on the result. Even
our method is oriented to the deep-learning-based attack,
and the perturbation we added will also break the pattern
that the Pearson and Cosine catch.

We also evaluate FGSM, C&W, Deepfool, BIM against
website fingerprint attacks including deep-learning-based
attack Var-CNN and non-DNN attacks k-NN, k-FP on the
Sirinam, Rimmer data set. Table 5 shows the protection
success rate of our method, and we can find adversarial
examples is effective for defending WF attacks that get
sensitive information by classification model.

In Chapter 3.3, we have talked about the difference be-
tween full-duplex and simplex. Full-duplex has more area to
add perturbation and less bandwidth overhead because of
dropping dummy packets mechanism. Figure 3 shows that
how effective of two modes are with FGSM. We find full-
duplex mode has a higher protection success rate than
simplex mode with the same bandwidth overhead and the
same adversarial example generation method. In addition,
our system will update the traffic consensus termly, which
means that this process must be within a tolerable time frame.
We evaluate our system’s efficiency on a PC computer that
has an i7 11700k CPU and four GTX 2080Ti GPU. We
evaluate the total time of generating 500 websites’ traffic
consensus and adversarial examples on our test data set.
Table 6 shows the result, and we can see that our system is
very portable. *e FGSM method can update the adversarial
perturbation in 1575 s seconds. And we should be aware that
our hardware is limited, and anyone can extend the hardware
environment to further reduce time consumption.

In Table 4, we can see the FGSM gets the worst pro-
tection success rate compared to other methods. But because
it is a one-step method, it has the highest efficiency. In our
system, time consumption is an important indicator because
when the website we focus on become more and more,
small-time consumption will be magnified a zillion time
over. As for the protection success rate, FGSM get 71.2%
with 20% bandwidth overhead. It looks a little low, but as we
all know traffic flows are very large, adversaries who
eavesdropping traffic will take a lot of manual analysis time if
the attack success rate cannot reach 95%, and it almost
means that this attack is no longer meaningful. Figure 4
shows the protection success rate of FGSM as bandwidth
overhead changes, and we can see it also can get a 95%
protection success rate with 35% bandwidth overhead,
which is lower than state-of-art defense.

4.3. Comparison

4.3.1. Obfs4. To our best knowledge, obfs4 is the state-of-art
and official defense. It is a Tor’s pluggable transports to
defeat censorship by nation-states who block all Tor traffic.
obfs4 modified packet timings and packet sizes to defeat flow
correlation, by padding or splitting packets, or by delaying
packets to perturb their timing characteristics. Table 7 shows
that our defense protection success rate compares with
obfs4. Table 8 shows that our defense bandwidth overhead
compares with obfs4. Our defense has advantages both in
protection success rate and bandwidth overhead.

4.3.2. ScrambleSuit. ScrambleSuit [43] is a thin protocol
layer above TCP whose obfuscates the transported appli-
cation data by using morphing techniques and a secret

Table 3: Two WF data sets used by our experiments.

Data set name Labels Training flows (K) Testing flows (K)
Sirinam 95 7 1
Rimmer 900 5 0.8
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exchanged out-of-band. It also has impact on defending the
flow correlation attacks. Table 7 shows that our defense
protection success rate compares with ScrambleSuit. Table 8
shows that our defense bandwidth overhead compares with
ScrambleSuit.

4.3.3. Blind Adversary. Blind Adversary [50] create universal
adversarial perturbations by GANs (generative adversarial
networks). *is approach protects against both flow

correlation attack and website fingerprint attack but require
significant additional resources and bandwidth overhead.
Table 7 shows that our defense protection success rate
compares with Blind Adversary. Table 8 shows that our
defense bandwidth overhead compares with Blind Adversary.

5. Limitations and Future Directions

As mentioned earlier, this work is focused on defeating
CNN-based flow correlation attacks with adversarial

Table 4:*e protection success rate of various adversarial examples against flow correlation attacks with the same bandwidth overhead. PSR
presents the protection success rate.

Method Bandwidth overhead (L∞) DeepCorr (PSR) (%) RAPTOR (PSR) (%) Pearson (PSR) (%) Cosine (PSR) (%)

FGSM 0.20 71.2 93.8 97.5 97.2
C&W 0.20 97.4 93.5 97.2 96.4
Deepfool 0.20 93.6 92.7 96.9 96.2
BIM 0.20 87.5 95.6 97.2 95.8

Table 5: *e protection success rate of various adversarial examples against website fingerprint attacks with the same bandwidth overhead.
PSR presents the protection success rate.

Data set Method Bandwidth overhead (L_∞) K-NN (PSR) (%) K-FP (PSR) (%) Var-CNN (PSR) (%)

Sirinam

FGSM 0.20 97.2 97.4 80.3
C&W 0.20 99.4 99.5 88.8

Deepfool 0.20 99.7 99.3 94.5
BIM 0.20 98.5 98.8 86.7

Rimmer

FGSM 0.20 97.2 96.7 86.7
C&W 0.20 99.9 99.3 93.2

Deepfool 0.20 98.7 98.1 97.5
BIM 0.20 98.2 97.5 89.4
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Figure 3: Compare full-duplex with simplex mode under the same conditions.

Table 6: Our system’s time consumption under the limited hardware environment.

Traffic consensus FGSM C&W Deepfool BIM
Time (s) 1205 1575 47382 28377 4858
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examples. At present, there are a lot of research about
defending the adversarial examples, and the adversarial
training is one of the most effective approaches. Adversary
can compute our adversarial perturbations and retrain their
models against them to improve robustness. Future work can
extend our system to defeat adversarial training and other
methods that aim to reduce the effect of adversarial examples.

6. Conclusion

In this paper, we evaluate the effect of using adversarial
samples to defend flow correlation attacks, and the

experimental results show that we achieved a good per-
formance. We further consider implementing our defense in
the real world. And we find some challenges wemust face. To
solve these problems, we design a system including traffic
consensus, full-duplex mode, and drop dummy packets
mechanism. Our system not only makes adding adversarial
perturbations become reality but also further reduce
bandwidth overhead.
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