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Abstract. The utilization of renewable sources of energy is growing all over the 
world due to pressure for sustainable solutions. It brings benefits to the 
environment, but also adds complexity to the electricity grid, which faces energy 
balancing challenges caused by an intermittent production from this kind of 
generation. Having a good energy prediction is essential to avoid losses and 
improve the quality and efficiency of the energy systems. There are many 
machine learning (ML) methods that can be used in these predictions; however, 
every consumer is different and will behave in a distinct way. Therefore, the 
objective of this article is to compare the application of different ML methods, 
aiming to predict PV energy production and energy consumption for residential 
users. Four different ML methods were applied in a real dataset from the 
RESPOND project: Linear Regression, Decision Forest regression, Boosted 
Decision Tree Regression and Neural Network. After the simulation, the 
predicted values were compared against the real data, considering 150 days of 
measurement from two Irish houses. Overall, all the algorithms applied achieved 
mean errors below 14%, but the Boosted Decision Tree overperformed, with 
mean errors of 2.68% and 10% for energy consumption and energy production 
prediction, respectively. 
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1 Introduction 

Energy generation through renewable sources is becoming popular in recent years. The 
European Union (EU) targets to achieve about 20% of renewable energy production in 
2020 [1] and at least 27% in 2030 [2]. Along with this expected growth, other 
challenges start to arise, mainly because energy produced from wind or solar sources 
depends on weather conditions and presents an intermittent capacity. This will tend to 
increase the variability of overall electricity supply, thus making its integration to the 
grid a complex process [3]. 

Understanding and predicting how electricity network works, including distributed 
generation from renewables, is essential in this new framework, as it can bring benefits 
to the utilities. Contemporary solutions for energy balance, such as backup fossil 
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powerplants [3] and storage [9], are costly and sometimes not efficient. With a proper 
energy management system (EMS) utilities can provide new services. These include 
Demand Response (DR) solutions, where utilities can give benefits to users that change 
their consumption behavior according to the network load, hence reducing total energy 
demand during peak times [19]. Moreover, having information about the grid status can 
help utilities to plan their own energy production, thus avoiding unnecessary costs with 
new assets otherwise required to match peak demand over small periods. 

To support this new trend, some data-driven methods for energy production and 
consumption prediction have been arising, ranging from statistical models to complex 
Machine Learning (ML) algorithms. These aim to find correlations and meaning among 
variables in large datasets. Although more than 80% of the previous studies about 
energy consumption prediction have been carried on non-residential customers [4], 
research from [25] shows that in the EU residential applications correspond to 42% of 
the total energy flexibility potential, whereas 31% comes from industry and 27% in the 
tertiary sector. 

In summary, the main contribution of this work is to assess Machine Learning 
techniques for energy prediction and to deploy a simulation environment, aiming to 
provide the following predictions for a hypothetical EMS: 

1. Photovoltaic (PV) energy generation. 
2. Residential energy consumption for a small group of houses. 

The rest of this paper is organized as follows: Related work, which shows the related 
work regarding energy production and consumption prediction. Machine Learning 
section provides information about the principles and techniques applied in this 
research. Environmental Setup describes how the environment monitoring has been 
structured and explains the dataset preparation stage. Results section presents all the 
relevant outputs of our experiments, comparing the prediction methods and real data. 
Finally, Conclusions and Future works recaps the main points of the paper, introducing 
ideas for future work. 

2 Background Research 

Electricity is a development indicator, it boosts country’s economy and brings comfort 
to our homes, improving quality of life in most of daily tasks. However, it is also 
strongly associated with CO2 emissions, where buildings represent 36% of the total 
produced gas in the EU [5]. As energy production using fossil power plants is one of 
the CO2 emissions reasons, the use of renewable sources is increasing, therefore 
affecting directly the energy matrix. Renewables represented almost two-thirds of new 
net world electricity capacity extensions in 2016, with almost 165 gigawatts (GW) 
coming online. Between 2017 and 2022, it is expected that the global renewable 
electricity capacity is to expand by over 920 GW, an increase of 43% [6]. 

Amasyali and El-Gohary (2018) carried out an extensive review [4] on data-driven 
building energy consumption prediction, having categorized more than 60 previous 
studies across five categories: type of building, temporal granularity, type of energy 
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consumption, type of data and ML algorithm. As a result, they identified that 19% of 
models belong to residential buildings and the granularity chosen was mostly hourly 
(57%) followed by daily (15%). Most of datasets considered only the overall energy 
consumption (47%) from electricity meter and 67% of the models used real data instead 
of simulated or public benchmark data. Finally, the most frequent ML algorithms 
applied were artificial neural networks (ANN) and support-vector machine (SVM), 
with 47% and 25% respectively. 

In a different approach, Naji at al. [7] proposed the application of EML (extreme 
learning machine) algorithm for estimating energy consumption based on a building 
envelope’s parameters, district heating and cooling loads, achieving an accuracy 
improvement when comparing the results against genetic programming and artificial 
neural network. Authors in [8] and [10] utilized a genetic algorithm applied for building 
performance, the first predicting energy consumption and the second one predicting 
heating/cooling. Besides ML methods, there is also a physical modelling approach, 
known as engineering methods or white-box models, but they rely on thermodynamic 
rules for a detailed energy modelling and analysis [4] and thus are not part of the present 
work. 

Regarding energy production prediction, Das at al. [11] assessed more than 20 recent 
works about forecasting of PV generation, from physical models to ML, and compared 
their performance across different factors, such as accuracy, reliability, computational 
cost and complexity. According to the study, ANN and SVM-based forecasting models 
performed well under rapid and varying environmental conditions. Voyant at al. [12] 
presented another list with almost 50 works where ML was applied through different 
methods, with ANN the most popular followed by SVM, regression trees and others. 
There is no common agreement with regard to the evaluation criteria, but as a reference 
the root-mean-square error (RMSE) of some of them ranged from 5% to 24%. [13] 
compared three different prediction models for a PV plant in south Italy: 
phenomenological detailed model, Multi-Layer Perceptron (MLP) neural network and 
a regression approach. The results demonstrated that more accurate predictions can be 
reached by statistical machine learning approaches. 

The authors in [14] applied ML algorithms, such as SVM and Forest regression, in 
order to predict solar radiation values for seven different places in Spain. Our proposed 
research is about on PV generation, but there are other important studies that show 
application of ML for different renewable energy source. For instance, [15] and [16] 
presented a review of current methods for wind power generation forecasting. 

3 Machine Learning 

Machine Learning is a subfield of computer science that is classified as an artificial 
intelligence method. It can be used in several domains and one of the advantages is the 
capability of solving problems which are impossible to be represented by explicit 
algorithms. Some of the ML methods are regression based, which can be widely used 
to create projections about future, with the objective to predict a numeric target. 



4 

The best ML model will rely on the equilibrium between predicted error and 
complexity of the system. Depending on the database particularities, a complex model 
may result in a greater error than using a simple model, as shown in Fig. 1. 

Fig. 1.  Model complexity versus prediction error. 

All methods to be presented here are regression-based. The following subsections 
describe the methods applied to our proposed prediction model. 

 
3.1 Linear 

Linear regression is a statistical method, which has been adopted for using in ML. Spite 
of being one of the simplest models for a basic predictive task, this method also tends 
to work well on high-dimensional sparse datasets [21]. The classic regression problem 
involves a single independent variable and a dependent variable, this is called simple 
regression. Multiple linear regression involves two or more independent variables that 
contribute to a single dependent variable. Problems in which multiple inputs are used 
to predict a single numeric outcome are also called multivariate linear regression. 
 
3.2 Decision Forest 

Decision trees are non-parametric models that perform a sequence of simple tests for 
each instance, traversing a binary tree data structure until a leaf node (decision) is 
reached. The advantage of decision trees is that this method is efficient in both 
computation and memory usage during training and prediction.  

Decision Forest model consists of an ensemble of decision trees. Each tree in a 
regression decision forest outputs a Gaussian distribution as a prediction. An 
aggregation is performed over the ensemble of trees to find a Gaussian distribution 
closest to the combined distribution for all trees in the model [22]. 
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3.3 Boosted Decision Tree Regression 

Boosting is one of several classic methods for creating ensemble models, along with 
bagging, random forests, and so forth. In Azure Machine Learning Studio [18], boosted 
decision trees use an efficient implementation of the MART gradient boosting 
algorithm, which is a ML technique for regression problems. It builds each regression 
tree in a stepwise fashion, using a predefined loss function to measure the error in each 
step and correct for it in the next. Thus, the prediction model is an ensemble of weaker 
prediction models [20].  
 
3.4 Neural Network Regression 

Although neural networks are widely known for applications in deep learning and 
modeling complex problems, such as image recognition, they are easily adapted to 
regression problems. Any class of statistical models can be termed a neural network if 
they use adaptive weights and can approximate non-linear functions of their inputs. 
Thus, neural network regression is suited to problems where a more traditional 
regression model cannot fit a solution [23]. 

The layers of a neural network are made of nodes, the place where computation 
happens. A node combines input from the data with a set of coefficients, or weights, 
that either amplify or dampen that input, thereby assigning significance to inputs with 
regard to the task the algorithm is trying to learn. These input-weight products are 
summed and then the sum is passed through a node’s so-called activation function, to 
determine whether and to what extent that signal should progress further through the 
network to affect the ultimate outcome. If the signals pass through, the neuron has been 
“activated.” Fig. 2 shows a diagram of what one node might look like [24]. 

 
Fig. 2. Neural Network layers. 

A node layer is a row of those neuron-like switches that turn on or off as the input is 
fed through the net. Each layer’s output is simultaneously the subsequent layer’s input, 
starting from an initial input layer receiving your data. Pairing the model’s adjustable 
weights with input features is how we assign significance to those features regarding 
how the neural network classifies and clusters input [24]. 
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4 Environment Setup 

The case study chosen is part of the Irish pilot from RESPOND project [17]. It consists 
of data collected from two houses in the Aran Islands over 150 days, from May to 
September 2019, both equipped with PV panels. In this experiment, the data was 
grouped and houses were considered as a cluster because of the goal to analyze energy 
generation and consumption in the whole grid. The dataset was then uploaded to 
Microsoft Azure Machine Learning Studio [18], where the information was processed 
following our proposed architecture showed in Fig. 3. 

Fig. 3. Process diagram. 

4.1 Data Extraction 

Data extraction is the first step of the process. It is a collection of all available data from 
sensors and weather information from external sources. Furthermore, an additional 
classification features for day classification has been created to improve the algorithm 
decisions in later stages. The initial dataset has hourly resolution and is composed of 
the following features: 

• Complete timestamp (day, month, year, hour). 
• PV generation. 
• Energy consumption (electricity meter). 
• Weather (temperature, precipitation, humidity, wind speed, solar radiation). 
• Day classification (weekend or working days). 

The energy consumption data comes from utility’s electricity meter, which is the 
most common source of this kind of measurement. It does not consider social aspects, 
such as number of family members, because it would be hard to track changes 
considering large groups, thus making the generalization process complex. 
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4.2 Feature Selection 

This stage is where the selection of features for energy production or consumer 
consumption prediction model happens. For instance, the production prediction model 
uses of almost all available variables, only energy consumption is removed from the 
dataset. On the other hand, consumption prediction does not depend on PV production 
or some weather features, such as wind speed or solar radiation, so the final dataset is 
reduced in that case. This practice helps the algorithms to converge faster and allows a 
better generalization. 

4.3 Data Cleaning and Normalization 

This process aims to make the dataset as homogeneous as possible. Data cleaning works 
identifying incomplete, incorrect, inaccurate or irrelevant parts of data and then 
replaces, modifies or deletes the dirty or coarse data. The normalization process aims 
to change the values of numeric columns in the dataset to a common scale, without 
distorting differences among variables values. For example, temperature values range 
from 0 to 25, while solar radiation can achieve values greater than 500.  

The normalization method applied to the proposed experiment is the Z-Score, where 
the values in the specified columns are transformed using equation 1. 

 𝑧 =  
𝑥−𝑚𝑒𝑎𝑛(𝑥)

𝑠𝑡𝑑𝑒𝑣(𝑥)
     (1) 

where mean and standard deviation are computed for each column separately. 

4.4 Test and Training Dataset 

Once data preparation is done and ready for processing, the dataset is randomly divided 
and follows two different paths: 

• 70% of data is sent to training models. 
• 30% of data is separated and used for testing purposes, to be compared against 

trained models later. 

4.5 Modelling 

The training dataset received from previous stage is trained across four different 
regression methods: Linear, Decision Forest, Boosted decision tree and Neural 
Network. Detailed description about each one can be found in the Section 3. 

4.6 Performance Evaluation 

The predicted results from the different models are compared against the real data. Our 
experiment considers a performance evaluation of daily and hourly predictions for both, 
PV generation and energy consumption. Azure ML Studio provides outputs about 



8 

overall accuracy, but we have also added a Python script to plot and calculate additional 
outputs allowing an intuitive visual analysis. 

5 Results 

Over the performance evaluation stage, the four algorithms have been parameterized in 
different ways targeting to minimize errors. Azure ML Studio allows us to input a range 
of parameters to be trained. For instance, instead of using a static value for number of 
decision trees in the Decision Forest method you can set a range of numbers and the 
algorithm will try all of them, choosing the best combination of parameters. 
Immediately below you can find the final parametrization of each method: 

• Linear Regression: Method: Ordinary Least Squares. Regularization weight: 0.001. 
• Decision Forest Regression: Resampling method: Bagging. Number of trees: 8. 

Maximum depth of the decision trees: 32. Number of random splits per node: 128. 
• Boosted Decision Tree Regression: Maximum leaves per tree: 20. Minimum number 

of training instances: 10. Learning rate: 0.1. Total number of trees constructed: 100. 
• Neural Network regression: Hidden layer specification: Fully connected case. 

Number of hidden nodes: 100. Learning rate: 0.0001. Number of learning iterations: 
100. Initial learning weights diameter: 0.1. Normalizer: Gaussian. 

5.1 Daily Predictions 

The objective of the model presented in this paper is to provide energy forecast to 
utilities, in order to help them planning their own energy production in a day-ahead 
base. The weather inputs for PV production relate to one day before the actual day. The 
model could also use forecast data from two or three days before, but the accuracy will 
drop. Users’ consumption prediction considers historical trends and also weather 
forecast. 

Table 1. Prediction errors. 

 Linear Decision Forest B. Decision Tree Neural Network 
PV Production     

MAE 35,24% 27,63% 21,84% 26,33% 

Mean Error 14,10% 14,24% 9,99% 11,92% 

Energy Consumption     

MAE 16,38% 11,93% 10,31% 12,70% 

Mean Error 5,56% 4,31% 2,68% 4,98% 

 
The results from our tests show a mean error below 14% for PV production prediction 
and below 6% for energy consumption. The mean absolute error (MAE) ranges from 
21% to 35% for PV production and from 10% to 16% for energy consumption. The 
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boosted decision tree presents the best performance across the methods, followed by 
the neural network. Table 1 presents a compilation of results 

In some circumstances, the use of mean error can better represent the reality. For 
instance, if the utility is analyzing the forecast of a huge number of houses, some of 
them will present positive errors, predicting more energy than necessary, and others 
will have the opposite effect with negative errors, so this kind of measurement could 
result in a better balance than absolute values. Overall, the four methods follow the real 
data trend, as can be seen in Fig. 4 (PV generation prediction) and Fig. 5 (Energy 
consumption prediction). 

 

Fig. 4. PV generation prediction model comparison. 
 

Fig. 5. Energy consumption prediction model comparison.  
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5.2 Hourly Predictions 

Hourly energy consumption prediction can be hard to perform, mostly because 
consumers’ behavior can vary throughout the week with no defined pattern. PV 
production forecasting can also suffer variation and uncertainty, due to sudden weather 
changes. In order to show the accuracy across the models, we selected the best 
performer (boosted decision tree) and the worst (linear regression), both presented in 
Fig. 6 (consumption prediction) and Fig. 7 (PV generation). 

 
Fig. 6. Energy consumption boxplot of residuals grouped by hour.  

 
Fig. 7. PV generation boxplot of residuals grouped by hour. 

The residuals are grouped by hours, across 150 days of data. As expected, it is easier to 
predict the end of the night and beginning of morning, when house’s activity is lower 
and there is no solar radiation. Higher pattern changes mean higher errors. 
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6 Conclusions and Future Work 

This work has demonstrated the application of distinct machine learning methods 
applied to PV energy production and energy consumption predictions, achieving 9.99% 
and 2.68% of mean error respectively, considering the best case (boosted decision tree). 
The dataset pattern is unique, so different ML methods should be applied in order to 
find the best one that suits each specific application. 

Due to limitations of our dataset, only two houses in Ireland were analyzed. For 
future work the dataset will be improved adding houses, hence more historical data. 
Furthermore, other ML techniques could be applied, examples include Support Vector 
Machine and Multi-Layer Perceptron neural network. Finally, energy production from 
other renewables sources and storage systems can be included, adding more complexity 
to the proposed model.  
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