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Over the years, the explosive growth of drug-related text information has resulted in heavy loads of work for manual data
processing. However, the domain knowledge hidden is believed to be crucial to biomedical research and applications. In this
article, the multi-DTR model that can accurately recognize drug-specific name by joint modeling of DNER and DNEN was
proposed. Character features were extracted by CNN out of the input text, and the context-sensitive word vectors were obtained
using ELMo. Next, the pretrained biomedical words were embedded into BiLSTM-CRF and the output labels were interacted to
update the task parameters until DNER and DNEN would support each other. .e proposed method was found with better
performance on the DDI2011 and DDI2013 datasets.

1. Introduction

With the rapid development of biomedicine and the ex-
ponential growth of publications have made it hard to ex-
tract a number of drug-related information. It is essential to
extract valuable information if we want to make the best of
medical text. Medicine is a class of chemical substances that
are highly associated with biological research. It is of vital
significance to observe how to accurately capture the entity
information as contained in medicine. Drug refers to
chemical name, generic term, or brand name. As a chemical
product usually has a complex name, the brand name may
not exactly identify a drug in the expiry of relevant patents.
For example, the drug “quetiapine” is associated with the
brand name “Seroquel XR.” .erefore, a special generic
term, which needs to be explicitly defined for drug ap-
proval, should be designed for standard scientific reports
and labels. Drug-specific names are subject to tight control
by WHO (World Health Organization) and some orga-
nizations in the USA and elsewhere. For example, the
European Medicines Agency (EMA) finalized the naming
scheme fit to drug function for ease of pronunciation and
translation and developed some criteria that differentiate a
drug name from others so as to avoid any transcription and

replication error in the R&D process [1]. .is would justify
the automatic extraction of potential medical information
from massive biomedicine-related publications as a crucial
part of biomedical research and industrial medicine
manufacturing.

Drug-Named Entity Recognition (DNER), which is
intended to identify the drugs referred to in unstructured
drug texts, is an underlying task of recognizing the span and
type of the named entity subordinated to predefined se-
mantic types. Unlike ordinary NERs (Named Entity Rec-
ognition), DNER generally consists of long label sequences
and contains plenty of alternate spellings of synonyms and
entities, resulting in the inefficiency of drug dictionary and
hard detection of entity boundaries. In this regard, Drug-
Named Entity Normalization (DNEN) is also believed to be
a crucial task.

DNEN, which is intended to map the acquired DNERs to
a controlled vocabulary, is usually considered a task sub-
sequent to DNER. Both DNEN and DNER can be deemed as
sequence labeling problems. Figure 1 illustrates an example
with respect to DNER and DNEN tasks, the input text
contains the drug-specific name “Omeprazole” and the R&D
organization “Astra Pharmaceuticals”, and the label of each
word in the text and its entity ID are output.
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As the naming scheme, evaluation criteria and cross-
border synchronization have been developing dynamically
for many years, and there is no definitive dictionary or
grammar applicable to drug names; DNER and DNEN
processes are subject to many challenges: (1) the rapid
updates of drug-related knowledge make it hard for a
handmade dictionary to meet actual needs; (2) language
tends to be complex and there is a scarcity of high-quality
label texts; (3) the simple modeling of DNER and DNEN
cannot allow both processes to support each other.

It is intended that the proposed model can capture more
resourceful semantic features and identify the representation
of polysemous and ambiguous words in drug sequence, thus
accurately recognizing drug names. A multitask deep
learning model multi-DTR (Multi-Drug Tip Recognition)
was proposed, and the principal contributions of this work
were that text information can be exploited by extracting the
character-level representations of words, embedding words
based on biomedicine pretraining, and extracting the fea-
tures by context-sensitive word embedding after ELMo
(Embeddings from Language Models) training. To make the
best of the training data, a multitask learning strategy was
taken, which allows for the explicit feedback of DNER and
DNEN and makes different tasks support each other.

.is article is structured as follows: in Section 2, some
related works on DNER and DNEN were presented; in
Section 3, the proposed neural network framework was
described; in Section 4, relevant datasets and parameter
setups were briefed; in Section 5, the result of the assessment
was reported in particulars; in Section 3, a conclusion was
drawn.

2. Related Works

NER is one of the underlying tasks in NLP, but there are a
limited number of related works on DNER [2–4]. .e access
to some large-scale biomedical corpora [5–7] has enabled
some generic NER models to be widely used in DNER.
Common methods applicable to DNER can be roughly
categorized into rule-based methods [8], dictionary-based
methods [9], and machine learning-based methods [10]. In
the case of rule-based methods, a number of labor resources
are required to lay down rules, but the ambiguity and

variability of terms are overlooked. If the target text appears
to be complex, rule-based methods are found with a low
recognition rate [11]. Tsuruoka et al. [12] made use of logistic
regression to learn string similarity measures from the
dictionary and performed soft character matching to avoid
large difference of association due to exact string matching.
Hettne et al. [13] developed a rule-based method for term
filtering and disambiguation, then merged dictionaries to
recognize small molecules and drugs as contained in the
text. Eriksson et al. [14] created a Danish dictionary to
recognize Adverse Drug Event (ADE) that may potentially
occur in unstructured clinical narrative text. Despite this,
the actual application needs can hardly be met due to a lack
of dictionary and rapid update of biomedicine terms. .e
machine learning-based NER is currently a prevailing re-
search interest. Cocos et al. [15] used ZRNN coupled with
pretrained word embedding to recognize ADE on Twitter.
Zeng et al. [16] performed automatic searching of words
and character-level features in drug texts on LSTM-CRF
(Long Short-Term Memory-Conditional Random Field)
structure. To date, BERT (Bidirectional Encoder Repre-
sentations from Transformers) [17] is the great hit model in
the sector of Natural Language Processing (NLP). In the
case of BERT, a transformer encoder was used and the
upper and lower layers of the model are fully connected by
a self-attention mechanism so that text information can be
better processed. Lee et al. [18] ran a large-scale pretraining
in respect of BERT (treated as a basic model) on PubMed
and PMC and then developed the BioBERT (Biomedical
Bidirectional Encoder Representations from Transformers)
model. Despite the extraordinary properties, this model
caused an enormous consumption of hardware resources in
the training process.

DNEN, also a key part of information extraction, is
generally listed as a subtask [19, 20] for some biomedicine-
related NLP assessment tasks. Kang et al. [21] normalized
disease-specific names by constructing a symptom text
model and performing a comparative analysis. Lee et al. [22]
used a dictionary to look up and standardize the entity. Lou
et al. [23] proposed a transition-based model applicable to
the recognition and normalization of joint disease entity, but
such model heavily relies on handmade features and task
types.

Omeprazole was developed by Astra Pharmaceuticals
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Figure 1: An example of DNER and DNEN tasks.
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3. Neural Network Framework

In this article, the character feature representations (e.g.,
amidopyrine, aminophenazone, and aminopyrine) of an
input word were extracted through Convolutional Neural
Networks (CNN). Next, the extracted character features and
words were embedded and input to BiLSTM (Bidirectional
Long Short-Term Memory). .e two-way LSTM (Long
Short-Term Memory) was used to capture two separate
hidden states (forward and backward) of each sequence,
obtain the context-sensitive information, then connect two
hidden states until the final output is generated. In the final
step, the output vector of BiLSTM was backfed to CRF for
jointly modeling the label sequence. DNER and DNEN can
give back to each other by the output of two tasks, reduce the
load of calculations, and realize the enhancement effect of
both tasks.

3.1. Embedded Layer. For deep mining of drug-related in-
formation in the input text, the features were extracted by
pretrained word embedding, context-sensitive word em-
bedding, and character embedding.

3.1.1. Pretrained Word Embedding. .e rapid development
of deep learning technology has led to an extensive use of
word embedding, which offers an alternative to numerical
representation of text (such as Word2Vec [24] and Glove
[25]). Yu et al. [26] found that embedding pretrained words
into unlabeled data would have many NLP tasks significantly
improved. As inspired by Glove [25], we used the word
representation method based on global word frequency
statistics to pretrain data on PMC (PubMed Central) and
PubMed biomedical corpora and to embed pretrained word
vectors into the model.

3.1.2. Character Representation. Evidence has shown that
character information is crucial for sequence labeling tasks
[16, 27]. Colobert et al. [28] suggested that the integrity of
words can be used to label words, and local features extracted
by CNN are exploited to construct all feature vectors. Ling
et al. [29] tried to use character-level two-way LSTM for POS
labeling, but the result of the experiment indicates that the
performance of character-level two-way LSTM highly re-
sembles CNN, but a heavier load of calculations is requested.
Santos et al. [30] was the first researcher who suggested using
CNN to learn character-level representations of words and
associate them with the representations of common words. A
number of subsequent works [31, 32] supported that the
word-level information (such as prefixes and suffixes) can be
leveraged to the extent possible by character-based word
representation. Zhao et al. [33] exploited attention-based
CNN to capture the association between context-sensitive
information and discontinuous words. Strubell et al. [34]
proposed ID-CNN (Iterated Dilated Convolutional Neural
Network) as the generally dilated CNN architecture that
improves the computational efficiency to the extent possible.
Chiu et al. [35] used CNN to extract character vectors of a

specific length from the word-specific characters, cascade
them with the encoded features, then transmit them through
the convolutional layer and the max layer.

In this article, CNN was used to acquire the character-
level representation of a word. As is seen from Figure 2, the
feature encoding process as a part in Chiu et al. [35] was
deleted, the Dropout layer was added to prevent overfitting
of CNN, and we finally had a word-specific character vector.

3.1.3. Context-Sensitive Word Embedding. ELMo, a lan-
guage model based on features, can model words given the
context. Unlike Word2Vec and other word sectors that use
a simple lookup table to obtain the unique representation,
the word sector in ELMo represents the function of the
internal network state. Even for the same word, the word
sector shows changes dynamically..us, it first adopts two-
way LSTM for pretraining and the two-way concept of
ELMo is reflected through the network structure, which
comprises the forward LSTM model and the backward
LSTM model. .e construction of the model is shown in
Figure 3.

ELMo comes with a task attribute and is a linear
combination represented by the middle layer of biLM. With
respect to a given word, biLM of a L layer can obtain the
representation of 2L+ 1:

ELMok � 􏽘
L

j�0
wh

LM
k,j ,

Rk � x
LM
k , h

→LM

k,j , h
←LM

k,j |j � 1, . . . , L􏼨 􏼩 � h
LM
k,j |j � 0, . . . , L􏽮 􏽯,

(1)

where w is the weight of softmax-normalized, xLM
k denotes

the input initial word vector, h
→LM

k,j denotes the forward

LSTM output, and h
←LM

k,j denotes the backward LSTM output.
.e context-sensitive dynamic word embedding as obtained
from the above can more accurately reflect the complex
semantic and grammatical features of the text.

3.2. Sequence Labeling. Some deficiencies of the character-
level model include the multiple growth of the effective
sequence size and a lack of inherent meaning in the char-
acters. .us, RNN can be used to process time series data of
any length using neurons with self-feedback. However, it
was reported [36] that RNN is usually inclined to the nearest
input of the sequence in practice and cannot process long-
term dependencies. Certain variants based on recurrent
neural networks, such as Gated Recurrent Unit (GRU) and
LSTM, have proven extraordinary performance. Yang et al.
[37] used GRUs at the character- and word-level to encode
morphological and context-sensitive information. Huang
et al. [38] were the first researchers who used BiLSTM for
sequence sorting and results showed that this model is less
dependent on word embedding and can capture two hidden
states (forward and backward) of each sequence well with
strong robustness.
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Both DNER and DNEN can be seen as sequence labeling
tasks. In this work, BiLSTM was used to model the input
character-level information, pretrained word embedding,
and contextualized word embedding. It inputs a vector
sequence containing n words (x1, x2, . . ., xn), then calculates
the hidden state sequence (h1, h2, . . ., hn), and outputs the
label (o1, o2 ,. . ., on). Finally, the equation with respect to an
update of the LSTM unit would be as follows:

it � σ Wxixt + Whiht−1 + Wcict−1 + bi( 􏼁,

ct � 1 − it( 􏼁∗ ct−1 + it ∗ tanh Wxcxt + Whcht−1 + bc( 􏼁,

ot � σ Wxoxt + Whoht−1 + Wcoct + bo( 􏼁,

ht � ot ∗ tanh ct( 􏼁,

(2)

where σ is elementwise sigmoid function, ∗ is elementwise
product, xt denotes the input vector at t, ht is the hidden
vector (also referred to as “output vector”), it denotes the
value of the memory gate, ct denotes the cell state, ot denotes
the value of the output gate, Wxi, Wxc, and Wxo denote the
weight matrix of different gates of the input xi,Whi,Whc, and
Who are the weight matrix of the hidden state ht, and bi, bc,

and bo denote the offset vector. .en the final output vector
ht � [ h

→
t, h
←

t] can be obtained.
After the training of BiLSTM, the entity labeling of

unlabeled words can be predicted from the output ht. But in
DNER task, some impossible combinations may also exist in
the predicted data. For example, the label “I-BRAND” must
not immediately follow the label “B-DRUG” logically, which
means that we have to consider the label information of
neighboring data. CRF is an undirected graphical model that
focuses on the sentence level, instead of each position.
.erefore, some impossible combinations should be ruled
out.

With respect to the input sequence Y� {y1, y2, . . ., yn}, yn
denotes the ith word vector of input, Z� {z1, z2, . . ., zn} is the
label sequence of the input sequence Y, and P is the score
matrix of output by BiLSTM, where k denotes score of the jth
label of the ith word, and its score can be defined as follows:

s(Y, Z) � 􏽘
n

i�0
Azi,zi+1

+ 􏽘
n

i�1
Pi,zi+1

, (3)

where A is the transition score matrix, Ai, j denotes the
conversion score from the label i to the label j, and y0 to yn is

A s p i r i n Padding

Character
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CNN-extracted
Char feature

Figure 2: CNN used to extract a character-level representation of words.
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Figure 3: Structure of the ELMo model.
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the start and end label of a sentence. .ey are added to a set
of possible labels. .us, A is a matrix whose size is k+ 2.

.e loss function of CRF is composed of the actual path
score and the total score of all possible paths; both scores are
given as follows:

PRealpath � e
s(Y,Z)

,

Ptotal � 􏽘

􏽥z∈ZY

e
s(Y,􏽥z)

,
(4)

where es(Y, Z) denotes the score of the possible path along,
where the Z label is generated on the word Y and e is a
numeric constant. In the training course, the log probability
of the correct label sequence is maximized.

log(P(Z|Y)) � log
PRealpath

Ptotal
􏼠 􏼡,

Lossfounction � −log(P(Z|Y)),

� 􏽘
L

i�1
xiyi

+ 􏽘
L−1

i�1
tyiyi+!

− log 􏽘

􏽥z∈ZY

e
s(Y,􏽥z)⎛⎜⎜⎝ ⎞⎟⎟⎠⎛⎜⎜⎝ ⎞⎟⎟⎠.

(5)

.e loss function of CRF is computed by formula (5),
where xiyi

denotes the emission score with the word index as
i and the label index as yi and tyiyi+1

denotes the transmit
score with the word index as yi and the label index as yi+ 1.
.en, we can search for the optimal path using the Markov
hypothesis, coupled with the Viterbi algorithm.

3.3. Multitask Learning Strategy. Multitask Learning (MTL)
is a kind of joint learning through which the differences and
connections between tasks can be effectively analyzed and
modeled. Hard sharing, soft sharing, and hierarchical
sharing are currently the most-used structures by MLT.
Hard sharing stacks a given task on top of the sharing layer
[39]. Soft sharing supports each task with separate models
and parameters, and the internal information contained in
each model can be accessed [40], but it may also lead to the
inefficiency of parameters. Hierarchical sharing puts dif-
ferent tasks in different network layers [41], but it relies on
the handmade hierarchical shared structure. For DNER,
since the same entity has a number of synonyms and various
forms of representations, exact matching or fuzzy matching
as lookup methods of the dictionary may cause great
challenges to detecting entity boundaries. However, this can
be avoided by adding the DNEN task. Specifically, the output
of DNER such as “B-DRUG” is an explicit signal indicating
the start of drug entity so that the search space of DNEN can
be reduced, vice versa. .erefore, two explicit feedback
strategies were incorporated as a part of the multitask
learning framework to simulate the reciprocal enhancement
effect among different tasks.

A multitask learning framework resembling that pro-
posed by Zhao [42] was used to enable DNER and DNEN to
support each other and to enhance the generalization ability

of the model. In the first step, the training set was divided
into subsets applicable to T tasks: D1, . . ., DT prior to the
training process. In the training process, a training set t was
chosen and the instance for random training
(w1:n, yt

1:n) ∈ Dt was acquired, where wi ∈W andW denotes
the input set; yt

i ∈ Lt and Lt denotes the label set. .e label
specific to the task t was used to predict the label yt

i and
update the label yt

i and then the updated parameters were
backfed to the model for asynchronous training of DNER
and DNEN, with the particular equation written as shown in
Figure 4.where DNER(w1:n, i) and DNEN(w1:n, i) denote
the DNER and the DNE normalized function with the word
sequence w1, w2, . . . , wn and the index i as inputs, yi

DNER is
the output of entity recognition applicable to the named
entity label, yi

DNEN is the output of the entity normalized
function applicable to the entity vocabulary label, vDNERi is
the input of DNER multiclass classification function that
denotes the input of BiLSTM-CNN and the explicit feedback
of DNEN, vDNENi is the input of DNEN multiclass classifi-
cation function that denotes the input of BiLSTM-CNN and
the explicit feedback of DNEN. U is the matrix mapping
from DNEN to DNER, and V is the matrix mapping from
DNER to DNEN.

DNER w1:n, i( 􏼁 � y
i
DNER � argmaxy

i
DNER � fDNER v

DNER
i􏼐 􏼑,

DNEN w1:n, i( 􏼁 � y
i
DNEN � argmaxy

i
DNEN � fDNEN v

DNEN
i􏼐 􏼑,

v
DNER
i � v

k ∘ v
k

+ y
i
DNENU􏼐 􏼑,

v
DNEN
i � v

k ∘ v
k

+ y
i
DNERU􏼐 􏼑,

F
k
θ x1:n, i( 􏼁 � v

k
i � h

k
L,i ∘ h

k
R,i.

(6)

In this article, a fully shared mode was adopted to make
the BiLSTM-CNN layer shared among tasks, which means
that all parameters as contained in the model would be
shared, except for the output layer applicable to DNER and
DNEN. .is construction enables the proposed model to
capture feature representations of different tasks and in-
teractively give feedback to generate prediction sequences.

4. Network Training

In this section, we provided particular information in re-
lation to raining neural networks, including corpus,
hyperparameter, optimizer, and assessment criteria.
PyTorch was used to deploy the model and run the proposed
model on Nvidia GTX 1080.

4.1. Datasets and Preprocessing. Obtain data from the
DDI2011 and DDI2013 challenge corpora to construct the
data set for training the deep learning model, and preprocess
the data set for training the deep learning model in the
following ways: randomly divide the dataset into T subsets,
and T is an integer greater than or equal to 2. Establish four
alphabets of word, character char, label label, and feature for
each subset. Each alphabet is a dictionary for storing {key:
instance, value: index}, where key represents the stored key,
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value represents the stored value, instance refers to the word,
and index refers to the index. Based on the four alphabets of
each subset, two lists are established for each subset. .e two
lists contain four columns of data, respectively. .e four
columns of data in the first list are [words, chars, labels,
features], and the four columns of data in the second list are
[words_Ids, chars_Ids, labels_Ids, features_Ids].

In the experiment, the DDI2011 Challenge Corpus from
the drug-medicine interaction task was used. .e minidom
module as a part of python was used to extract <sentence>
and <entity> elements, get the essential test and entity in-
formation, create a list, and match and annotate the entity
and text. Next, all training datasets were collected as training
data, and all test datasets were collected as test data. In this
work, the sample was preprocessed using BIO labeling,
where B denotes the first token of the entities in the sample, I
denotes the token in the entity, and O denotes the token that
does not fall into the category of entities. Table 1 lists the
distribution of documents, sentences, and drugs as con-
tained in the training and test set of DDI2011 [6]. Since there
is only one type of entity names (DRUG) in this corpus, the
text would be only labeled as “B/I-DRUG” or “O”.

For further performance evaluation of the proposed
model, the SemEval-2013 dataset in drug name recognition
and classification task was used. Table 2 shows the numbers
assigned to the annotated entities in DDI2013 training set
and test set. .e dataset contains four entity types: Drug,
Brand, Group, and Drug_n [43]. Drug denotes any chemical
reagent served to treat, cure, prevent or diagnose human
diseases. Brand is characterized by trade name or brand
name. Group denotes any term that specifies the chemical or
pharmacological relations between a group of drugs as
mentioned in the text, and Drug_n describes a kind of
chemical reagent that has not been approved for human
medical use.

4.2. Pretrained Embedding. In this work, Pennington et al.
[25] was used to initialize the word embedding obtained

from the pretraining on PMC and PubMed, and the context-
sensitive word vectors were acquired using ELMo. .e
character embedding was randomly initialized according to
a uniform sample [−

�������
(3/dim)

􏽰
, +

�������
(3/dim)

􏽰
], where

dim� 30.

4.3. Hyperparameters. Table 3 lists the hyperparameters
used in the course of experiment. .e dimensions of pre-
trained word embedding, character embedding, and con-
textualized character embedding were set to 30, 100, and
1024, respectively. In the training process, the parameters
were updated using Minibatch Stochastic Gradient Descent
(SGD) in respect of descending learning rate. .e initial
learning rates of the proposed model, Dropout rate, and the
batch size were set to 0.015, 0.5, and 10, respectively.

4.4. Criteria for Evaluation. In the experiment, the system
performance was evaluated by precision, recall rate, and F1.
Precision represents all correctly predicted entities as a
percentage of all predicted entities. Recall rate represents the
predicted entities as a percentage of all entities as contained
in the dataset. F1 represents the harmonized mean value of
precision and recall rate, with the following equation:

P �
TP

TP + FP
,

R �
TP

TP + FN
,

F1 �
2∗P∗R

P + R
,

(7)

where TP denotes the number of true-positive samples, TN
denotes the number of true-negative samples, FP denotes the
number of false-positive samples, and F denotes the number
of false-negative samples. Two out of four criteria for
evaluation available in DDI2013 [43] Challenge Corpus were
used: type matching (only if there are some overlaps with the
same category of gold drug names) and strict matching (only
if the label boundary and category are the same as the gold
drug names, the label drug names are correct).

5. Experiment and Analysis

.e multi-DTR model as described here was evaluated on
DDI2011 and DDI2013, known as the representative bio-
medical corpora. Table 4 is the performance comparison of
multi-DTR with the works done by other teams. Next, the
impact of each architecture (e.g., different embedded layers,
different optimization methods, and multitask mutual
feedback framework) as a part of the proposed model on the

Input Sentence
Patients taking Acamprosate concomitantly with Antidepressants

Shared
Representation

Learner BiLSTM
…
…

Embeddings
Lookup Table d

kHidden Layer

TASK:
DNEN

TASK:
DNER

… …… … … …

… …… … … …

Figure 4: .e main architecture of the multi-DTR model.

Table 1: Training and testing set in DDI2011.

Set Documents Sentences Drugs
Training 435 4267 11260
Final test 144 1539 3689
Total 579 5806 14949
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experiment was assessed. .e findings of comparison sug-
gest that the architectures of the proposed model would
perform well in the experiment.

5.1. Performance Comparison with Available Methods.
.e results were compared with those of the works done by
other teams. For the sake of fairness and rationality of the
experiment, the hyperparameters of the proposed model
were configured according to the optimal parameters as
referred to in the article. As is seen from Table 4, the dic-
tionary-based method and the rule-based method, as pro-
posed earlier, yielded reasonable results, including Tsuruoka
[12] and Hettne et al. [13], subsequent deep learning model.
For example, LASIGE et al. [43] combined CRF with the list
of dictionary terms intended for DNER processing as col-
lected from the database in order to recognize and classify
entities. Zeng et al. [16]used the BiLSTM-CRF structure to
identify drug entities without the aid of any external dic-
tionary, with good results attained. Yang et al. [37] used a
hierarchical recursive network for cross-language transfer
learning..emodel proposed by Liu et al. [44] combines the
word embedding trained in biomedical text with the se-
mantic features of three drug dictionaries, with an im-
pressive performance on DDI2013, suggesting that the
accuracy of our proposed model is 0.90% lower than that
proposed by Liu et al. [44], but its recall rate and F1 are
6.23% and 2.43% higher than that proposed by Liu [44].

For the evaluation of DDI2013 dataset, Table 5 provides a
summary of the accurate evaluation of the proposed model
in the entity type-specific recognition as part of DDI2013.

Despite good performance in type recognition, the
proposed model may neglect the difference between a given

entity and other entity types due to a small percentage (<4%)
of Drug_n entity type in the dataset. As a result, the rec-
ognition accuracy of the proposed model would be lower
than that of any other entity.

5.2. Performance Comparison of Different Statements.
.is work proposed using pretrained word embedding,
character representation, and context-sensitive word em-
bedding to obtain additional feature information, as given in
Table 6. To test the impact of different input information
representations on the proposed model, three kinds of
embedding information were combined and input into the
model, respectively. According to the results, serial repre-
sentation is better than single representation, and multiple
representations can attain the best performance.

5.3. Comparison of Optimization Methods. Different opti-
mizers, including SGD, AdaGrad, Adadelta, RMSProp, and
Adam, were compared here. SGD can calculate gradient and
update parameters by randomly extracting the training
sample of a fixed size while avoiding falling into saddle
points or poor local optimal points. AdaGrad imposes a
constraint on the optimal learning rate and is suitable for
processing sparse gradient, but it may cause the disap-
pearance of gradient. Adadelta is an extension of AdaGrad
and simplifies the computational process. RMSProp relies on
a global learning rate and is suitable for processing non-
stationary targets. Adam can adjust the parameter-specific
learning rate using first-order moment estimation and
second-order moment estimation, but it is vulnerable to
generalization and convergence problems. According to the
experimental results, as given in Figure 5, SGD is signifi-
cantly better than any other optimizer.

5.4. Performance Comparison in Case of Dropout. .e ef-
fectiveness of Dropout was evaluated here, with all of the
other hyperparameters in the model identical to that in
Table 3. As given in Table 7, the performance of the proposed
model onDDI2011 andDDI2013 was slightly improved after
the Dropout was used, which in turn proves that Dropout
plays a part in reducing overfitting.

5.5. Performance Comparison between Multitask Learning
and Single-Task Learning. .e effectiveness of multitask
learning strategy was also examined. As seen from Table 8,
the efforts to jointly model DNER and DNEN by using two
explicit feedback strategies would significantly improve the

Table 2: Numbers of the annotated entities in DDI2013 set.

Type
Train Test

DrugBank MedLine Total DrugBank MedLine Total
Drug 9901 (63%) 1745 (63%) 11646 (63%) 180 (59%) 171 (44%) 351 (51%)
Brand 1824 (12%) 42 (1.5%) 1866 (10%) 53 (18%) 6 (2%) 59 (8%)
Group 3901 (25%) 324 (12%) 4225 (23%) 65 (21%) 90 (24%) 155 (23%)
Drug_n 130 (1%) 635 (23%) 765 (4%) 6 (2%) 115 (30%) 121 (18%)
Total 15756 2746 18502 304 382 686

Table 3: .e parameters for our experiments.

Layer Hyperparameter Value

CNN Window size 3
Number of filters 30

LSTM
State size 200
Initial state 0.0
Peepholes No

Dropout

Dropout rate 0.5
Batch size 10

Initial learning rate 0.015
Gradient clipping 5.0

Decay rate 0.05
Labeling schema BIO

ELMo dim 1024
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Table 4: Results of experiment in DDI2011 and DDI2013.

System
DDI2011 DDI2013

Precision Recall F1 Precision Recall F1
UMCC_DLS － － － 24.00 57.00 34.00
Hettne 66.91 71.42 69.09 59.41 56.32 57.82
Tsuruoka 68.42 72.39 70.34 62.24 58.17 60.12
WBI 89.53 88.42 88.97 76.70 88.42 74.80
LASIGE 87.02 82.51 84.70 78.00 56.00 65.19
Yang 81.44 81.50 81.46 76.54 74.40 75.45
Zeng 93.26 91.11 92.17 83.60 77.81 79.26
Liu － － － 87.46 75.22 80.88
Multi-DTR 94.36 92.13 93.22 85.56 81.45 83.45

Table 5: Experimental results of different entity types in DDI2013.

Type Precision Recall F1
Drug 86.52 81.68 84.03
Brand 89.46 78.51 83.62
Group 83.26 86.43 84.81
Drug_n 79.74 67.36 73.02
Mico-average 85.56 81.45 83.45

Table 6: Performance comparison of each representations.

System
DDI2011 DDI2013

Precision Recall F1 Precision Recall F1
ELMo 88.46 87.74 88.09 82.14 79.24 81.68
Char 86.32 85.12 85.71 81.21 78.53 79.84
Glove 88.12 89.34 88.72 84.74 80.57 82.60
ELMo+Char 89.47 90.55 90.00 83.45 81.06 82.23
Char +Glove 90.14 88.42 89.24 83.32 80.64 81.95
ELMo+Glove 91.73 89.51 90.60 84.24 81.32 82.75
ELMo+Glove +Char 94.36 92.13 93.22 85.56 81.45 83.45
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Figure 5: Performance comparison of different optimization methods optimization.
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model performance, partly because the multitask learning
provides a general representation of both tasks and partly
because the proposed method converts hierarchical tasks
into parallel multitask setting and retains mutual support
between different tasks.

6. Conclusion

Drug text mining is a key interdisciplinary field of computer
science and biomedicine. In this work, a multitask learning
framework was tailored for DNER, with an impressive
performance on DDI2011 and DDI2013. .rough detailed
analysis, the main gains of the proposed model can be at-
tributed to character sharing between drug entities, pre-
trained word embedding, and context-sensitive word
embedding information..e conflict of entity boundary and
type can be generally resolved by the positive feedback of
DNER and DNEN. According to the experimental results,
the proposed method can readily perform well without the
aid of any drug dictionary or manual creation so an efficient
DNER system was constructed.
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