
A Metamodeling Framework for Promoting
Flexibility and Creativity Over Strict Model

Conformance

Nicolas Hili1,2

1 School of Computing, Queen’s University, Kingston, Ontario, Canada
hili@cs.queensu.ca

2 Univ. Grenoble Alpes, LIG, F-38000 Grenoble, France
CNRS, LIG, F-38000 Grenoble, France

nicolas.hili@imag.fr

Abstract. This paper defines FlexiMeta, a metamodeling framework
intended to promote more flexibility and creativity while not compro-
mising validation through model conformance. It advocates less coupling
between models and metamodels in order to make the creation of mod-
els and user-defined metamodels possible in an arbitrary order. It comes
along with a generic process structured into several phases. For each
phase, a proper balance between flexibility and validation is found in or-
der to bridge the gap between creativity and strict model conformance.

1 Introduction and Motivation

Metamodeling techniques [1] increase validation through model conformance.
However, they drastically decrease flexibility as user-defined metamodels have
to be created first and each change to the metamodels questions the validity of
existing models [2]. Consequently, traditional Model-Driven Engineering (MDE)
approaches fail to address some issues, such as the availability, evolution, and
multiplicity of metamodels as well as the prototyping of models.

Whether introducing flexibility in MDE processes is efficiently addressed or
not will ultimately depend on how they are realized by modeling frameworks.
Consequently, considerations have to be made about the implementation of such
frameworks. Particularly, design considerations of the internal representations
of a model, given a programming language and a data serialization format, and
their impact at both object- and meta-levels, should be cautiously made.

This paper presents FlexiMeta, a metamodeling framework for promoting
flexibility and creativity during the model creation process over a strict model
conformance according to a metamodel. This framework derives from previous
lessons learned during an inter-organizational project involving both industrial
and academic partners from the nuclear-plant system field [3]. In opposition
to traditional MDE frameworks that promote a strict coupling between models
and metamodels, less coupling between models and metamodels is advocated in



FlexiMeta, in order to address the problem of conception of models and user-
defined metamodels in an arbitrary order, i.e., without assuming the existence
of one before the other, and without assuming any relationship (one-to-one or
one-to-many) between them.

This paper is structured as follows: Section 2 details FlexiMeta; Section 3
sketches a first implementation in which FlexiMeta is used; Related work is
discussed in section 4; Section 5 concludes.

2 FlexiMeta

This section introduces FlexiMeta, a metamodeling framework which promotes
more flexibility and creativity over a strict model conformance. Throughout this
section, FlexiMeta is illustrated over the Families case study, a popular example
to illustrate model-to-model transformations3.

Fig. 1 shows the architecture of FlexiMeta, highlighting the internal represen-
tations (horizontally) of a model at object- and meta-levels (vertically). Dashed
nodes and edges depict components that can be used at different times, depend-
ing on the intent of the modeling. Therefore, during the first phases of a project,
relying on the metamodel is not required to create models. It prevents from vali-
dating the created models but it increases creativity and flexibility. On the other
side, the metamodel definition is required if one wants to ensure model confor-
mance. In other words, the proposed framework allows for balancing flexibility
and validity during time and with respect to the intent of the modeling. In the
following, we will describe each part of the framework.

Model

meta-level

object-level

JSON JavaScript
Objects

Meta-
model

XSD
Scheme

Java
Class

JavaScript
Meta-
Objects

JavaScript
Base

Meta-Object

χ prototypeOf prototypeOf

prototypeOf« generates »

Model Serialization Format Programming Language

Fig. 1: Architecture of FlexiMeta

3http://www.eclipse.org/atl/documentation/old/ATLUseCase_

Families2Persons.pdf.

http://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf
http://www.eclipse.org/atl/documentation/old/ATLUseCase_Families2Persons.pdf


Object Instanciation. JavaScript is used for instanciating model elements at
run-time. JavaScript is a prototype-based, weakly-typed programming language
that can be used to create interactive contents in a web-based environment or
desktop stand-alone applications using NodeJS. New objects are instanciated
by prototyping techniques, hence, no class or schema is required to create new
objects. Consequently, even if the metamodel does not exist yet, objects can be
created at run-time. JavaScript objects can have attributes and methods. An
attribute can store a reference to another JavaScript object, a primitive value
(i.e., Integer, Boolean, etc.), or a collection containing mixed elements (references
and primitive values). A Base meta object is defined in JavasScript. This object
defines a generic set of functions to access and edit properties of a model element.
Each object of the model can then be instanciated by prototyping from the Base
element. This minimal structure allows one to create models and to serialize
them in JavaScript Object Notation (JSON) (see below).

Base: Object

uuid: String

get(name): Object
set(name, value): void
generateUuid(): String

Simpson: Base

lastname = Simpson
address = 742 Evergreen Terrace

Homer: Base

firstname = Homer
age = 39
job = Nuclear Safety Insp. . .
catchphrase = D’oh!

Marge: Base

firstname = Marge
age = 34
job = Housewife

members members

spouse

prototypeOf

prototypeOf prototypeOf

meta-level

object-level

Fig. 2: Simpson Family

Fig. 2 depicts a Simp-
son family model. It
includes a Simpson ob-
ject with general at-
tributes for the entire
family (e.g., last name
and address), and ob-
jects to model Homer
and Marge Simpson.

Homer Simpson is de-
fined by his first name,
age, job and a catch-
phrase. Marge Simp-
son is defined by her
first name, her age and
her job. This example
shows a basic instan-
ciation of objects us-
ing FlexiMeta and the
JavaScript Base meta-
object.

The instanciated objects are not distinguishable by genre, as the model does
not conform to a metamodel. Consequently, both the Simpson and the Homer
objects are instanciated the same way. In FlexiMeta, each object is uniquely
idenfitied by a Universal Unique IDentifier (UUID) which is generated during
its instanciation by the Base meta-object. Object attributes and references are
created using the get and set functions defined by the Base meta-object.

Code Generation. The JavaScript Base meta-object fosters creativity and
flexibility by providing a minimal structure to extend. However, objects cannot



be validated according to a metamodel definition. FlexiMeta provides a code
generation process to generate meta-objects from a metamodel. The code gen-
eration process is similar to how Eclipse Modeling Framework (EMF) generates
Java classes from an Ecore metamodel. However, the main difference is that
this step is optional, and one can simply inherit from the prototype of the Base
meta-object, as described above.

Fig. 3 gives a glimpse of the artifact created during the code generation pro-
cess. For each concept of the metamodel, a corresponding meta-object is created.
The code generator allows for the generation of different artifacts, such as: (1)
getter and setter functions for each attribute of the concept; (2) a validate func-
tion to ensure that the model object is well constructed with respect to the
meta-object definition; (3) import and export functions to ensure the interop-
erability with Ecore models. It decreases flexibility and creativity but improves
validation and model conformance.

Base: Object

uuid: String

get(name): Object
set(name, value): void
generateUuid(): String

Family: Base

lastname: String
address: String
city: String

getAddress(): String
setAddress(value): void
. . .
validate(): []
toEcore(): XMLDoc

Individual: Base

firstname: String
age: Integer
job: String

getAge(): Integer
setAge(value): void
. . .
validate(): []
toEcore(): XMLDoc

members

2..*

prototypeOf prototypeOf

Simpson: Family B

lastname = Simpson
address = 742 Evergreen Terrace

Homer: Individual

firstname = Homer
age = 39
job = Nuclear Safety Insp. . .
catchphrase = D’oh! B

Marge: Individual

firstname = Marge
age = 34
job = Housewife

members members

prototypeOf prototypeOfmeta-level

object-level

spouse

spouse
0..1

Fig. 3: FlexiMeta Code Generator



The code generator has been written using Acceleo and takes an Ecore meta-
model as an input to generate JavaScript meta-objects that inherit from the
Base meta-object (cf. Fig. 1). This choice was made to ensure interoperability
between Ecore and FlexiMeta. The generator creates the required import and
export functions to be able to import models from and export them to Eclipse.

This step is optional. When a metamodel is created, meta-objects can be
generated from it. Existing objects that were previously typed with the Base
meta-object can then be retyped using the newly generated meta-objects. Fig. 3
gives an example of the created meta-objects. Two meta-objects are created:
Family and Individual. Each of them inherits from the Base meta-object, and
getters and setters are generated from the metamodel. Two additional functions
have been generated to validate the model and to export it into Ecore.

The validate function is recursive and detects different constraint violations.
So far, it can check multiplicity violations, non-existence of required attributes,
malformed value for enumerations, and existence of unexpected attributes. For
example, in Fig. 3, the validator can detect that the catchphrase attribute of
Homer Simpson is unexpected as it does not exist in the metamodel, and that
the city attribute does not exist in the Simpson family object while it was de-
fined as a required attribute by the metamodel. Once all these constraints are
verified for one model object, the validate function hands over to the validate
function of each composed element. It is worth noting that references and com-
positions are not distinguishable in JavaScript. Instead, this distinction exists in
the metamodel. Consequently, the order of calls of the validate sub-function is
inferred during the code generation process.

The toEcore function is generated from the Ecore metamodel and is specific
to this metamodel definition. Listing 1.1 illustrates the export of the Simpson
family model into Ecore. As the export feature is specific to the metamodel
definition, compositions and references are observed to fit with the metamodel
structure. In addition, unexpected object attributes are simply ignored and not
exported. Finally, it is worth noting that, given the same set of attributes during
the JSON export and the eXtensible Markup Language (XML) export, the size
of the serialized model in JSON is reduced up to 40% compared to the size of
the serialized model in XML. This result can be explained by the lightweight
notation of JSON and shows how FlexiMeta addresses scalability.

Listing 1.1: Export into Ecore

1 <family:Family xmi:version="2.0"
2 xmlns:xmi="http://www.omg.org/XMI"
3 xmlns:xsi="http://www.w3.org /2001/ XMLSchema -instance"
4 xmlns:family="http:// family /0.1" xsi:schemaLocation="http:// family /0.1

family.ecore" lastname="Simpson" uuid="d229e52c -4e18 -4261 -9144 -...">
5 <family:Individual uuid="6720a6c4 -eedc -4b0c -..." age="43"></

family:Individual >
6 <family:Individual uuid="cdb9eb06 -4c13 -492b-9262 -..." age="49" spouse="

6720a6c4 -eedc -4b0c -..." ></family:Individual >
7 </family:Family >



Serialization. FlexiMeta can serialize models to and deserialize models from
JSON. JSON is a standardized, platform-independent data serialization format
that is natively supported by several languages without loading extra libraries. It
has a very lighweight notation which makes it efficient to process. For example,
it does not distinguish nested nodes from attributes4 as XML does. Therefore,
it may be less human-readable5, however, it deters the temptation to replicate
the metamodel structure to the serialized data.

For serializing models to and deserializing models from JSON, an opportunist
serialization engine has been implemented. The term “opportunist” designates
that the serialization engine serializes data “as it arrives”. It brings several ben-
efits. It is not specific to a metamodel, and is therefore generic. Consequently, it
can be used to serialize and deserialize models even if the metamodel is implicit
or not formalized. If the metamodel does not exist, the deserialization engine
will instanciate objects using the Base meta-object that has been defined. If the
metamodel is defined, then the deserialization process deserializes the model by
using the generated meta-objects defined during the code generation process.

Listing 1.2: Serialization in JSON

1 {
2 uuid: "d229e52c -4e18 -4261 -...",
3 lastname: "Simpson",
4 address: "742 Evergreen Terrace",
5 members: [
6 {
7 uuid: "cdb9eb06 -4c13 -492b-...",
8 firstname: "Homer",
9 age: "49",

10 job: "Nuclear Safety Inspector",
11 catchphrase: "D’Oh!",
12 spouse: {
13 uuid: "6720a6c4 -eedc -4b0c -...",
14 firstname: "Marge",
15 age: "43",
16 job: "Housewife"
17 }
18 },
19 "6720a6c4 -eedc -4b0c -...",
20 ]
21 }

Listing 1.2 shows how the model is
serialized in JSON. An object ({}) con-
tains several key-value pairs separated
with commas. E.g., the Simpson object
has four pairs: uuid, lastname, address,
and members. The value of the mem-
bers key is an array ([]) of objects.
Listing 1.2 illustrates how data is se-
rialized as it arrives. When the serial-
izer has to process the spouse attribute
of the Homer object, the Marge ob-
ject has not been serialized yet. Conse-
quently, the Marge object is serialized
inside the spouse attribute. When it
comes to serialize the Marge object in
the Simpson’s members attribute, only
its UUID is serialized.

3 Implementation

A preliminary implementation of a web-based modeling environment has been
developed to allow everyone to exercise FlexiMeta6 (cf. Fig. 4). It allows for the
creation of the Simpson family model. It is composed of several areas.

The main area 1 depicts a graphical editor to edit the Simpson Family
model. The model consists of the family composed of several members. Model

4The concept of attributes does not exist in JSON.
5It is controversial though, as the learning curve to understand JSON is smoother

thanks to its light notation.
6This environment is available at http://fleximeta.net/demo-models2016.

http://fleximeta.net/demo-models2016


Fig. 4: Case Study: The Simpson Family

editing can be done using the contextual menu by right-clicking on the different

graphical elements. Below the graphical editor, two views 2 and 3 allow
for model serialization in both JSON and XML. JSON serialization is available
every time while XML serialization can only be done when the metamodel is
known (i.e., after the meta-objects are generated from the metamodel). On the

left-hand side of the graphical editor, a model explorer 4 offers a tree view
representation of the model. It is updated every time the model changes. Below

the model explorer, a validation view 5 displays the list of conformance errors
that occur on the model. As for the XML exporter view, validation can only be
processed after the code is generated.

FlexiMeta comes along with a generic process structured into three phases
– exploration, consolidation, and finalization –, which address specific intents.
The exploration phase allows the user to create models without relying on user-
defined metamodels. It promotes creativity but prevents from validating models
as no metamodel has been defined yet. In the consolidation phase, the metamodel
is known and this phase is used to align the created models to fit with the
metamodel definition. Therefore, validation is possible, but it is still possible to
create models which do not conform with the metamodel. Finally, the finalization
phase is intended to create only valid models regarding the metamodel definition.
This generic process has been proposed to offer a trade-off between flexibility
and validation at specific times during the creation of models. Due to the limited
space, the generic process is not further detailed.

To go through the generic process, a view 6 reminds the user in which phase
he or she is. A radar chart displays level and comment for each challenge Flexi-
Meta intends to address during the current phase. In addition, a button allows

the user to move forward to the next phase. Finally, a last view 7 illustrates
the metamodel used during the consolidation and the finalization phases.



4 Related Work

A significant body of literature addresses the problem of flexibility in existing
MDE approaches. Model / metamodel co-evolution techniques were proposed
to withstand metamodel evolution and to automatically or semi-automatically
adapt models [4, 5]. These techniques usually rely on the identification of some
transformation patterns (e.g., creation of new concepts, deletion of existing con-
cepts, addition to some attributes, etc.). Unfortunately, they cannot be fully
automated as some model evolutions cannot be inferred. At best, a variation
could be semi-assisted by a human intervention. At worst, a variation could
require to design a specific model transformation to migrate existing models.

Bottom-up metamodeling techniques consist in inferring what the metamodel
should be regarding a set of existing models [2,6,7]. It allows for the creation of a
model independent of the metamodel definition. By analogy, we can compare this
approach with NoSQL databases from which schemas do not have to be defined.
In that case, the metamodel exists, implicitly behind the inference mechanism.
As of the first technique, some automations could not be fully automated. For
instance, it is not possible to infer the multiplicity of a relation.

Metamodel extension techniques leverage the use of general-purpose modeling
languages, such as Unified Modeling Language (UML), instead of defining new
metamodels from scratch [8–10]. Several mechanisms exist. For example, UML
can be extended using the UML profile mechanism. Metamodel extension answers
to specific challenges, such as the availability of user-defined metamodels, and
model prototyping, as the existing metamodel to extend already exists. Then,
even if the extension has not been defined yet, it is still possible to quickly
prototype the system to define.

As for Multi-level modeling techniques [11] and tools (e.g., MetaDepth [12]),
the same distinction is made between linguistic (i.e., the language) and onto-
logical type. With respect to the nature of the prototype relation in JavaScript,
objects in FlexiMeta can be created with no ontological type first, and then be
further retyped given a user-defined metamodel. In addition, the framework pre-
cisely defines how and when (i.e., during which phase) objects are retyped, in
order to align the model definition with the user-defined metamodel.

Existing techniques usually address specific and localized issues, such as
metamodel evolution or model co-adaptation. Our work intends to address all
the aforementioned challenges at once. An attempt was done to address them in
our previous work [3], where a metamodel-tolerant approach and a loose-model
conformity control were defined, but the problem space and the methodology to
address it were both not formalized. In FlexiMeta, a model can be created be-
fore the metamodel (model prototyping). Once the metamodel is defined, model
conformance can be checked to help designers migrate both the model and the
metamodel (metamodel evolution and co-adaptation).

Several modeling frameworks were proposed over time. EMF [13] and Visu-
alization and Modeling SDK (VMSDK) [14] rely on a code generation approach.
In Eclipse, Java classes are generated for each concept of the metamodel. Mod-
els are serialized in XML using a specific serializer generated alongside the Java



implementation of the metamodel concepts. The mapping between the mod-
eling language, data serialization format, and programming language appears
at the object-level and the meta-level. Unfortunately, the combination of the
class-based programming language with a schema-dependent data serialization
format severely affects the flexibility during the modeling activities. Some at-
tempts were done to bring capabilities of EMF into web-based environments.
EMF-Rest [15,16] is a framework that intends to bring EMF capabilities through
a REST API. Another interesting framework is Ecore.js7, which is developed in
JavaScript and available through NodeJS.

Moddle8 is a utility library for creating user-defined metamodels using Java-
Script and JSON. A metamodel can be defined at run-time and models can be
created using it. However, models cannot be created without defining the meta-
model in JSON first. Besides, models cannot be validated and Moddle provides
a limited model coverage. For example, it is not possible to define enumerations.

MoDiGen [17] is an interesting work to address the scalability challenge.
Models and metamodels are defined using JSON. However, it seems that there is
no implementation to use it as no programming language is mentioned. Moreover,
there is no mention about how models are concretely “instanciated” from the
metamodel definition in JSON.

Compared to other frameworks, FlexiMeta relies on a code generation pro-
cess to generate JavaScript implementation of concepts from external metamod-
els (Ecore metamodels, so far). This part is not mandatory though, and one can
use the minimal implementation using the Base JavaScript meta-object (cf. Sec-
tion 2). Flexibility and validation challenges are not addressed simultaneously
and can be balanced over time, which allows one to benefit from both.

5 Conclusion

This paper introduces a new metamodeling framework for promoting more flex-
ibility when creating models and metamodels. Unlike existing approaches, it
balances flexibility and strict model conformance throughout the development
life-cycle. To do so, less coupling between a model and a metamodel is advocated
to give more freedom during the modeling activities. A preliminary tool has been
sketched to exercise the new metamodeling framework.

The prototype-based programming style of JavaScript, combined to the use of
a schema-free data serialization format opens up some interesting horizons for the
development of new modeling frameworks. For instance, JavaScript supports the
dynamic creation of meta-objects at run-time and at different levels of modeling
(deep instanciation). FlexiMeta could take advantage of it to support the binding
of models to several metamodels or several versions of the same metamodel at
the same time, in order to adress issues such as the multiplicity of metamodels
and metamodel evolution.

7Available here: https://github.com/emfjson/ecore.js.
8Available here: https://github.com/bpmn-io/moddle.

https://github.com/emfjson/ecore.js


References

1. F. Fondement and R. Silaghi, “Defining model driven engineering processes,” in
Third International Workshop in Software Model Engineering (WiSME), held at
the 7th International Conference on the Unified Modeling Language (UML), 2004.

2. P. Gomez, M. E. Sánchez, H. Florez, and J. Villalobos, “An approach to the co-
creation of models and metamodels in Enterprise Architecture Projects,” Journal
of Object Technology, vol. 13, no. 3, pp. 2–1, 2014.

3. N. Hili, Y. Laurillau, S. Dupuy-Chessa, and G. Calvary, “Innovative Key Features
for Mastering Model Complexity: Flexilab, a Multimodel Editor Illustrated on Task
Modeling,” in Proceedings of the 7th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, ser. EICS ’15, 2015.

4. G. Wachsmuth, “Metamodel Adaptation and Model Co-adaptation,” in European
Conference on Object-Oriented Programming, ser. ECOOP’07, E. Ernst, Ed.

5. A. Cicchetti, D. D. Ruscio, R. Eramo, and A. Pierantonio, “Automating Co-
evolution in Model-Driven Engineering,” in Enterprise Distributed Object Com-
puting Conference, 2008. EDOC ’08. 12th International IEEE, 2008, pp. 222–231.

6. J. Sánchez-Cuadrado, J. Lara, and E. Guerra, “Bottom-up meta-modelling: An
interactive approach,” in Model Driven Engineering Languages and Systems: 15th
International Conference, MODELS 2012. Springer Berlin Heidelberg, 2012.

7. H. Cho, J. Gray, and E. Syriani, “Creating Visual Domain-specific Modeling Lan-
guages from End-user Demonstration,” in Proceedings of the 4th International
Workshop on Modeling in Software Engineering, ser. MiSE ’12. Piscataway, NJ,
USA: IEEE Press, 2012, pp. 22–28.

8. I. Weisemöller and A. Schürr, “A Comparison of Standard Compliant Ways to
Define Domain Specific Languages,” in Models in Software Engineering.

9. B. Selic, “A systematic approach to domain-specific language design using uml,” in
Object and Component-Oriented Real-Time Distributed Computing, 2007. ISORC
’07. 10th IEEE International Symposium on, 2007, pp. 2–9.

10. P. Langer, K. Wieland, M. Wimmer, J. Cabot et al., “Emf profiles: A lightweight
extension approach for emf models.” Journal of Object Technology, vol. 11, no. 1,
pp. 1–29, 2012.

11. C. Atkinson and T. Kühne, “The Essence of Multilevel Metamodeling,” in Interna-
tional Conference on the Unified Modeling Language. Springer, 2001, pp. 19–33.

12. J. de Lara and E. Guerra, “Deep meta-modelling with metadepth,” in Proceedings
of the 48th International Conference on Objects, Models, Components, Patterns,
ser. TOOLS’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 1–20.

13. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF Eclipse Modeling
Framework, ser. The Eclipse Series. Addison Wesley, 2009.

14. S. Cook, G. Jones, S. Kent, and A. Wills, Domain-specific Development with Visual
Studio Dsl Tools, 1st ed. Addison-Wesley Professional, 2007.

15. B. Costa, P. F. Pires, F. C. Delicato, and F. Oquendo, “Towards a View-Based
Process for Designing and Documenting RESTful Service Architectures,” in Pro-
ceedings of the 2015 European Conference on Software Architecture Workshops.
ACM, 2015, p. 50.

16. H. Ed-Douibi, J. L. C. Izquierdo, A. Gómez, M. Tisi, and J. Cabot, “Emf-rest:
Generation of restful apis from models,” arXiv preprint arXiv:1504.03498, 2015.

17. M. Gerhart, J. Bayer, J. M. Höfner, and M. Boger, “Approach to define highly
scalable metamodels based on json,” BigMDE 2015, p. 11, 2015.


	A Metamodeling Framework for Promoting Flexibility and Creativity Over Strict Model Conformance

