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RESOURCE ALLOCATION FOR SUPPLY CHAINS BASED ON
PARETO-OPTIMAL TWO-STAGE CROSS-EFFICIENCY MODEL

Yuanyuan Zhao and Lei Fang*

Abstract. The contradiction between the scarcity of common resources and the infinity of human de-
mand for these resources has a significant impact on social development. Therefore, resource allocation
can make the best use of limited resources in economic activities. Taking the two-stage supply chain
where the outputs from the upstream supplier are taken as the inputs for the downstream manufacturer
as an example, this paper applies the cross-efficiency model to comprehensively evaluate the efficiency
scores of supply chains in the process of resource allocation and explores the relationship between the
cross-efficiency of the supply chain and that of two enterprises within this supply chain. Furthermore,
the self-interested behavior of enterprises is taken as the Pareto improvement principle to propose a
Pareto-optimal two-stage cross-efficiency model, and this model can be used to optimally allocate the
limited resources among two-stage supply chains. A common set of weights is determined to make
all supply chains DEA efficient. Finally, the proposed model is illustrated to be feasible and effective
through a practical application of 27 Iranian resin production companies.

Mathematics Subject Classification. 90B30.

Received October 11, 2021. Accepted February 21, 2022.

1. Introduction

In the increasingly competitive market environment, the supply chain has gradually become the mainstream
trend of enterprise development. Specifically, different enterprises are combined into a functional chain through
the strategy of complementary advantages to cope with the uncertainty of market demand and to obtain
more economic benefits for these enterprises. The supply chain, which is composed of multiple enterprises
cooperating with each other, can not only reduce unnecessary costs in the process of providing products or
services but also promote enterprises to improve their rapid response to changes in market demand through
information sharing, so as to maximize the benefits of the entire supply chain and to promote the efficient
development of the social economy. However, it is obvious that the scarcity of resources is becoming increasingly
serious with the development of human society, both in terms of natural and social resources. Therefore, the
optimal allocation of limited resources can not only maximize the utility of resources but also appropriately
alleviate the contradiction between the scarcity of common resources and the infinity of human demand for
these resources in social development, which can promote sustainable development of the world. Wu et al. [27]
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studied a resource allocation strategy in the supply chain of manufacturing resources by proposing a matrix-
based Bayesian approach and employing a genetic algorithm to determine an optimal and robust manufacturing
resource allocation scheme within the context specified by the user. In addition, Zhu et al. [33], with the support
of big data technology, proposed the SBM-DEA model to evaluate the utilization efficiency of natural resources
for 26 provincial regions in mainland China from 2005 to 2012, and a DEA-based approach was developed to
allocate a reduced total of natural resources among the 26 provincial regions. Sharahi and Khalili-Damghani
[21] developed a decision support system based on the concepts of the benchmark in DEA and the optimal
design in De-Novo programming, and the optimal allocation of resources and optimal values of the targets are
set in Iranian natural gas supply chains under a real-world scenario where the budget of resources and targets
are usually mixed with uncertainties. An et al. [1] proposed a fixed cost allocation approach for basic two-stage
systems based on the principle of efficiency invariance, and investigated the related allocation plans for two-
stage systems under cooperative and noncooperative scenarios. Li et al. [14] addressed the fixed cost allocation
problem among a set of DMUs considering undesired outputs based on the joint weak disposability assumption,
and developed a satisfaction degree bargaining game approach to determine the existence of a unique allocation
scheme such that all DMUs can be simultaneously efficient. Furthermore, Zhao et al. [32] distinguished four
patterns of resource allocation and applied simulation from evolutionary game theory to reveal the stability of
various resource allocations under different constraint situations, so as to explore the effects of different resource
allocations in the development of strategic alliances.

Whether resource allocation is reasonable or not has an obvious impact on the level of socioeconomic devel-
opment. Efficiency is one of the criteria to measure the development level of organization systems. Data envel-
opment analysis (DEA), which was originally introduced by [3], is driven by objective data to evaluate the
relative efficiency of a group of homogeneous decision making units (DMUs) with multiple inputs and multiple
outputs. This non-parametric method can not only determine the structure of the envelopment frontier without
artificially defining parameters in advance but also effectively avoid the unscientific weight schemes caused by
artificial assignment. However, the traditional DEA models measure the self-evaluated efficiency of DMUs. That
is, these DMUs choose a set of optimal input-output weights to maximize their own efficiency scores based on
the self-interested principle. As a result, there are multiple efficient DMUs with an efficiency score of 1, which
does not facilitate the ranking among efficient DMUs.

To improve the power of traditional DEA models in discriminating efficient DMUs, Sexton et al. [22] intro-
duced the concept of peer evaluation into traditional DEA models and proposed the cross-efficiency model to
measure the cross-efficiency scores of DMUs. This comprehensive evaluation method analyzes not only the self-
evaluated efficiency of DMUs, but also the peer-evaluated efficiency obtained by using the optimal input-output
weights of other DMUs. Since there are multiple optimal solutions for the input-output weights generated from
the traditional DEA models, the cross-efficiency results of DMUs calculated by the optimal input-output weights
are generally not unique. To avoid this problem, Doyle and Green [9] introduced some secondary objectives to
develop the benevolent (or aggressive) cross-efficiency model, which can maximize (or minimize) the aggregate
efficiency of all DMUs except the evaluated DMU. Furthermore, Liang et al. [16] considered that each DMU seeks
to maximize its own efficiency under the condition that the cross-efficiency scores of other DMUs do not deterio-
rate, and proposed a DEA game cross-efficiency model to obtain the optimal game cross-efficiency scores, which
are proved to constitute a Nash equilibrium point. Wang and Chin [25] proposed a neutral cross-efficiency model
to determine a set of input-output weights for each DMU from its own viewpoint, without involving benevolent
or aggressive attitudes toward the other DMUs, and this model can effectively reduce the number of zero weights
for the output indicators. On this basis, Wang et al. [26] proposed an extended neutral cross-efficiency model,
which can reduce the number of zero weights in terms of both input and output indicators. In addition, Lim
[17] proposed the new aggressive (or benevolent) cross-efficiency model to solve the non-uniqueness of optimal
weights by taking the minimization (or maximization) of the cross-efficiency of the best (or worst) peer DMUs
as the secondary goal. Wu et al. [29] incorporated a target identification model to determine the reachable tar-
gets for all DMUs, and proposed several secondary goal models to select a set of optimal input-output weights
by considering the DMUs willingness to get close to their desirable cross-efficiency targets and to avoid their
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undesirable cross-efficiency targets. However, Cook and Zhu [7] pointed out that meaningful secondary goal
models can develop nonlinear programming problems, which can increase the computational difficulty of these
models, and thus a unit-invariant multiplicative DEA model is proposed to calculate the cross-efficiency scores of
DMUs, so as to eliminate the need for imposing secondary goals to solve the non-uniqueness problem of optimal
weights. Moreover, Chen et al. [5] introduced meta-frontier technology into the cross-efficiency evaluation model
to explore the technology gap between different frontiers in the cross-efficiency environment and to solve the
overestimation problem of the self-evaluation method, and then chose the aggressive cross-evaluation strategy
to solve the non-uniqueness of optimal solutions. In addition, Xie et al. [30] proposed Shannons entropy DEA
model to provide a complete ranking for all DMUs, and the important input and output variables are selected
by using the Bayesian information criterion and the ordinary least squares regression technology.

The above extended cross-efficiency models only measure the production efficiency of the single-stage struc-
ture system and do not take into account the internal structure of that system. However, in the real-world
environment, as the supply chain mentioned above, it is an operational process in which multiple enterprises
cooperate with each other to provide products or services. As a result, the efficiency score of the supply chain
measured by these evaluation models that ignores the internal structure of the supply chain is not reasonable,
and there may be a phenomenon in which the supply chain is efficient but the enterprises within this supply chain
are inefficient. Therefore, Örkcü et al. [20] extended the research of [26] to basic two-stage network systems and
proposed a new neutral cross-efficiency model that can not only effectively reduce the number of zero weights
for inputs, intermediate products and outputs, but also have improved discrimination power to fully rank the
DMUs in both overall and substages of two-stage network systems. In addition, Kao and Liu [11] applied the
concept of cross evaluation to measure the cross-efficiency scores of two basic network systems, and the results
show that the cross-efficiency of a system can be decomposed into the product of those of the divisions for the
series structure and a weighted average of those of the divisions for the parallel structure. Moreover, Ma et al.
[18] revealed that the centralized model proposed by [15] from the perspective of cooperative game theory may
lead to multiple and unacceptable cross-efficiency scores, and developed a game cross-efficiency model based on
the non-cooperative game theory to obtain a unique cross-efficiency result for the overall systems and two sub-
systems. Moreover, Shao and Wang [23] introduced prospect theory into the two-stage cross-efficiency evaluation
method. In addition, Meng and Xiong [19] applied the concept of multiplicative hesitant fuzzy preference rela-
tions (MHFPRs) and acceptable consistency analysis to calculate the priority of DMUs, and the overall efficiency
of the general two-stage system can be decomposed from the self-evaluation and peer-evaluation perspective.

However, there is still another important issue in the cross-efficiency evaluation; that is, the generated cross-
efficiency scores are not Pareto optimal, which makes it difficult for the cross-efficiency evaluation results to
be accepted by all DMUs. In the process of cross-efficiency evaluation, the so-called Pareto-optimal means
that there is no situation in which the cross-efficiency score of any DMU is increased without allowing the
cross-efficiency score of at least one DMU to decrease. In other words, the improvement of the cross-efficiency
score of a DMU is achieved at the cost of decreasing the cross-efficiency of at least one DMU other than it. In
this case, all DMUs cannot further improve their cross-efficiency scores by Pareto improvement. Furthermore,
Wu et al. [28] proposed the Pareto optimality estimation model to determine whether the given set of cross-
efficiency scores are Pareto-optimal solutions, and the Pareto improvement model is developed to make the
cross-efficiency score of the evaluated DMU better off without making any DMUs cross-efficiency scores worse
off. Furthermore, Davtalab-Olyaie and Asgharian [8] proposed a multi-objective programming model based on
the self-prioritizing principle, and applied the weighted sum technique to develop a linear model, which can
determine an optimal weights profile to calculate the Pareto-optimal cross-efficiency scores of all DMUs. And
[24] used the cross-efficiency method based on a secondary goal model to allocate fixed costs, and it is also
verified that the performance results of all DMUs are Pareto cross-efficient after the allocation.

To eliminate unrealistic weighting schemes provided by DEA models with a self-evaluated method in the
process of resource allocation and to avoid unreasonable performance results of DMUs after the resource alloca-
tion, extended cross-efficiency models have also been widely used to explore the optimal allocation of common
resources. Du et al. [10] used the cross-efficiency concept in DEA to approach cost and resource allocation
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problems, and the cross-efficiency iterative method was proposed to maximize the aggregated output change by
allocating available resources. Subsequently, Yu et al. [31] combined a two-stage network DEA model and the
concept of cross-efficiency to solve the fixed cost allocation problem in the two-stage process, and the iterative
method of [10] was applied to determine the optimal cross-efficiency scores for two stages and to obtain the
optimal fixed cost allocation among all DMUs. Furthermore, Li et al. [13] proposed a DEA game cross-efficiency
approach to address the fixed cost allocation problem by explicitly considering both competition and cooperation
relationships among DMUs, and the Shapley value was used to generate a unique and fair allocation scheme.
Moreover, Chen et al. [6] introduced the preference for all individual DMUs into proposing a new centralized
resource allocation strategy based on the cross-efficiency iterative method. In addition, Davtalab-Olyaie and
Asgharian [8] applied the Pareto-optimal cross-efficiency model to the R&D project selection, and the total
budget was allocated among all projects based on the Pareto-optimal results, which can improve resource allo-
cation and fund more projects. In the existing research, however, there are few studies on the development of
the Pareto-optimal cross-efficiency model from the perspective of enterprises self-interested principle to explore
the optimal allocation strategy of common resources among two-stage structure systems, and the relationship
between the cross-efficiency of the overall system and that of subsystems in the resource allocation environment
also needs to be further studied.

Therefore, taking the basic two-stage supply chain as the research object, this paper introduces the advantages
of the cross-evaluated method and the concept of Pareto-optimality into the DEA-based method, and proposes
the Pareto-optimal two-stage cross-efficiency model to achieve the resource allocation among two-stage supply
chains by taking the self-interested motivation of DMUs who prefer to maximize their own interests as the
Pareto improvement principle. Then, the relationship between the cross-efficiency of the overall system and
that of subsystems is analyzed, and the cross-efficiency results of supply chains after the implementation of the
resource allocation strategy are explored. Finally, the feasibility and effectiveness of the proposed model are
illustrated by using an application example for coordinating sustainable supply chains. The contributions of this
paper are mainly reflected in three aspects. First of all, the optimal results of resource allocation obtained from
the perspective of maximizing enterprises interests are more easily accepted by the two-stage supply chains.
Secondly, in the resource allocation environment, the cross-efficiency of the system can be decomposed into the
weighted sum of those of subsystems for the two-stage supply chain. And thirdly, the proposed model can not
only achieve the optimal allocation of limited resources, but also make the Pareto-optimal cross-efficiency of all
two-stage supply chains achieve DEA efficient after the allocation.

In addition, actual supply chains always take the most favorable decision behavior to maximize their own
interests. Then in the resource allocation process, all supply chains also want to obtain the optimal amount of
common resources and to determine the optimal input-output weights so as to maximize their own operational
efficiencies. However, the resource allocation strategy determined by the above self-evaluated approach based
on the self-interested principle is difficult to be accepted by all supply chains other than itself. Therefore, the
current paper introduces the peer-evaluated concept to carry out cross-evaluation among supply chains. And in
the cross-evaluation process that takes into account the self-interested behavior of supply chains, it is possible
to guarantee that the cross-efficiency scores of supply chains will not become worse by at least making the
self-evaluated efficiency scores of each supply chain not lower than its peer-evaluated efficiency scores generated
from the other supply chains. As a result, this paper takes the above self-interested behavior as the Pareto
improvement conditions and allows all supply chains to choose the same weights, so that all supply chains can
not only determine an optimal allocation strategy of common resources but also obtain Pareto-optimal cross-
efficiency scores under this strategy. This approach is consistent with the self-interested motivation of supply
chains, which can facilitate the implementation of resource allocation strategy.

The remainder of this paper is organized as follows. Section 2 applies a cross-efficiency model to measure the
cross-efficiency for the overall system and two enterprises within that system in the process of resource allocation,
and then explores the relationship between the cross-efficiency of the supply chain and that of two enterprises
within this supply chain. Section 3 proposes the two-stage cross-efficiency model based on Pareto-optimality in
the resource allocation environment. Section 4 explores the optimal allocation strategy of common resources
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among the sustainable supply chains of 27 Iranian resin production companies, and determines the Pareto-
optimal cross-efficiency results of supply chains after the allocation. Finally, Section 5 offers the conclusion and
research prospect.

2. Cross-efficiency of supply chains under resource allocation

In this section, we approach the allocation scheme of common resources among two-stage supply chains
based on the self-evaluated and peer-evaluated methods. Suppose that there are 𝑛 homogeneous two-stage
supply chains, where the outputs from the upstream supplier are called intermediate products and they are also
taken as the inputs for the downstream manufacturer having no other additional inputs. It should be noted that
the two-stage supply chains studied in the paper can be called DMUs in the research scope of DEA. In supply
chain DMU𝑗 (𝑗 = 1, 2, . . . , 𝑛), the upstream supplier consumes 𝑚 initial inputs 𝑋𝑗 = (𝑥1𝑗 , 𝑥2𝑗 , . . . , 𝑥𝑚𝑗)𝑇 ∈ 𝑅𝑚

+

to produce 𝐷 intermediate products 𝑍𝑗 = (𝑧1𝑗 , 𝑧2𝑗 , . . . , 𝑧𝐷𝑗)𝑇 ∈ 𝑅𝐷
+ , and the downstream manufacturer uses

these 𝐷 intermediate products to generate 𝑠 ultimate outputs 𝑌𝑗 = (𝑦1𝑗 , 𝑦2𝑗 , . . . , 𝑦𝑠𝑗)𝑇 ∈ 𝑅𝑠
+. In addition,

there are common resources �̂�, which need to be appropriately allocated among 𝑛 two-stage supply chains,
and these common resources are materials, funds, human resources and information resources required for the
operation of supply chains. Furthermore, the amount of common resources allocated to DMU𝑗 (𝑗 = 1, 2, . . . , 𝑛) is
�̂�𝑗 (𝑗 = 1, 2, . . . , 𝑛). Where, the amount of resources allocated to the upstream supplier is �̂�1𝑗 , and the amount
of resources allocated to the downstream manufacturer is �̂�2𝑗 . As a result, the operation process of the two-stage
supply chain in the resource allocation environment is shown in Figure 1.

This paper applies the multiplier form of the DEA model to determine a set of optimal weights with the
objective of maximizing the operational performance of the entire supply chain, thereby identifying the amount
of resources allocated to each supply chain and measuring the efficiency scores of two-stage supply chains after
the resource allocation. In this paper, since the system efficiency of a two-stage supply chain is the weighted sum
of the stage efficiency of the upstream supplier and that of the downstream manufacturer, the system efficiency
of the supply chain can be measured by model (2.1). And noted that we define DMU𝑘 (𝑘 = 1, 2, . . . , 𝑛) as an
evaluated supply chain.

max 𝐸
(S)
𝑘𝑘 = 𝜔

(1)
𝑘𝑘 · 𝐸

(1)
𝑘𝑘 + 𝜔

(2)
𝑘𝑘 · 𝐸

(2)
𝑘𝑘

𝑠.𝑡. 𝐸
(1)
𝑘𝑗 = Φ𝑇

𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗+𝑊𝑘·�̂�1𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(2)
𝑘𝑗 = 𝑈𝑇

𝑘 𝑌𝑗

Φ𝑇
𝑘 𝑍𝑗+𝑊𝑘·�̂�2𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛; (2.1)
𝑛∑︀

𝑗=1

(︁
�̂�1𝑗 + �̂�2𝑗

)︁
= �̂�;

Figure 1. The basic two-stage supply chain in the process of resource allocation.
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�̂�1𝑗 ≥ 0, �̂�2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;
𝑉𝑘 ≥ 0, 𝑈𝑘 ≥ 0, Φ𝑘 ≥ 0, 𝑊𝑘 > 0, 𝑘 = 1, 2, . . . , 𝑛;

Where 𝐸
(1)
𝑘𝑘 and 𝐸

(2)
𝑘𝑘 represent the efficiency of the upstream supplier and that of the downstream manu-

facturer after the resource allocation, respectively. Furthermore, 𝑉𝑘 = (𝑣1𝑘, 𝑣2𝑘, . . . , 𝑣𝑚𝑘)𝑇 ∈ 𝑅𝑚
+ represents the

weight vector of the initial inputs for the upstream supplier, 𝑈𝑘 = (𝑢1𝑘, 𝑢2𝑘, . . . , 𝑢𝑠𝑘)𝑇 ∈ 𝑅𝑠
+ represents the

weight vector of the ultimate outputs for the downstream manufacturer, Φ𝑘 = (𝜙1𝑘, 𝜙2𝑘, . . . , 𝜙𝐷𝑘)𝑇 ∈ 𝑅𝐷
+ is

the weight vector of the intermediate products, and 0 is a zero vector. Here, this paper sets the same weight
vector of intermediate products for both enterprises, which can avoid the potential conflict about intermediate
products within the two-stage supply chain. Furthermore, since the type of a common resource is the same for
both the upstream supplier and the downstream manufacturer, the indicator weight of common resources is
denoted by 𝑊𝑘for both the upstream supplier and the downstream manufacturer.

In the objective function of model (2.1), 𝜔
(1)
𝑘𝑘 and 𝜔

(2)
𝑘𝑘 correspond to the stage weight of the upstream supplier

and that of the downstream manufacturer in the evaluated supply chain DMU𝑘. With reference to the weight
expression proposed by [4], the ratio of the weighted inputs of an enterprise to those of the whole supply chain
is applied as the stage weight of this enterprise, and the specific expression is shown below.

𝜔
(1)
𝑘𝑘 =

𝑉 𝑇
𝑘 𝑋𝑘 + 𝑊𝑘 · �̂�1𝑘

𝑉 𝑇
𝑘 𝑋𝑘 + 𝑊𝑘 · �̂�1𝑘 + Φ𝑇

𝑘 𝑍𝑘 + 𝑊𝑘 · �̂�2𝑘

;

𝜔
(2)
𝑘𝑘 =

Φ𝑇
𝑘 𝑍𝑘 + 𝑊𝑘 · �̂�2𝑘

𝑉 𝑇
𝑘 𝑋𝑘 + 𝑊𝑘 · �̂�1𝑘 + Φ𝑇

𝑘 𝑍𝑘 + 𝑊𝑘 · �̂�2𝑘

(2.2)

Based on this, expression (2.2) is introduced into the objective function of model (2.1), and then model (2.1)
can be further transformed into the following fractional programming model (2.3).

max 𝐸
(S)
𝑘𝑘 =

Φ𝑇
𝑘 𝑍𝑘 + 𝑈𝑇

𝑘 𝑌𝑘

𝑉 𝑇
𝑘 𝑋𝑘 + 𝑊𝑘 · �̂�1𝑘 + Φ𝑇

𝑘 𝑍𝑘 + 𝑊𝑘 · �̂�2𝑘

𝑠.𝑡.
Φ𝑇

𝑘 𝑍𝑗 + 𝑈𝑇
𝑘 𝑌𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗 + Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

Φ𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

𝑈𝑇
𝑘 𝑌𝑗

Φ𝑇
𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

𝑛∑︁
𝑗=1

(︁
�̂�1𝑗 + �̂�2𝑗

)︁
= �̂�;

�̂�1𝑗 ≥ 0, �̂�2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;
𝑉𝑘 ≥ 0, 𝑈𝑘 ≥ 0, Φ𝑘 ≥ 0, 𝑊𝑘 > 0, 𝑘 = 1, 2, . . . , 𝑛;

(2.3)

By solving model (2.3), the optimal weights profile
(︀
𝑉 *𝑇𝑘 , 𝑈*𝑇𝑘 , Φ*𝑇𝑘 , 𝑊 *

𝑘

)︀
for DMU𝑘 (𝑘 = 1, 2, . . . , 𝑛) can be

obtained. Then, the cross-efficiency of DMU𝑗 relative to DMU𝑘 in terms of the whole system and two stages
can be calculated as in expression (2.4).
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𝐸
(S)*
𝑘𝑗 =

Φ*𝑇𝑘 𝑍𝑗 + 𝑈*𝑇𝑘 𝑌𝑗

𝑉 *𝑇𝑘 𝑋𝑗 + 𝑊 *
𝑘 · �̂�1𝑗 + Φ*𝑇𝑘 𝑍𝑗 + 𝑊 *

𝑘 · �̂�2𝑗

;

𝐸
(1)*
𝑘𝑗 =

Φ*𝑇
𝑘 𝑍𝑗

𝑉 *𝑇
𝑘 𝑋𝑗 + 𝑊 *

𝑘 · �̂�1𝑗

;

𝐸
(2)*
𝑘𝑗 =

𝑈𝑇
𝑘 𝑌𝑗

Φ𝑇
𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

.

(2.4)

Subsequently, the relationship between the cross-efficiency of the overall system and that of two enterprises
within that system is further explored. Similar to the objective function of the self-evaluated model (2.1), the
peer-evaluated efficiency 𝐸

(S)
𝑘𝑗 of the supply chain can be further decomposed as a weighted sum of the peer-

evaluated efficiency 𝐸
(1)
𝑘𝑗 of the upstream supplier and the peer-evaluated efficiency 𝐸

(2)
𝑘𝑗 of the downstream

manufacturer, as follows:

𝐸
(S)
𝑘𝑗 =

Φ𝑇
𝑘 𝑍𝑗 + 𝑈𝑇

𝑘 𝑌𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗 + Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

=
𝑉 𝑇

𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗 + Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

× Φ𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗

+
Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗 + Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

× 𝑈𝑇
𝑘 𝑌𝑗

Φ𝑇
𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

=𝜔
(1)
𝑘𝑗 · 𝐸

(1)
𝑘𝑗 + 𝜔

(2)
𝑘𝑗 · 𝐸

(2)
𝑘𝑗

(2.5)

In model (2.5), 𝜔
(1)
𝑘𝑗 represents the peer-evaluated stage weight of DMU𝑗 relative to DMU𝑘 in terms of the

upstream supplier, and 𝜔
(2)
𝑘𝑗 represents the peer-evaluated stage weight of DMU𝑗 relative to DMU𝑘 in terms of

the downstream manufacturer.
The above processes determine self-efficiency and peer-efficiency for both supply chains and two enterprises

within the supply chain. And then, the cross-efficiency scores of supply chains and those of enterprises are
further measured. Specifically, this paper identifies the cross-efficiency results for two enterprises prior to solv-
ing for the cross-efficiency scores of supply chains. Therefore, the cross-efficiency �̃�

(1)
𝑗 of the upstream sup-

plier is determined by the weighted sum of the self-evaluated efficiency 𝐸
(1)
𝑗𝑗 and the peer-evaluated efficiency

𝐸
(1)
𝑘𝑗 (𝑘 = 1, 2, . . . , 𝑛; 𝑘 ̸= 𝑗), and the weight is denoted as 𝛽

(1)
𝑘𝑗 = 𝜔

(1)
𝑘𝑗 /

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗 , which satisfies

𝑛∑︀
𝑘=1

𝛽
(1)
𝑘𝑗 = 1 and

𝛽
(1)
𝑘𝑗 ≥ 0 (𝑘 = 1, 2, . . . , 𝑛). As a result, the cross-efficiency �̃�

(1)
𝑗 of the upstream supplier is expressed as:

�̃�
(1)
𝑗 =

𝑛∑︁
𝑘=1

𝛽
(1)
𝑘𝑗 · 𝐸

(1)
𝑘𝑗 =

𝑛∑︁
𝑘=1

⎛⎜⎜⎝ 𝜔
(1)
𝑘𝑗

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗

· 𝐸(1)
𝑘𝑗

⎞⎟⎟⎠ =

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗 · 𝐸

(1)
𝑘𝑗

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗

(2.6)

Similarly, the cross-efficiency �̃�
(2)
𝑗 of the downstream manufacturer can be expressed as:

�̃�
(2)
𝑗 =

𝑛∑︁
𝑘=1

𝛽
(2)
𝑘𝑗 · 𝐸

(2)
𝑘𝑗 =

𝑛∑︁
𝑘=1

⎛⎜⎜⎝ 𝜔
(2)
𝑘𝑗

𝑛∑︀
𝑘=1

𝜔
(2)
𝑘𝑗

· 𝐸(2)
𝑘𝑗

⎞⎟⎟⎠ =

𝑛∑︀
𝑘=1

𝜔
(2)
𝑘𝑗 · 𝐸

(2)
𝑘𝑗

𝑛∑︀
𝑘=1

𝜔
(2)
𝑘𝑗

(2.7)
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Next, we determine the cross-efficiency 𝐸
(S)
𝑗 of the supply chain DMU𝑗 . Specifically, the cross-efficiency 𝐸

(S)
𝑗

of supply chain is the arithmetic average of the self-evaluated efficiency 𝐸
(S)
𝑗𝑗 and the peer-evaluated efficiency

𝐸
(S)
𝑘𝑗 , that is, �̄�

(S)
𝑗 = 1

𝑛

𝑛∑︀
𝑘=1

𝐸
(S)
𝑘𝑗 .

From the objective function of model (2.1), we can determine that the self-evaluated efficiency of the overall
system can be decomposed into the weighted sum of the self-evaluated efficiency of two enterprises for the
two-stage supply chain. And as expressed in expression (2.5), this weighted sum technique is also applicable in
the peer-evaluated method. Therefore, this paper sets the cross-evaluated stage weight of the upstream supplier

and that of the downstream manufacturer as �̄�
(1)
𝑗 = 1

𝑛

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗 and �̄�

(2)
𝑗 = 1

𝑛

𝑛∑︀
𝑘=1

𝜔
(2)
𝑘𝑗 respectively, so that the

cross-efficiency of the supply chain also satisfies this weighted sum technique; that is, the cross-efficiency of the
supply chain is the weighted sum of the cross-efficiency of the upstream supplier and that of the downstream
manufacturer. The details are shown as follows.

�̄�
(1)
𝑗 · �̃�(1)

𝑗 + �̄�
(2)
𝑗 · �̃�(2)

𝑗 =
1
𝑛

𝑛∑︁
𝑘=1

𝜔
(1)
𝑘𝑗 ·

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗 · 𝐸

(1)
𝑘𝑗

𝑛∑︀
𝑘=1

𝜔
(1)
𝑘𝑗

+
1
𝑛

𝑛∑︁
𝑘=1

𝜔
(2)
𝑘𝑗 ·

𝑛∑︀
𝑘=1

𝜔
(2)
𝑘𝑗 · 𝐸

(2)
𝑘𝑗

𝑛∑︀
𝑘=1

𝜔
(2)
𝑘𝑗

=
1
𝑛
·

𝑛∑︁
𝑘=1

𝜔
(1)
𝑘𝑗 · 𝐸

(1)
𝑘𝑗 +

1
𝑛
·

𝑛∑︁
𝑘=1

𝜔
(2)
𝑘𝑗 · 𝐸

(2)
𝑘𝑗 =

1
𝑛
·

𝑛∑︁
𝑘=1

(︁
𝜔

(1)
𝑘𝑗 · 𝐸

(1)
𝑘𝑗 + 𝜔

(2)
𝑘𝑗 · 𝐸

(2)
𝑘𝑗

)︁
=

1
𝑛
·

𝑛∑︁
𝑘=1

𝐸
(S)
𝑘𝑗 = �̄�

(S)
𝑗

As a result, the cross-efficiency of one enterprise can be decomposed into the weighted sum of its self-
evaluated efficiency and its peer-evaluated efficiency. And the cross-efficiency of a two-stage supply chain can
be decomposed into the weighted sum of the cross-efficiency of the upstream supplier and the cross-efficiency
of the downstream manufacturer, where the stage weight of each enterprise is the cross-weight obtained by the
arithmetic average of the self-evaluated weight and the peer-evaluated weight.

3. Two-stage cross-efficiency model based on Pareto-optimality in the
resource allocation environment

In this section, we develop a new two-stage cross-efficiency model with Pareto-optimality to address the
problem of resource allocation among two-stage supply chains. The proposed model not only determines a set
of optimal weights to obtain Pareto-optimal cross-efficiency scores for all supply chains, but also provides an
optimal strategy of resource allocation to make all supply chains DEA efficient after the allocation.

Each supply chain and the two enterprises in the supply chain aim to maximize their own interests in the
resource allocation process. And since the upstream supplier and the downstream manufacturer are important
components of a two-stage supply chain studied in this paper, decision makers in both enterprises make the
decisions that are most beneficial to them in the process of efficiency evaluation. Therefore, it is possible to
ensure that the cross-efficiency scores of the supply chain do not deteriorate by satisfying the situation where at
least the self-evaluated efficiency of this supply chain is not lower than its peer-evaluated efficiency. The same
is true for the upstream supplier and the downstream manufacturer. As a result, the following three Pareto-
optimal conditions need to be satisfied in the process of determining the optimal weights vector of the supply
chain.

𝐸
(S)
𝑘𝑗 ≤ 𝐸

(S)
𝑗𝑗 ,∀𝑘, 𝑗 & 𝑘 ̸= 𝑗;

𝐸
(1)
𝑘𝑗 ≤ 𝐸

(1)
𝑗𝑗 , ∀𝑘, 𝑗 & 𝑘 ̸= 𝑗;

𝐸
(2)
𝑘𝑗 ≤ 𝐸

(2)
𝑗𝑗 , ∀𝑘, 𝑗 & 𝑘 ̸= 𝑗;

(3.1)
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Therefore, based on the above Pareto-optimal principle, a multi-objective programming model (3.2) is devel-
oped to calculate the Pareto-optimal cross-efficiency scores of all supply chains, and the optimal allocation of
common resources can also be determined.

max
{︁

�̄�
(S)
1 , �̄�

(S)
2 , . . . , �̄�(S)

𝑛

}︁
𝑠.𝑡. 𝐸

(S)
𝑘𝑗 =

Φ𝑇
𝑘 𝑍𝑗 + 𝑈𝑇

𝑘 𝑌𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗 + Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

≤ 𝐸
(S)
𝑗𝑗 =

Φ𝑇
𝑗 𝑍𝑗 + 𝑈𝑇

𝑗 𝑌𝑗

𝑉 𝑇
𝑗 𝑋𝑗 + 𝑊𝑗 · �̂�1𝑗 + Φ𝑇

𝑗 𝑍𝑗 + 𝑊𝑗 · �̂�2𝑗

,∀𝑘, 𝑗 & 𝑘 ̸= 𝑗;

𝐸
(1)
𝑘𝑗 =

Φ𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗

≤ 𝐸
(1)
𝑗𝑗 =

Φ𝑇
𝑗 𝑍𝑗

𝑉 𝑇
𝑗 𝑋𝑗 + 𝑊𝑗 · �̂�1𝑗

, ∀𝑘, 𝑗 & 𝑘 ̸= 𝑗;

𝐸
(2)
𝑘𝑗 =

𝑈𝑇
𝑘 𝑌𝑗

Φ𝑇
𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

≤ 𝐸
(2)
𝑗𝑗 =

𝑈𝑇
𝑗 𝑌𝑗

Φ𝑇
𝑗 𝑍𝑗 + 𝑊𝑗 · �̂�2𝑗

, ∀𝑘, 𝑗 & 𝑘 ̸= 𝑗;

𝑛∑︁
𝑗=1

(︁
�̂�1𝑗 + �̂�2𝑗

)︁
= �̂�;

�̂�1𝑗 ≥ 0, �̂�2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;

�̄�
(S)
𝑗 =

1
𝑛

𝑛∑︁
𝑘=1

𝐸
(S)
𝑘𝑗 , 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(S)
𝑘𝑗 =

Φ𝑇
𝑘 𝑍𝑗 + 𝑈𝑇

𝑘 𝑌𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗 + Φ𝑇

𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

≤ 1, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(1)
𝑘𝑗 =

Φ𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + 𝑊𝑘 · �̂�1𝑗

≤ 1, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(2)
𝑘𝑗 =

𝑈𝑇
𝑘 𝑌𝑗

Φ𝑇
𝑘 𝑍𝑗 + 𝑊𝑘 · �̂�2𝑗

≤ 1, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛;

𝑉𝑘 ≥ 0, 𝑈𝑘 ≥ 0, Φ𝑘 ≥ 0, 𝑊𝑘 > 0, 𝑘 = 1, 2, . . . , 𝑛;

(3.2)

The purpose of model (3.2) is to maximize the cross-efficiency scores of all supply chains. Therein, the first
three constraints about Pareto-optimality ensure that the self-evaluated efficiency scores are not less than the
peer-evaluated efficiency scores for supply chains and two enterprises within the supply chain. The fourth and
fifth constraints ensure that the total amount of common resources is �̂�. And in the sixth constraint, �̄�

(S)
𝑗 denotes

the cross-efficiency score of the supply chain DMU𝑗 . In addition, the seventh to ninth constraints require that
the peer-evaluated efficiency score of the supply chain and the peer-evaluated efficiency scores of two enterprises
within this supply chain are not greater than 1, which ensures that the peer-evaluated process is consistent with
the realistic situation. As a result, the Pareto-optimal weights profile

(︁
𝑉 ′𝑘

𝑇
, 𝑈 ′𝑘

𝑇
, Φ′𝑘

𝑇
, 𝑊 ′

𝑘, 𝑘 = 1, 2, . . . , 𝑛
)︁

can

be measured, and thus the Pareto-optimal cross-efficiency scores �̄�
(S)
𝑗

′
can be obtained.

To solve this multi-objective programming model, this paper takes the preferred degree 𝛼𝑗 of the supply
chain DMU𝑗 into account, and coverts the model (3.2) into a single-objective programming model by applying
the weighted sum technique.
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max
𝑛∑︁

𝑗=1

𝑛∑︁
𝑘=1

𝛼𝑗 ·
1
𝑛

𝐸
(S)
𝑘𝑗

𝑠.𝑡. 𝐸
(S)
𝑘𝑗 ≤ 𝐸

(S)
𝑗𝑗 , 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑗;

𝐸
(1)
𝑘𝑗 ≤ 𝐸

(1)
𝑗𝑗 , 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑗;

𝐸
(2)
𝑘𝑗 ≤ 𝐸

(2)
𝑗𝑗 , 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛, 𝑘 ̸= 𝑗;

𝑛∑︁
𝑗=1

(︁
�̂�1𝑗 + �̂�2𝑗

)︁
= �̂�;

�̂�1𝑗 ≥ 0, �̂�2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(S)
𝑘𝑗 ≤ 1, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(1)
𝑘𝑗 ≤ 1, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛;

𝐸
(2)
𝑘𝑗 ≤ 1, 𝑘 = 1, 2, . . . , 𝑛, 𝑗 = 1, 2, . . . , 𝑛;

𝑉𝑘 ≥ 0, 𝑈𝑘 ≥ 0, Φ𝑘 ≥ 0, 𝑊𝑘 > 0, 𝑘 = 1, 2, . . . , 𝑛;

(3.3)

However, model (3.3) is still a nonlinear programming model, and this model needs to be further transformed
into a linear programming model that is convenient to calculate. Therefore, there are two theorems about model
(3.3) that need to be illustrated in advance.

Theorem 3.1. In model (3.3), all supply chains choose a Pareto-optimal weights vector, which makes all supply
chains obtain the Pareto-optimal cross-efficiency scores.

Proof. Assume that
(︀
𝑉 𝑇

𝑘 , �̄�𝑇
𝑘 , Φ̄𝑇

𝑘 , �̄�𝑘, 𝑘 = 1, 2, . . . , 𝑛
)︀

is an optimal solution of model (3.3), and we have

𝑛∑︁
𝑘=1

�̄�𝑇
𝑙 𝑌𝑘 + Φ̄𝑇

𝑙 𝑍𝑘

𝑉 𝑇
𝑙 𝑋𝑘 + �̄�𝑙 · �̂�1𝑘 + Φ̄𝑇

𝑙 𝑍𝑘 + �̄�𝑙 · �̂�2𝑘

= max
𝑗

{︃
𝑛∑︁

𝑘=1

�̄�𝑇
𝑗 𝑌𝑘 + Φ̄𝑇

𝑗 𝑍𝑘

𝑉 𝑇
𝑗 𝑋𝑘 + �̄�𝑗 · �̂�1𝑘 + Φ̄𝑇

𝑗 𝑍𝑘 + �̄�𝑗 · �̂�2𝑘

}︃
.

Let
(︁
𝑉 𝑇

𝑘 , �̂�𝑇
𝑘 , Φ̂𝑇

𝑘 , �̂�𝑘

)︁
=
(︀
𝑉 𝑇

𝑙 , �̄�𝑇
𝑙 , Φ̄𝑇

𝑙 , �̄�𝑙

)︀
for all supply chain 𝐷𝑀𝑈𝑘 (𝑘 = 1, 2, . . . , 𝑛). Since we have

�̂�𝑇
𝑘 𝑌𝑗 + Φ̂𝑇

𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + �̂�𝑘 · �̂�1𝑗 + Φ̂𝑇

𝑘 𝑍𝑗 + �̂�𝑘 · �̂�2𝑗

=
�̄�𝑇

𝑙 𝑌𝑗 + Φ̄𝑇
𝑙 𝑍𝑗

𝑉 𝑇
𝑙 𝑋𝑗 + �̄�𝑙 · �̂�1𝑗 + Φ̄𝑇

𝑙 𝑍𝑗 + �̄�𝑙 · �̂�2𝑗

≤
�̂�𝑇

𝑗 𝑌𝑗 + Φ̂𝑇
𝑗 𝑍𝑗

𝑉 𝑇
𝑗 𝑋𝑗 + �̂�𝑗 · �̂�1𝑗 + Φ̂𝑇

𝑗 𝑍𝑗 + �̂�𝑗 · �̂�2𝑗

=
�̄�𝑇

𝑙 𝑌𝑗 + Φ̄𝑇
𝑙 𝑍𝑗

𝑉 𝑇
𝑙 𝑋𝑗 + �̄�𝑙 · �̂�1𝑗 + Φ̄𝑇

𝑙 𝑍𝑗 + �̄�𝑙 · �̂�2𝑗

, ∀𝑘, 𝑗,

the first constraint in model (3.3) also holds for
(︁
𝑉 𝑇

𝑘 , �̂�𝑇
𝑘 , Φ̂𝑇

𝑘 , �̂�𝑘, 𝑘 = 1, 2, . . . , 𝑛
)︁

. And it also satisfies the

second and third constraints of model (3.3), since we have Φ̂𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗+�̂�𝑘·�̂�1𝑗

= Φ̄𝑇
𝑙 𝑍𝑗

𝑉 𝑇
𝑙 𝑋𝑗+�̄�𝑙·�̂�1𝑗

≤ Φ̂𝑇
𝑗 𝑍𝑗

𝑉 𝑇
𝑗 𝑋𝑗+�̂�𝑗 ·�̂�1𝑗

=

Φ̄𝑇
𝑙 𝑍𝑗

𝑉 𝑇
𝑙 𝑋𝑗+�̄�𝑙·�̂�1𝑗

,∀𝑘, 𝑗 and �̂�𝑇
𝑘 𝑌𝑗

Φ̂𝑇
𝑘 𝑍𝑗+�̂�𝑘·�̂�2𝑗

= �̄�𝑇
𝑙 𝑌𝑗

Φ̄𝑇
𝑙 𝑍𝑗+�̄�𝑙·�̂�2𝑗

≤ �̂�𝑇
𝑗 𝑌𝑗

Φ̂𝑇
𝑗 𝑍𝑗+�̂�𝑗 ·�̂�2𝑗

= �̄�𝑇
𝑙 𝑌𝑗

Φ̄𝑇
𝑙 𝑍𝑗+�̄�𝑙·�̂�2𝑗

,∀𝑘, 𝑗.

Furthermore,
(︁
𝑉 𝑇

𝑘 , �̂�𝑇
𝑘 , Φ̂𝑇

𝑘 , �̂�𝑘, 𝑘 = 1, 2, . . . , 𝑛
)︁

also satisfies the fifth to seventh constraints of model (3.3),
as reflected in the following three expressions.

�̂�𝑇
𝑘 𝑌𝑗 + Φ̂𝑇

𝑘 𝑍𝑗 − 𝑉 𝑇
𝑘 𝑋𝑗 − �̂�𝑘 · �̂�1𝑗 − Φ̂𝑇

𝑘 𝑍𝑗 − �̂�𝑘 · �̂�2𝑗

= �̄�𝑇
𝑙 𝑌𝑗 + Φ̄𝑇

𝑙 𝑍𝑗 − 𝑉 𝑇
𝑙 𝑋𝑗 − �̄�𝑙 · �̂�1𝑗 − Φ̄𝑇

𝑙 𝑍𝑗 − �̄�𝑙 · �̂�2𝑗 ≤ 0,∀𝑘, 𝑗;
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Φ̂𝑇
𝑘 𝑍𝑗 − 𝑉 𝑇

𝑘 𝑋𝑗 − �̂�𝑘 · �̂�1𝑗 = Φ̄𝑇
𝑙 𝑍𝑗 − 𝑉 𝑇

𝑙 𝑋𝑗 − �̄�𝑙 · �̂�1𝑗 ≤ 0,∀𝑘, 𝑗;

�̂�𝑇
𝑘 𝑌𝑗 − Φ̂𝑇

𝑘 𝑍𝑗 − �̂�𝑘 · �̂�2𝑗 = �̄�𝑇
𝑙 𝑌𝑗 − Φ̄𝑇

𝑙 𝑍𝑗 − �̄�𝑙 · �̂�2𝑗 ≤ 0,∀𝑘, 𝑗;

Therefore,
(︁
𝑉 𝑇

𝑘 , �̂�𝑇
𝑘 , Φ̂𝑇

𝑘 , �̂�𝑘, 𝑘 = 1, 2, . . . , 𝑛
)︁

is a feasible solution of model (3.3). Then, the objective function
of model (3.3) based on this feasible solution can be expressed as

𝑛∑︁
𝑗=1

𝑛∑︁
𝑘=1

𝛼𝑗 ·
1
𝑛
· �̂�𝑇

𝑘 𝑌𝑗 + Φ̂𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + �̂�𝑘 · �̂�1𝑗 + Φ̂𝑇

𝑘 𝑍𝑗 + �̂�𝑘 · �̂�2𝑗

=𝑛

𝑛∑︁
𝑗=1

𝛼𝑗 ·
1
𝑛
· �̄�𝑇

𝑙 𝑌𝑗 + Φ̄𝑇
𝑙 𝑍𝑗

𝑉 𝑇
𝑙 𝑋𝑗 + �̄�𝑙 · �̂�1𝑗 + Φ̄𝑇

𝑙 𝑍𝑗 + �̄�𝑙 · �̂�2𝑗

≥
𝑛∑︁

𝑗=1

𝑛∑︁
𝑘=1

𝛼𝑗 ·
1
𝑛
· �̄�𝑇

𝑘 𝑌𝑗 + Φ̄𝑇
𝑘 𝑍𝑗

𝑉 𝑇
𝑘 𝑋𝑗 + �̄�𝑘 · �̂�1𝑗 + Φ̄𝑇

𝑘 𝑍𝑗 + �̄�𝑘 · �̂�2𝑗

;

As a result,
(︁
𝑉 𝑇

𝑘 , �̂�𝑇
𝑘 , Φ̂𝑇

𝑘 , �̂�𝑘, 𝑘 = 1, 2, . . . , 𝑛
)︁

is also an optimal solution of model (3.3). Hence, there is a
common set of weights in model (3.3) that makes all supply chains obtain Pareto-optimal cross-efficiency scores.

On the basis of Theorem 3.1, this paper marks the common weights profile determined by model (3.3) as(︀
𝑉 𝑇 , 𝑈𝑇 , Φ𝑇 , 𝑊

)︀
. Furthermore, model (3.3) can be further adjusted to be model (3.4) under the common

weights profile.

max
𝑛∑︁

𝑗=1

𝛼𝑗 ·
𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗

𝑉 𝑇 𝑋𝑗 + 𝑊 · �̂�1𝑗 + Φ𝑇 𝑍𝑗 + 𝑊 · �̂�2𝑗

𝑠.𝑡.
𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗

𝑉 𝑇 𝑋𝑗 + 𝑊 · �̂�1𝑗 + Φ𝑇 𝑍𝑗 + 𝑊 · �̂�2𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

Φ𝑇 𝑍𝑗

𝑉 𝑇 𝑋𝑗 + 𝑊 · �̂�1𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

𝑈𝑇 𝑌𝑗

Φ𝑇 𝑍𝑗 + 𝑊 · �̂�2𝑗

≤ 1, 𝑗 = 1, 2, . . . , 𝑛;

𝑛∑︁
𝑗=1

(︁
�̂�1𝑗 + �̂�2𝑗

)︁
= �̂�; �̂�1𝑗 ≥ 0, �̂�2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝑉 ≥ 0, 𝑈 ≥ 0, Φ ≥ 0, 𝑊 > 0.

(3.4)

Since there is a common set of weights in model (3.4), 𝜔
(1)
𝑘𝑗 = 𝜔

(1)
𝑗𝑗 = 𝜔(1) and 𝜔

(2)
𝑘𝑗 = 𝜔

(2)
𝑗𝑗 = 𝜔(2) hold. And

then, 𝜔(1) · 𝐸(1)
𝑘𝑗 + 𝜔(2) · 𝐸(2)

𝑘𝑗 ≤ 𝜔(1) · 𝐸(1)
𝑗𝑗 + 𝜔(2) · 𝐸(2)

𝑗𝑗 is also satisfied in the peer evaluation for the supply

chain. Therefore, 𝐸
(S)
𝑘𝑗 ≤ 𝐸

(S)
𝑗𝑗 also holds when the upstream supplier and the downstream manufacturer satisfy

𝐸
(1)
𝑘𝑗 ≤ 𝐸

(1)
𝑗𝑗 and 𝐸

(2)
𝑘𝑗 ≤ 𝐸

(2)
𝑗𝑗 , respectively.

It should be emphasized that model (3.4) remains a nonlinear programming model even with the common
weights profile. Therefore, based on the weight expression proposed by [8], this paper reflects the preferred
degree of DMUj relative to all supply chains by defining the portion of the total resources devoted to DMUj.

Specifically, let
𝑛∑︀

𝑑=1

(︁
𝑉 𝑇 𝑋𝑑 + 𝑊 · �̂�1𝑑 + Φ𝑇 𝑍𝑑 + 𝑊 · �̂�2𝑑

)︁
as the total size consumed by all two-stage supply

chains, and let 𝑉 𝑇 𝑋𝑗 + 𝑊 · �̂�1𝑗 + Φ𝑇 𝑍𝑗 + 𝑊 · �̂�2𝑗 as the size of DMUj. Then the current paper defines 𝛼𝑗 as
𝑉 𝑇 𝑋𝑗+𝑊 ·�̂�1𝑗+Φ𝑇 𝑍𝑗+𝑊 ·�̂�2𝑗

𝑛∑︀
𝑑=1

(𝑉 𝑇 𝑋𝑑+𝑊 ·�̂�1𝑑+Φ𝑇 𝑍𝑑+𝑊 ·�̂�2𝑑)
, which represents the proportion of the weighted inputs of DMUj among those
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of all DMUs. Therefore, the objective function of model (3.4) can be converted as shown below.

𝑛∑︁
𝑗=1

𝛼𝑗 ·
𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗

𝑉 𝑇 𝑋𝑗 + 𝑊 · �̂�1𝑗 + Φ𝑇 𝑍𝑗 + 𝑊 · �̂�2𝑗

=

𝑛∑︀
𝑗=1

(︀
𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗

)︀
𝑛∑︀

𝑑=1

(︁
𝑉 𝑇 𝑋𝑑 + 𝑊 · �̂�1𝑑 + Φ𝑇 𝑍𝑑 + 𝑊 · �̂�2𝑑

)︁

=

𝑈𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑌𝑗

)︃
+ Φ𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑍𝑗

)︃

𝑉 𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑋𝑗

)︃
+ Φ𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑍𝑗

)︃
+ 𝑊 · �̂�

Moreover, we convert the above model (3.4) into model (3.5) by using the Charnes-Cooper transformation (2).
Model (3.5) can obtain an optimal weights profile for all supply chains to generate a set of the Pareto-optimal
cross-efficiency scores and to determine the optimal strategy of resource allocation.

max 𝑈𝑇 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑌𝑗

⎞⎠+ Φ𝑇 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑍𝑗

⎞⎠
𝑠.𝑡. 𝑉 𝑇 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑋𝑗

⎞⎠+ Φ𝑇 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑍𝑗

⎞⎠+ 𝑊 · �̂� = 1;

𝑈𝑇 𝑌𝑗 − 𝑉 𝑇 𝑋𝑗 −𝑊 · �̂�1𝑗 −𝑊 · �̂�2𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;

Φ𝑇 𝑍𝑗 − 𝑉 𝑇 𝑋𝑗 −𝑊 · �̂�1𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝑈𝑇 𝑌𝑗 − Φ𝑇 𝑍𝑗 −𝑊 · �̂�2𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;
𝑛∑︁

𝑗=1

(︁
�̂�1𝑗 + �̂�2𝑗

)︁
= �̂�;

�̂�1𝑗 ≥ 0, �̂�2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;
𝑉 ≥ 0, 𝑈 ≥ 0, Φ ≥ 0, 𝑊 > 0.

(3.5)

Since 𝑊 · �̂�1𝑗 and 𝑊 · �̂�2𝑗 in model (3.5) are still nonlinear, they are transformed into linear forms by
variable alternation. Specifically, model (3.5) is readjusted to the following linear programming model by defining
𝑊 · �̂�1𝑗 = 𝑟1𝑗 and 𝑊 · �̂�2𝑗 = 𝑟2𝑗 (𝑗 = 1, 2, . . . , 𝑛).

max 𝑈𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑌𝑗

)︃
+ Φ𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑍𝑗

)︃

𝑠.𝑡. 𝑉 𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑋𝑗

)︃
+ Φ𝑇 ·

(︃
𝑛∑︀

𝑗=1

𝑍𝑗

)︃
+ 𝑊 · �̂� = 1;

𝑈𝑇 𝑌𝑗 − 𝑉 𝑇 𝑋𝑗 − 𝑟1𝑗 − 𝑟2𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;
Φ𝑇 𝑍𝑗 − 𝑉 𝑇 𝑋𝑗 − 𝑟1𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛; (3.6)
𝑈𝑇 𝑌𝑗 − Φ𝑇 𝑍𝑗 − 𝑟2𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝑛∑︀
𝑗=1

(𝑟1𝑗 + 𝑟2𝑗) = 𝑊 · �̂�;

𝑟1𝑗 ≥ 0, 𝑟2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;
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𝑉 ≥ 0, 𝑈 ≥ 0, Φ ≥ 0, 𝑊 > 0.

By solving model (3.6), all supply chains will get an optimal solution(︀
𝑉 𝑇*, 𝑈𝑇*, Φ𝑇*, 𝑊 *, 𝑟*1𝑗 , 𝑟

*
2𝑗

)︀
(𝑗 = 1, 2, . . . , 𝑛). Based on this solution, the Pareto-optimal cross-efficiency

scores of all supply chains under the optimal strategy of resource allocation can be determined. Therefore,
model (3.6) indicates that in order to generate a set of Pareto-optimal cross-efficiency scores, it strives to
maximize the efficiency of all supply chains under the allocation of common resources. This then allows the
proposed method to provide overall and better cross-efficiency scores for all supply chains. In other words,
the set of cross-efficiency scores is non-dominated and does not need to be further improved. As a result,
the optimal strategy of resource allocation identified through model (3.6) is more acceptable to all supply
chains. �

Theorem 3.2. The optimal value of the objective function for model (3.6) is always 1.

Proof. (i) First, it is clarified that the objective function of model (3.6) is not greater than 1.
The second constraint in model (3.6) can be adjusted to 𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗 −

(︀
𝑉 𝑇 𝑋𝑗 + Φ𝑇 𝑍𝑗 + 𝑟1𝑗 + 𝑟2𝑗

)︀
≤

0 (𝑗 = 1, 2, . . . , 𝑛), and we have 𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗 ≤ 𝑉 𝑇 𝑋𝑗 + Φ𝑇 𝑍𝑗 + 𝑟1𝑗 + 𝑟2𝑗 (𝑗 = 1, 2, . . . , 𝑛). Furthermore, we can

obtain
𝑛∑︀

𝑗=1

(︀
𝑈𝑇 𝑌𝑗 + Φ𝑇 𝑍𝑗

)︀
≤

𝑛∑︀
𝑗=1

(︀
𝑉 𝑇 𝑋𝑗 + Φ𝑇 𝑍𝑗 + 𝑟1𝑗 + 𝑟2𝑗

)︀
by summing these 𝑛 inequalities, and we have

𝑈𝑇 ·
𝑛∑︀

𝑗=1

𝑌𝑗 + Φ𝑇 ·
𝑛∑︀

𝑗=1

𝑍𝑗 ≤ 𝑉 𝑇 ·
𝑛∑︀

𝑗=1

𝑋𝑗 + Φ𝑇 ·
𝑛∑︀

𝑗=1

𝑍𝑗 + 𝑊 · �̂� = 1.

(ii) Next, we demonstrate that it is possible to achieve an objective function of 1. Let 𝑉 = (𝑣1, 𝑣2, . . . , 𝑣𝑚)𝑇 ∈
𝑅𝑚

+ , 𝑈 = (𝑢1, 𝑢2, . . . , 𝑢𝑠)𝑇 ∈ 𝑅𝑠
+ and Φ = (𝜙1, 𝜙2, . . . , 𝜙𝐷)𝑇 ∈ 𝑅𝐷

+ . And then, model (3.6) can be expressed as
the following linear programming model.

max
𝑠∑︁

𝑟=1

𝑢𝑟 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑦𝑟𝑗

⎞⎠+
𝐷∑︁

𝑑=1

𝜙𝑑 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑧𝑑𝑗

⎞⎠
𝑠.𝑡.

𝑚∑︁
𝑖=1

𝑣𝑖 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑖𝑗

⎞⎠+
𝐷∑︁

𝑑=1

𝜙𝑑 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑧𝑑𝑗

⎞⎠+
𝑛∑︁

𝑗=1

(𝑟1𝑗 + 𝑟2𝑗) = 1;

𝑠∑︁
𝑟=1

𝑢𝑟 · 𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖 · 𝑥𝑖𝑗 − 𝑟1𝑗 − 𝑟2𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝐷∑︁
𝑑=1

𝜙𝑑 · 𝑧𝑑𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖 · 𝑥𝑖𝑗 − 𝑟1𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝑠∑︁
𝑟=1

𝑢𝑟 · 𝑦𝑟𝑗 −
𝐷∑︁

𝑑=1

𝜙𝑑 · 𝑧𝑑𝑗 − 𝑟2𝑗 ≤ 0, 𝑗 = 1, 2, . . . , 𝑛;

𝑛∑︁
𝑗=1

(𝑟1𝑗 + 𝑟2𝑗) = 𝑊 · �̂�;

𝑟1𝑗 ≥ 0, 𝑟2𝑗 ≥ 0, 𝑗 = 1, 2, . . . , 𝑛;
𝑣𝑖 ≥ 0, 𝑖 = 1, 2, . . . ,𝑚;
𝑢𝑟 ≥ 0, 𝑟 = 1, 2, . . . , 𝑠;
𝜙𝑑 ≥ 0, 𝑑 = 1, 2, . . . , 𝐷;
𝑊 > 0.

(3.7)
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Let 𝑧𝐷 = max
𝑗=1,2,...,𝑛

(𝑧𝐷𝑗), 𝑓 = �̂� · 𝑧𝐷 ·
𝑛∑︀

𝑗=1

𝑦𝑠𝑗 +
𝑛∑︀

𝑗=1

𝑧𝐷𝑗 , and consider 𝑢′𝑠 = �̂� · 𝑧𝐷/𝑓 , 𝑢′𝑟 = 0 (∀𝑟, 𝑟 ̸= 𝑠),

𝜙′𝐷 = 1/𝑓 , 𝜙′𝑑 = 0 (∀𝑑, 𝑑 ̸= 𝐷), 𝑣′𝑖 = 0 (∀𝑖), 𝑊 ′ = 𝑧𝐷 ·
𝑛∑︀

𝑗=1

𝑦𝑠𝑗/𝑓 , 𝑟′1𝑗 = 𝑧𝐷𝑗/𝑓 , 𝑟′2𝑗 =
(︁
�̂� · 𝑦𝑠𝑗 · 𝑧𝐷 − 𝑧𝐷𝑗

)︁
/𝑓 .

Then 𝜁 ′=
(︀
𝑣′𝑖, 𝑢

′
𝑟, 𝜙

′
𝑑, 𝑊

′, 𝑟′1𝑗 , 𝑟
′
2𝑗

)︀
is a feasible solution to model (3.7) that satisfies all of the constraints in

model (3.7), such that

𝑚∑︁
𝑖=1

𝑣𝑖 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑥𝑖𝑗

⎞⎠+
𝐷∑︁

𝑑=1

𝜙𝑑 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑧𝑑𝑗

⎞⎠+
𝑛∑︁

𝑗=1

(𝑟1𝑗 + 𝑟2𝑗) =
𝑛∑︁

𝑗=1

𝑧𝐷𝑗/𝑓 +

⎛⎝𝑧𝐷 ·
𝑛∑︁

𝑗=1

𝑦𝑠𝑗/𝑓

⎞⎠ · �̂� = 1;

𝑠∑︁
𝑟=1

𝑢𝑟 · 𝑦𝑟𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖 · 𝑥𝑖𝑗 − 𝑟1𝑗 − 𝑟2𝑗 =
(︁
�̂�𝑧𝐷/𝑓

)︁
· 𝑦𝑠𝑗 − 𝑧𝐷𝑗/𝑓 −

(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗 − 𝑧𝐷𝑗

)︁
/𝑓 ≤ 0;

𝐷∑︁
𝑑=1

𝜙𝑑 · 𝑧𝑑𝑗 −
𝑚∑︁

𝑖=1

𝑣𝑖 · 𝑥𝑖𝑗 − 𝑟1𝑗=𝑧𝐷𝑗 · (1/𝑓 )− 𝑧𝐷𝑗/𝑓 ≤ 0;

𝑠∑︁
𝑟=1

𝑢𝑟 · 𝑦𝑟𝑗 −
𝐷∑︁

𝑑=1

𝜙𝑑 · 𝑧𝑑𝑗 − 𝑟2𝑗=
(︁
�̂�𝑧𝐷/𝑓

)︁
· 𝑦𝑠𝑗 − 𝑧𝐷𝑗 · (1/𝑓 )−

(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗 − 𝑧𝐷𝑗

)︁
/𝑓 ≤ 0;

𝑛∑︁
𝑗=1

(𝑟1𝑗 + 𝑟2𝑗) =
𝑛∑︁

𝑗=1

(︁
𝑧𝐷𝑗/𝑓 +

(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗 − 𝑧𝐷𝑗

)︁
/𝑓
)︁

=

⎛⎝�̂�𝑧𝐷 ·
𝑛∑︁

𝑗=1

𝑦𝑠𝑗

⎞⎠/𝑓 = 𝑊 · �̂�.

And it is also easy to prove that this feasible solution satisfies 𝑣′𝑖, 𝑢
′
𝑟, 𝜙

′
𝑑, 𝑊

′, 𝑟′1𝑗 , 𝑟
′
2𝑗 ≥ 0,∀𝑗.

Therefore, the optimal objective function of model (3.7) with the optimal solution(︀
𝑣*𝑖 , 𝑢*𝑟 , 𝜙

*
𝑑, 𝑊

*, 𝑟*1𝑗 , 𝑟
*
2𝑗

)︀
(𝑗 = 1, 2, . . . , 𝑛) is no less than the value of the objective function of model (3.7)

with the feasible solution 𝜁 ′=
(︀
𝑣′𝑖, 𝑢

′
𝑟, 𝜙

′
𝑑, 𝑊

′, 𝑟′1𝑗 , 𝑟
′
2𝑗 , 𝑗 = 1, 2, . . . , 𝑛

)︀
, as shown below.

𝑠∑︁
𝑟=1

𝑢*𝑟 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑦𝑟𝑗

⎞⎠+
𝐷∑︁

𝑑=1

𝜙*𝑑 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑧𝑑𝑗

⎞⎠
≥

𝑠∑︁
𝑟=1

𝑢′𝑟 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑦𝑟𝑗

⎞⎠+
𝐷∑︁

𝑑=1

𝜙′𝑑 ·

⎛⎝ 𝑛∑︁
𝑗=1

𝑧𝑑𝑗

⎞⎠ =
(︁
�̂�𝑧𝐷/𝑓

)︁
·

𝑛∑︁
𝑗=1

𝑦𝑠𝑗 + (1/𝑓 ) ·
𝑛∑︁

𝑗=1

𝑧𝐷𝑗 = 1;

As a result, the optimal objective function of model (3.7) is 1. Furthermore, since the subscript s of the output
weight is chosen randomly, there is at least one optimal solution that will allow the optimal objective function
to be 1. And it does not imply that there is only one case where the s-th output weight satisfies 𝑢′𝑠 = �̂� · 𝑧𝐷/𝑓 .
That is, there is at least one optimal solution such that the optimal objective function of model (3.6) is 1. �

Theorem 3.3. There is at least one optimal strategy of resource allocation, which makes DEA efficient for all
supply chains as well as both enterprises within the supply chain by using model (3.6) with common weights.

Proof. Based on the optimal allocation strategy �̂�′1𝑗 = 𝑟′1𝑗/𝑊 ′ and �̂�′2𝑗 = 𝑟′2𝑗/𝑊 ′, the feasible solution 𝜁 ′= (𝑣′𝑖,

𝑢′𝑟, 𝜙
′
𝑑, 𝑊

′, 𝑟′1𝑗 , 𝑟
′
2𝑗 , 𝑗 = 1, 2, . . . , 𝑛

)︀
in Theorem 3.2 can be written as

(︁
𝑣′𝑖, 𝑢

′
𝑟, 𝜙

′
𝑑, 𝑊

′, 𝑅′1𝑗 , 𝑅′2𝑗 , 𝑗 = 1, 2, . . . , 𝑛
)︁

.
And this feasible solution allows all supply chains, as well as the upstream suppliers and the downstream
manufacturers, to have Pareto-optimal cross-efficiency scores of 1, such that
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𝐸
(S)
𝑗

′
=

𝑠∑︀
𝑟=1

𝑢′𝑟𝑦𝑟𝑗 +
𝐷∑︀

𝑑=1

𝜙′𝑑𝑧𝑑𝑗

𝑚∑︀
𝑖=1

𝑣′𝑖𝑥𝑖𝑗 +
𝐷∑︀

𝑑=1

𝜙′𝑑𝑧𝑑𝑗 + 𝑊 ′ · �̂�′1𝑗 + 𝑊 ′ · �̂�′2𝑗

=

(︁
�̂�𝑧𝐷/𝑓

)︁
· 𝑦𝑠𝑗 + 𝑧𝐷𝑗 · (1/𝑓 )

𝑧𝐷𝑗 · (1/𝑓 ) + 𝑧𝐷𝑗/𝑓 +
(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗 − 𝑧𝐷𝑗

)︁
/𝑓

= 1,∀𝑗;

𝐸
(1)
𝑗

′
=

𝐷∑︀
𝑑=1

𝜙′𝑑𝑧𝑑𝑗

𝑚∑︀
𝑖=1

𝑣′𝑖𝑥𝑖𝑗 + 𝑊 ′ · �̂�′1𝑗

=
𝑧𝐷𝑗 · (1/𝑓 )

𝑧𝐷𝑗/𝑓
= 1,∀𝑗;

𝐸
(2)
𝑗

′
=

𝑠∑︀
𝑟=1

𝑢′𝑟𝑦𝑟𝑗

𝐷∑︀
𝑑=1

𝜙′𝑑𝑧𝑑𝑗 + 𝑊 ′ · �̂�′2𝑗

=

(︁
�̂�𝑧𝐷/𝑓

)︁
· 𝑦𝑠𝑗

𝑧𝐷𝑗 · (1/𝑓 ) +
(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗 − 𝑧𝐷𝑗

)︁
/𝑓

= 1,∀𝑗;

𝑛∑︀
𝑗=1

(︁
�̂�′1𝑗 + �̂�′2𝑗

)︁
=

𝑛∑︀
𝑗=1

[︃
𝑧𝐷𝑗/

(︃
𝑧𝐷 ·

𝑛∑︀
𝑗=1

𝑦𝑠𝑗

)︃
+
(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗 − 𝑧𝐷𝑗

)︁
/

(︃
𝑧𝐷 ·

𝑛∑︀
𝑗=1

𝑦𝑠𝑗

)︃ ]︃

=
𝑛∑︀

𝑗=1

[︃(︁
�̂�𝑧𝐷 · 𝑦𝑠𝑗

)︁
/

(︃
𝑧𝐷 ·

𝑛∑︀
𝑗=1

𝑦𝑠𝑗

)︃ ]︃
= �̂�;

Furthermore, as described in the proof of Theorem 3.2, the subscript “s” of the output weight is chosen
randomly. Therefore, there is at least one optimal solution such that the Pareto-optimal cross-efficiency scores
of all supply chains are 1. �

4. Application example

4.1. Resource allocation among sustainable supply chains

With the rapid development of economic globalization, environmental protection is facing a huge challenge.
To cope with irreversible problems such as resource shortage, environmental pollution and climate warming,
sustainable development problem has gradually become a focus topic in the world. The relevant government
departments strive to achieve sustainable development goals by formulating policies and regulations related
to environmental protection, developing the awareness of environmental protection, and promoting the idea of
green development. Therefore, the relevant departments provide materials or funds to encourage enterprises with
sustainable development ability to engage in sustainable operation activities. These financial subsidies can not
only appropriately alleviate the financial shortage faced by enterprises in insisting on sustainable operation, but
also promote more enterprises to adopt the idea of green development and to drive the sustainable development
of the global economy. Therefore, this paper explores how to improve the operational efficiency of sustainable
supply chains for 27 Iranian resin production companies, and develops an optimal strategy of resource allocation
to ensure the efficient operation of sustainable supply chains.

There are 27 sustainable supply chains, each of which is a two-stage structure system consisting of an upstream
supplier and a downstream manufacturer. Therein, the upstream supplier uses production costs 𝑥1, employee
annual turnover rates 𝑥2, and environmental costs 𝑥3 to obtain products 𝑧1 and to provide cooperative costs 𝑧2

for the green production plan. It is noted that 𝑥3 invested in the upstream supplier is the cost of green efforts to
deal with environmental pollution in the production process, which is completely different from cooperative costs
𝑧2 provided by the upstream supplier to the downstream manufacturer for the joint scheme of green production.
And then, for the downstream manufacturer, the intermediate products 𝑧1 and 𝑧2 provided by the upstream
supplier are used as inputs to produce trained personnel 𝑦1, green products 𝑦2 and revenue 𝑦3. And the relevant
data is derived from [12]. In addition, with the existing technology and operation scale of the supply chain, it is
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assumed that the relevant government departments will provide 100,000 (103$) in financial to encourage supply
chains with environmental protection technologies to implement sustainable development schemes.

First of all, model (3.6) is used to evaluate the operational efficiency of 27 sustainable supply chains without
involving common resource allocation. As a result, the parameters with respect to common resources in model
(3.6) are set to zero, and the Pareto-optimal cross-efficiency scores of 27 sustainable supply chains and those
of two enterprises within the supply chain are determined by applying this model, as shown in the second to
fourth columns of Table 1. From the optimal results of the performance evaluation, it can be found that (1)
the Pareto-optimal cross-efficiency scores of 27 sustainable supply chains before implementing the allocation
strategy of common resource are less than 1, which indicates that all supply chains fail to achieve DEA efficient.
(2) The two-stage sustainable supply chain achieves DEA efficient if and only if the efficiency scores of both the
upstream supplier and the downstream manufacturer within this supply chain are 1. Even if there is an efficient
enterprise, the operational efficiency of the whole supply chain still fails to achieve DEA efficient because the
other enterprise is still inefficient.

The next study explores the performance evaluation of 27 sustainable supply chains after the resource allo-
cation. Therefore, assuming that the existing common resource is �̂� = 100000(103$), model (3.6) is applied to
measure the Pareto-optimal cross-efficiency scores of 27 two-stage supply chains and those of two enterprises
within the supply chain after the implementation of resource allocation, as shown in the fifth to seventh columns
of Table 1. And the corresponding optimal allocation results of common resource are shown in the eighth to
tenth columns of Table 1.

From the evaluation results, it can be found that the Pareto-optimal cross-efficiency scores of all two-stage
supply chains after the allocation of common resources are 1. This indicates that the financial subsidies, pro-
vided by government departments to support the green development of supply chains, have a positive effect
on improving the operational efficiency of supply chains under reasonable resource allocation, which is mainly
reflected in two aspects. On the one hand, since sustainable supply chains require additional investment in
green development technologies, environmental protection costs and pollution control costs, financial subsidies
provided by the relevant government departments can appropriately alleviate the financial difficulties faced by
supply chains in striving to green development. Therefore, the rational allocation of financial subsidies will
play a significant role in improving the operation performance of sustainable supply chains. On the other hand,
financial subsidies are limited and cannot meet the financial demands of all sustainable supply chains. Therefore,
the reasonable allocation strategy can maximize the utility of financial resources. As a result, this paper uses
a two-stage cross-efficiency model based on Pareto optimality to evaluate the operational efficiency scores of
sustainable supply chains and to explore the optimal allocation strategy of common resources. The model not
only achieves optimal allocation of common resources, but also ensures that all sustainable supply chains as
well as both the upstream supplier and the downstream manufacturer within the supply chain achieve DEA
efficient in the resource allocation process. Therefore, this optimal allocation strategy is more easily accepted
by all sustainable supply chains, which promotes the implementation of this strategy, so as to achieve a win-win
result in terms of optimal resource allocation and efficient business operation.

4.2. Management implications of the proposed model

The common resources provided by the relevant government departments are always relatively scarce com-
pared to the demand of sustainable supply chains, and how to reasonably allocate the limited resources and
to improve the efficiency scores of all supply chains are the concerns of both the relevant government depart-
ments and all supply chains. Specifically, from the perspective of the relevant government departments, a given
quantity of common resources is provided to encourage all sustainable supply chains to optimize their opera-
tional processes and to improve the sustainability of the relevant industrial sectors. In other words, the relevant
government departments regard these sustainable supply chains as a whole unit and strive to maximize the
overall efficiency of this unit. From the perspective of sustainable supply chains, each sustainable supply chain
strives to maximize its cross-efficiency. And in order to ensure that the cross-efficiency of sustainable supply
chains is not worse during the cross-evaluation process, each self-interested supply chain must guarantee that the
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self-evaluated efficiency is at least not smaller than its peer-evaluated efficiencies generated from the other sup-
ply chains. Therefore, the proposed model tries to maximize the cross-efficiency scores of all sustainable supply
chains, and allows all supply chains to choose a performance evaluation mechanism and an optimal allocation of
common resources together, so that all supply chains that obtain the optimal amount of common resources can
obtain overall and better Pareto-optimal cross-efficiency scores through this evaluation mechanism. Moreover,
the results of practical application show that 27 Iranian resin production companies have made full use of the
common resources provided by government departments, and all of them have achieved DEA efficient after
the implementation of the optimal allocation strategy. This is consistent with the motivation of government
departments that want to promote sustainable supply chains to optimize their operational efficiencies and to
improve the sustainable operation of the relevant industrial sectors. Moreover, the proposed model maximizes
the weighted average of the cross-efficiency scores of the 27 sustainable supply chains, not the cross-efficiency
score of every single supply chain. This is consistent with the motivation of all supply chains striving to maximize
their own interests.

5. Conclusion

This paper focuses on the allocation strategy of common resources among two-stage structure supply chains.
With the rapid development of social economy, the contradiction between the scarcity of common resources and
the ever-growing demands of social entities for these resources is also becoming increasingly obvious. Therefore,
it is especially important to develop a reasonable and efficient strategy of resource allocation to achieve the opti-
mal allocation of common resources. In addition, most of the production or service systems in the real-world
environment are composed of multiple subdivisions coordinating with each other to cope with the pressure
of market competition. As a result, it is clear that exploring the internal processes of an organization system
contributes to the analysis of the factors that influence organizational development. Since efficiency is one of
the most important criteria to measure the level of organizational development, this paper objectively evaluates
the operational efficiency of production or service systems by using a non-parametric DEA method. To further
improve the discrimination power of DEA models and achieve the Pareto optimality of the efficiency evaluation
results, this paper takes the self-interested behavior of enterprises as the Pareto improvement principle in the
cross-evaluated situation. Taking the two-stage supply chain in which the upstream supplier provides interme-
diate products to the downstream manufacturer for production as the research object, this paper proposes a
two-stage cross-efficiency model based on Pareto optimality to determine the Pareto-optimal weights profile,
and the Pareto-optimal cross-efficiency scores of all supply chains after the resource allocation are calculated.
The following three conclusions can be drawn from the proposed model.

First of all, in the situation involving the allocation of common resources, the cross-efficiency of a two-stage
supply chain can be decomposed into the weighted sum of the cross-efficiency of the upstream supplier and the
cross-efficiency of the downstream manufacturer, where the stage weight of each enterprise is the cross-weight
obtained by the arithmetic average of the self-evaluated weight and the peer-evaluated weight. Secondly, the
proposed model allows all supply chains to choose a common set of weights that result in Pareto-optimal cross-
efficiency scores for all supply chains as well as the upstream suppliers and the downstream manufacturers.
Thirdly, the proposed model not only identifies an optimal allocation strategy of common resources, but also
enables all supply chains as well as the upstream supplier and the downstream manufacturer within the supply
chain to achieve DEA efficient after implementing that strategy.

Finally, the effectiveness of the proposed model is illustrated by applying the practical application with
respect to the sustainable supply chains of 27 Iranian resin production companies. In addition, it is assumed
that the relevant government departments provide financial subsidies to encourage supply chains to implement
green production and sustainable operation, but these subsidies cannot fully meet the financial demands of
all supply chains. Therefore, it is necessary to provide an optimal resource allocation strategy. As a result,
the Pareto-optimal two-stage cross-efficiency model proposed in this paper to solve the resource allocation
problem can achieve a win-win result. Specifically, compared to the Pareto-optimal cross-efficiency results of
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supply chains without considering resource allocation, the proposed model can identify an optimal allocation
strategy of common resources to make all sustainable supply chains DEA efficient. Moreover, the same goal of
all sustainable supply chains is to allow them to have an efficiency score of 1. Therefore, this Pareto-optimal
allocation result of common resources is more easily adopted by all sustainable supply chains, which facilitates
the implementation of that strategy.

In future research, we can extend the proposed model to the case of variable returns to scale. And note that
this paper explores two-stage supply chains with the most basic structure, but it does not consider generalized
two-stage structure systems. For example, only partial outputs from the upstream supplier become the inputs in
the downstream manufacturer and the downstream manufacturer has other external inputs in addition to those
produced by the upstream supplier. In addition, most of the actual supply chains may have multiple stages,
and the problem of resource allocation among multi-stage supply chains is quite common in reality. Therefore,
we can further extend the proposed model to the resource allocation among generalized two-stage systems or
the resource allocation among multi-stage systems in future research.
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