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Abstract: Wafer map inspection is essential for semiconductor manufacturing quality control and
analysis. The deep convolutional neural network (DCNN) is the most effective algorithm in wafer
defect pattern analysis. Traditional DCNNs rely heavily on high quality datasets for training. How-
ever, obtaining balanced and sufficient labeled data is difficult in practice. This paper reconsiders
the causes of the imbalance and proposes a deep learning method that can learn robust knowledge
from an imbalanced dataset using the attention mechanism and cosine normalization. We interpret
the dataset imbalance as both a feature and a quantity distribution imbalance. To compensate for
feature distribution imbalance, we add an improved convolutional attention module to the DCNN
to enhance representation. In particular, a feature-map-specific direction mapping module is devel-
oped to amplify the positional information of defect clusters. For quantity distribution imbalance,
the cosine normalization algorithm is proposed to replace the fully connected layer, and classifier
fine-tuning is realized through a small amount of iterative training, which decreases the sensitivity to
the quantitative distribution. The experimental results on real-world datasets demonstrate that the
proposed method significantly improves the robustness of wafer map inspection and outperforms
existing algorithms when trained on imbalanced datasets.

Keywords: wafer map classification; convolutional neural network; imbalanced dataset; attention
mechanism; cosine normalization

1. Introduction

Wafers are important carriers for semiconductor manufacturing, and their production
process is complex and precise. Wafer production requires a number of processes, such
as dissolution of silica sand, purification, crystal drawing, slicing, and cutting. Then,
lithography, ion implantation, etching, heat treatment and other operations generate chips
(also known as grains) on the wafer. Any fault may result in a product exception. Preceding
chip slicing and packaging, the wafer is usually subjected to a probe test, which checks
the electrical properties of the grains and then labels the failed grains on a wafer map
for technical analysis. Inspection of the wafer map is an important way for improving
product yield and evaluating the manufacturing process [1]. When an exception occurs, the
defective grains gather in a distribution pattern on the wafer, allowing engineers to trace the
cause of the failure based on the type of defect cluster. Common wafer map defect patterns
in manufacturing include None, Edge-Ring, Edge-Local, Center, Local, Scratch, Random, Donut
and Near-Full patterns, which are included in the public WM-811K [2] real-world dataset.
Figure 1 illustrates the examples of typical patterns, each of them reflects specific process
failure information. For example, the Center pattern means that the mechanical polishing is
uneven, or the pressure of the liquid is abnormal. Abnormal temperature control during
annealing may lead to an Edge-Ring pattern. The Scratch pattern indicates an exception in
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the moving or cutting processes. Note that the None pattern is a normal pattern but still
contains defective grains with random distribution. This is caused by cleaning problems in
cleaning rooms, which are expensive to eliminate completely; thus, these defective grains
are often considered noise.

Figure 1. Typical wafer map defect patterns in the WM-811K dataset.

The current ways of wafer map inspection rely heavily on manual eye inspection.
It is necessary to replace this method, which has a high labor cost and low efficiency,
with an intelligent fault diagnosis system. Some automatic detection techniques have not
been widely used in wafer testing because existing analysis algorithms cannot achieve
satisfactory accuracy of defect pattern recognition. Recently, deep learning-based methods
have made unprecedented progress, but the related research still remains in the theoretical
stage. The main obstacle is that it is difficult to obtain a high-quality dataset for training.
The available data obtained in industrial scenarios are usually small and imbalanced, which
hinders the application of data-driven deep learning technologies [3].

Previous studies aimed at solving the problem of imbalanced datasets mainly used
data augmentation to expand the few shot categories [4–6]. This is based on a hypothesis
that the model is weak in recognition of categories with few shot samples. However, we
found that deep learning model training based on the original dataset may have a high
detection accuracy for the few shot categories. In Figure 2, the column graph shows the
quantity distribution of labeled wafer maps in the WM-811K dataset (the samples are
divided according to the ratio of training set: validation set: test set = 60%:15%:25%). The
broken line shows the classification accuracy of ResNet-18 trained with the labeled data.
This dataset presents a long-tailed distribution: more header data (categories with large
sample sizes) and less tail data (categories with small sample sizes) [7]. It was found that
although the sample size of Near-Full pattern was small, the recognition rate was high.
While the sample sizes of Edge-Local and Local patterns were large, the recognition rates
were very low. According to the defect cluster characteristics, we argue that the features of
Near-Full pattern are easy to identify and do not need large-scale sample training, while the
features of Edge-Local and Local patterns are difficult to distinguish. We speculate that this
is because the difficulty of feature recognition varies between classes. Therefore, it inspired
us to define this conjecture as the feature distribution imbalance and include it as one of
the perspectives to solve the dataset imbalance.
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Figure 2. Distribution of the WM-811K dataset and classification accuracy of ResNet.

In this paper, we investigate how to train a deep learning model using an imbal-
anced dataset to achieve satisfactory defect-pattern-recognition results. Different from
the methods based on data augmentation [4–6], we argue that the dataset imbalance is
not only caused by the quantity imbalance, but also related to the different difficulties of
feature recognition between classes, which is called feature distribution imbalance. The
proposed method solves the problem of dataset imbalance from both a feature and a quan-
tity distribution imbalance without changing the original dataset. We propose two specific
contributions: (1) an improved convolutional block attention module (CBAM) is proposed
to enhance the wafer map feature representation of the deep learning model and solve
the problem of feature imbalance; (2) a cosine normalization algorithm is proposed to
replace the fully connected layers, which can reduce the sensitivity of the classifier to the
input data distribution and solve the problem of quantity imbalance. Experiments on the
WM-811K dataset showed that both the attention mechanism and the cosine normalization
proposed could significantly improve the performance of the deep learning model trained
with imbalanced datasets.

The rest of the paper is organized as follows: Section 2 presents a literature review of
wafer map defect pattern classification, attention mechanism and long-tailed recognition.
Section 3 introduces the specific implementation scheme, including the ResNet backbone,
the principle of improved attention mechanism and cosine normalization. Section 4 de-
scribes the experimental results, and the last section gives the conclusion.

2. Related Work
2.1. Wafer Map Defect Pattern Classification

Early wafer map defect pattern classification algorithms focused on the feature rep-
resentation of defect clusters and adopted a two-stage strategy of feature representation
and classifier learning. Hwang and Kuo [8] used the principal curve and the binary normal
distribution to model defect clusters and identified defect patterns by comparing the loga-
rithmic likelihood probabilities of the two models. Projective features based on the Radon
transform and geometric morphological features of defect clusters are commonly used.
Wu et al. [2] selected a support vector machine (SVM) as a classifier based on the above
features and achieved an average accuracy of 83.1% for the WM-811K dataset. Piao et al. [9]
proposed a decision tree ensemble learning scheme that has a good ability to distinguish
Center, Donut, Random and None patterns in the WM-811K dataset but has poor recognition
capacity for other patterns. Saqlain et al. [10] found that a single classifier could not adapt
to complex and varied defect patterns, so they proposed an ensemble learning scheme that
extracted multiple feature sets based on geometry, Radon transform and density. They also
built an ensemble learning system of logistic regression, random forest, gradient enhance-
ment and artificial neural network, which achieved high accuracy. Clustering methods
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based on defect characteristics are also widely used, including density-based clustering [11],
K-means clustering [12], and hierarchical clustering [13].

Although traditional methods have led to some progress in the field of wafer map
defect pattern classification, there are still many problems. On the one hand, feature
representation depends too much on manual selection, and feature representation ability
markedly affects model performance. On the other hand, classifier selection and parameter
tuning are complicated, and the ensemble learning scheme greatly increases the complexity
of the model. Recently, deep learning has promoted the upgrading of intelligent manu-
facturing industry. It has been broadly used in the inspection of solar panels [14], fault
diagnosis of bearings [15], detection of unmanned aerial vehicle blade damage [16] and so
on. Moreover, it also provides a new solution for wafer map inspection. Unlike the tradi-
tional feature engineering, a deep convolutional neural network (DCNN) is an end-to-end
scheme with self-learning feature representation and classification abilities, which greatly
improve the model’s performance.

Nakazawa et al. [17] took the lead in trying to use convolutional neural networks in the
field of wafer map inspection. They used a shallow network to train the simulation dataset
and achieved high accuracy with real data. Furthermore, they proposed a defect cluster
segmentation method based on a deep learning model [18]. Their works fully verified the
feasibility of using DCNNs in the field of wafer map inspection. Park et al. [19] used a
Siamese network to learn the feature space of the wafer map and judged specific categories
based on Gaussian mean clustering and outlier detection to reduce the uncertainty caused
by labeling errors. Ensemble convolutional neural network [20] integrates the main weights
of the LeNet, AlexNet and GooleNet classifiers to improve the defect pattern recognition
rate of the wafer map and avoid the deficiency of single model representation. There is
also some computational cost to this. However, deep learning relies excessively on strict
data annotation and sample quality; imbalanced datasets will lead to nonrobust feature
representation. Extension methods based on DCNNs have been widely studied. Maksim [4],
Saqlain [5] and Wang [6] used synthetic samples (generated by simulation) and data
augmentation techniques (randomly rotating, cutting, scaling, etc.) to expand the dataset
of few shot categories, which effectively suppressed the poor generalization and overfitting
problems of the deep learning model. DenseNet-based transfer learning (T-DenseNet)
uses pretrained weights to quickly generalize without requiring excessive data [21]. These
methods only solve the problem of imbalanced datasets from the perspective of quantity
distribution and ignore the problem of large interclass similarity. Our work will address
the problem of dataset imbalance from both feature and quantity distribution perspectives.

2.2. Attention Mechanism

When people observe an object, they tend to quickly scan the global image and then
focus on the key areas to suppress unimportant information, which is the mechanism of
visual attention [22]. The attentional mechanism can help the DCNNs to mine the important
features of the undistinguishable wafer maps to increase the discrimination of interclass
features. The spatial transformer layer proposed by Max et al. [23] has strong shift, rotation
and scaling invariance, which can transform the original spatial information into a new
space and retain the critical feature information. Coordinate attention aims to mine the
relative positional information of important features [24]. The above methods are spatial
domain attention mechanisms. The squeeze-and-excitation network (SENet) mines the
important information of channel features by establishing the dependency relationship
between channels and amplifies the influence of key features on the model decision [25].
Inspired by the size adaptive adjustment of the receptive field in the visual cortex with
external stimuli, Li et al. [26] proposed a selective kernel network (SKNet), which has a
similar structure and mode of action as SENet. However, different receptive field sizes, such
as 3 × 3, 5 × 5 and 7 × 7, were used to obtain salient features. SENet and SKNet are both
channel domain attention mechanisms. The attention mechanism of a single domain tends
to lose important information. CBAM [27] is a hybrid domain method that includes two
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parts: a channel attention module and a spatial attention module, which focus on the “what”
and “where” of the extracted features, respectively. CBAM provides a flexible modular
combination that can be adapted to a variety of tasks. Although attention mechanism is the
hotspot of computer vision, to the best of our knowledge, there is no attempt at attention
mechanism in wafer map inspection. Our research is implemented based on the excellent
work of CBAM, as wafer map defect pattern classification requires not only accurate defect
cluster information but also location information. For example, the only difference between
Edge-Local and Local patterns is the position of the defect cluster. Positional information is
also critical for identifying Scratch and Edge-Ring patterns. However, the spatial attention
part of CBAM does not sufficiently express the positional characteristics of the wafer map.
This paper will analyze the reasons and make targeted improvements.

2.3. Long-Tailed Recognition

Dataset imbalance is common in the real world, especially when the data is collected
from production lines, as wafers are. Due to the different frequencies of occurrence, the
number of categories presents a long-tailed distribution. Long-tailed recognition has been
widely studied in the field of computer vision in recent years [28,29]. For imbalanced
datasets with long-tailed distributions, the common processing methods include applying
sampling strategies [30–32], increasing the weight loss of the tail categories [33,34], and
migrating prior knowledge of the head categories [35,36]. Recently, research by Kang [31]
and Zhou [32] revealed that the feature representation (usually referred to as the convo-
lution layer) of deep learning models and the classifier (fully connected layer) are not
coupled. Imbalanced data distribution has a great impact on the classifier. Although resam-
pling and reweighting strategies balance the classifier’s weights, they reduce the learning
ability of the model representation. In contrast, using raw data distribution (without any
sampling tricks) to train the model facilitates feature representation. Therefore, based on
the above studies, we used the original imbalanced wafer dataset to train a good feature
representation module and then designed the algorithm fine-tuning classifier module.

3. Proposed Method

In this section, we describe the specific methods for training deep learning models
based on imbalanced wafer datasets. The main steps are as follows: (1) we conduct noise
reduction on the wafer map to filter out random defective grains. (2) ResNet-18 is chosen
as the backbone network. Based on studies by Kang [31] and Zhou [32], we follow the
decoupling learning scheme. In the feature representation learning stage, we add the
attention mechanism into the network to enhance the feature representation, mine more
identifiable features, and solve the problem of imbalanced feature distribution. We focus
on how to use the attention mechanism to amplify the influence of defect cluster positional
information and propose a feature-map-specific direction mapping module to replace the
spatial attention module in CBAM. (3) In the classifier learning stage, we use the cosine
normalization to replace the fully connected layer and fine-tune the weight of the classifier
through a small number of iterative fine-tuning to solve the problem of quantity imbalance.

3.1. Wafer Map Processing

Random defective grains are caused by environmental factors in the cleaning room
and are expensive to eliminate completely. A large number of studies have proven that the
denoising of a wafer map can significantly improve model performance. The constrained
mean filtering (C-mean filtering) [37] is an improved mean filtering algorithm that filters
only the defective grains and prevents the edge and normal grains from being destroyed.
Different from other filtering methods, C-mean filtering only deals with the neighborhood
of defective grains. The mean value of pixels are calculated in the filter first. If the mean
value is less than the preset threshold, the target defective grain will be converted to normal
grain, otherwise it will remain unchanged. Figure 3 shows the filtering results with a
3 × 3 filtering window and a mean threshold of 1.25. It can be seen from the figure that
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C-mean filtering can effectively filter out irrelevant random noises. The samples used in
the following training and testing are all preprocessed by noise reduction.

Figure 3. Results of C-mean filtering for wafer maps.

3.2. ResNet Backbone

In the field of computer vision, many excellent DCNN architectures have been pro-
posed and applied to image classification tasks. We chose ResNet [38] as the backbone for
the classification of wafer map defect patterns.

It is well known that deep networks can improve the expression ability of models, but
they easily cause gradient disappearance or gradient explosion. While the wafer map has
little semantic information, texture information is very important, and shallow features are
easily lost in deep structures. ResNet is an effective solution for these problems. Residual
learning is the core of ResNet, the schematic diagram of a residual unit is shown in Figure 4.
The input vector is defined as x, the output is defined as y, and F(x) is the residual function.
Thus, the output of the residual unit can be expressed as:

y = F(x) + x (1)

Figure 4. Structure of a residual unit.

The key point of the residual unit is to learn the residual function F(x). When F(x) = 0,
the network output is the identity mapping. However, in the actual learning process, this
situation does not exist. Therefore, the residual function of the model will learn new
features and have better performance. There is no shortcut connection x in the traditional
CNN model, and its introduction will also enhance the expression of shallow features and
prevent them from being forgotten in the deep network.

ResNet offers flexible hierarchical selection. Because of the simplicity of the wafer
map, we chose the lightweight ResNet-18 as the backbone. Figure 5 shows the detailed
network structure and parameters. Take the first convolutional layer as an example to
illustrate the meaning of the parameters in the figure: it uses a 7 × 7 convolution kernel,
has a step size s equal to 2 × 2, and has 64 output channels. ResNet-18 contains 8 residual
units, each consisting of two 3 × 3 convolutional layers. Due to the dimension variation
in the output channel, the shortcut connection represented by the black dotted arrow
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needs to be expanded through a 1 × 1 convolution. Finally, the fully connected layer
composed of 9 neurons was connected. To accelerate model convergence and prevent
gradient dispersion, a batch normalization operation is added after each convolution layer,
and ReLU is used as the activation function.

Figure 5. Structure of ResNet-18.

As mentioned above, the deep learning model training for the imbalanced dataset
can be decoupled into two stages of feature representation learning and classifier learning.
Decoupling learning is helpful in improving model performance. In ResNet-18, the fully
connected layer is the classifier module, and the previous convolution layers construct the
feature representation module.

3.3. Enhance Feature Representation

As shown in Figure 2, although the number of Near-Full patterns is small, the recogni-
tion accuracy is very high. In contrast, Edge-Local and Local patterns have a large number of
samples but low accuracy. This is because of the large interclass similarity difference and
the uneven distribution of features. The attention mechanism in computer vision can am-
plify the influence of the key features so that the model can suppress irrelevant information
and enhance feature representation. Many image classification tasks tend to only focus
on the “what” of the target, such as cat, dog or car classification, which can extract key
features through the channel domain of DCNNs. For wafer map inspection, it is necessary
to pay attention to not only the “what” of the defect cluster (geometric features such as
area, length, shape, etc.) but also to the “where” of the defect cluster (absolute position
on wafer map). Therefore, we chose the hybrid domain CBAM algorithm to enhance the
feature learning ability of ResNet.

3.3.1. Revisiting The CBAM

CBAM provides attention information in the channel domain and spatial domain
of the network. Correspondingly, it is composed of a channel attention module and a
spatial attention module. As shown in Figure 6, the two modules are connected in series. x
represents the output feature map of any convolution layer, and y represents the output
result of the attention operation.
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Figure 6. Structure of CBAM.

Channel attention module. The channel attention module structure of CBAM is
shown in Figure 7. The input feature map x represents the output result of the previous
convolution layer. The global average pooling and global maximum pooling operations are
carried out on x to obtain the global information of each feature map. Then, they are input
into the shared multilayer perceptron (MLP) to enhance the nonlinear expression. The MLP
has only one hidden layer, only the output of the hidden layer is activated by ReLU. The
output is added by elements to form a 1× 1× c vector, which is then mapped to the interval
of (0, 1) by the sigmoid function. Finally, the mapping vector is multiplied by the input
feature map. The mathematical description of channel attention is shown in (2), where δ
represents the sigmoid activation function and Fc is the result of the attention mechanism.

Fc(x) = δ(MLP(MaxPool(x)) + MLP(AvgPool(x)))·x· (2)

Figure 7. Structure of the channel attention module.

The feature map simulates the characteristics of the visual path. As the feature map of
each channel contains different feature descriptions of the input image, there is redundant
information. Thus, channel attention amplifies the contribution of useful feature maps and
inhibits the influence of irrelevant feature maps, making the model more focused on the
“what” of the target.

Spatial attention module. Spatial attention aims to extract the positional information
of important objects, i.e., it describes “where” to focus on. The spatial attention module of
CBAM is shown in Figure 8. The global maximum pooling and average pooling of the input
feature map are performed in the channel dimension, and the concatenation is performed
in the channel dimension. This operation aggregates the feature information of all channels.
A 7 × 7 convolution kernel is used to extract spatial features. The spatial attention module
can be described by (3), where ConvA×B

C represents the convolution operation with the
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kernel size of A × B and the number of output channels C, and [· ; ·] represents the feature
maps concatenating operation.

Fs(x) = δ
(

Conv7×7
1 ([MaxPool(x); AvgPool(x)])

)
·x· (3)

Figure 8. Structure of the spatial attention module.

3.3.2. Improved CBAM

For wafer map inspection, it is necessary to identify not only the geometric char-
acteristics of defect clusters (for example, a large area of defects may form a Random or
Near-Full pattern, and a strip of defects may be Edge-Ring or Scratch patterned), but also the
positional information (for example, Edge-Local differs only from the Local pattern in that
the distribution location is different; the Donut pattern is distributed around the center, and
the location is also critical to identify the Edge-Ring and Scratch patterns). In this paper, it
is considered that the imbalance of feature distribution in the WM-811K dataset is caused
by different interclass similarities. Improving the expression of geometric features and
positional information in a deep learning model can effectively mine the features of hard
samples. Therefore, we implement it, based on a CBAM algorithm. However, we noticed
that the original CBAM did not significantly improve the recognition accuracies of Local
and Edge-Local patterns. We judged that the spatial attention module of CBAM fails to
capture the key position information of the wafer map. Therefore, although we used the
channel attention module in the original CBAM, we needed to rethink and design the
spatial attention module.

Feature-map-specific direction mapping module. The spatial attention module in
the original CBAM aggregates the information of all channels through global pooling
(changing the channel dimension from c dimensions to 1 dimension). However, it should
be noted that the feature map of each channel expresses different meanings, and such simple
aggregation destroys the feature representation of each channel. To solve this problem, we
propose a feature-map-specific direction mapping module. The detailed structure is shown
in Figure 9.
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Figure 9. Structure of the feature-map-specific direction mapping module.

For the input feature map x, we reserved the channel dimension and conducted one-
dimensional pooling operations for each feature map in the horizontal (along the w axis)
and vertical (along the h axis) directions, as shown in (4) and (5):

fH(xc) =
1
w

w

∑
i=1

xi
c (4)

fV(xc) =
1
h

h

∑
j=1

xj
c (5)

where xc represents the feature map vector of the c-dimensional channel in the input
feature map and w and h represent the width and height of the feature map, respectively.
This operation obtains aggregate information in the width and height directions. The
compression and extension operations capture the dependencies among channels [25,27].
As shown in Figure 9, we used convolution to compress and expand the channel dimension.
A 1 × 1 convolutional operation was used to compress the aggregation features fH(xc) and
fV(xc) to c/r in the channel dimension and then extend them to the c dimension. r is the
reduction rate. The output is then activated by the sigmoid function (note that only the
first convolution requires ReLU activation) and multiplied by the original input to obtain
the key features in both the horizontal and vertical directions. The final output is the sum
of the horizontal and vertical attention outputs. The above operations can be described by

Fm(x) = δ(Conv1×1
c

(
ReLU

(
Conv1×1

c/r ( fH(xc))
))

)·x + δ(Conv1×1
c

(
ReLU

(
Conv1×1

c/r ( fV(xc))
))

)·x (6)

The main difference between the feature-map-specific direction mapping module and
the spatial attention module in the original CBAM is that the former retains the channel
dimension and aims to extract the positional information of each feature map, while the
latter aggregates all the channels into a single channel. In this implementation, we retain the
channel attention module in the original CBAM for mining the geometric features of wafer
map defect clusters, replace the spatial attention module with the feature-map-specific
direction mapping module, and still adopt the series mode as shown in Figure 6. The
improved CBAM algorithm is integrated into the residual unit in the ResNet-18 backbone,
and the loading location is shown in Figure 10. During model training, the original dataset
and cross entropy loss function are adopted without a sampling strategy so that a better
feature representation can be obtained.
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Figure 10. Location of the improved CBAM in the residual unit.

3.4. Cosine Normalization

Another factor leading to the imbalance of the wafer map dataset is the quantity
distribution imbalance. As shown in the bar chart in Figure 2, 9 species presented a long-
tailed distribution. Models based on training from quantity imbalance datasets tend to
have poor generalization ability for tail data because quantity imbalance mainly affects the
weight distribution of classifiers (ResNet’s fully connected layer) [31,32]. Figure 11 shows
the weight distribution of the fully connected layer of ResNet-18. This model was obtained
by using the data distribution in Figure 2 and cross-entropy loss training. The decision is
biased because the weight of the tail category is significantly lower than that of the head
category. The calculation of the fully connected layer of the traditional DCNN is shown in

f (x) = w·x + b (7)

Figure 11. L2-norm of the weights.

Since the offset b is often small, the decision result mainly depends on the dot product
of the weights with the output vector. It is worth noting that in our ResNet-18, the activation
function of the fully connected layer is ReLU, and the decision value is between [0, +∞].
Therefore, the dot product is unbounded and prone to extreme values. To limit the dot
product boundary and reduce the variance, we use the cosine normalization to replace the
fully connected layer. The calculation of the cosine normalization algorithm is shown in (8),
which calculates the angle θ between the weight vector ω and the input vector x. The output
value is between [−1, 1], which effectively avoids the problem of extreme values in the
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weight distribution. During implementation, the fully connected layer needs to be replaced,
but its weight ω should be retained. The feature representation (convolution layer) is fixed,
and the classifier is fine-tuned with a few iterations over the original dataset. Unlike dataset
balancing strategies such as resampling and reweighting, our method does not need to
change the original data distribution by manually designing the balancing strategy.

f (x) = cos θ =
w·x
|w||x| (8)

4. Experiments and Results
4.1. WM-811K Dataset

This paper uses the WM-811K wafer dataset for training and testing, which is the
largest publicly available wafer map dataset to date. The dataset is derived from the real
production process of wafers and contains a total of 811,457 samples with 9 defect patterns;
only approximately 21% of the samples are labeled. Our experiment is based on labeled
samples. Figure 2 shows the detailed data distribution and dataset partitioning. It should
be noted that only 10,000 samples of None pattern were selected for the experiment due to
the large number of samples. Training and testing of the model were carried out on a DELL
T7920 workstation (Round Rock, Texas, USA). The main hardware configuration was two
GeForce RTX 2080TI graphics cards and a 64 GB memory. The software environment is
Ubuntu 18.04 and was implemented based on the PyTorch deep learning framework. The
cross-entropy loss was used for model training, and the initial learning rate was set at 0.01,
which was reduced by a factor of ten when the number of iterations reached half of the
total number. In the representation learning stage, ResNet-18 integrated with the improved
CBAM algorithm was trained for 100 epochs. In the classifier fine-tuning stage, the model
based on the previous stage was fine-tuned for 25 epochs at a learning rate of 0.001.

4.2. Selection of Reduction Rate

One of the important operations in the feature-map-specific direction mapping module
proposed in this paper is to compress and expand the feature map in the channel dimension
and to mine the dependency relationship between channels. The reduction rate r needs to be
determined experimentally. We tested the model performance with different values of r on
the validation set, as shown in Table 1. The precision, recall rate and F1-score were selected
as evaluation criteria. The F1-score is the harmonic mean of precision and recall, which can
comprehensively evaluate the model performance. Compared with uncompressed (r = 1)
feature maps, compression and expansion can mine the dependencies between channels
and improve the performance of the model. When the reduction rate is 16, the model
classification effect is optimized; this value was selected in subsequent experiments.

Table 1. Influence of reduction rate on model.

r Precision Recall F1-Score

1 0.924 0.932 0.928
8 0.923 0.937 0.930
16 0.932 0.940 0.936
32 0.927 0.938 0.932

4.3. The Effect of Improved CBAM

To verify the effectiveness of the proposed algorithm, the model classification effects
were tested on the test set. The classification confusion matrix is shown in Figure 12, where
C1–C9 correspond to None, Edge-Ring, Edge-Local, Center, Local, Scratch, Random, Donut, and
Near-Full patterns. Compared with ResNet backbone, the accuracies of Edge-Local, Scratch,
Random and Near-Full patterns were significantly improved after the addition of CBAM (as
seen from the matrix ResNet + CBAM). Although CBAM improved the model performance,
the improvements of Local and Donut patterns were not satisfactory. Edge-local pattern was
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still confused with Local pattern; and the Donut pattern was easily misidentified as Center
or Local pattern. We speculate that this is because the spatial attention in CBAM aggregates
all channels, so it does not capture better positional information.

Figure 12. The classification confusion matrixes on test set(C1: None, C2: Edge-Ring, C3: Edge-Local,
C4: Center, C5: Local, C6: Scratch, C7: Random, C8: Donut, C9: Near-Full). (a) Training based on ResNet.
(b) Training based on ResNet and the original CBAM attention mechanism. (c) Training based on
ResNet and Improved CBAM attention mechanism.

We improved the spatial attention module of CBAM and proposed a feature-map-
specific direction mapping module to amplify the position information. As seen from
the matrix (ResNet + Improved CBAM), the recognition rates for both Edge-Local and
Local patterns were further improved compared to the original CBAM, and the confusion
between them had decreased significantly. The Scratch pattern showed the most significant
improvement, 6.73% higher than the CBAM, and none of them were judged to be Edge-Ring
pattern. The accuracy of the Donut pattern was also improved, and the confusion between
Donut and Local pattern was alleviated. Compared with the ResNet backbone, the accuracies
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of the Edge-Local, Local, Scratch, Random, Donut and Near-Full patterns were increased by
3.24, 3.56, 9.09, 6.51, 4.35 and 5.56%, respectively. The lifting effect of improved CBAM was
significantly better than the original CBAM, which indicates that the feature-map-specific
direction mapping module works. It is effective to preserve channel dimensions and
calculate the positional information of each feature map separately because this method
avoids the loss of feature map information. As shown in Figure 12, the average accuracies
of the three models (ResNet, ResNet + CBAM, ResNet + Improved CBAM) for the nine
defect patterns were 90.73, 92.57 and 94.22% respectively. However, the proposed method
slightly reduced the recognition rate of the Center pattern, we found it easy to identify as
Local or Edge-Local pattern, which may require further exploration of the model’s feature
and location representation.

To elucidate more clearly the effect of the attention mechanism, we visualized the
results based on the gradient-weighted class activation mapping (Grad-Cam++) algo-
rithm [39]. Figure 13 shows the heat map generated for the last convolution layer based on
Grad-Cam++. The higher the temperature (e.g., dark red), the greater the effect was, while
the lower the temperature (e.g., dark blue), the worse the effect was. With the addition of
the improved CBAM, areas of warm color increased in the visualized results, while the
original CBAM and ResNet usually suppressed areas outside the defect cluster. This indi-
cates that the improved method fully considers the spatial position relationship between
defect clusters and wafers. For the Scratch pattern, the area of defect clusters captured by
the improved method was more precise.

Figure 13. Visualization based on Grad-Cam++.

4.4. Comparison with other Attention Mechanisms

There are many approaches to attention mechanisms in computer vision, but not all
of them are suitable for wafer map pattern classification. We compared the improved
method with the original CBAM [27], the classical SENet [25], SKNet [26] and coordinate
attention [24] methods. The attention modules were placed as shown in Figure 10. Accord-
ing to Woo’s work [27], a super-parameter reduction ratio of 16 is considered to achieve
a good balance between model accuracy and computational complexity, so we followed
this setting. The number of paths for SKNet was set to 2, and 3 × 3 and 5 × 5 receptive
fields were selected. Table 2 shows the classification accuracies of nine defect patterns. The
improved CBAM was better than the other attention mechanisms. While the accuracies of
the None, Edge-Ring and Center patterns were slightly inferior to those of the other methods,
the difference was slight.
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Table 2. Classification accuracies when integrating different attention mechanisms (%).

Attention
Mechanism None Edge-Ring Edge-Local Center Local Scratch Random Donut Near-Full Average

Coordinate [24] 98.90 97.66 91.82 98.23 83.61 88.22 93.95 88.41 97.22 93.11
SENet [25] 99.10 98.30 90.28 98.13 84.29 86.53 93.28 89.86 100 93.31
SKNet [26] 99.12 97.74 91.28 98.04 83.72 85.52 93.02 88.41 97.22 92.68
CBAM [27] 98.42 98.32 92.59 97.39 83.05 85.19 93.95 88.41 100 93.04
I-CBAM 1 98.55 97.64 92.98 97.01 85.38 89.59 94.88 92.03 100 94.22

1 Improved CBAM.

4.5. Classifier Fine-Tuning Based on Cosine Normalization

In this paper, a cosine normalization algorithm is proposed to replace the fully con-
nected layer to fine-tune the weight of the classifier and alleviate the influence of the input
imbalanced distribution. This step needs to be implemented on a trained model. The last
fully connected layer of ResNet is removed, but the weights are retained, and the cosine
similarity between the weight and the previous layer’s output vector is calculated for
the decision output. We fixed the convolutional layer and fine-tuned the weight of the
classifier; we iterated 25 epochs at a learning rate of 0.001. Table 3 reflects the classification
accuracy before and after classifier fine-tuning. The fine-tuning with cosine normalization
significantly improved the recognition effect of the tail categories with fewer samples, such
as Scratch, Random and Donut patterns. In addition, we found that the improvement caused
by processing quantity imbalance was weak compared to processing feature imbalance.

Table 3. Classification accuracies before and after classifier fine-tuning (%).

Model None Edge-Ring Edge-Local Center Local Scratch Random Donut Near-Full Average

ResNet-18 98.31 97.23 89.74 98.60 81.72 80.47 88.37 87.68 94.44 90.73
I-CBAM 1 98.55 97.64 92.98 97.01 85.38 89.59 94.88 92.03 100 94.22

I-CBAM + CN 2 98.47 97.64 91.98 97.57 86.73 93.6 96.74 96.38 100 95.46

1 Add improved CBAM on ResNet-18. 2 Add improved CBAM and cosine normalization on ResNet-18.

4.6. Comparison with Common Methods for Dealing with Imbalanced Dataset

To demonstrate the effectiveness of the proposed DCNN method based on attention
mechanism and cosine normalization, we compared it with common methods for dealing
with an imbalanced dataset. The data augmentation-based methods are widely used in
wafer map inspection [4–6]. We compared two augmentation schemes: (1) flipping, rotation,
cropping, scaling and Gaussian blur [5,6] were performed on the training samples with
a probability of 0.5, respectively, examples based on image transformation are shown in
Figure 14; (2) generating wafer maps according to the characteristics of defect clusters [4],
the generated examples are shown in Figure 15. We expanded the sample size of each
category in the training set to 6000 and the trained model based on ResNet-18. In addition,
we also introduced the class-balanced sampling and loss weighting for comparison. The
sampling-based approach set the same sampling probability for each pattern, i.e., the
probability that each pattern would be sampled was 1/C (C is the number of categories).
The method based on loss weighting added a penalty term 1− α on the basis of cross
entropy loss, as shown in (9). Where αi is the ratio of the sample size of category i to
the total sample size of the dataset, y is the ground truth of the input, and ŷ indicates
the prediction.

Loss = −(1− αi)y log ŷ (i ∈ C) (9)
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Figure 14. Augmentation based on image transformation.

Figure 15. Augmentation based on generation.

The experimental results are shown in Table 4. Our method has a better effect on
improving the recognition accuracies of few shot patterns, and the average accuracy is
significantly higher than others. Data augmentation usually requires a change in the original
dataset. Some common transformations are ineffective for the enhancement of symmetric
wafer maps, and cropping may lose important defect information. The generation-based
method requires a complex feature engineering, which greatly increases the difficulty of
implementation, and the correctness of the generated defects is difficult to guarantee. A
dataset is over-sampled or under-sampled when using class balanced sampling, which
may result in samples being underutilized. The method based on loss weighting amplifies
the influence of few shot patterns, but it still not good at mining the features of difficult
samples. The compared methods only consider the quantity imbalance. In contrast, our
method improved the performance of the DCNN model using imbalanced dataset by
solving both quantity imbalance and feature imbalance, and it was easier to implement
without changing the distribution of the original dataset.

Table 4. Comparison with other imbalanced dataset processing methods (%).

Model None Edge-Ring Edge-Local Center Local Scratch Random Donut Near-Full Average

T-based 1 98.78 97.58 89.51 97.76 83.28 84.51 90.7 92.03 100 92.68
G-based 2 98.5 97.5 90.43 98.23 84.73 86.53 91.16 86.96 100 92.67

CB-based 3 98.78 97.9 89.12 98.13 83.39 87.88 92.49 89.3 100 93
LW-based 4 99.02 97.78 91.67 97.76 83.39 87.88 92.95 87.68 100 93.13
Proposed 98.47 97.64 91.98 97.57 86.73 93.6 96.74 96.38 100 95.46

1 Data augmentation based on image transformation. 2 Data augmentation based on image generation. 3 Method
based on class balanced sampling. 4 Method based on loss weighting.

4.7. Comparison with Classical Wafer Map Inspection Algorithms

We compared the proposed method with the models studied on the WM-811K wafer
dataset in recent years, including WMFPR [2], DTE-WMFPR [9], WMDPI [10] and T-
DenseNet [21]. We compared the recognition rate of each defect pattern and average
accuracy, the results are shown in Table 5. It was found that the proposed method achieved
satisfactory average performance, with significant improvement on Edge-Local, Center,
Scratch and Donut patterns; other patterns were similar to classical algorithms.
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Table 5. Comparison with classical wafer map defect pattern classification algorithms (%).

Model None Edge-Ring Edge-Local Center Local Scratch Random Donut Near-Full Average

WMFPR [2] 95.7 79.7 85.1 84.9 68.5 82.4 79.8 74 97.9 83.1
DTE-WMFPR [9] 100 86.8 83.5 95.8 83.5 86 95.8 92.3 N/A 90.5

WMDPI [10] 97.9 97.9 81.8 92.5 83.9 81.4 95.8 91.5 93.3 90.7
T-DenseNet [21] 85.5 66.8 81.5 64.5 100 72.6 65.5 91.2 99.3 80.8

Proposed 98.6 97.6 92 97.6 86.7 93.6 96.7 96.4 100 95.5

5. Conclusions

Wafer map inspection is an important means of fault diagnosis in semiconductor man-
ufacturing. Although the DCNN-based methods greatly improve the results of wafer map
defect pattern recognition, the performance of DCNN is usually limited because of training
with an imbalanced dataset. The traditional method based on data augmentation can only
solve the quantity imbalance, but is unable to solve the problem of the difficulty of feature
recognition varying between classes. We reconsidered the causes of the dataset imbalance
and reinterpreted it as the feature distribution and quantity distribution imbalance. On
the one hand, we use the improved CBAM to enhance the feature representation of the
DCNN, mine the features of difficult samples, and solve the problem of feature distribution
imbalance. We focused on spatial attention and proposed a feature-map-specific direction
mapping module to amplify the effect of defect cluster positional information on the model
decision. On the other hand, the cosine normalization method was proposed to replace the
fully connected layer to fine-tune the weight of the classifier and alleviate the sensitivity
of the distribution of input data. We verified the effectiveness of the proposed method on
the imbalanced WM-811K dataset. Compared with the traditional methods based on data
augmentation and other ways of balancing the dataset, our method solved the problem
of dataset imbalance more effectively. In addition, since there was no need to change the
original dataset, our method was easier to implement. Finally, we achieved an average
accuracy of 95.46%, significantly better than the recently developed advanced models.

Overcoming the problem of dataset imbalance can promote the application of the
algorithm in real manufacturing. Although our approach has made some progress, the
recognition of Local patterns is still not ideal. Many of them are misclassified as the Scratch
pattern. This prompts us to strengthen the research on the feature representation of defect
clusters in the future.
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