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Abstract: This paper proposes a method for the online parameter identification of nonlinear ship
motion systems. First, the motion system of a ship is nonlinear, and in the course of sailing, the motion
parameters of the ship will change with the change of the motion state of the ship and the sailing
environment. To achieve the effect of real-time identification, we adopted an online receding horizon
identification method. Second, identification parameters are the essential elements in the navigation
control of intelligent merchant ships, and high-precision identification results can achieve better
control effects. Therefore, we used an unscented Kalman filter (UKF) that has simpler mathematical
structure and higher feedback efficiency than other identification algorithms listed in this paper, such
as extended the Kalman filter, Kalman filtering and Ordinary Least Squares, as the identification
scheme design algorithm, which is applied to ship motion system identification. Then, to solve
the problem of significant identification errors in complex environments, we design a navigation
identification framework combining a UKF and rolling wavelet denoising to realize the effect of the
online identification of ships. Finally, a Korea Research Institute of Ships and Ocean Engineering
(KRISO) Container Ship (KCS) was used for a self-navigation model experiment and data collection.
The collected data and identification data were compared and analyzed. By comparing different
identification algorithms before and after denoising, it was verified that the UKF algorithm proposed
in this paper is superior relative to other traditional algorithms in identifying ship motion systems.

Keywords: unscented Kalman filter; nonlinear ship motion system; online identification;
wavelet denoising

1. Introduction

In recent years, a series of research achievements has been achieved with respect to the
motion control of intelligent ships. With the improvement of ship motion control effects,
research on the precision of ship motion models has been deepened. Because the nonlinear
characteristics of a ship motion model and the time variability of ship motion parameters
will be enhanced in complex sea areas, the online identification of ship motion systems is
of great significance to ship control. This paper focuses on improving online identification
methods and the identification’s accuracy and feedback speed for ship motion systems.

In terms of identification methods, the traditional Maneuvering Modeling Group
(MMG) and Abkowitz models are used as structures, and the hydrodynamic derivatives
need to be solved. An empirical formula’s calculation is rapid, but accuracy depends on
accumulated data and ship type. The identification accuracy is more dependent on the
model, and the initial value is mainly represented by the least squares method or maximum
likelihood coefficient method. The research team of Zou et al. applied a support vector
machine and least squares method to identify the hydrodynamic coefficient in an Abkowitz
model, a maneuverability index in the response model, and a 4-DOF ship motion model
in combination with simulation tests, self-navigation model tests, and constraint model
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tests [1–4]. Due to the time-varying characteristics of ship parameters during sailing, the
sailing environment will interfere with the identification parameters. Xue et al. proposed
a robust nonparametric system identification technology for ship motion models based
on Gaussian process (GP) regression and compared it with the conventional Gaussian
process (CGP) and support vector machine (SVM) methods, proving that the model has
higher accuracy and robustness [5]. With further studies on identification accuracy, new
algorithms represented by neural network algorithms gradually reduce the dependence
on the model. Wang et al. proposed a new multi-output dynamic fuzzy neural network
(MDFNN) to identify ship motion systems from data samples using a dynamic fuzzy neural
network [6].

Based on dynamic fuzzy logic, Moreira and Guedes Soares identified the parameters
in a global model through a recursive neural network method to further improve the
identification accuracy through a neural network [7]. Recently, in order to quantify collision
risks in real operating conditions, a novel risk-informed collision risk awareness approach
was proposed for real-time operating conditions. Under the condition of ensuring the
accuracy of identification, less data are often needed, and identification methods are
transferred from offline to online states. The online identification method comprises
research trend of intelligent merchant ship identification. Yin et al. proposed an improved
fuzzy gath–geva (IFGG) method through the design of a sliding data window, which can
achieve rolling predictions of nonlinear ship motion systems [8]. Additionally, featured
by real-time rolling prediction, Huang et al. adopted a coarse and fine-tuning fixed grid
wavelet network method, improving computational efficiency without significant searches
by optimizing the critical coefficient and wavelet network structure [9]. Yoon and Rhee
used estimation-before-modeling (EBM) technology and extended a Kalman filter method
to estimate the hydrodynamic parameters in an MMG model and achieved good results [10].
Under the continuous optimization of an identification algorithm, Deng et al. compared
the extended Kalman filter (EKF), unscented Kalman filter (UKF) and optimized unscented
Kalman filter (OUKF) algorithms for underwater vehicles, and the algorithm with higher
identification accuracy improved stability [11]. With the continuous improvement of
identification accuracy requirements and the continuous application of new algorithms,
the feedback efficiency of merchant ship identification is continuously enhanced. Zheng
et al. proposed an EKF algorithm to identify the unknown parameters of ship motion
systems online [12]. Reference No. 12 has important reference values for this paper,
including modeling and experimentation. However, the identification accuracy of an
extended Kalman rate algorithm cannot meet the requirements of ship control research
for parameter identification. Therefore, we further optimized the algorithm to improve
identification accuracy.

In this paper, a UKF is used as an identification algorithm. Compared with an EKF, it
does not need to linearize a nonlinear ship motion system, and the process of calculation
and solution is simplified. By combining wavelet denoising with a sliding time window, our
designed rolling denoising frame can realize the synchronous operations of the experiment,
as well as identification, to achieve online identification. A UKF combines unscented
transformation and a Kalman filter in the identification method and searches for a Gaussian
distribution, which approximates the actual distribution by dealing with the nonlinear
transmission problem of the mean and covariance of the parameters estimated and avoids
accuracy lost in the linearization process of an EKF. At the same time, the linearization
step is omitted, the identification efficiency of the system is improved, and the algorithm
problem caused by time delay is solved.

The contributions of this paper are as follows:

(a) The time-varying problem of motion parameters is overcome. Based on a self-
navigation model test, unknown parameters in the ship motion system are identified
online by using a combination of receding horizon denoising and a UKF algorithm
while collecting relevant data of the ship’s motion system.
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(b) The nonlinear problem of the ship motion system is overcome and the motion system
of a specific type of ship model is identified based on a nonlinear ship motion model.
The practical application of the UKF in parameter identification provides data support
for ship control problems.

The rest of this paper is arranged as follows: Section 2 is the process of system model-
ing, Section 3 is a description of the online identification modeling and UKF application,
Section 4 is the experimental description, and Section 5 provides conclusions of the en-
tire paper.

2. System Modeling

The motion of a ship in water has six degrees of freedom in total. However, in the
process of studying the horizontal motion of a ship, we normally only consider the planar
motion of the ship with three degrees of freedom, namely, the yaw, pitch and roll, which
are also the most common ship motion control models [13].

The nonlinear 3-DOF ship motion model used in this paper was first proposed by Thor
I. Fossen and later adjusted and improved by Cui et al. [14,15]. Its establishment process is
described as follows.

First, a 6-DOF coordinate system, as shown in Figure 1, is established, including the
Earth’s coordinate system OE-XEYEZE located on the undisturbed free surface of the Earth’s
surface and the ship’s coordinate system Ob-XbYbZb. In the Earth coordinate system, the
positive direction of the XE-axis is due north, the positive direction of the YE-axis is due east
and the positive direction of the ZE-axis is toward the Earth’s center. In the ship coordinate
system, it is stipulated that origin Ob is located at the barycenter of the ship or the center
of the ship (the intersection of the middle longitudinal section, middle transverse section
and the designed waterplane), the positive direction of the Xb-axis points to the bow, the
positive direction of the Yb-axis points to the starboard side of the ship and the positive
direction of the Zb-axis is perpendicular to the Ob-XbYb plane downward, where x is the
longitudinal position of the ship, y is the transverse position of the ship, z is the vertical
position of the ship and σ is the rudder angle of ship.
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Without considering complex external forces such as wind, waves and flow in the
processes of ship motion, the above 3-DOF model can be further simplified, and the 3-DOF
motion model used for identification in this paper can be finally obtained [12].

.
x = ucos(ϕ)− vsin(ϕ)
.
y = usin(ϕ) + vcos(ϕ)

.
u = m22

m11
vr− Xu+Xu|u| |u|

m11
u + τu

m11
.
v = −m11

m22
ur− Yv+Yv|v| |v|

m22
v

.
ϕ = r

.
r = m11−m22

m33
uv− Nr+Nr|r| |r|

m33
r + τr

m33

, (1)

In Equation (1), m is the ship mass; m11 = m− X .
u, m22 = m− Y .

v and m33 = m− N.
r

are the inertia terms including added mass; and d11 = −Xu −Xu|u||u|, d22 = −Yv −Yv|v||v|
and d33 = −Nr − Nr|r||r| denote the hydrodynamic damping in the surge, sway and
yaw directions, respectively. X .

u, Xu and Xu|u| are linear damping coefficients, added
mass and quadratic damping in surge, respectively. Y .

v, Yv and Yv|v| are linear damping
coefficients, added mass and quadratic damping in sway, respectively. N.

r, Nr and Nr|r| are
the linear damping coefficients, added mass and quadratic damping in yaw, respectively.
These hydrodynamic parameters change with changes in the external environment and
ship motion state and have substantial time variability, which will lead to an increase in
identification error, where u is the velocity along the ship’s bow direction, v is the velocity
perpendicular to the ship’s bow direction, ϕ is the angle in yaw and r is the angular velocity
in yaw.

3. Online Identification Modeling and UKF Application
3.1. Online Identification Framework Design

This section describes the idea of modeling and experimentation and describes the
method of using a UKF to make identifications from a macro level. Figure 2 shows the idea
of the algorithm and the operating principle of the experiment.

First, the state and control quantities collected by the ship’s various equipment are
taken as the input. Second, after rolling denoising, the state and control quantities are used
in UKF to identify the model parameters. Finally, after calculating the corresponding error,
the identification result is output. To improve the stability of the identification results, this
research adopts a sliding time window method for data input. t is taken as the window
length, time k is taken as the real sampling time, time k − i is taken as the median sampling
time, the sliding time window can be traced back to k − 2i moment and the average value
of the entire interval is used for judgment. At time k, the estimated values of the system
output parameters are the identification result at the moment of k− i. Since the ship motion
has a considerable time delay, a relatively short delay will not affect the control effect. A
sailing ship will be affected by external disturbances such as wind and water fluctuation
and the error factors of the measuring instrument itself, leading to unavoidable errors
in the measured data. The time sever curves’ continuity and smoothness of u, ν and r
are poor, affecting the identification accuracy to a certain extent. To solve this problem,
wavelet analysis and a sliding time window are combined in this study to carry out real-
time denoising of the u, ν and r values obtained from the experiment [12]. Then, the
identification results of the denoising and original data are compared as system inputs
in the self-navigation experiment. We first extract the features of the input sequence and
then use low-pass filtering to reconstruct the collected feature signals. The signal with
noise is decomposed into wavelet decomposition coefficients and compared with a set
threshold value. The coefficients that are less than the threshold values are removed, and
the remaining coefficients are transformed using an inverse wavelet transform. Finally, we
obtain the denoised signal.
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Figure 2. Principle of the self-propelled model test and online identification.

We carry out two-layer denoising for the wavelet and synchronize the wavelet analysis
with the filter. In Figure 3, p + 1 sampling time is taken as the base point. For each sampling
time, denoising is carried out for the first p time, and the parameter value after denoising
at this time is taken as the input value of filtering to achieve the effect of synchronous
rolling with the filter. We compared the identification results with wavelet denoising and
determined whether the identification accuracy of the output parameters was improved by
rolling denoising. After wavelet denoising, the smoothness and continuity of the curves
were obviously improved.

3.2. Application of the UKF Algorithm

An unscented Kalman filter adopts the framework of a linear Kalman filter and
uses the unscented transform (UT) to address the nonlinear transmission problem of the
mean and covariance of the parameters to be estimated without linearizing a nonlinear
model [16]. This overcomes the problem of linearization error that is inevitably introduced
in Taylor’s expansion of a nonlinear model by an EKF algorithm. The method of unscented
transformation takes several sampling points in the original state distribution and assigns
some weight so that the mean and covariance of these sampling points are equal to the
mean and covariance of the original state distribution (that is, to obtain a probability density
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distribution similar to the original state distribution), replacing the nonlinear system. The
specific algorithm principle is described as follows.
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Take a nonlinear system y = f (x). The state vector x is an n-dimensional random
variable and its mean value x and variance P are known. Then, 2n + 1 sampling points
X and corresponding weights ω can be obtained using an unscented transformation to
calculate the statistical characteristics of y.

(1) Calculate 2n + 1 sampling points, also called sigma point sets:
X(0) = X, i = 0

X(i) = X +
(√

(n + λ)P
)

i
, i = 1 . . . n

X(i) = X−
(√

(n + λ)P
)

i
, i = n + 1 . . . 2n

, (2)

where
(√

P
)T(√

P
)

= P.
(√

P
)

i
represents column i of the root of the matrix. The first

sigma point X to (0) is the mean of the inputs.
(2) Calculate the corresponding weights of these sampling points.

ω
(0)
m = λ

n+λ

ω
(0)
c = λ

n+λ +
(
1− α2 + β

)
ω
(i)
m = ω

(i)
c = 1

2(n+λ)
, i = 1 . . . 2n

, (3)

In the above formula, ωm and ωc represent the weight of the mean value and the
weight of the covariance, respectively, and their superscript represents the sampling
time point.

λ = α2(n + κ)− n, (4)

Parameter λ is a scaling parameter, scaling factor α controls the distribution status of
sampling points and a typical value for α is in the range of 10−4 to 1. κ denoted regulatory
factor, which typically ensures that matrix (n + λ) is a semi-positive definite matrix. A
larger κ will choose sigma points far from the mean, whereas a smaller κ will choose points
close to the mean. The optional parameter β ≥ 0 is a nonnegative weight coefficient, and its
function combines the dynamic differences of higher-order terms in the equation so that the
influence of higher-order terms can be taken into account. The unscented transformation is
the core of the algorithm. Given a set of sigma points and a transfer function, we need to
calculate the new mean and covariance of sigma points so that the new positions of the
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sigma points are continuously obtained by calculating nonlinear function covariance and
the mean of sigma points. {

X = ∑i ω
(i)
m Xi

λ = ∑i ω
(i)
m
(
Xi − X

)(
Xi − X

)T , (5)

When a Kalman filter is used for system identification and parameter estimation,
the general method is to replace the system state quantity in the state matrix with the
parameter to be estimated. An observation array is composed of all known quantities
that can be measured. Therefore, in this study, the system identification is as follows: in
the study of system state matrix X = [X1, X2,..., X9] T , the parameters in the observation
matrix are the ship exercise parameters and coordinates, namely, Z = [X Y, u, ν, ϕ, r] T .
Noise W and V are assumed to be Gaussian white noise with a mean of 0 and variance
of 1 × 10−4. In the algorithm, we need to input state transition matrix F as the causal
relationship between the times before and after the process of data prediction. At the same
time, the values of the system parameters estimated at each moment are independent of
each other. Therefore, the state transition matrix F is set as a unit matrix, where F = diag
(1,1,1,1,1,1,1,1,1). Only the influence of external noise interference and observation amount
on the estimated parameters is considered. Considering a nonlinear ship system equation
of Gaussian white noise, to explain the identification process of UKF more clearly, we
introduce the state transition process of the observation matrix in detail based on the ship’s
motion model. In this section, we take the ship motion system model as the transformation
object, and the following is a description of the transformation process of the observation
equation of the ship’s motion system.

First, we solve the first derivative of the ship’s motion parameters and coordinates.

.
Z =



.
x
.
y
.
u
.
v
.
ϕ
.
r

 =



ucos(ϕ)− vsin(ϕ)
usin(ϕ) + vcos(ϕ)

m22
m11

vr− Xu+Xu|u| |u|
m11

u + τu
m11

−m11
m22

ur− Yv+Yv|v| |v|
m22

v
r

m11−m22
m33

uv− Nr+Nr|r| |r|
m33

r + τr
m33


, (6)

Second, the observation matrix is differentiated.

Xk+1 = Xk +
∫ tk+1

tk



.
x(t)
.
y(t)
.
u(t)
.
v(t)
.
ϕ(t)
.
r(t)

dt, (7)

Then, the differential equation of the state transition is further expanded.

xk+1 = xk+

uk
∫ tk+1

tk
cos
(

ϕk +
.
ϕk·(t− tk)

)
dt− vk

∫ tk+1
tk

sin
(

ϕk +
.
ϕk·(t− tk)

)
dt

uk
∫ tk+1

tk
sin
(

ϕk +
.
ϕk·(t− tk)

)
dt + vk

∫ tk+1
tk

cos
(

ϕk +
.
ϕk·(t− tk)

)
dt

vkrk
m22
m11

∆t− uk|u|k
Xu+Xu|u|

m11
∆t + τu·k

1
m11

∆t

−ukrk∆t− vk|v|k
Yv+Yv|v|

m22
∆t

r∆t + ϕk

ukvk
m11−m22

m33
∆t− rk|r|k

Nr+Nr|r|
m33

∆t + τr·k
1

m11
∆t


,

(8)
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The following integral equation is solved.

xk+1 = xk+

uk.
ϕk

(
sin
(

ϕk +
.
ϕk∆t

)
− sin(ϕk)

)
+ vk.

ϕk

(
cos
(

ϕk +
.
ϕk∆t

)
− cos(ϕk)

)
uk.
ϕk

(
− cos

(
ϕk +

.
ϕk∆t

)
+ cos(ϕk)

)
+ vk.

ϕk

(
sin
(

ϕk +
.
ϕk∆t

)
− sin(ϕk)

)
vkrk

m22
m11

∆t− uk|u|k
Xu+Xu|u|

m11
∆t + τu·k

1
m11

∆t

−ukrk∆t− vk|v|k
Yv+Yv|v|

m22
∆t

r∆t + ϕk

ukvk
m11−m22

m33
∆t− rk|r|k

Nr+Nr|r|
m33

∆t + τr·k
1

m11
∆t


,

(9)

Then, we provide the noise equation V(k) for Z(k).

V(k) =
[

Va,k
Vt,k

]
, (10)

The noise matrix at the position is described as follows.

Va,k ∼ N
(

0, σ2
a

)
, (11)

The angle and velocity noise matrix is described as follows.

V ∼ N
(

0, σ2.
r

)
, (12)

After adding the noise matrix, the complete ship identification model is described as
follows.

xk+1 = xk+

uk.
ϕk

(
sin
(

ϕk +
.
ϕk∆t

)
− sin(ϕk)

)
+ vk.

ϕk

(
cos
(

ϕk +
.
ϕk∆t

)
− cos(ϕk)

)
uk.
ϕk

(
− cos

(
ϕk +

.
ϕk∆t

)
+ cos(ϕk)

)
+ vk.

ϕk

(
sin
(

ϕk +
.
ϕk∆t

)
− sin(ϕk)

)
vkrk

m22
m11

∆t− uk|u|k
Xu+Xu|u|

m11
∆t + τu·k

1
m11

∆t

−ukrk∆t− vk|v|k
Yv+Yv|v|

m22
∆t

r∆t + ϕk

ukvk
m11−m22

m33
∆t− rk|r|k

Nr+Nr|r|
m33

∆t + τr·k
1

m11
∆t


+



1
2 (∆t)2Va,k cos(ϕ)
1
2 (∆t)2Va,k sin(ϕ)

1
2 (∆t)2·Va,k
1
2 (∆t)2·Va,k
1
2 (∆t)2·V.

r,k
1
2 (∆t)2·V.

r,k


,

(13)

Using the above matrix setting, the nonlinear ship motion model is arranged into the
state space form specified by the Kalman filter algorithm. After setting the state space,
the following work was performed to find the state of the system: that is, to estimate the
minimum variance of the parameters to be estimated. This work is achieved by using the
recursive formula of the Kalman filter.

The following state space is used to represent a nonlinear system:{
X(k + 1) = f (X(k), W(k))

Z(k) = h(X(k), V(k))
, (14)
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where k is a discrete-time point and f is the state transition function. h is the observation
function; W and V are system noise and observation noise, respectively, and their variances
are Q and R, respectively.

Based on the principle of unscented transformation and the above nonlinear state
space, the basic steps of the UKF algorithm are as follows:

1. Obtain a set of sampling points and their corresponding weights using Formulas (2)
and (3).

X(i)(k|k) = [X̂(k|k)X̂(k|k) +
√
(n + λ)P(k|k)X̂(k|k)−

√
(n + λ)P(k|k)], (15)

ω(i)(k|k) =
[

λ

n + λ

1
2(n + λ)

]
, (16)

2. Calculate the one-step prediction of the 2n + 1 sampling points, i = 1,2... n + 1,2.

X(i)(k + 1|k) = f [k, X(i)(k|k)], (17)

3. Calculate the one-step prediction and covariance matrix of the system state obtained
from the weighted sum of the predicted values of the sigma point set.

X̂(k + 1|k) = ∑2n
i=0 ω

(i)
m X(i)(k + 1|k), (18)

P(k + 1|k) = ∑2n
i=0 ω

(i)
m [X̂(k + 1|k)− X(i)(k + 1|k)] [X̂(k + 1|k)− X(i)(k + 1|k)]

T
+ Q , (19)

4. According to the one-step predicted value of the system state, an unscented transfor-
mation is used again to generate a new set of sigma points.

X(i)(k + 1|k) = [X̂(k + 1|k) X̂(k + 1|k) +
√
(n + λ)P(k|k) X̂(k + 1|k)−√

(n + λ)P(k|k), (20)

5. By substituting the new set of sigma points into the observation equation, the one-step
predicted value of the observed quantity can be obtained, i = 1,2... 2n + 1.

Z(i)(k + 1|k) = h[k, X(i)(k + 1|k)], (21)

6. By summing the one-step prediction observation value of the sigma point set, the
one-step prediction means, covariance and one-step prediction covariance of the
system state are obtained.

Z(k + 1|k) = ∑2n
i=0 ω

(i)
m Z(i)(k + 1|k), (22)

PZkZk = ∑2n
i=0 ω

(i)
c [Z(i)(k + 1|k)− Z(k + 1|k)] [Z(i)(k + 1|k)− Z(k + 1|k)]

T
+ R , (23)

PXkZk = ∑2n
i=0 ω

(i)
c [X(i)(k + 1|k)− Z(k + 1|k)] [Z(i)(k + 1|k)− Z(k + 1|k)]

T
, (24)

7. Calculate Kalman filter gain.

K(k + 1) = PXkZk P−1
XkZk

, (25)

8. Finally, the state and covariance update of the system are calculated.

X̂(k + 1|k + 1) = X̂(k + 1|k) + K(k + 1)[Z(k + 1)− Ẑ(k + 1|k)], (26)
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P(k + 1|k + 1) = P(k + 1|k)− K(k + 1)PZkZk KT(k + 1), (27)

It can be seen that the state probability density function obtained using the UT approx-
imation is a statistical approximation rather than a solution. At the end of this section, the
flow of the UKF algorithm is shown in Algorithm 1:

Algorithm 1 Unscented Kalman filter identification algorithm.

Principle of the UKF Online Identification Algorithm
1: Set the sampling rule of sigma points
2: Set the weight of sampling points
3: Set the original initial value of the parameters
4: Obtain the initial filter value
5: for i = 1:n
6: Set state space X(k) Z(k)
7: Enter the ship movement parameters u, ν, r, τu and τr
8: Sliding time window (1)
9: Unscented Kalman filter (1)
10: Wavelet denoising
11: Sliding time window (2)
12: Unscented Kalman filter (2)
13: end
14: Calculated identification error

τu and τr are the longitudinal torque of the propeller and the steering torque of the
rudder in the x-direction, respectively. The expressions for these two parameters are as
follows:

τu = η0KTρD4n2, (28)

τr = 3.9LARV2
s sin2σ, (29)

where KT is the thrust coefficient, η0 is the interaction coefficient between the propeller and
the hull, D is the propeller diameter, σ is the rudder angle, n is the propeller speed, AR is
the rudder area, Vs is the shipping speed and L is the total length of the ship.

4. Experiment Description
4.1. Free-Running Test Platform and Design

The function of the test platform is to control the ship model and carry out the
corresponding movement according to the long-range control instructions input by a shore
machine. In this process, the relevant instruments on the ship model obtained the ship
motion data and used wireless transmission equipment to transmit with the purpose of
obtaining the initial ship model’s motion state and parameters. The main components are a
central control communication system, propeller, steering gear, power supply, gyroscope,
inertial navigation system, GPS, wireless antenna and transmission equipment [17]. To
ensure the authority and effectiveness of the test results, the ship model in this test is based
on the Korea Research Institute of Ships and Ocean Engineering Container Ship (KCS) of
the SIMMAN 2008 standard built to a scale ratio of 1:75.5 [18]. The material of the test hull
is glass fiber-reinforced plastic, the material of the test appendage is aluminum alloy, the
rudder is a balance and suspension rudder, its section is NACA0018 and the material of
the propeller model is copper. The overall scales of the ship model and related scale of the
propeller and rudder are shown in Table 1. The model’s entity and experimental platform
system are shown in Figures 4 and 5, respectively.

In this experimental design, the speed of the test ship was set to 1.1 m/s, the sampling
interval was 0.1 s and the total sampling time was 57.5 s. Z-shaped steering tests of ±10◦,
±15◦ and ±20◦ were carried out, and the right 20◦ Z-shaped steering test was finally
selected as the system’s input data for identification. At the beginning of the long-range
control ship model steering test, a shore machine records the relevant parameters and
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online identification until the test is completed. Then, we compared the collected data with
the navigation identification results.

Table 1. Physical model parameters.

Parameters Real Ship Free-Running Ship

Hull parameter

Lpp (m) 230.0 3.0464
Lwl (m) 232.5 3.0791

Breadth (m) 32.2 0.4265
Depth (m) 19.0 0.2517
Draft (m) 10.8 0.1430

Displacement (m3) 52,030 0.1209
Longitudinal center on buoyancy (%) −1.48 −1.48
Hull surface area without rudder (m2) 9530 1.6719

Block coefficient (Cb) 0.651 0.651
Midship Section coefficient (CM) 0.985 0.985

Rudder parameter

S of the rudder (m2) 115 0.0202
Projected area of rudder side (m2) 54.45 0.0096

Rudder height (m) 9.90 0.1311
Mean chord (m) 5.50 0.0728

Mean thickness (m) 0.99 0.0131
Turning rate (deg/s) 2.32 20.2

Propeller parameter

Type KP505 KP505
No. of blades 5 5
Diameter (m) 7.9 0.105

Pitch ratio of 0.7R (P/D) 0.997 0.997
Section line α = 0.8 α = 0.8
Hub ratio 0.180 0.180
Rotation Right hand Right hand

Expended Area ratio (AE/A0) 0.800 0.800
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4.2. Contrasting Experiments before and after Denoising

Based on Zheng’s experimental results, the UKF and EKF algorithms were compared to
highlight the difference between the two algorithms [12]. Similarly to the EKF identification
process, two sets of initial filtering values should be set first. The debugged initial values of
the EKF are directly used here.

Xoriginal = [100; 300; 100; 7.7; 7.7316; −158; −161.5477; −437; −438.4421], (30)

Xdenoising = [100; 300; 100; −13; −13.1252; 837; 844.9488; −136; −136.3903], (31)

The covariance matrix of parameters is also set as the unit matrix.

PUKF = diag [1,1,1,1,1,1,1,1,1], (32)

Unlike EKF, some parameters in the untraced transform should also be preset. Accord-
ing to some research examples, the values are α = 1; β = 2; κ = 1. Second, both simulation
experiments are carried out online, and the data were collected and updated in real time.
The motion parameters and coordinate track identification results obtained based on the
original results, and denoised data are shown in Figures 6 and 7, respectively.

As shown in Figure 6, when UKF is used for identification, the accuracy of the identifi-
cation results obtained based on the denoised data is higher than that based on the original
data, which is consistent with the KF and EKF. Therefore, the following conclusions can
be drawn: real-time denoising of ship motion data using wavelet analysis can effectively
reduce the interference of the external environment on identification results and improve
the identification accuracy of hydrodynamic derivatives. By comparing the identification
results of the three algorithms, it can be seen that UKF has the best fitting time curve
for each motion parameter, and the identification error is the smallest among the three
algorithms. The hydrodynamic derivative identification results obtained from the two
groups of tests are shown in Figures 8 and 9.

Figures 8 and 9 show that the hydrodynamic derivative identification results obtained
based on the denoised data have better convergence, a faster convergence rate and are
more stable.
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4.3. Comparison of the Identification Effects to Other Algorithms

To prove the accuracy of the Kalman filter in identifying the ship’s motion system, we
use the Ordinary Least Squares (OLS) algorithm to identify the system based on the same
self-navigation model test data and ship motion model as a comparison of the three Kalman
filter algorithms [19]. After obtaining the identification results of the least squares method
and linear Kalman filter, they are compared with each Kalman filter. The time curves
of each parameter are shown in Figure 10. As demonstrated above, denoising the ship
motion data can effectively improve identification accuracies. This study only compares
identification results obtained by each algorithm based on the denoised data.
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In the experiment of the last stage, we adopted an EKF, KF and the least squares
algorithms and compared the corresponding identification results. On this basis, we added
the result of the UKF algorithm and conducted the following analysis. First, we set the
starting point as (−19.5, 8). The trajectory can be seen from Figure 9, and there is no
significant difference in the fitting of the coordinate track in the first half, but at the end,
the OLS algorithm showed an apparent deviation trend compared with other algorithms,
and the KF algorithm slightly deviated from reference, while UKF maintains a high fitting
degree with the actual ship track at the end. Second, it can be seen from the change curves
of u, ν and r that the KF’s fitting of the ship motion parameters is poor, especially at the
data turning point and peak value. Finally, although EKF follows well most of the time, it
sometimes fluctuates, and its identification stability is weaker than that of UKF.

To compare and evaluate the identification effects of several algorithms, the root
mean square error (RMSE) and distance between two points are introduced to calculate
the estimation error and coordinate track errors of u, ν and r [20]. The RMSE calculation
formula is as follows.

RMSE =

√
1
n ∑n

i=1(ŷi − yi)
2, (33)

In this online identification experiment, ŷi indicates the estimated value of u, the disk
and the disk at i (that is, the filter value). yi indicates the actual values of u, ν and r at i. The
error table of the above identification tests is shown in Table 2.

By comparing the denoised data of each method with the original data, we found that,
on the one hand, the parameter estimation error of each algorithm is reduced to a certain
extent, especially the identification error of the coordinate track, which is significantly
reduced after the wavelet denoising of the ship’s motion data collected in the experiment.
By observing the difference between the denoised data and the original data, we can also
determine that denoised data will produce specific errors according to different methods.
Among them, the UKF’s denoising conditions are optimal in four cases. On the other
hand, in terms of the identification error of the motion parameters, UKF has the highest
identification accuracy, followed by EKF, KF and OLS, which have low identification
accuracy, but system identification has also been successfully carried out. It can be seen
that the UKF method is superior in system identification, which proves its feasibility and
accuracy in ship motion system identification.



Machines 2022, 10, 312 16 of 17

Table 2. The error mean of each algorithm in the entire identification process.

Algorithm System
Input

Surge
Velocity

(m/s)

Sway
Velocity

(m/s)

Yaw Velocity
(m/s)

Coordinate
Distance (m)

EKF
Denoised

data 0.0032 0.0049 0.1852 0.1122

Original data 0.0042 0.0046 0.2344 1.8444

KF
Denoised

data 0.0037 0.0150 0.4869 0.1517

Original data 0.0063 0.0135 0.5508 1.5448

OLS Denoised
data 0.0253 0.0537 0.5319 0.6668

UKF
Denoised

data 0.0024 0.0036 0.1042 0.0850

Original data 0.0030 0.0047 0.1480 0.1050

5. Conclusions

In this paper, UKF is used as a tool, a rolling identification framework is built and the
parameters of a ship motion system are identified online through a free self-navigation
experiment. The combination of wavelet denoising and a sliding time window allows
identification to reach an online rolling state. In addition, the identification results show
that the online identification accuracy of the nonlinear ship motion system based on UKF
is higher than that of other Kalman filtering algorithms. It more effectively solves the
time-varying problem of ship parameters in sailing and indirectly improves the safety and
economy of ship sailing by improving the identification accuracy. It provides essential
services for the future intelligent navigation control of ships.
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