
Don’t Learn What You Already Know
Grey-Box Modeling for Profiling Side-Channel Analysis against Masking

Loïc Masure1, Valence Cristiani2, Maxime Lecomte2 and François-Xavier
Standaert1

1 Crypto Group, Icteam, UCLouvain, Louvain-la-Neuve, Belgium
firstname.lastname@uclouvain.be

2 Univ. Grenoble Alpes, CEA, Leti, France firstname.lastname@cea.fr

Abstract. Over the past few years, deep-learning-based attacks have emerged as a
de facto standard, thanks to their ability to break implementations of cryptographic
primitives without pre-processing, even against widely used counter-measures such as
hiding and masking. However, the recent works of Bronchain and Standaert at Tches
2020 questioned the soundness of such tools if used in a black-box setting to evaluate
implementations protected with higher-order masking. On the opposite, white-box
evaluations may be seen as possibly far from what a real-world adversary could do,
thereby leading to too conservative security bounds. In this paper, we propose a new
threat model that we name grey-box benefiting from a trade-off between black and
white box models. Our grey-box model is closer to a real-world adversary, in the sense
that it does not need to have access to the random nonces used by masking during
the profiling phase like in a white-box model, while it does not need to learn the
masking scheme as implicitly done in a black-box model. We show how to combine
the power of deep learning with the prior knowledge of grey-box modeling. As a
result, we show on simulations and experiments on public datasets how it allows to
reduce by an order of magnitude the profiling complexity, i.e., the number of profiling
traces needed to satisfyingly train a model, compared to a fully black-box model.
Keywords: Profiling Attacks · Side-Channel · Deep Learning · Gradient Descent ·
Masking · Grey-Box

1 Introduction
Context. The past few years have seen the emergence of new promising lines of research
in profiling Side-Chanel Analysis (SCA), which coincided with the recent advances in
Machine Learning (ML) during the 2010’s. Indeed, profiling attacks may be formalized as
a supervised learning problem. As an example, the Gaussian Templates (GTs) initially
proposed by Chari et al. in their seminal work [CRR03] are actually equivalent to a
Quadratic Discriminant Analysis (QDA) in the ML terminology [HTF09]. Hence a vast
investigation of relevant learning algorithms in the ML zoology, beyond those generative
models [HGD+11, BL12, HZ12, LBM14, LBM15, PHG17]. In particular, following the
remarkable performance of Deep Neural Networks (DNNs) in solving tasks in computer
vision, the SCA community has progressively drawn its interest on such models [GHO15,
MZ13, MDM16]. Nowadays, DNNs are known to be able to defeat most of the counter-
measures used to protect implementations against SCA, namely de-synchronization [CDP17,
KPH+19], shuffling [MDP19a, MS21] and more interestingly masking [MPP16, Tim19].

The Black-vs.-White-Box Dichotomy. Although the supervised attack threat model
introduced so far is nowadays widely adopted by the SCA community for security

mailto:firstname.lastname@uclouvain.be
mailto:firstname.lastname@cea.fr

Grey-Box Modeling for Profiling SCA

evaluations, one technical detail of this scenario lacks some consensus. Indeed, there
exists a debate among SCA practitioners about what is known or unknown by the
adversary during the profiling phase, during which one builds the attack model upon
traces measured on an open clone device. In particular, whether one has access to the
random nonces used by the clone device during the encryption, as part of the profiling
data. This question is not trivial, since nowadays most of the counter-measures — like
masking or shuffling — consist in turning a deterministic cryptographic primitive into a non-
deterministic implementation.On the one hand, academia usually assumes the adversary
to know the values of the random nonces, in a so-called white-box threat model. This
model trades off some potentially conservative security levels against an easy-to-analyze
evaluation approach thanks to theoretical shortcuts [DDF14, DFS15]. On the other hand,
practitioners such as industrial developers and evaluators rather assume the adversary
to not have access to the random nonces used by the clone device during the encryption,
hence the name of black-box threat model. This scenario has the two advantages of being
closer to a real-world adversary, and to be fully automatized. As a drawback, some current
attacks in the black-box settings can be much less efficient than white-box attacks [BS20].

To what extent one threat model or another better fits the security context of the
evaluation? The answer is not unique, and both threat models have their proponents and
opponents. As an example, black-box scenarios may be considered for good or bad reasons.
On the one hand, it spares lots of human efforts and expertise spent in pre-processing the
traces, which are taken into account in the assessment of an attack potential [SOGISS20].
On the other hand, developers may be tempted to artificially restrict the access to random
nonces on the clone device given for evaluation in order to maximize the chances to pass
certifications, although at the cost of a false sense of security.

Actually, both black-box and white-box models may be seen as the edges of a broad
scope of threat models ranging from weak adversaries in the black-box model to stronger
ones in the white-box model. Yet, realistic threat models often lie all along this spectrum.
As an example, the implementation of a Target of Evaluation (T.O.E.) may be open-source
— or at least based on publicly available source code — and hence fully available to any
malicious entity.1 Likewise, the number of different masking schemes in the literature is
restricted enough so that it may be assumed to be known by the adversary. Surprisingly, to
the best of our knowledge, no ML approach leveraging weaker adversaries than white-box
but still stronger than black-box have been considered so far. Indeed, when profiling
masked implementations most of the Deep Learning (DL)-SCA literature focused on
the choice of DNN architectures and hyper-parameters [KPH+19, ZBHV19]. Hence the
motivations of this work:

How can we efficiently leverage the knowledge of the masking scheme in an
ML-based profiling attack, without relying on the knowledge of random nonces ?

The Grey-Box Modeling. To address this question, we investigate a new type of SCA
adversary that we name grey-box. In this threat scenario, the adversary is supposed to
have access to the source code of the target implementation. Concretely, this means that
the adversary knows the masking scheme and order used to protect the target. Moreover,
she is able to localize some Points of Interest (P.o.Is) precisely enough thanks to a careful
code analysis.

We explain how these assumptions can be taken into account in a DL model. To this
end, we introduce GroupRecombine, a simple neural network layer encoding the knowledge
of any group-based masking scheme, under the form of a discrete convolution. Contrary to
the convolutions layers used in Convolutional Neural Networks (CNNs), GroupRecombine

1See, e.g., the mbedTLS implementations: www.mbedTLS.com, or the Agence Nationale de la Sécurité
des Systèmes d’Information (ANSSI)’s protected Advanced Encryption Standard (AES): https://github.
com/ANSSI-FR/SecAESSTM32.

2

www.mbedTLS.com
https://github.com/ANSSI-FR/SecAESSTM32
https://github.com/ANSSI-FR/SecAESSTM32

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

is parameter-free, and is applied as the last layer in our model. This new layer can replace
some of the upper layers of a DNN potentially carrying many learning parameters to
fit, without any loss of expressiveness of the resulting architecture, thanks to the prior
knowledge of the masking scheme. In addition, it can be efficiently implemented using
Walsh-Hadamard (in the case of Boolean masking) or Fourier transforms (in the case of
arithmetic or multiplicative masking), or a mix of both (in the case of affine masking). As
a result, any model equipped with the GroupRecombine no longer requires to learn how
to recombine the information gathered on each share, and may only focus on the joint
learning of the leakage models of each share.

We validate our approach on simulations and on public datasets. Our experiments on
the ANSSI’s SCA Databases (ASCAD) emphasize some use-cases with first-order Boolean
masking where very simple grey-box models lead to successful attacks, whereas their
black-box counter-part fails. This suggests that a significant part of the efforts spent
by the SCA practitioner in a black-box setting, e.g. by running huge hyper-parameter
grid searches, would actually be devoted to finding a DNN architecture that efficiently
captures the way to learn the masking scheme. Hence, using GroupRecombine may be seen
as an efficient surrogate to this issue. As an example, we also address the challenge left
by Bronchain and Standaert as a conclusion of their works at Tches 2020, by showing
on simulations how GroupRecombine could be used for profiling in presence of an affine
masking scheme, without knowing the random shares to train our model.

Finally, we conclude this paper by discussing how far the grey-box approach could scale
with an increasing masking order, by providing theoretical arguments and experimental
evidences. Actually, the potential limitations of GroupRecombine that we emphasize are
not restricted to our approach, and more generally cover at least any non-white-box model
trained with gradient descent, leaving open the question whether this also covers other
types of non-white-box profiling models. Overall, we hope that these questions will be
received as a helpful contribution to the more general debate regarding the choice of
different evaluation methodologies in SCA.

2 Grey-Box Modeling and Application to Masking
In this section, we introduce the grey-box adversary. The idea behind this new threat
model is to properly separate what can be assumed to be known by the adversary — e.g.,
any algorithmic and implementation aspect — from what remains unknown and therefore
should be learned during the profiling phase — e.g., the device-dependent leakage model of
each share. We discuss hereafter two aspects of the prior knowledge on which any grey-box
adversary may rely, and how to leverage it.

2.1 Hard-Encoding of the Discrete Convolution
Hereafter, we explain how to materialize the prior knowledge of the masking scheme into
our DNN. Recall that the true model to learn may be expressed as a convolution product
of elementary leakage models for each share, as stated hereafter.

Proposition 1 ([LPR+14, Sec. 6], extended). Let Y0, . . . , Yd ∈ Y be Independent and
Identically Distributed (i.i.d.) shares, uniformly drawn over the group (Y, ⋆). Let L =
(L0, . . . , Ld)⊺ be a random vector denoting the leakage, and let l = (l0, . . . , ld)⊺ be an
observation of L. Assume that any Li only depend on Yi, i.e., any Li is independent of
the (Lj)j ̸=i. Then, the posterior Probability Mass Function (p.m.f.) of Y = Y0 ⋆ . . . ⋆ Yd

can be formulated as a discrete convolution product:

pY (l) = pY0 (l0) ∗ . . . ∗ pYd
(ld) , (1)

3

Grey-Box Modeling for Profiling SCA

where pYi
(li) = Pr (Yi | Li = li) denotes the conditional p.m.f. of the share Yi given the

realization li of the leakage random vector Li.

Lomné et al. have given a proof of a similar result at Ches 2014, for generative
models such as GTs. Proposition 1, that we prove in Appendix A, extends Lomné et
al.’s one to discriminative models. We may leverage Proposition 1 in a grey-box threat
model, provided that we know the inner law ⋆ of the group Y. This means that we know
the discrete convolution operator in Equation 1. In other words, we no longer require
to learn how to recombine the information extracted on the leakage corresponding to
each share: we are reduced to jointly learn the leakage models li 7→ pYi

(li) using some
corresponding estimators mθi

, i ∈ J0, dK respectively. Hence proposing the following model
for our grey-box attacks:

mθ (l) = mθ0 (l0) ∗ . . . ∗ mθd
(ld) . (2)

Said more concretely, we build a model where each branch mθi
maps its corresponding

sub-leakage to a |Y|-dimensional vector denoting a p.m.f. Then, all branches are combined
together by computing the discrete convolution. Figure 1 depicts the idea for a first-order
masking scheme: blue nodes denote branches, i.e. models with trainable parameters, whose
goal is to modelize the conditional p.m.f. pYi

(li) for each share. Vectors with shades of
red denote p.m.f.s over Y, and the “∗” node denotes the discrete convolution with respect
to the inner-law of the group Y.

∗ Ly

mθ0

mθ1

l0

l1

Figure 1: Grey-box model, with known P.o.Is for each share and a known masking scheme, but
unknown random shares.

It remains to explain how the branch models can be fine-tuned so that they fit the true
leakage models on each share. This can be done with Maximum Likelihood Estimation
(MLE), i.e. by minimizing a loss function Ly quantifying the dissimilarity between the
overall output p.m.f. returned by the model mθ(l) and the expected values of the target
variable, that are known during profiling (for both black, grey and white box adversaries).

In a white-box model, the MLE is usually implemented by tuning of branch model
separately from each other by minimizing the loss functions Lyi

of each branch separately.
Once it is done, the fine-tuned branch models are combined together with the discrete
convolution. This is the approach used, e.g., by Bronchain et al. [BS20, BDMS22]. Similarly,

mθ Ly

(a) Black-box model.

∗
Ly0

Ly1

Ly

mθ0

mθ1

(b) White-box.

Figure 2: Other adversaries, for comparison with grey-box model.

4

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

each branch model can compute its output p.m.f. using Gaussian Template (GT), and
by converting the generative model into a discriminative one with Bayes’ rule, as done
somehow by Ouladj et al. [OGGM21]. Unfortunately, these approaches require to know
the values of the shares during profiling, which we considered to be a strong assumption in
real-world evaluations.

In a grey-box model instead, the branch models are rather jointly tuned by directly
minimizing the overall loss function Ly, averaged over a training set of traces acquired
during the profiling phase. As depicted in Figure 1, computing and minimizing the overall
loss function Ly only requires as labels the values of the target variable during profiling,
which is allowed by definition of our grey-box adversary.

Therefore, the grey-box model depicted in Figure 1 relaxes the strong assumption of
random nonce knowledge during the profiling phase, but still encodes the knowledge of the
masking scheme, which is no longer needed to implicitly learn from the data, contrary to
the black-box model depicted in Figure 2a. This approach sounds somewhat sub-optimal
if the scheme is already known. Hence, by introducing the grey-box adversary that is
stronger than the black-box adversary, but weaker than the white-box one, we expect to
get a closer emulation of the actual powers of a real-world adversary.

2.2 Localization of P.o.Is

In Subsection 2.1, we implicitly assumed for non-black-box adversaries to know how to
localize the P.o.Is for each share in the traces, in order to properly separate the leakages.
We discuss this assumption in this section.

Usually, the P.o.I selection is done by computing some first-order statistics, such as
T-tests or Signal-to-Noise Ratios (SNRs). Without knowledge of the random nonces,
these tools cannot identify the right time samples, since by definition of masking, any
univariate sample should be independent of the target variable Y.2 This means that any
non-white-box adversary cannot identify the P.o.Is thanks to statistical tools in presence
of masking.

Nevertheless, a P.o.I selection remains possible without access to the random nonces,
thanks to a visual analysis of the traces, combined with a careful study of the T.O.E.
source code. Indeed, a software implementation of a cryptographic primitive is typically
made of (nested) loops whose number of iterations are publicly known, in virtue of the
Kerckhoffs principle. This induces some sequences of (nested) patterns in the traces that
can be visually identified on the raw measurements by the adversary. Moreover, this
analysis can even be refined by counting the number of clock cycles for each executed
instructions, and combining them with the clock and sampling frequencies in order to
guess at which time sample each instruction should leak. As a consequence, it is still
possible to localize the leakage on each share, and the P.o.I selection through T-test or
SNR should actually be seen as a useful but non-necessary shortcut for the evaluator to
spare some time. The recent literature provides two examples of this approach. First,
Masure and Strullu reported a detailed code analysis of the assembly code of the ANSSI’s
secure software implementation of the AES on an ARM Cortex M4, in order to extract
15, 000 P.o.Is out of 1 million time samples in the raw traces, covering the leakages of
the three shares used by the affine masking scheme [MS21]. Second, Egger et al. verified
that the CPOI leakage detection method [DS16] could localize the same time windows as
with the analysis of the assembly code used in the ANSSI’s SCA Databases (ASCAD)-v1
dataset [EST+22, Fig. 4].

2Ignoring glitches or transition leakages.

5

Grey-Box Modeling for Profiling SCA

3 Grey-Box Modeling with DNNs
Now we have introduced the grey-box adversary in the case of masking and explained the
intuition behind its advantages, we discuss in this section how to concretely implement it
with Deep Neural Networks (DNNs). First, we discuss in Subsection 3.1 how to concretely
minimize the overall loss function with grey-box models, by introducing a new DNN layer
called GroupRecombine. Then, we explain in Subsection 3.2 how our approach can be
extended to many types of masking schemes. Finally, we argue in Subsection 3.3 why we
implemented our own version of GroupRecombine, instead of relying on native building
blocks of most DL frameworks.

3.1 Implementing the Backward Propagation
To optimize a function based on DNNs, the most widely used approach is to use Gradient
Descent (GD)-based optimizers. To this end, we need to compute the derivatives of
our model when using a recombination layer. These derivatives are computed with the
backward propagation algorithm [BPRS17], who leverages the chaining rule to reduce the
computation of the derivatives for a composed function to the computation of derivatives
for each elementary function. Our models being made of regular DNN layers for which
the backward propagation is already hard-coded, we are then reduced to specify how
to back-propagate the gradient through the discrete convolution only. We do this by
implementing GroupRecombine, a parameter-free DNN layer consisting in the discrete
convolution, augmented with backward propagation.

We briefly explain hereafter how the backward propagation can be computed in
GroupRecombine. Thanks to the convolution theorem, the discrete convolution layer can
itself be seen as a composition of a fast transform (and its inverse) and an element-wise
product of d + 1 vectors. Using the chaining rule, we are again reduced to compute the
backward propagation for each mapping in the composition. The (inverse) fast transform
is a linear mapping, so its differential coincides with the mapping itself. In other words,
the backward pass of the fast transform is the same as its forward pass. Regarding the
element-wise product, it is a multi-linear mapping whose backward pass is already hard-
coded in the DL frameworks such as Tensorflow or Pytorch. By putting things together,
we obtain the backward pass through our GroupRecombine.
Remark 1. The backward pass of the GroupRecombine layer can also be directly hard-coded
without decomposing with fast transforms. Interestingly, this approach coincides with
implementing the update rule “from functions to variables” in the Belief - Propagation
(BP) algorithm [BS21, Eq. (4)].

3.2 Handling other Types of Masking
GroupRecombine works for any type of group-based masking scheme, e.g. Boolean [CJRR99,
GP99], arithmetical [CG00], or multiplicative masking [von01]. In the latter case, one
should recall that for any finite field (Y, ⊕, ×), the group (Y, ×) is in bijection with
(Z|Y|−1, +). In other words, the GroupRecombine for multiplicative masking can be
implemented by using the GroupRecombine for arithmetical masking, and to permuting the
entries of input and output vectors using discrete log / alog tables. As a result, it becomes
also straightforward to handle less common types of masking, such as affine [FMPR11], by
combining several types of GroupRecombine for different masking schemes. We will apply
GroupRecombine to affine masking in Subsection 4.2.

Although we did not test it yet, extending GroupRecombine to inner-product masking
schemes [BFG+17, BFG15] should be feasible as well. Indeed, inner-product masking
derives from Boolean masking by applying a public linear mapping, that could be handled

6

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

by hard-coding the corresponding permutation of the entries in the input and output
p.m.f.s, similarly to the transformation from arithmetical to multiplicative masking.

3.3 Using Native Convolutions in DL Frameworks?

We implemented our own version of the discrete convolution used in GroupRecombine.
Since discrete convolutions are widely used in DL, one might wonder why not using such
layers natively implemented in the main frameworks such as Tensorflow or Pytorch. There
are two main reasons for that.

First, for Boolean masking, the discrete convolution is not natively implemented in
DL frameworks like Pytorch [PGM+19], or Tensorflow [AAB+15]. Even for arithmetical
masking the discrete convolution must be circular, whereas the convolution layers used in
DL frameworks are usually not circular and use zero-padding to deal with side effects.

Second, even if circular padding were used, the convolution layers proposed in the DL
frameworks rely on a naive computation of the convolution product — i.e. not based on
fast transforms. The reason is that in computer vision-based DL, the filter size W is often
too small for the computation with fast transform — with complexity O (W · log2 (W)) —
to be significantly more efficient that the naive approach of complexity O

(
W 2) [VJM+15].3

In our context where the convolutions are often computed over W = 2n classes, where n
is the bit-size of the target, using a non-naive approach becomes more efficient than the
naive one.

That is why we implement GroupRecombine using fast transforms. For Boolean masking,
we use the Walsh-Hadamard (WH) transform, whereas for arithmetical masking, we use
the Fast Fourier Transform (FFT). Both WH and FFT can be implemented with Pytorch
on (General Purpose) Graphic Processing Unit (GPU) with a CUDA backend: the latter
one is natively implemented in the framework, while for the former one, we leverage the
implementation developed by Thomas et al. [TGD+18]. Overall, our GroupRecombine layer
results in a parameter-free layer that can be easily integrated into the Pytorch framework.4

4 Analyzing Performances of GroupRecombine
Now we introduced our GroupRecombine, we would like to compare its performances
with black-box and white-box models. In this section, we show the advantages of using
GroupRecombine, both on simulated experiments and on real experimental data. We first
describe the settings of our experiments in Subsection 4.1. Then, we report and discuss
results on simulations in Subsection 4.2, and on experiments in Subsection 4.3.

4.1 Settings for Comparison

For a fair comparison, we would like to show that all other things being equal, using
GroupRecombine leads to better performance. This requires to properly define the types
of adversaries against which we test GroupRecombine, and how to assess the comparison
between each model.

3Computer vision applications of DL usually prefer filter sizes lower than 4, as it maximizes the ratio
between the size of receptive fields of the convolution layers and the number of parameters to train [SZ15].
This rational only holds for 2D (images) or 3D (videos) data, and no longer holds for 1D time series like
SCA traces.

4We illustrate this claim with some code snippet in the supplementary material of this submission.
Although we did not test, we expect the implementation to be as straightforward in Tensorflow or Keras
as it is in Pytorch.

7

Grey-Box Modeling for Profiling SCA

4.1.1 Spectrum of Adversaries under Test

To this end, we describe hereafter the different adversaries that we consider.

• White-box. This model is depicted in Figure 2b. Each branch model mθi
is learned

independently from each other, based on a restricted amount of corresponding
P.o.Is, and by minimizing the loss function Lyi based on the corresponding share
yi. Concretely, each branch model is instantiated with a one-hidden-layer Multi-
Layer Perceptron (MLP) with N = 1, 000 neurons, a Rectified Linear Unit (ReLU)
activation function on the hidden layer, and a softmax activation function on the
output layer. Following the standard practise in DL, Batch Normalization (BN)
is also applied before ReLU. Once all branch models are trained, they are passed
through GroupRecombine to infer on the validation traces.

• Grey-box. It is the same as the white-box model, but the trainings of the branch
models are done jointly, using the loss function Ly computed from the labels of
the target y, as the random nonces are no longer known. To better evidence the
advantages of our grey-box model, we decline three different versions:

– Known P.o.Is and scheme. This corresponds to the model depicted in
Figure 1. Each branch model is only fed with the appropriate P.o.Is, and the
recombination is done with GroupRecombine.

– Known masking scheme only. This corresponds to the model depicted in
Figure 3b. This is the same model as the previous one, except that each branch
model is fed with raw traces, instead of separate P.o.Is.

– Known P.o.Is only. This corresponds to the model depicted in Figure 3a.
The model is the same as with the one with known P.o.Is and masking scheme,
except that the GroupRecombine layer is replaced by another one-hidden-layer
MLP with N ′ = 100 neurons.

The two latter versions are downgraded compared to the former one. Therefore,
if our grey-box model is sound, it is expected to work better than its downgraded
versions.

• Black-box. This model is depicted in Figure 2a. Since the adversary is not assume
to know neither the P.o.I location, nor the underlying masking scheme, the black-box
model is a one-hidden-layer MLP that is fed with raw traces. For consistency with
white-box and grey-box models with known P.o.Is and scheme, we keep the number
of hidden neurons constant. Therefore, our black-box MLP has (d + 1) · N neurons.

Note that in GroupRecombine, the approximation error is null. This means that provided
that each branch model mθi

can exactly computes the true leakage model pYi
(li), then the

whole grey-box model using GroupRecombine exactly implements the true conditional p.m.f.
of the target variable Y. On the contrary, since the discrete convolution is a non-linear
mapping, it cannot be exactly approximated by a MLP [Yar17, Thm. 6].

4.1.2 Performance Metrics and Quantifying Complexity

To assess and compare two models, we measure the Perceived Information (PI), as it has
been shown to be strongly related to the minimum number of traces required to succeed a
key recovery with a Maximum Likelihood Distinguisher (MLD) [MDP19a]. We also have
the following relationship with the Negative Log Likelihood (NLL) loss function L(mθ)
used for training: PI (Y; L; mθ) = n − L(mθ), where n stands for the bit-size of the target
variable Y.

8

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

mθ0,1 Ly

mθ0

mθ1

(a) Grey-box: known P.o.Is only.

∗ Ly

mθ0

mθ1

(b) Grey-box: known encoding only.

Figure 3: “Downgraded” grey-box models. In blue: blocks with trainable parameters.

Based on this performance metric, we can assess the complexity of an adversary in the
following two ways. First, we assess the optimization complexity by plotting optimization
curves, i.e. the loss function with respect to the number of steps in the Gradient Descent
(GD)-based optimization algorithm. For consistency when the number Np increases, we
use optimizers with full-batch, therefore one optimization step always equals one epoch.
Following the empirical study of Perin and Picek [PP20], we consider the Adaptive Moment
Estimation (Adam) optimizer [KB15], with a learning rate of 10−4. Second, we assess
the profiling complexity. It is measured in terms of the amount of profiling traces needed
to reach the optimal value of PI. To this end, we will plot learning curves depicting the
evolution of the PI with respect to the number Np of profiling traces used to train the
model. For each point of the learning curve, the PI reported is the one that is obtained by
the model at the epoch where it got the minimal value of its training loss.5

4.2 Results on Simulation
We start by presenting our simulations. The dataset is simulated as follows. We draw
uniformly some sharings according to the desired masking scheme. Then, we apply on
each share the famously used Hamming weight leakage model, with an additive Gaussian
noise with a small standard deviation of σ = 0.1. Since the leakage model is known in our
simulated framework, we can also compute a Monte-Carlo (MC) estimation of the Mutual
Information (MI), using the true Probability Density Function (p.d.f.) used to sample the
simulated traces.

4.2.1 First-Order Boolean Masking

The results for two 8-bit Boolean shares are depicted on Figure 4. We can see on Figure 4a
that the training and validation losses of the grey-box model (in green) enjoy the fastest
convergence towards the black horizontal line depicting the theoretical minimum value
of the validation loss. On the other hand, the validation loss for the black-box MLP (in
pink) requires roughly 2, 000, epochs to reach its minimal value, which was attained by
the green curve in 10 times less epochs. Worse, we can see that the pink validation loss of
the black-box model cannot reach the optimal value of the loss depicted in black with only
Np = 105 profiling traces, contrary to the grey-box model. This is a sign of over-fitting.
To better quantify this phenomenon, we show in Figure 4b the learning curve. It tells us
that a white-box adversary would need 400 profiling traces to get a model with positive
PI, whereas the best grey-box model would require at least 3, 000 profiling traces to reach
the same threshold. But more interestingly, a fully black-box model would require another
10 times more profiling traces. In other words, the results presented in Figure 4 show that

5We stress that a learning curve usually does not record the metrics at the epoch where the validation
loss is minimal. This is equivalent to assessing the models quality when they are not combined with
any other regularization method, in order to make things comparable. We verified that when using
early-stopping, the resulting learning curve does not change much in terms of hierarchy, as it can also be
verified when looking at the minimal values of the validation losses in Figure 4a.

9

Grey-Box Modeling for Profiling SCA

P.o.Is + Enc P.o.Is Enc Black-Box White-Box

100 101 102 103 104

6.5

7

7.5

8

8.5

Epochs

Lo
ss

[b
its

]

(a) Optimization curves for Np = 105.

103 104 105
−1

0

1

2

Np

PI
(Y

;L
;·

)
[b

its
]

(b) Learning curves.

Figure 4: Comparison between models for a first-order Boolean masking.

both profiling and optimization complexity between grey-box and black-box models may
differ by an order of magnitude.

4.2.2 Second-Order Boolean Masking

We push our simulated experiments one step forward, adding a third Boolean share into
the leakage. The results are shown in Figure 5. When analyzing the learning curve
in Figure 5b, we may notice two main differences compared to the 2 share simulation.
First, the pink, blue and orange curves have been shifted to the right, meaning that
their corresponding profiling complexity has been increased by an order of magnitude.
Interestingly, the green curve denoting the best grey-box model has merely been shifted,
meaning that its profiling complexity did not change much compared when adding a third
share into the experiment. Nevertheless, as a second observation, it is noticeable that the
green learning curve seems less smooth than in the previous experiment. This testifies an
increase in the optimization complexity. To understand why, we plot the optimization
curves for Np = 105 on Figure 5a. Here again the green curves standing for the best
grey-box model quickly leave the initial plateau after 100 epochs, but fall stuck in another
plateau for the remaining epochs. Hopefully, this phenomenon does not always happen,
since the learning curve in Figure 5b reports better performances for some lower values of
Np.

4.2.3 Affine Masking

We then move our simulation from a second order Boolean masking scheme to an affine
scheme. Hereupon, Bronchain and Standaert argued that learning an affine scheme with a
black-box model turns out to be hard, as emphasized by their simulations [BS20]. There,
the authors considered a slightly different leakage model for the multiplicative share α
of the affine sharing.6 Indeed, from their experimental measurements, they were able to
recover the multiplicative share with almost 100% accuracy with their white-box attack,
meaning that the leakage model of the multiplicative share α was injective. This can

6For completeness, we also provide in supplementary material the results of our simulation without
changing the leakage model. The conclusions remain the same.

10

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

P.o.Is + Enc P.o.Is Enc Black-Box White-Box

100 101 102 103 104
6.5

7

7.5

8

8.5

Epochs

Lo
ss

[b
its

]

(a) Optimization curves for Np = 105.

103 104 105
−1

0

1

2

Np

PI
(Y

;L
;·

)
[b

its
]

(b) Learning curves.

Figure 5: Comparison between models for a second-order Boolean masking.

be explained by the fact that the concrete implementation of all affine schemes known
in the literature are table-based [FMPR11, MS21], meaning that the values x × α are
sequentially processed for x ∈ J1, 2n − 1K during the pre-computation phase, which may
leak a lot [TWO14].

To take this into account in their subsequent simulations, Bronchain and Standaert
emulated the leakage of the multiplicative share α with an identity model. Nevertheless,
Cristiani et al. experimentally showed that learning such a leakage model with DNNs
could be hard [CLM20, Fig. 3], whereas replacing the identity by a one-hot encoding
could make the problem much easier. A similar experiment on images, conducted under
the coordinate transform problem terminology, led to similar conclusions [LLM+18]. This
suggests that beside not being physically realistic, the identity leakage model could make
the problem artificially much harder. That is why we revisit Bronchain and Standaert’s
experiment by changing the leakage model regarding the multiplicative share. Hereafter,
additionally to the leakages on the other shares, we consider that the adversary has access
to the values of hw(x × α), for x ∈ J1, 2n − 1K, where hw denotes the Hamming weight
leakage model.7 The simulation results are presented in Figure 6. While our black-box
model is not able to get a positive PI, as depicted by the pink curve on Figure 6a, we can
see that our grey-box model leveraging the knowledge of both P.o.Is and masking scheme is
able to get a validation loss below the 8-bit random threshold, denoting an effective model.
Even though it does not contradict the previous conclusions of Bronchain and Standaert
regarding the efficiency of black-box models, the outcomes of our grey-box model show
that not having access to the random nonces does not necessarily lead to an unsuccessful
attack.

4.2.4 Does Each Branch Actually Learn True Leakage Distributions?

In view of the good results obtained by our GroupRecombine in our simulations, we may
wonder whether the intermediate output p.m.f.s returned by each branch in a grey-box

7Note that this leakage model seems to behave similarly to a one-hot encoding, as it is possible to
guess the value of α by looking at the entry x of the leakage for which the leakage equal n. This would
denote the value x such that x × α = 2n − 1. Therefore, this leakage model somehow acts like a one-hot
encoding, up to a permutation of the encoding entries.

11

Grey-Box Modeling for Profiling SCA

P.o.Is + Enc P.o.Is Enc Black-Box White-Box

100 101 102 103 104

6.5

7

7.5

8

8.5

Epochs

Lo
ss

[b
its

]

(a) Optimization curves for Np = 5 · 105.

103 104 105
−1

0

1

2

Np

PI
(Y

;L
;·

)
[b

its
]

(b) Learning curves.

Figure 6: Comparison between models for an affine masking.

attack — in the known-P.o.Is setting — were also good estimates of the true p.m.f. of
each share. Can we compare the performance of our grey-box attacks against a white-box
adversary on each share separately?

At first sight, there is no reason why it would be possible, since the mapping (p, p′) 7→
p ∗ p′ is not invertible. As an example, if τh denotes the translation operator, i.e., τh(p) =
p[· ⋆ h], then the convolution product is known to be co-variant with translation, i.e.,
τh(p) ∗ p′ = τh(p ∗ p′). As a corollary, we have τh(p) ∗ τh−1(p′) = τh⋆h−1(p ∗ p′) = p ∗ p′. In
other words, even if our grey-box model could reach the optimal performance, the leakage
models on each share could at best be learned up to a shift of the probabilities.

But what about with affine masking? Here the additive and multiplicative shares do
not play the exact same role, so the argument about translation covariance no longer holds.
Does this mean that some branches could actually learn the true leakage model on their
respective share? To clarify this question, we also monitored the loss function on each
branch output against the labels of each share, during training. These branch losses were
computed over the validation set. We plot on Figure 7 such metrics, monitored during the
simulation in affine masking of Subsubsection 4.2.3. We notice in Figure 7a that the loss
for the branches of additive shares in orange and green diverge, as expected earlier. But
surprisingly, the loss on the multiplicative branch in blue goes below the 8-bit randomness
threshold before starting over-fitting. This means that the multiplicative branch may be
used in this case to infer on the value of the multiplicative share, despite not having known
at all the values of the multiplicative share during training. Interestingly, we also note that
the branch loss in blue escapes its plateau after 50 epochs, whereas at the same epoch in
Figure 6a, the overall training and validation losses for the grey-box model are still stuck
on the plateau. This denotes that at this epoch, the learning has somehow started, even if
this does not reflect in the value of the overall loss.

Actually, our observations should be slightly mitigated, as they seem to be leakage-
model-dependent. Indeed, we replicated our simulation, by replacing our injective leakage
model for the multiplicative share by a simpler (non-injective) Hamming weight leakage
model. The corresponding results shown on Figure 7b indicates this time that the
multiplicative branch is not able to reach a positive PI, so it cannot be used to infer on
the multiplicative share in this case. Still, we argued in Subsubsection 4.2.3 that the latter

12

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

Mask × Mask ⊕ Masked data Randomness

100 101 102 103

6

8

10

Epochs

Lo
ss

[b
its

]

(a) With injective leakage model for α.

100 101 102 103

6

8

10

Epochs
Lo

ss
[b

its
]

(b) With Hamming weight leakage model for α.

Figure 7: Branch losses.

leakage model is less representative than the former one.

4.3 Application on Experimental Data
Now we established the interest of GroupRecombine on simulations, we would like to test
it under experimental traces. To this end, we replicate the same experiments as with the
simulation described in Subsection 4.2 on some public datasets using masking.

4.3.1 Experiments on ASCAD-v1

We start with the ASCAD-v1 dataset, published in 2018 by Benadjila et al. [BPS+20]. It
deals with a first-order masked implementation of AES, with a Boolean scheme based on
table re-computation. The cryptographic primitive is implemented on an 8-bit ATMega8515
device on which the Electro-Magnetic (EM) field emanations are measured. Two versions
of the dataset are proposed: one so-called fixed with measurements acquired on a 700 time
samples window using a fixed encryption key, and a variable dataset with measurements
on a 1, 400 time samples window using a variable encryption key for profiling traces. Both
windows cover the look-up of the re-computed Sbox when applying the SubBytes operation
on the third byte of the AES state during the first round. Since on both datasets, the data
dimensionality is much higher than in our simulations whereas the number of profiling
traces remains of same order of magnitude as in our simulations, the DNNs used in our
simulations are more likely to over-fit. That is why we reduce the number of neurons in
the hidden layer of the branches from 1, 000 to 100.

Results on Fixed Dataset. We report hereafter the outcomes of our trainings on the fixed
dataset. When the threat model assumes to know the P.o.I location, the P.o.I selection
has been done by splitting the 700 time samples into two halves, the first 350 time samples
containing some leakages about the masked share while the second 350 time samples
containing leakages about the mask. This pre-processing is suboptimal compared to a
P.o.I selection with SNR, but reflects more what an adversary can do with a visual trace
analysis with the help of the source code, and can even be further refined with a thorough
code analysis, as argued in Subsection 2.2. The results are depicted on Figure 8. First, it

13

Grey-Box Modeling for Profiling SCA

P.o.Is + Enc P.o.Is Enc Black-Box White-Box

100 101 102 103 104

7.9

8

8.1

Epochs

Lo
ss

[b
its

]

(a) Optimization curves for Np = 5 · 104.

103 104
−0.2

0

0.2

Np

PI
(Y

;L
;·

)
[b

its
]

(b) Learning curves (best validation loss).

Figure 8: Comparison between models for ASCAD-v1.

can be seen on Figure 8a that when using the full profiling trace set — i.e., Np = 50, 000
— the validation loss eventually diverges, meaning that when using only shallow MLPs like
in our experiments, none of the different threat models would lead to an effective attack
without further pre-processing. Nevertheless, we can see that the validation losses in light
green, green and blue have their minimum value below the 8-bit threshold, meaning that
selecting the best model based on a validation loss would eventually lead to successful
attacks.

Moreover, we can still observe the same hierarchy between the threat models as in the
simulations conducted in Subsubsection 4.2.1. The white-box model leads to a PI close
to 0.2 bit, which is the highest lower bound of MI reported in the literature on ASCAD-
v1 [CLM20]. Then, the grey-box model leveraging both P.o.I location and knowledge of
the masking scheme reaches a PI of 0.05 bits, whereas the grey-box model exploiting the
knowledge of the masking scheme only obtains a PI of 0.02 bits. Finally, the grey-box
model leveraging the P.o.Is location only and the black-box model cannot get a positive
PI during the whole training.

We validate this observations by reproducing the trainings on a lower number of
profiling traces. For each of these trainings, the best PI on the validation loss is reported
on Figure 8b. As can be noticed, the previous observations regarding the hierarchy of the
threat models remains true.

Results on Variable Dataset. We repeated the same experiments on the variable dataset.
We first tried by splitting the traces into two contiguous parts of 700 points each, as
with the fixed dataset. Unfortunately, none of the non-white-box models could succeed
in getting a positive PI, which suggests that our P.o.I selection method for our grey-box
attacks was not sufficient, at least for the amount of traces available in this public dataset.
Therefore, we refined the P.o.I selection, by narrowing the windows for the two shares. For
the share rout, we selected the range J0, 300K, whereas for the share Y ⊕ rout, we selected
the range J900, 1200K. This refined P.o.I selection is possible even without knowledge of
rout during profiling, thanks to a careful assembly code analysis, similar to the one recently
conducted by Egger et al. [EST+22, Fig. 4]. For consistency in our comparisons, we also
feed the black-box model with the two restricted P.o.I windows, stacked together.

We then report on Figure 9 the results obtained for this second attempt on the variable

14

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

P.o.Is + Enc P.o.Is Enc Black-Box White-Box

100 101 102 103 104
7.9

7.95

8

8.05

8.1

Epochs

Lo
ss

[b
its

]

(a) Optimization curves for Np = 1.5 · 105.

103 104 105
-0.1

-0.05

0

0.05

0.1

Np

PI
(Y

;L
;·

)
[b

its
]

(b) Learning curves (best validation loss).

Figure 9: Comparison between models for ASCAD-v1 (variable).

dataset. Like with the fixed dataset, we can see that the black-box model is unable to
get a positive PI with the 600 P.o.Is given as an input. On the contrary, it took 70, 000
profiling traces to get a positive PI for our best grey-box model (green curve in Figure 9b).
This is much more than for the white-box model that only required 2, 000 profiling traces
(light green curve). Still, the results obtained on both ASCAD-v1 datasets confirm that it
is possible to succeed an attack by using small MLPs, provided that the recombination is
cleverly done, e.g. with GroupRecombine.

4.3.2 Attempts on ASCAD-v2

Provided with the promising results presented in Figure 6 on the affine masking, and on the
good experimental verifications on the ASCAD-v1 datasets, we pushed our experiments one
step further by trying to replicate the attack of affine masking on an actual implementation
of the affine masking. To this end, we used the ASCAD-v2 dataset [MS21]. It is made
of 500, 000 traces, each having 15, 000 time samples coming from two contiguous parts of
the raw power consumption traces acquired on an STM32 Cortex-M3 device. There, the
authors explain that the first window covers P.o.Is of the multiplicative share only, whereas
the second window covers P.o.Is of the additive share and the masked data. Since the
implementation also uses shuffling to protect the sensitive data, we artificially deactivate
the latter counter-measure, by relabeling the masked data thanks to the knowledge of the
random seeds used for permutation.

Unfortunately, we could not get effective attacks using grey-box models with simple
MLPs as branch models. This negative result should nevertheless been mitigated. Indeed,
the authors of [MS21] reported some successful white-box attacks on the dataset, leveraging
the knowledge of at least one share during profiling, but did not succeed in attacking the
dataset with a fully black-box model. To the best of our knowledge, no successful attack
has ever been reported using non-white-box models, since the release of the dataset in
early 2021. We will discuss in Section 5 the potential reasons behind this difficulty.

15

Grey-Box Modeling for Profiling SCA

5 Discussion
We have seen that using grey-box adversaries could mitigate some drawbacks of black-box
adversaries. In this section, we discuss some parts of our results. Subsection 5.1 argues
that changing the type of DNN architecture in the branches of a grey-box model should
not affect the comparative advantage of GroupRecombine with respect to the black-box
approach. Finally, Subsection 5.2 questions to what extent non-white-box approaches
could efficiently work against higher-order masking schemes.

5.1 On the Choice of Architecture for the Branches.
In our experiments involving grey-box attacks, we used the same architecture for the
branches of our GroupRecombine model, namely a one-hidden-layer MLP with 100 or 1, 000
neurons. Naturally, better performances could have been obtained by investigating other
types of DL architectures. As a consequence, our black-box models are not necessarily the
best ones. Actually, our results report unsuccessful black-box attacks with one-hidden-layer
MLPs on ASCAD, whereas the literature reports much better results on this dataset,
by using deeper MLPs — up to 6 layers according to Benadjila et al. [BPS+20] — or
CNNs [KPH+19, MDP19b].

Therefore, one might wonder whether our comparison is biased towards GroupRecombine.
Hereupon, we stress that all trainable models depicted in Figure 1 and in Figure 3 have been
instantiated with the simplest DNN architecture one may use. The fact that the white-box
models instantiated with such simple branch models reached the optimal performances
on our simulations, and reached levels of PI close to the state of the art on the ASCAD-
v1 dataset. Naturally, it is possible to use other branch models, such as CNNs, with
GroupRecombine. But our experiments suggest that using shallow MLPs is often sufficient
for optimal leakage modeling — at least provided that other types of counter-measures are
ignored. In other words, this suggests that the main efforts spent by the DL practitioner
in designing more complex architectures in a black-box setting would actually serve at
learning how to recombine the informations gathered by the first layers of the DNN on
each share, according to the masking scheme. Hence, by hard-encoding the masking
scheme with GroupRecombine, we expect the DL practitioner to spare a significant amount
of time spent, e.g., in running exhaustive/random search of hyper-parameters, which is
acknowledged to be the bottleneck task in DL-based SCA [BPS+20, RWPP21, WPP20].

Likewise, no regularization technique — e.g., weight decay, dropout — have been
considered in this study, so adding them could have naturally improved the results.
However, we argue that the effect of regularization techniques is orthogonal to the effect
of using GroupRecombine. Indeed, beside being hyper-parameter-free contrary to other
types of regularization, our recombination layer does not act on the bias-variance trade-
off, as most of regularizers do [SB14, Chap. 5]. This means that, provided that the
assumed masking scheme is the right one, the regularization effect of the recombination
layer never degrades the approximation capacity of our model as argued at the end of
Subsubsection 4.1.1, contrary to what all other types of regularization are likely to do.

5.2 The Initial Plateau: An Effect of Masking
It turns out that all the optimization curves presented so far in this paper depict an
initial plateau for both training and validation loss. Namely, when targeting some leakage
induced by masking, the GD-based optimization algorithm starts its procedure being
stuck on a plateau whose level coincides with full randomness. This plateau is not a
simulation artifact, as it can be observed in many other studies investigating black-box
adversaries against masking. See, e.g., the works of Timon [Tim19, Fig. 5], Perin and
Picek [PP20, Figs. 5b, 6b, 7, 8, 13], Cristiani et al. [CLM20, Fig. 8], [CLM21, Fig. 3], and

16

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

Lu et al. [LZC+21, Fig. 10 – 11, left]. Moreover, some of these figures suggest that the
higher the masking order, the longer the initial plateau. Interestingly, the initial plateau
barely happens when targeting unprotected implementations, or even leakages protected
by shuffling [MDP19a, Fig. 2, right] or de-synchronization [CDP17, Fig. 8], [KPH+19,
Fig. 10], [MBC+20, Fig. 6], suggesting this plateau is closely linked to the use of masking.
These intriguing observations call for further explanation and verification: is this plateau
really due to masking, and if so to what extent it affects the optimization?

5.2.1 Empirical Verification on Exhaustive Datasets

To address these questions, we repeat our simulations for a Boolean masking, by using here
a noise-free, exhaustive dataset, i.e. for which the training and validation loss are equal —
which is made possible thanks to the discrete nature of our noise-free leakage model. Thus,
the profiling complexity is nullified, allowing to focus only on the optimization complexity.8
The setting of this simulation is voluntarily much simpler rather than realistic, so that
the optimization complexity may be seen as a lower bound of what a real-world adversary
could expect.

In order to quantitatively measure the optimization complexity, we define the weak
learning threshold, set to L (θ) = n − ϵ. The weak learning threshold corresponds to an
adversary with an effective model, i.e. a model wit strictly positive PI, up to an ϵ-margin.
More concretely, the weak learning threshold can be used to measure the length of the
plateau in the optimization curve. We also define the strong learning threshold, set to
L (θ) = MI (Y; L) + ϵ. The strong learning threshold corresponds to an optimal adversary
from an information theoretic point of view, up to an ϵ-margin. Hence, the optimization
complexity can be measured in terms of the number of epochs required to reach the weak
and strong learning thresholds.

The results of our simulations with an exhaustive dataset are showed on Figure 10,
for ϵ = 0.05, and averaged over 5 different seeds. Note that here we fixed the number
of neurons in the black-box model, so the curves black-box and grey-box models are not
directly comparable between each other. For the grey-box model, we can observe that the

0 1 2 3 4 5
100

101

102

103

Order d

Ep
oc

hs

Black-Box
Grey-Box

Figure 10: Number of epochs to get weak (plain curves) and strong (dotted curves) learning.

green plain curve goes from 1 epoch for d = 0 to 4, 000 epochs for d = 4. This denotes an
exponential increase of the optimization complexity in weak learning with the masking
order. Since the optimization complexity in strong learning (denoted by the dotted curves)

8This setting therefore emulates the common assumption of an adversary with unlimited profiling power.
The interested reader may find in Appendix B a discussion about how to efficiently emulate this case.

17

Grey-Box Modeling for Profiling SCA

is strictly higher than the one in weak learning, we can also deduce that the optimization
complexity in strong learning will follow an exponential trend.

For the black-box model, we may also notice a dramatic increase of the optimization
complexity in weak learning, from one epoch without masking to 200 epochs with 6 shares.
Unfortunately, Figure 10 does not provide enough evidence to conclude in a sharp way on
the same exponential increase of the optimization complexity as observed with grey-box
models. Indeed, as the size of the exhaustive dataset also increases exponentially, it no
longer fits into our 48 GB Nvidia RTX A6000 GPU when d ≥ 6. Does this suggest that
black-box models could efficiently scale with the masking order in terms of optimization
complexity, whereas grey-box models do not?

5.2.2 A Theoretical Argument

Actually, we argue in this section that black-box models should also face the exponential
increase of optimization complexity with respect to the masking order. Our point relies on
a theorem proved by Shalev-Shwartz et al., in an almost similar problem [SSS17]. There,
the authors investigated to what extent some tasks may be learned in an “end-to-end”
manner — i.e. black-box in our terminology —, or by “decomposition” in more elementary
learning problems — i.e. white-box in our terminology — would be more efficient. They
emphasized that some problems could be hard to learn with gradient descent in black-box,
as stated hereafter.

Theorem 1 ([SSS17, Thm. 3], informal). Let L denote a d-tuple (L1, . . . , Ld) of input
instances, and assume that each Li is i.i.d. standard Gaussian in Rp. Define the target
function hu (l) =

∏d
i=1 sign (u⊺li) , for some normalized hyperplane u ∈ Rp. Let mθ be a

predictor differentiable with respect to its parameter θ, such that E
L

[
∥∇θ mθ∥2

]
≤ G(θ)2,

and let L (θ) = E
L

[ℓ (mθ(L), hu(L))] be the loss function to minimize, for some smooth
function ℓ (·). Then,

E
u

[∥∥∥∇θL (θ) − E
u

[∇θL (θ)]
∥∥∥2
]

≤ G(θ)2 · O

(√
d log(p)

p

)d

. (3)

Let us interpret the meaning of this theorem from our SCA point of view. Consider a
bit, masked with d shares, and assume that the leakage distribution conditionally to each
share is noise-free and the same for each bit. Therefore, the leakage model to be learned is
denoted by the decision surface materialized by the hyperplane u, and the masked target
bit can be expressed as hu (l).9 Note that in a worst-case scenario where the adversary
has unlimited profiling powers, the true decision surface u is known, so the masked bit
would be successfully recovered in one trace in the attack phase.

Yet, what Theorem 1 tells us is that the success rate could be much worse for a
real-world adversary with limited computational powers using gradient descent. Indeed,
the authors of [SSS17] interpret the left hand-side of Equation 3 as a measure of the
feedback signal returned by the labels through the gradient of the loss function. Then,
this result tells us that this feedback signal decreases exponentially fast with the masking
order, provided that the dimensionality p of each sub-leakage is high enough.

As a result, the trajectory taken by the parameter θ during the gradient descent depends
less and less on the features of the target function to learn, denoted by the vector u, as
the masking order increases. Abbe et al. showed at Neurips’20 that this exponential
decrease in the feedback signal would result in an exponential growth in the number of
steps in the gradient descent needed to escape the initial plateau [AS20, Thm. 3, Cor. 2]. ,
[AKem+21, ACHM22]. This suggests that the non-exponential trend observed in Figure 10

9hu can be seen as the xor function, where the inputs are remapped over {−1, +1}.

18

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

can be regarded as a simulation artifact since we had p = 1, whereas in most non-white-box
attacks the dimensionality p of each leakage is typically much higher, such that we have
d log(p)

p ≪ 1. Overall, we conclude that the hardness when tackling profiling attacks in
non-white-box settings is mainly due to the optimization procedure, i.e. based on gradient
descent in this paper, than on the choice of models.

6 Conclusion: is Non-White-Box Profiling Hard Anyway?
In this paper, we have shown how a real-world adversary could leverage some prior
knowledge from the source code of a target implementation, by substituting fully black-
box with grey-box adversaries. As a result, we evidenced how grey-box models could
dramatically improve the efficiency of a side-channel attack, from a profiling complexity
point of view. We also showed that the main difficulty for the adversary is mainly due to
the drawbacks of GD-based optimization procedures, rather than the selection procedure
of the appropriate hyper-parameters of a model. Moreover, this difficulty is expected to
increase exponentially with the masking order.

Beyond raising a great challenge for the SCA evaluator, this also opens a new interesting
question for the SCA developer:

Is the conditional p.m.f. of an intermediate computation that is protected
against masking efficiently learnable in a non-white-box setting?”

Namely, is there any alternative to GD-based optimizers for which both profiling and
optimization complexities scale at most polynomially with the masking order? If such
a learning algorithm exists, then this would suggest that all the current approaches in
non-white-box settings would lead to a false sense of security in a near future when higher-
order masking schemes will become more and more affordable for developers and designers.
But if no efficient learning algorithm exists, this would pave the way towards a new notion
of black-box SCA security, in which masking is sound provided that the adversary does not
have access to the random nonces used for encryption during the profiling phase. Such
a new security notion would have the advantage of holding unconditionally to the level
of physical noise, thereby leading to less conservative security bounds, e.g. for software
implementations.

Which of these answers is the right one? Even if each outcome would have major
implications in either the design or evaluation of embedded devices against SCA, we do
not have a clear answer yet to this question. Indeed, we gathered evidences towards both
eventualities, as discussed hereafter.

On the one hand, our problem is somehow close to the well-known Learning Parity with
Noise (LPN) problem. This problem is cryptographically hard, as it is the root for some
lattice-based cryptographic primitives [GRS08, Pie12]. Yet, without noise this problem
becomes efficiently learnable, as it can be solved with Gaussian elimination. Nevertheless,
it has been shown that any GD-based approach would result in an exponential optimization
complexity [Tho96], [AS20, Thm. 6], [SSS17, Thm. 1]. This provides an example of easy
learning problem where GD-based learning can fail. On the other hand, some recent results
in learning theory suggest that profiling masked implementations in non-white-box settings
could be hard regardless of the nature of the learning algorithm used by the adversary.
Indeed, under the assumption that the leakage model has an additive Gaussian noise, the
leakage distribution can be expressed as a Gaussian mixture, with a number of modes
increasing exponentially with the masking order. Some recent works studying Gaussian
mixture learning showed that in such a case, there is no learning algorithm able to scale
polynomially with the number of modes, both in terms of computational and profiling
complexity [BRST21, GVV22]. In other words, any generative model used for profiling
in a non-white-box setting, is prone to fail when facing higher-order masking, regardless

19

Grey-Box Modeling for Profiling SCA

of the profiling method used by the adversary. Whether this limitation also translates to
discriminative models like MLPs or CNNs remains the main open question we leave for
future works.

Acknowledgments
François-Xavier Standaert is a Senior Associate Researcher of the Belgian Fund for Scientific
Research (FNRS-F.R.S.). This work has been funded in part by the ERC project number
724725 (acronym SWORD).

A Duality between Masking and Convolutions
Proof of Proposition 1. Let pY(l)[y] denote the probability Pr (Y = y | L = l), and let Y
denote the d + 1 sharing of Y, namely Y = (Y0, . . . , Yd). By applying Bayes’ theorem we
get:

pY(l)[y] = Pr (Y = y)
Pr (L = l) Pr (L = l | Y = y) (4)

Denoting Pr (L = l | Y = y) by pL(y)[l], and using the total probabilities formula d times,
we expand the latter term as follows:

pL(y)[l] =
∑

y1,...,yd∈Y
Pr (L = l | (Y, Y1, . . . , Yd) = (y, y1, . . . , yd))·

d∏
i=1

Pr (Yi = yi) .

(5)

By noting y0 ≜ y ⋆ (y1 ⋆ . . . ⋆ yd)−1, and since the mapping (y, y1, . . . yd) 7→ (y0, y1, . . . yd)
is invertible we may reformulate the conditional probability as follows:

Pr (L = l | (Y, Y1, . . . , Yd) = (y, y1, . . . , yd)) = Pr
(
L = l | Y = (y0, . . . , yd)

)
.(6)

Moreover, according to assumption (b), we have:

Pr (L = l) =
d∏

i=0
Pr (Li = li) , (7)

Pr
(
L = l | Y = (y0, . . . , yd)

)
=

d∏
i=0

Pr (Li = li | Yi = yi) . (8)

Finally, we may use the uniform assumption to remark that: Pr (Y = y) = Pr (Y0 = y0) .
We may now combine Equations (4), (5), (6), (7), (8) and the latter fact:

pY(l)[y] =
∑

y1,...,yd∈Y
pY0(l0)

[
y ⋆ (y1 ⋆ . . . ⋆ yd)−1] pY1(l1)[y1] · . . . · pYd

(ld)[yd] .

B Optimizing Simulations in An Exhaustive Dataset
Even for a noise-free leakage, computing the loss function to minimize in a naive way
would become quickly intractable, as it would result in a sum over all possible sharings of
Y, i.e., 2n·(d+1) terms.

20

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

Hopefully, we can do much better in our simulated framework, as the conditional
probability distribution Pr (Y | L) and the marginal distribution of leakages Pr (L) can
be used to rephrase the terms in the loss function as follows:

L (θ) =
∑

l0

. . .
∑
ld

E
Pr(Y | L=(l0,...,ld))

[mθ(l0, . . . , ld)] ·
d∏

i=0
Pr (Li = li) . (9)

The sum to compute in Equation 9 contains |L|d+1 terms, where |L| denotes the leakage
space of one share. In the case where the leakage model is highly non-injective such as with
Hamming weights — i.e. |L| = n + 1 —, computing the latter sum turns out to be much
more efficient. For this model, and assuming that the shares are uniformly distributed,
the marginal distribution Pr (L) is a joint distribution of d binomial laws B(n, 1/2).

References
[AAB+15] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael
Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur,
Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org. 7

[ACHM22] Emmanuel Abbe, Elisabetta Cornacchia, Jan Hazla, and Christopher Marquis.
An initial alignment between neural network and target is needed for gradient
descent to learn. CoRR, abs/2202.12846, 2022. 18

[AKem+21] Emmanuel Abbe, Pritish Kamath, eran malach, Colin Sandon, and Nathan
Srebro. On the power of differentiable learning versus PAC and SQ learning.
In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors,
Advances in Neural Information Processing Systems, 2021. 18

[AS20] Emmanuel Abbe and Colin Sandon. On the universality of deep learning. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin, editors, Advances in Neural Information Processing
Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. 18, 19

[BDMS22] Olivier Bronchain, François Durvaux, Loïc Masure, and François-Xavier
Standaert. Efficient profiled side-channel analysis of masked implementations,
extended. IEEE Trans. Inf. Forensics Secur., 17:574–584, 2022. 4

[BFG15] Josep Balasch, Sebastian Faust, and Benedikt Gierlichs. Inner product
masking revisited. In Oswald and Fischlin [OF15], pages 486–510. 6

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga,
and François-Xavier Standaert. Consolidating inner product masking. In
Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology –
ASIACRYPT 2017, Part I, volume 10624 of Lecture Notes in Computer
Science, pages 724–754, Hong Kong, China, December 3–7, 2017. Springer,
Heidelberg, Germany. 6

21

Grey-Box Modeling for Profiling SCA

[BL12] Timo Bartkewitz and Kerstin Lemke-Rust. Efficient template attacks based
on probabilistic multi-class support vector machines. In Stefan Mangard,
editor, Smart Card Research and Advanced Applications - 11th International
Conference, CARDIS 2012, Graz, Austria, November 28-30, 2012, Revised
Selected Papers, volume 7771 of Lecture Notes in Computer Science, pages
263–276. Springer, 2012. 1

[BPRS17] Atilim Gunes Baydin, Barak A. Pearlmutter, Alexey Andreyevich Radul, and
Jeffrey Mark Siskind. Automatic differentiation in machine learning: a survey.
J. Mach. Learn. Res., 18:153:1–153:43, 2017. 6

[BPS+20] Ryad Benadjila, Emmanuel Prouff, Rémi Strullu, Eleonora Cagli, and Cécile
Dumas. Deep learning for side-channel analysis and introduction to ASCAD
database. Journal of Cryptographic Engineering, 10(2):163–188, June 2020.
13, 16

[BRST21] Joan Bruna, Oded Regev, Min Jae Song, and Yi Tang. Continuous LWE. In
Samir Khuller and Virginia Vassilevska Williams, editors, STOC ’21: 53rd
Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event,
Italy, June 21-25, 2021, pages 694–707. ACM, 2021. 19

[BS20] Olivier Bronchain and François-Xavier Standaert. Side-channel
countermeasures’ dissection. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2020(2):1–25, 2020. https://tches.iacr.org/
index.php/TCHES/article/view/8542. 2, 4, 10

[BS21] Olivier Bronchain and François-Xavier Standaert. Breaking masked
implementations with many shares on 32-bit software platforms. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(3):202–
234, 2021. https://tches.iacr.org/index.php/TCHES/article/view/
8973. 6

[CDP17] Eleonora Cagli, Cécile Dumas, and Emmanuel Prouff. Convolutional neural
networks with data augmentation against jitter-based countermeasures
- profiling attacks without pre-processing. In Wieland Fischer and
Naofumi Homma, editors, Cryptographic Hardware and Embedded Systems –
CHES 2017, volume 10529 of Lecture Notes in Computer Science, pages 45–68,
Taipei, Taiwan, September 25–28, 2017. Springer, Heidelberg, Germany. 1, 17

[CG00] Jean-Sébastien Coron and Louis Goubin. On Boolean and arithmetic masking
against differential power analysis. In Çetin Kaya Koç and Christof Paar,
editors, Cryptographic Hardware and Embedded Systems – CHES 2000, volume
1965 of Lecture Notes in Computer Science, pages 231–237, Worcester,
Massachusetts, USA, August 17–18, 2000. Springer, Heidelberg, Germany. 6

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In Michael J.
Wiener, editor, Advances in Cryptology – CRYPTO’99, volume 1666 of
Lecture Notes in Computer Science, pages 398–412, Santa Barbara, CA, USA,
August 15–19, 1999. Springer, Heidelberg, Germany. 6

[CLM20] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. Leakage
assessment through neural estimation of the mutual information. In Jianying
Zhou, Mauro Conti, Chuadhry Mujeeb Ahmed, Man Ho Au, Lejla Batina,
Zhou Li, Jingqiang Lin, Eleonora Losiouk, Bo Luo, Suryadipta Majumdar,
Weizhi Meng, Martín Ochoa, Stjepan Picek, Georgios Portokalidis, Cong

22

https://tches.iacr.org/index.php/TCHES/article/view/8542
https://tches.iacr.org/index.php/TCHES/article/view/8542
https://tches.iacr.org/index.php/TCHES/article/view/8973
https://tches.iacr.org/index.php/TCHES/article/view/8973

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

Wang, and Kehuan Zhang, editors, Applied Cryptography and Network Security
Workshops - ACNS 2020 Satellite Workshops, AIBlock, AIHWS, AIoTS,
Cloud S&P, SCI, SecMT, and SiMLA, Rome, Italy, October 19-22, 2020,
Proceedings, volume 12418 of Lecture Notes in Computer Science, pages
144–162. Springer, 2020. 11, 14, 16

[CLM21] Valence Cristiani, Maxime Lecomte, and Philippe Maurine. Revisiting mutual
information analysis: Multidimensionality, neural estimation and optimality
proofs. IACR Cryptol. ePrint Arch., page 1518, 2021. 16

[CRR03] Suresh Chari, Josyula R. Rao, and Pankaj Rohatgi. Template attacks.
In Burton S. Kaliski Jr., Çetin Kaya Koç, and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES 2002, volume 2523
of Lecture Notes in Computer Science, pages 13–28, Redwood Shores, CA,
USA, August 13–15, 2003. Springer, Heidelberg, Germany. 1

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In Phong Q. Nguyen and
Elisabeth Oswald, editors, Advances in Cryptology – EUROCRYPT 2014,
volume 8441 of Lecture Notes in Computer Science, pages 423–440,
Copenhagen, Denmark, May 11–15, 2014. Springer, Heidelberg, Germany. 2

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert. Making
masking security proofs concrete - or how to evaluate the security of any
leaking device. In Oswald and Fischlin [OF15], pages 401–429. 2

[DS16] François Durvaux and François-Xavier Standaert. From improved leakage
detection to the detection of points of interests in leakage traces. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology –
EUROCRYPT 2016, Part I, volume 9665 of Lecture Notes in Computer
Science, pages 240–262, Vienna, Austria, May 8–12, 2016. Springer,
Heidelberg, Germany. 5

[EST+22] Maximilian Egger, Thomas Schamberger, Lars Tebelmann, Florian Lippert,
and Georg Sigl. A second look at the ASCAD databases. In Josep Balasch
and Colin O’Flynn, editors, Constructive Side-Channel Analysis and Secure
Design - 13th International Workshop, COSADE 2022, Leuven, Belgium,
April 11-12, 2022, Proceedings, volume 13211 of Lecture Notes in Computer
Science, pages 75–99. Springer, 2022. 5, 14

[FMPR11] Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Alex Biryukov,
Guang Gong, and Douglas R. Stinson, editors, SAC 2010: 17th Annual
International Workshop on Selected Areas in Cryptography, volume 6544
of Lecture Notes in Computer Science, pages 262–280, Waterloo, Ontario,
Canada, August 12–13, 2011. Springer, Heidelberg, Germany. 6, 11

[GHO15] Richard Gilmore, Neil Hanley, and Máire O’Neill. Neural network based attack
on a masked implementation of AES. In IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA,
5-7 May, 2015, pages 106–111, 2015. 1

[GP99] Louis Goubin and Jacques Patarin. DES and differential power analysis
(the “duplication” method). In Çetin Kaya Koç and Christof Paar, editors,
Cryptographic Hardware and Embedded Systems – CHES’99, volume 1717 of
Lecture Notes in Computer Science, pages 158–172, Worcester, Massachusetts,
USA, August 12–13, 1999. Springer, Heidelberg, Germany. 6

23

Grey-Box Modeling for Profiling SCA

[GRS08] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. How to encrypt
with the LPN problem. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors,
ICALP 2008: 35th International Colloquium on Automata, Languages and
Programming, Part II, volume 5126 of Lecture Notes in Computer Science,
pages 679–690, Reykjavik, Iceland, July 7–11, 2008. Springer, Heidelberg,
Germany. 19

[GVV22] Aparna Gupte, Neekon Vafa, and Vinod Vaikuntanathan. Continuous LWE
is as hard as LWE & applications to learning Gaussian mixtures. Cryptology
ePrint Archive, Report 2022/437, 2022. https://ia.cr/2022/437. 19

[HGD+11] Gabriel Hospodar, Benedikt Gierlichs, Elke De Mulder, Ingrid Verbauwhede,
and Joos Vandewalle. Machine learning in side-channel analysis: a first study.
Journal of Cryptographic Engineering, 1(4):293–302, December 2011. 1

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. The Elements
of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition.
Springer Series in Statistics. Springer, 2009. 1

[HZ12] Annelie Heuser and Michael Zohner. Intelligent machine homicide - breaking
cryptographic devices using support vector machines. In Werner Schindler
and Sorin A. Huss, editors, COSADE 2012: 3rd International Workshop
on Constructive Side-Channel Analysis and Secure Design, volume 7275 of
Lecture Notes in Computer Science, pages 249–264, Darmstadt, Germany,
May 3–4, 2012. Springer, Heidelberg, Germany. 1

[KB15] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. In Yoshua Bengio and Yann LeCun, editors, 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA,
May 7-9, 2015, Conference Track Proceedings, 2015. 9

[KPH+19] Jaehun Kim, Stjepan Picek, Annelie Heuser, Shivam Bhasin, and Alan
Hanjalic. Make some noise: Unleashing the power of convolutional
neural networks for profiled side-channel analysis. IACR Transactions
on Cryptographic Hardware and Embedded Systems, 2019(3):148–179, 2019.
https://tches.iacr.org/index.php/TCHES/article/view/8292. 1, 2, 16,
17

[LBM14] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. Power analysis
attack: an approach based on machine learning. IJACT, 3(2):97–115, 2014. 1

[LBM15] Liran Lerman, Gianluca Bontempi, and Olivier Markowitch. A machine
learning approach against a masked AES - reaching the limit of side-channel
attacks with a learning model. Journal of Cryptographic Engineering, 5(2):123–
139, June 2015. 1

[LLM+18] Rosanne Liu, Joel Lehman, Piero Molino, Felipe Petroski Such, Eric Frank,
Alex Sergeev, and Jason Yosinski. An intriguing failing of convolutional
neural networks and the coordconv solution. In Samy Bengio, Hanna M.
Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman
Garnett, editors, Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages 9628–9639, 2018. 11

24

https://ia.cr/2022/437
https://tches.iacr.org/index.php/TCHES/article/view/8292

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

[LPR+14] Victor Lomné, Emmanuel Prouff, Matthieu Rivain, Thomas Roche, and
Adrian Thillard. How to estimate the success rate of higher-order side-channel
attacks. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems - CHES 2014 - 16th International Workshop,
Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of
Lecture Notes in Computer Science, pages 35–54. Springer, 2014. 3

[LZC+21] Xiangjun Lu, Chi Zhang, Pei Cao, Dawu Gu, and Haining Lu. Pay attention to
raw traces: A deep learning architecture for end-to-end profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2021(3):235–
274, 2021. https://tches.iacr.org/index.php/TCHES/article/view/
8974. 17

[MBC+20] Loïc Masure, Nicolas Belleville, Eleonora Cagli, Marie-Angela Cornelie,
Damien Couroussé, Cécile Dumas, and Laurent Maingault. Deep learning side-
channel analysis on large-scale traces - A case study on a polymorphic AES.
In Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors,
ESORICS 2020: 25th European Symposium on Research in Computer Security,
Part I, volume 12308 of Lecture Notes in Computer Science, pages 440–460,
Guildford, UK, September 14–18, 2020. Springer, Heidelberg, Germany. 17

[MDM16] Zdenek Martinasek, Petr Dzurenda, and Lukas Malina. Profiling power
analysis attack based on MLP in DPA contest V4.2. In 39th International
Conference on Telecommunications and Signal Processing, TSP 2016, Vienna,
Austria, June 27-29, 2016, pages 223–226, 2016. 1

[MDP19a] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. A comprehensive study of
deep learning for side-channel analysis. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2020(1):348–375, 2019. https://tches.
iacr.org/index.php/TCHES/article/view/8402. 1, 8, 17

[MDP19b] Loïc Masure, Cécile Dumas, and Emmanuel Prouff. Gradient visualization for
general characterization in profiling attacks. In Ilia Polian and Marc Stöttinger,
editors, COSADE 2019: 10th International Workshop on Constructive Side-
Channel Analysis and Secure Design, volume 11421 of Lecture Notes in
Computer Science, pages 145–167, Darmstadt, Germany, April 3–5, 2019.
Springer, Heidelberg, Germany. 16

[MPP16] Houssem Maghrebi, Thibault Portigliatti, and Emmanuel Prouff. Breaking
cryptographic implementations using deep learning techniques. In Claude
Carlet, M. Anwar Hasan, and Vishal Saraswat, editors, Security, Privacy, and
Applied Cryptography Engineering - 6th International Conference, SPACE
2016, Hyderabad, India, December 14-18, 2016, Proceedings, volume 10076 of
Lecture Notes in Computer Science, pages 3–26. Springer, 2016. 1

[MS21] Loïc Masure and Rémi Strullu. Side channel analysis against the ANSSI’s
protected AES implementation on ARM. Cryptology ePrint Archive, Report
2021/592, 2021. https://eprint.iacr.org/2021/592. 1, 5, 11, 15

[MZ13] Zdenek Martinasek and Vaclav Zeman. Innovative method of the power
analysis. Radioengineering, 22:586–594, 06 2013. 1

[OF15] Elisabeth Oswald and Marc Fischlin, editors. Advances in Cryptology –
EUROCRYPT 2015, Part I, volume 9056 of Lecture Notes in Computer
Science, Sofia, Bulgaria, April 26–30, 2015. Springer, Heidelberg, Germany.
21, 23

25

https://tches.iacr.org/index.php/TCHES/article/view/8974
https://tches.iacr.org/index.php/TCHES/article/view/8974
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://tches.iacr.org/index.php/TCHES/article/view/8402
https://eprint.iacr.org/2021/592

Grey-Box Modeling for Profiling SCA

[OGGM21] Maamar Ouladj, Sylvain Guilley, Philippe Guillot, and Farid Mokrane.
Spectral approach to process the (multivariate) high-order template attack
against any masking scheme. Cryptology ePrint Archive, Report 2021/941,
2021. https://eprint.iacr.org/2021/941. 5

[PGM+19] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zachary DeVito,
Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing
Systems 2019, NeurIPS 2019, 8-14 December 2019, Vancouver, BC, Canada,
pages 8024–8035, 2019. 7

[PHG17] Stjepan Picek, Annelie Heuser, and Sylvain Guilley. Template attack
versus bayes classifier. Journal of Cryptographic Engineering, 7(4):343–351,
November 2017. 1

[Pie12] Krzysztof Pietrzak. Cryptography from learning parity with noise. In Mária
Bieliková, Gerhard Friedrich, Georg Gottlob, Stefan Katzenbeisser, and
György Turán, editors, SOFSEM 2012: Theory and Practice of Computer
Science, pages 99–114, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.
19

[PP20] Guilherme Perin and Stjepan Picek. On the influence of optimizers in deep
learning-based side-channel analysis. In Orr Dunkelman, Michael J. Jacobson
Jr., and Colin O’Flynn, editors, Selected Areas in Cryptography - SAC 2020 -
27th International Conference, Halifax, NS, Canada (Virtual Event), October
21-23, 2020, Revised Selected Papers, volume 12804 of Lecture Notes in
Computer Science, pages 615–636. Springer, 2020. 9, 16

[RWPP21] Jorai Rijsdijk, Lichao Wu, Guilherme Perin, and Stjepan Picek. Reinforcement
learning for hyperparameter tuning in deep learning-based side-channel
analysis. IACR Transactions on Cryptographic Hardware and Embedded
Systems, 2021(3):677–707, 2021. https://tches.iacr.org/index.php/
TCHES/article/view/8989. 16

[SB14] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning -
From Theory to Algorithms. Cambridge University Press, 2014. 16

[SOGISS20] Senior Officials Group Information Systems Security. Application of
attack potential to smartcards and similar devices — joint interpretation
library, 2020. https://www.sogis.eu/documents/cc/domains/sc/
JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf. 2

[SSS17] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of
gradient-based deep learning. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning, ICML
2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings
of Machine Learning Research, pages 3067–3075. PMLR, 2017. 18, 19

[SZ15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks
for large-scale image recognition. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San
Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. 7

26

https://eprint.iacr.org/2021/941
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://tches.iacr.org/index.php/TCHES/article/view/8989
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf
https://www.sogis.eu/documents/cc/domains/sc/JIL-Application-of-Attack-Potential-to-Smartcards-v3-1.pdf

Loïc Masure, Valence Cristiani, Maxime Lecomte and François-Xavier Standaert

[TGD+18] Anna T. Thomas, Albert Gu, Tri Dao, Atri Rudra, and Christopher Ré.
Learning compressed transforms with low displacement rank. In Samy Bengio,
Hanna M. Wallach, Hugo Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi,
and Roman Garnett, editors, Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing Systems
2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pages 9066–
9078, 2018. 7

[Tho96] Chris Thornton. Parity: The problem that won’t go away. In Gordon I.
McCalla, editor, Advances in Artificial Intelligence, 11th Biennial Conference
of the Canadian Society for Computational Studies of Intelligence, AI ’96,
Toronto, Ontario, Canada, May 21-24, 1996, Proceedings, volume 1081 of
Lecture Notes in Computer Science, pages 362–374. Springer, 1996. 19

[Tim19] Benjamin Timon. Non-profiled deep learning-based side-channel attacks
with sensitivity analysis. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2019(2):107–131, 2019. https://tches.iacr.org/
index.php/TCHES/article/view/7387. 1, 16

[TWO14] Michael Tunstall, Carolyn Whitnall, and Elisabeth Oswald. Masking tables
- an underestimated security risk. In Shiho Moriai, editor, Fast Software
Encryption – FSE 2013, volume 8424 of Lecture Notes in Computer Science,
pages 425–444, Singapore, March 11–13, 2014. Springer, Heidelberg, Germany.
11

[VJM+15] Nicolas Vasilache, Jeff Johnson, Michaël Mathieu, Soumith Chintala, Serkan
Piantino, and Yann LeCun. Fast convolutional nets with fbfft: A GPU
performance evaluation. In Yoshua Bengio and Yann LeCun, editors, 3rd
International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. 7

[von01] Manfred von Willich. A technique with an information-theoretic basis for
protecting secret data from differential power attacks. In Bahram Honary,
editor, 8th IMA International Conference on Cryptography and Coding,
volume 2260 of Lecture Notes in Computer Science, pages 44–62, Cirencester,
UK, December 17–19, 2001. Springer, Heidelberg, Germany. 6

[WPP20] Lichao Wu, Guilherme Perin, and Stjepan Picek. I choose you: Automated
hyperparameter tuning for deep learning-based side-channel analysis.
Cryptology ePrint Archive, Report 2020/1293, 2020. https://eprint.iacr.
org/2020/1293. 16

[Yar17] Dmitry Yarotsky. Error bounds for approximations with deep relu networks.
Neural Networks, 94:103–114, 2017. 8

[ZBHV19] Gabriel Zaid, Lilian Bossuet, Amaury Habrard, and Alexandre Venelli.
Methodology for efficient CNN architectures in profiling attacks. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2020(1):1–36,
2019. https://tches.iacr.org/index.php/TCHES/article/view/8391. 2

27

https://tches.iacr.org/index.php/TCHES/article/view/7387
https://tches.iacr.org/index.php/TCHES/article/view/7387
https://eprint.iacr.org/2020/1293
https://eprint.iacr.org/2020/1293
https://tches.iacr.org/index.php/TCHES/article/view/8391

	Introduction
	Grey-Box Modeling and Application to Masking
	Hard-Encoding of the Discrete Convolution
	Localization of poi

	Grey-Box Modeling with dnn
	Implementing the Backward Propagation
	Handling other Types of Masking
	Using Native Convolutions in dl Frameworks?

	Analyzing Performances of GroupRecombine
	Settings for Comparison
	Results on Simulation
	Application on Experimental Data

	Discussion
	On the Choice of Architecture for the Branches.
	The Initial Plateau: An Effect of Masking

	Conclusion: is Non-White-Box Profiling Hard Anyway?
	Duality between Masking and Convolutions
	Optimizing Simulations in An Exhaustive Dataset

