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Abstract: Recent advances suggest that deep learning has been widely used to detect smoke for early
forest fire warnings. Despite its remarkable success, this approach has a number of problems in real
life application. Deep neural networks only learn deep and abstract representations, while ignoring
shallow and detailed representations. In addition, previous models have been trained on source
domains but have generalized weakly on unseen domains. To cope with these problems, in this
paper, we propose an adversarial fusion network (AFN), including a feature fusion network and an
adversarial feature-adaptation network for forest fire smoke detection. Specifically, the feature fusion
network is able to learn more discriminative representations by fusing abstract and detailed features.
Meanwhile, the adversarial feature adaptation network is employed to improve the generalization
ability and transfer gains of the AFN. Comprehensive experiments on two self-built forest fire smoke
datasets, and three publicly available smoke datasets, validate that our method significantly improves
the performance and generalization of smoke detection, particularly the accuracy of the detection of
small amounts of smoke.

Keywords: forest fire smoke detection; adversarial feature adaptation; shallow network; feature
fusion network; attention mechanism

1. Introduction

Smoke detection has attracted much attention, as it is an important element of early
fire warning and fire prevention [1]. Depending on the acquisition level, there are three
widely used smoke monitoring systems, namely satellite, terrestrial, and aerial. Terrestrial
and aerial systems tend to be more efficient than satellite systems in terms of resolution
and response time to early wildfire incidents [2,3]. Therefore, our work focuses mainly on
RGB smoke images captured by terrestrial systems and aerial systems. Earlier image-based
smoke detection methods [4,5] rely on specialist prior knowledge to extract detailed and
shallow features such as color, texture, and contour. Although shallow representation
has a pivotal role in smoke detection, it is difficult for supervised classifiers trained with
these features to simultaneously guarantee high accuracy and a low false alarm rates [6].
Recently, deep fire-smoke detection methods [7-9] have significantly boosted detection
performance. These methods automatically extract deep and abstract smoke features to
achieve highly accurate end-to-end fire smoke detection.

Despite deep detection methods enjoying a promising performance in benchmark
smoke datasets, these methods may fail in the face of complicated forest environments.
Specifically, some disturbances, such as the mistaken identification of clouds, fog, and haze,
cause false alarms due to their similarity to smoke in their color and contours [10]. Deep
convolutional neural networks (CNNs) are not suitable for complex forest scenarios, as they
mainly focus on abstract features and ignore detailed features. Moreover, ImageNet-trained
CNNis tend to classify objects by using local textures instead of global object contours
and color [11,12]. To extract more discriminative smoke features, many conventional
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strategies, combined with deep-learning methods [8,9] and dual-channel convolutional
neural networks [13-15], have been proposed for fire smoke detection.

Another key issue with smoke detection is that performance is considerably degraded
in forest environments that are different from the training set [16]. The success of these deep
methods can be partially attributed to a large number of annotated data [17]. However,
forest fire smoke images or videos are very hard to capture in real life. There are also
few forest fire smoke images in benchmark datasets. Therefore, the above methods are
not particularly suitable for forest scenarios with much fewer training samples, due to
the domain shift on visual features [18]. In order to alleviate the weak generalization in
domains other than training, several transfer-learning methods have been proposed. Many
deep-learning smoke detection methods learn features by directly employing ImageNet-
trained CNNs, and fine-tune the weights on the smoke training dataset [19]. Domain
adaptation (DA) is a commendable learning paradigm for tackling the above issue. DA
methods aim at reducing the difference between the covariance matrices of source and
target domains.

To further improve the performance and robustness of forest fire smoke detection meth-
ods, motivated by domain-adversarial neural networks [20], we propose a dual-channel
convolutional neural network with domain-adversarial training named the adversarial
fusion network (AFN). Firstly, feature fusion network, which contains a densely dilated
convolutional network (DDCN) and an attention-based skip connection network (ASCN),
is designed to bring down high false alarm rates. The DDCN is used to generate deep
and abstract features, while the ASCN specializes in extracting shallow and detailed fea-
tures. Specifically, to obtain better receptive fields, we select dilated convolutional instead
of common convolutional in the DDCN. The multiscale-channel attention module (MS-
CAM) [21] and skip connection in the ASCN are adopted to improve the representation
capacity of global information. In this way, the fused features of DDCN and ASCN are
more discriminative. Secondly, we introduce the adversarial feature adaptation network,
which narrows the differences between the source and target domains to alleviate the
domain shift. Moreover, the mixed dataset of base smoke and stylized data is utilized as
the training dataset for AFN, to increase the shape bias of learning feature representations.
Extensive experiments demonstrate the effectiveness and generalization of our method on
two self-built forest fire smoke datasets and three publicly available smoke datasets.

2. Related Work
2.1. Fire Smoke Detection

Previous image-based fire smoke detection methods train supervised classifiers using
manually extracted features [22-24]. These models greatly depend on feature selection to
improve detection performance. These methods can be applied well to fixed scenarios, but
have weak generalization to changing environments. Recently, deep fire smoke detection
methods have achieved superior performance via generation of deep and abstract features.
Specifically, Mao et al. [8] proposed a novel fire smoke recognition method based on a
multichannel convolutional neural network, to overcome the deficiencies of machine-
learning-based methods. A novel deep normalization and convolutional neural network
(DNCNN) with 14 layers was introduced in [9] to enable end-to-end automated smoke
feature extraction and detection. Although these methods have improved the accuracy of
smoke detection compared with conventional methods, they probably fail against a complex
forest environment. To extract more discriminative smoke features, many dual-channel
frameworks have been developed. Gu et al. [15] designed a new deep dual-channel neural
network (DCNN) for smoke detection, of which the first subnetwork is good at extracting
the detail information, and the second subnetwork can capture the base information.
In [14], a dual-channel convolutional neural network (DC-CNN) using transfer learning for
detecting smoke images was proposed. These methods produce state-of-the-art results on
public smoke datasets.
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2.2. Attention Mechanism

Attention mechanisms enhance the discriminability of network representations through
focusing on important features and ignoring unnecessary information, which is inspired
by the human visual perception process [25]. The attention mechanism was first applied
to natural language processing (NLP) in [26], and is now widely used in computer vision
tasks. For example, Hu et al. [27] concentrated on the channel relationship and proposed
the squeeze-and-excitation (SE) block, which can improve the representational power
of a network and bring significant performance improvements without increasing the
computational cost. To capture more sophisticated channel-wise dependencies, a number
of improved SE blocks have been proposed [28-30]. Moreover, many researchers have
combined spatial attention and channel attention to design more sophisticated attention
modules. Woo et al. [31] presented the CBAM, a new efficient architecture that uses both
spatial and channel-wise attention. A convolutional-triplet attention module (CTAM),
capable of producing cross-dimensional interactions between spatial attention and channel
attention, was proposed by Misra et al. [32]. Recently, researchers have started to take
the scale issue of attention modules into account, in order to improve the feature discrim-
inability. In [21], a multiscale-channel attention module (MS-CAM) that aggregates local
and global feature contexts inside the module was proposed. Experiments on different
benchmark datasets have demonstrated the superiority of these methods over using only
channel-wise attention.

2.3. Domain Adaptation

Domain adaptation (DA) aims to diminish the difference between source and target
domains in the feature space [33]. Some methods have used maximum mean difference
(MMD) to mitigate domain shift [34], whereas others have employed an adversarial ap-
proach to reducing domain shift. Domain-adversarial networks, which consist of a feature
generator, a classifier and a discriminator, have been widely applied in computer vision
tasks. They have achieved great success, and have effectively alleviated the consumption
of training sample annotation [35-37]. Tzeng et al. [38] introduced an adaptation layer and
an additional domain-confusion loss to learn a representation that is both semantically
discriminative and domain invariant. WDGRL [39] was proposed to learn domain invariant
features by introducing Wasserstein Distance with adversarial training. Different from the
application of the above feature adaptation methods, Brochu et al. [40] adopted domain-
adversarial networks to improve the contour bias and model generalization capabilities
of CNNSs. Recently, DA has also been applied to fire smoke detection [41,42]. To extract a
powerful feature representation of smoke, a deep architecture based on domain adaptation,
to confuse the distributions of features extracted from synthetic and real smoke images,
was presented by Xu et al. [43].

3. Materials and Methods

In this section, we elaborate on the details of the adversarial fusion network (AFN)
for forest fire smoke detection, and we describe the experimental setting, including two
self-built forest fire smoke datasets, implementation details, and evaluation metrics.

The general framework of AFN is shown in Figure 1. Our method consists of three com-
ponents: feature fusion network G s label predictor G;, and adversarial feature-adaptation
network G;. Firstly, we present a dual-channel feature fusion network constructed from a
densely dilated convolutional network (DDCN) and an attention-based skip connection
network (ASCN). Secondly, we introduce the adversarial feature adaptation network, train-
ing the base dataset and the stylized dataset to mitigate the discrepancy between the two
domains. Finally, an efficient iterative optimization method is proposed. The goal of our
method is to improve the robustness of the detection network via learning more image
representations.
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Figure 1. The whole architecture of our method.

Given a labeled smoke dataset as the base domain (Dg)"s ~ {(x;,y;)};2,, where x;
indicates the input image, y; = {0,1,- - - ,m — 1} represents the corresponding label, and
np and m denote the total number of samples and the number of classes, respectively. The
stylized smoke dataset is treated as the stylized domain (Ds)"S ~ {x]}]ni .- Note that the

base domain and stylized domain are drawn from different joint distribution and share the
same label space. DDCN and ASCN extract abstract features F; and detailed features F,
across domains. Then, the fused features G¢(x,0y) of F; and F, are delivered to the label
predictor G( -, ;) and adversarial feature adaptation network Gy ( -, 0,) for class prediction
y and domain classification d, respectively.

3.1. Feature Fusion Network

The feature fusion network is a dual-channel CNN which contains both the DDCN
and the ASCN. The DDCN is employed to extract deep and abstract features from smoke
images. The backbone of the DDCN is ImageNet-trained Densenet-169 [44]. This back-
bone not only has the advantage of alleviating vanishing-gradient and enhancing feature
propagation, but also achieves significant improvements over the state-of-the-art in various
computer vision tasks [45,46]. Moreover, to expand the receptive field without increasing
the computational cost, the original convolutional layers are replaced by dilated convo-
lutional layers. However, ImageNet-trained CNNs are biased towards learning texture
features rather than color and counters [47]. It is necessary to learn shallow and detailed
representation by adding a shallow neural network.

The ASCN specializes in extracting shallow and detailed features, such as color and
contours. Inspired by AlexNet [48] and the original domain-adversarial neural network [20],
we build a new convolutional neural network consisting of five convolutional layers, two
batch normalization layers, five activation function layers, three max-pooling layers, and
an average-pooling layer. A batch normalization layer replaces the local normalization
layer in AlexNet to accelerate convergence and prevent overfitting. The activation function
is a nonlinear function called the rectified linear unit (ReLU). In addition, the multiscale-
channel attention module (MS-CAM) [21] and skip connection in ASCN act to improve the
representation capacity of global information and share feature information, respectively.

The DDCN takes a gray-scale image of x as input and the ASCN uses the original
RGB image x as input. The feature connection of two subnetworks is the output G (x, 0y)
of the feature fusion network, where 8¢ denotes the learning parameter. The base sample

feature representation is B(Gy) = {Gf(xi, 0r) ‘xi € DB} and the stylize sample feature
representation S(Gy) = {Gf(xj, Gf)‘x]- € DS}.
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The label predictor is similar to the label predictor of the original domain-adversarial
neural network. We also add dropout regularization after each activation function layer
to prevent overfitting. The output G;(G¢(x,0¢),6;) of the label predictor is the probability
of detection of x. The classification loss is calculated with negative log-probability and is
expressed as follows:

1
Grlx,67),80),

Li(Gi(Gf(x,0¢),01),y) = log Gl €]

3.2. Adversarial Feature Adaptation Network

A domain-adversarial training network is employed to further increase contour-
learning capability and the generalization capabilities of the smoke detection network.
This method not only improves the representation capabilities of our network, but also
forces the network to integrate spatial information over long distances. Inspired by the
Proxy A-distance [49], we learn an adversarial feature adaptation network that contains
two fully connected layers, a batch normalization layer, an activation function layer, and a
classifier layer. The activation function and classifier are the same as the label predictor. The
output G4(G¢(x,0r),0,) of the adversarial feature adaptation network is the probability
that x comes from the base domain or stylized domain. The domain classification loss is
calculated by the focal loss [50] function and is expressed as follows:

La(Ga(G(x,67),64),d) = du(1 — Gy)" log Gid +(1—d)(1—a)Gy" log %)

1-G;’
where ¢ > 0 denotes the focusing parameter, & denotes the balance factor, and d denotes a
binary variable. If d = 0, x belongs to the base domain, and vice versa, d = 1 belongs to the
stylized domain. The objective function of adversarial feature adaptation is as follows:

E(07) = max[ Y~ Li(Ga(Gy(xi,07),00), ) — =Y Lh(GalGy(x; 07),60), ).
d Bi=1 ns j=1

3.3. Model Optimization

The total loss of the AFN consists of the label predictor loss and the adversarial feature
adaptation network loss. Therefore, the complete objective function of our algorithm is as
follows:

L;(Gl(Gf(X,‘,Gf), 91)/%') - AE(ef’ ed)

. ng ng .
Li(Gi(Gg(xi,05),01), yi) — /\(%El Ly (Ga(Gy(xi, 0f),04),d;) + %jg L(Ga(Gy(x},6¢),04).4d))),

(4)

where the parameters of the label predictor are updated via the minimization objective
function, and the parameters of the domain classifier are updated via the maximization
objective function:

(9](, él) = argminE(Gf, 91/éd)/ ®)
0.0,
(0;) = argemaxE(éf, 01,0,). ©)
d

To optimize the above objective function, stochastic gradient descent (SGD) is used to
update the learning parameters with the following equations:
oLi  dLy oL

1

B 0 — (sl — A= — A1, )
SRR 00 00, T o0s
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where y denotes the learning rate. Moreover, a gradient reversal layer (GRL) is inserted
between the feature extractor and the adversarial feature adaptation network to implement
the adversarial. GRL acts as an identity switch in forward propagation, while in backward
propagation, it changes the gradient sign by multiplying by —#. The forward and backward

propagation “pseudo-functions” of the GRL [20] are defined as follows:

R(x) =x, (10)
dR
==L (11)

where I denotes the identity matrix. For this reason, the objective function of our algorithm
is reformulated as follows:

E(07,6,,00) = {fl LH(GI(Gy (xi,07), 01), 1) — A(,}fﬁl Li(Ga(R(Gy(x;,6¢)), 04), i) + %;:i 1 (Ga(R(Gf(x;, ef)),ed),dj)). (12)
1= 1= =

3.4. Experimental Setting
3.4.1. Forest Fire Smoke Dataset

The forest fire smoke dataset (FF_Smoke dataset) is one of our self-built forest fire
smoke datasets. The FF_Smoke dataset is a mixed dataset from the base domain and
stylized domain. The base domain Dp contains 5000 RGB images from surveillance cameras,
publicly available wildfire smoke datasets, and the web, consisting of five categories: smoke,
cloud, fog, trees, and cliffs. Each category contains 1000 images of dimensions 224 x 224.
In addition, AdalN style transfer [51] is applied to construct a stylized smoke dataset as the
stylized domain Dg. We replace the texture of original images with ten randomly selected
painting styles, which are derived from the Kaggle’s Painter by Numbers dataset [52]. The
advantages of this stylization method are the variety of stylized images that can be created
and the speed of transformation. The base dataset and the stylized dataset are randomly
divided into a training set and a test set in the ratio of 8:2, respectively. Figure 2 shows
examples from the base domain and the stylized domain. It can be seen that the stylized
images are able to retain the global contours.

Original

Images ’

Stylized
Images

Smoke Smoke Cloud Cloud k Fog l Trees - Clifﬁ

Figure 2. Sample images from the base domain and the stylized domain.
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3.4.2. Early Wildfire Surveillance Dataset

To further evaluate the robustness and generalization capabilities of our method, an
early forest fire surveillance dataset (EWS_Smoke dataset) is constructed that has never
been seen in the FF_Smoke dataset. Early forest fire smoke is often captured by long-range
cameras and accounts for only a small portion of the image. This dataset contains 221 smoke
images from different surveillance sites. The sample images are shown in Figure 3.

Figure 3. Sample images from real surveillance video.

3.4.3. Implementation Details and Evaluation Metrics

We implement our model with PyTorch and train all models on a single NVIDIA
GeForce RTX 2080ti GPU device. The label predictor of our method contains three fully
connected layers, two batch normalization layers, two activation function layers and a
classifier layer, where the activation function and classifier are ReLU and softmax. The
model is trained via Adam optimizer for 300 epochs using a cosine decay learning rate,
with a batch size of 64, and an initial learning rate that subsequently decreases by 0.1
every 30 epochs. Augmentation and regularization strategies are then adopted to mitigate
overfitting in training.

To fairly evaluate the performance of our method, accuracy rate (AR), false alarm rate
(FAR), detection rate (DR), recall rate (RR), and F1-score (F1) [8] are adopted as evaluation
criterion for forest fire smoke detection.

4. Results and Discussion

In this section, the performance of our method is first evaluated on the FF_Smoke
dataset. Then, the robustness and generalization of our method is evaluated on the
EWS_Smoke dataset and three real-word public smoke datasets. Finally, the effective-
ness of the key components of our method is verified.

4.1. Main Results
4.1.1. Selection of Backbone Networks

We analyze the effect of color feature on the performance of ImageNet-trained CNNs.
To eliminate color information, RGB images from the FF_Smoke dataset were converted to
gray-scale images. Pre-trained CNNs were fine-tuned on original images and grayscale
images, respectively, and then tested on original images. The implementation details of
the two experiments are completely consistent. The ARs of 100 tests are shown in Table 1.
The numbers in parentheses are the increase or decrease in AR compared to original image
training. It can be seen that AlexNet (84.78%) and DenseNet-169 (79.45%) achieved the
highest top-1 AR on the original dataset and gray dataset, respectively. In addition, lacking



Forests 2022, 13, 366

8 of 14

color information deteriorates networks performance and results in a maximum difference

in AR of 7.21%.

Table 1. Detection accuracy of pre-trained convolutional neural networks on FF_Smoke dataset.

RGB-RGB Gray-RGB
Model Top-1 (%) Top-3 (%) Top-1 (%) Top-3 (%)
AlexNet 8478 £0.86  97.85+044  77.59 £120(-7.19) 96.27 + 0.62 (~1.58)
ResNet-50 8399 £042 9641 +039  77.45+ 088 (—6.54) 90.48 % 0.81 (~5.93)
ResNet-101 83924047 9558061  79.00 + 1.12 (~4.92)  93.64 = 0.64 (~1.94)
DenseNet-121  83.05+042 95634039 7584+ 120(-7.21) 91.82 + 0.59 (~3.81)
DenseNet-169  84.04£051 9653 £041  79.45+ 076 (—4.59)  90.39 = 0.79 (—6.14)

To further analyze the effect of color information on performance, we also conducted
experiments with CNNs trained from scratch. The ARs of 100 tests are shown in Table 2. It
is clear that AlexNet (81.45%), trained from scratch, achieved the highest top-1 AR on the
original dataset and gray dataset. In addition, the difference in AR can reach a maximum
of 26.15%.

Table 2. Detection accuracy of scratch-trained convolutional neural networks on FF_Smoke dataset.

RGB-RGB Gray-RGB
Model Top-1(%)  Top-3 (%) Top-1 (%) Top-3 (%)
AlexNet 8145+ 086 9770 +£034 7397+ 1.04(—7.48) 9595+ 0.53 (—1.75)
ResNet-50  7922+127 96414039 6530+ 1.13(-13.92) 91.89 + 0.87 (—4.52)
ResNet-101 7859+ 1.06 9672+0.61 59.52+129(—19.07)  90.58 = 0.75 (—6.14)
DenseNet-121  79.85+0.82 9620+ 0.53 53.70 + 0.87 (—26.15)  85.05 = 0.69 (—11.15)
DenseNet-169 7999+ 0.86  96.14 + 0.67  55.59 £ 0.89 (—24.40) 83.24 & 1.14 (—12.90)

For sample-limited datasets, pre-training not only helps CNNs to converge quickly,
but also achieves the desired AR. Since the maximum difference number in Table 2 is
three times greater than in Table 1, it is assumed that the CNN trained from scratch is
more sensitive to color information compared to pre-trained networks. Therefore, we
combined the advantages of pre-trained and scratch-trained networks to construct a dual-
channel feature extractor based on CNNs. Pre-trained DenseNet-169 was used as the first
sub-backbone to extract abstract features, and scratch-trained AlexNet was applied as the
second sub-backbone to learn detailed features, such as color and contours.

4.1.2. AFN with Different Loss Functions

We also compared the performance of the AFN with different loss functions. The
cross-entropy loss function and the focal loss function were employed for the adversarial
feature adaptation network, and the test results are shown in Figure 4. Figure 4a,b show the
confusion matrices of the cross-entropy loss function and focal loss function, respectively.
It can be seen that the focal loss function not only increases the DR (+4%) of smoke, but it
also significantly reduces the FAR (—4%) of smoke. In addition, the DR of fog (+6%), cloud
(+16%), and cliffs (+2%) are significantly improved. The focal loss function is proposed to
address the problem of imbalance between positive and negative samples and the uneven
proportion of hard and easy samples. Therefore, the focal loss function is adopted as the
adversarial feature-adaptation network-loss function in this paper.
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Figure 4. Test results of (a) cross-entropy loss function and (b) focal loss function on FF_Smoke
dataset.

4.2. Comparison with State-of-the-Arts
4.2.1. Performance on Self-Built Smoke Datasets

We tested the AFN on the early forest fire surveillance images. The performance of
our method is compared with the Dual-Net, DDCN, ASCN, pre-trained DenseNet-169, and
scratch-trained AlexNet. Figure 5 shows the AR of 100 tests. The performance of networks
with domain-adversarial training is significantly better than that of networks without on
different datasets. It can be seen that our proposed algorithm achieved the highest AR
(91.85% and 92.96%) on the FF_Smoke dataset and the EWS_Smoke dataset, respectively.
The test results present satisfactory performance on EWS_Smoke dataset, demonstrating
the decent generalization capability of our proposed algorithm.

95.00% wFF_Smoke Dataset
mEWS_Smoke Dataset

90.00%
85.00%
80.00%
75.00%

Dual-Net DDCN DenseNet-169  ASCN AlexNet

Test Accuracy

Figure 5. Average test accuracy on self-built smoke datasets. The error line represents the standard
deviation.

4.2.2. Performance on Publicly Available Smoke Datasets

To verify the robustness and generalization of our proposed algorithm, we compared it
with other state-of-the-art algorithms on three publicly available smoke datasets, including
Yuan_Smoke [9], USTC_SmokeRS [53], and Fire_Smoke [54]. The Yuan_Smoke dataset
and the Fire_Smoke dataset are all derived from living-fire and urban-fire scenarios, while
the USTC_SmokeRS is a satellite imagery smoke dataset covering various areas across the
world. Our method was compared with state-of-the-art algorithms on different datasets,
respectively. HLTPMC [55] is a conventional machine-learning approach based on hand-
crafted features, whereas ZF-Net [56], MCCNN [8], DNCNN [9], and SmokeNet [53] are
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end-to-end detection methods based on CNNs. Dual channel CNN [15] is also used to
compare performance. The results of the evaluation are shown in Table 3. Our approach
achieves the highest AR (99.78%) on the Yuan_Smoke dataset. Although our DR (99.64%)
is slightly lower than HLTPMC (99.82%) and MCCNN (99.82%), we have the lowest
FAR (0.12%) and are on par with advanced dual-channel CNNs. In addition, RR is also
employed to evaluate the performance of our algorithm, and when RR and AR are in
conflict, performance is evaluated by the F1. Our algorithm reaches the highest at RR
(99.82%) and F1 (99.73%) on the Yuan_Smoke dataset, respectively. It is clear that the
FAR (7.59%) of SmokeNet is more than twice that of ours (3.21%) on USTC_SmokeRS
dataset. The evaluation results on publicly available smoke datasets achieved a desirable
performance, demonstrating the good stability and generalization ability of our method.
Our method is not only applicable for forest fire smoke detection, but also for urban fire
smoke detection. Moreover, it can also be used for satellite imagery smoke detection.

Table 3. Performance comparison with state-of-the-art methods on publicly available smoke datasets.

Dataset Model AR (%) DR (%) FAR (%) RR (%) F1
HLTPMC [55]  98.48 99.82 241 96.50 98.13
ZF-Net [56] 97.18 94.02 0.72 98.86 96.38
Yuan,_Smoke [9] MCCNN [8] 99.71 99.82 0.36 99.46 99.64
uan_omoke DNCNN [9] 97.83 95.29 0.48 99.25 97.23
DCNN [15] 99.71 99.46 0.12 99.82 99.64
AFN 99.78 99.64 0.12 99.82 99.73
SmokeNet [53]  92.75 94.68 7.59 68.99 79.82
USTC_SmokeRS [53] AFN 96.98 98.07 321 84.23 90.62
Fire_Smoke [54] AFN 96.67 96.00 3.00 94.12 94.05

4.3. Ablation Studies
4.3.1. AFN with Different Attention Modules

To explore the impact of different attention modules on our approach. We compared
the performance of the spatial attention module (SAM), the channel attention module
(CAM), the squeeze-and-excitation network (SENet) [27], the convolutional-block attention
module (CBAM) [31], the criss-cross attention module (CCNet) [30], the convolutional-
triplet attention module (CTAM) [32], and the multiscale-channel attention module (MS-
CAM) [21]. The AR and loss of 100 tests are shown in Table 4. It is clear to see that the
attention module can improve the performance of our method. The AFN with MS-CAM
achieved the highest accuracy (91.85%) and the lowest loss (0.44).

Table 4. Performance comparison of different attention modules.

Accuracy

Model Top-1 (%) Top-3 (%) Loss
AFN_Without 89.58 + 1.47 98.05 + 0.71 0.50  0.05
AFN_CBAM 89.89 + 3.13 98.46 + 0.85 0.80 + 0.43
AFN_CCNet 9021 +2.16 98.65 + 0.27 0.47 + 0.05
AFN_CTAM 91.69 + 1.57 99.25 + 0.17 0.44 £ 0.04
AFN_MS-CAM 91.85 + 0.76 98.92 + 0.27 0.44 + 0.03
AFN_SENet 90.37 + 0.89 98.49 + 0.43 0.68 + 0.38
AFN_CAM 90.10 + 1.52 9691 + 1.16 0.97 £ 0.01
AFN_SAM 91.72 + 0.60 98.84 + 0.24 0.46 + 0.02

In order to evaluate the class discriminatory ability of the attention module, we also
used gradient-weighted class activation mapping (Grad-CAM) and guided Grad-CAM [57]
to visualize the regions of the smoke image that provide support for a particular prediction.
The visualization results are shown in Figure 6, wherein Grad-CAM (1) and Grad-CAM
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(2) represent the attention maps of AFN with MS-CAM and AFN without the attention
module, respectively. The AFN with MS-CAM shows precise smoke localization to support
predictive performance, while the Grad-CAM can even localize small amounts of smoke
(Figure 6d-f).

Guided Guided
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Figure 6. Grad-CAM and guided Grad-CAM visualization of randomly selected (a-f) smoke images.

4.3.2. Impact of Adversarial Feature Adaptation Network

To evaluate the effectiveness of the domain-adversarial training method, we compared
the performance of different domain-adversarial CNNs. The training and test results are
shown in Figure 7, where Figure 7a is the training accuracy curve and Figure 7b is a box
plot of the accuracy for 100 tests. It can be seen that our method starts to converge after
5 epochs, which is significantly faster than the network trained from scratch. AFN, DDCN,
and ASCN train with adversarial feature adaptation network, whereas the other methods
train without. Networks with domain-adversarial training methods outperform those
without, and our method achieved the highest AR (91.85 & 0.76%). The AR of the Dual-Net
(85.02 £ 1.26%) is higher than that of the pre-trained DenseNet-169 (79.45 £ 0.76%) and
scratch-trained AlexNet (81.45 + 0.86%).
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Figure 7. Results of (a) training curves and (b) test box plot on FF_Smoke dataset. The line in the box
of Figure 7b shows the median; the cross indicates the mean; the box extends from the first quartile to
the third quartile; the whisker extends from the box by an inter-quartile range of 1.5; and the outliers
are marked with a circle.

The above experimental results show that the Dual-Net can learn more representative
features than classical CNNs. Moreover, the domain-adversarial training method can also
further improve the detection accuracy. Therefore, we propose a novel dual-channel convo-
lutional neural network with domain-adversarial training for forest fire smoke detection.

5. Conclusions

In this paper, we propose an adversarial fusion network for forest fire smoke detection.
Unlike conventional deep smoke detection methods, our approach is able to produce both
abstract features and detailed features through the feature fusion network. Moreover, the
adversarial feature adaptation network is employed to eliminate discrepancies between the
base domain and the stylized domain. Extensive experiments on smoke datasets obtained
from terrestrial and satellite systems show that our method achieves excellent robustness
and generalization compared to existing deep-learning approaches.
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