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Space robot teleoperation is an important technology in the space human-robot interaction and collaboration. Hand-based visual
teleoperation can make the operation more natural and convenient. The fast and accuracy hand detection is one of the most
difficult and important problem in the hand-based space robot teleoperation. In this work, we propose a fast and accurate
hand detection method by using a spatial-channel attention single shot multibox detector (SCA-SSD). The SSD framework is
used and improved in our method by introducing spatial-channel attentions with feature fusion. To increase the restricted
receptive field in shallow layers, two shallow layers are fused with deep layers by using feature fusion modules. And spatial
attention and channel-wise attention are also used to extract more efficient features. This method can not only ease the
computational burden but also bring more contextual information. To evaluate the effectiveness of the proposed method,
experiments on some public datasets and a custom astronaut hand detection dataset (AHD) are conducted. The results show
that our method can improve the hand detection accuracy by 2.7% compared with the original SSD with only 15 fps speed
drops. In addition, the space robot teleoperation experiment proves that our hand detection method can be well utilized in the
space robot teleoperation system.

1. Introduction

Due to the limited intelligence of space robots, space human-
robot interaction plays an important role in the application of
space tasks [1]. Teleoperation is one of a widely used space
human-robot interaction method [2]. Teleoperation does not
depend on the high intelligence capabilities of space robots. It
can effectively combine the human decision-making ability
with the space robot precise operation ability to improve the
operation ability of space robots. There are some devices for
space teleoperation. Some traditional devices, such as haptic
feedback controllers [3–5], have stable and robust performance
but lack of convenience. Some hand-based teleoperation

devices [6], such as data gloves [7–9] and surface electromyo-
graphy (SEMG) wristbands [10–12], have good convenience
performance. However, because they are wearable devices, the
performance on different people is very different. So, complex
calibration work is required before using them. Hand-based
visual teleoperation [6] is an emerging teleoperation method.
It has the advantages of noncontact, natural, and convenience.

Hand detection is an important and difficult issue in the
hand-based visual teleoperation. Because (1) space robot tele-
operation needs real-time and robust operation. So, the hand
detection should balance fast and accurate performances. (2)
Complex backgrounds and changing illumination inside and
outside the space station cabin make the astronaut hands
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difficult to detect and locate. (3) Hand is a small object. Detec-
tion for small objects has always been a difficult problem in
computer vision.

To deal with the above problems, a fast and accurate hand
detection method is proposed in this paper. SSD framework
[13] is used to design the hand detector since its good balance
of speed and precision and ease of structural improvement.
However, the SSD is not good at detecting small objects.
Because it uses shallow layers to detect small objects, and shal-
low layers have enough contextual information but lack of
semantic information. To address the lack of semantic informa-
tion in the shallow layers, a multiattention module with feature
fusion (MA-FF) is proposed to combine shallow layers with
deep layers. The multiattention module extract channel atten-
tion features from deep and low-resolution feature maps and
extract spatial attention features from high resolution layers,
respectively. Then, the feature fusion module fuses these fea-
tures to obtain new shallow layer feature maps with enough
contextual and semantic information.

The main contributions and innovations are shown as fol-
lows. (1) A spatial-channel attention SSD (SCA-SSD) is pro-
posed to deal with fast and accurate hand detection. The
layers for object detection in the SSD structure are visualized
to find out which layers play the most important role for small
object detection. And these layers are improved and fused with
deep layers. A multiattention module with feature fusion (MA-
FF) is proposed. It includes a channel attention branch, a spa-
tial attention branch, and a feature fusion branch. (2) A custom
astronaut hand detection dataset (AHD) is designed. This data-
set collects a large number of astronaut hand images and is
used for hand detection verification for space robot teleopera-
tion. (3) The experiments on hand detection datasets proves
that the proposed SCA-SSD has fast and accurate hand detec-
tion performance, which is superior to some state-of-the-art
method. And the experiments on the space robot teleoperation
platform prove that the designed hand detector can be well
used in the hand-based space robot teleoperation.

The rest of this paper is structured as follows. Section 2
reviews the prior work of hand-based robot teleoperation and
hand detection methods. In Section 3, we first describe and
visualize the original SSD and then elaborate the structure
details of the proposed hand detection method. In Section 4,
we provide the results of ablation experiments and comparative
experiments on public datasets and a custom AHD dataset.
And we also provide the application experiment on hand-
based space robot teleoperation platform. Finally, we draw
the conclusions and future work in Section 5.

2. Related Work

2.1. Hand-Based Robot Teleoperation. The hand-based robot
teleoperation methods include contact and noncontact
methods. The mainly contact methods include haptic feed-
back-based, sEMG-based, and data glove-based methods.
Haptic feedback-based teleoperation [3–5] is a traditional tele-
operation method. It transmits the 6-Dof position and orien-
tation of human hand to the robot through the haptic
feedback controller. For example, the da Vinci surgical telema-
nipulator [3] can transmit the dual-hand motion information

of the chief surgeon through two main joysticks to control the
instruments and a 3D high-definition endoscope. The principle
of the sEMG-based teleoperation [10–12] is that when hand
moves, the arm will generate corresponding motor neuron
information, which can be obtained by decoding the sEMG sig-
nal. For example, Raspopovic et al. [10] used sEMG equipment
to collect sEMG signal of hand gestures and used these gestures
to control a dexterous hand. Data glove-based teleoperation
[7–9] uses curvature sensors to collect the bending degrees of
the fingers and the posture change of the entire human hand,
to decode the movement of the hand. Fang et al. [7] designed
a novel data glove to control a robotic hand-arm teleoperation
system. The above contact teleoperation methods are lack of
robustness for different people. The visual teleoperation is
robust to different people due to its noncontact advantage
[14–16]. For example, Li et al. [14] designed a mobile robot
hand-arm teleoperation system by using vision and IMU.
Handa et al. [15] designed a vision-based teleoperation method
for a dexterous robotic hand-arm system. Table 1 shows the
comparison and summary of the above hand-based robot
teleoperation methods.

2.2. Hand Detection Methods. Traditional visual hand detection
methods [17] mainly include skin color-based hand detection,
motion flow information-based hand detection, and shape
model-based hand detection. These methods only extract the
shallow information of hands, which are subject tomany condi-
tions. Nowadays, deep learning-based hand detection methods
can achieve better detection performance in complex environ-
ment [18–20]. Hand detection can be regarded as a kind of
object detection. There are some typical deep learning-based
object detectors, such as RCNN series [21, 22], YOLO series
[23–25], and SSD series [13, 26, 27]. Among them, the SSD is
a light weight one-stage network, which considers speed and
accuracy trade-off and is easy to modify. For example, Gao
et al. [18] designed a feature-map-fused SSD for robust real-
time hand detection and localization. He also used SSD and
body pose estimation for dual-hand detection [19]. Yu et al.
designed a deep temporal model-based identity-aware hand
detector by using the SSD framework for space human-robot
interaction [20]. However, the SSD is stuck with the speed
and accuracy dilemma for small object detection. Some useful
methods and tricks are proposed to resolve this dilemma. DSSD
[26] attempts to recover higher resolution features and adds
with the primary features through shortcut connection. FSSD
[28], DF-SSD [29], RSSD [30], and ESSD [31] provided many
feature fusion methods to add more contextual information
into shallow feature maps. Table 2 shows the comparison and
summary of the above hand detection methods.

3. Spatial-Channel Attention SSD

In this section, first, the original SSD is introduced and visual-
ized. Then, the proposed SCA-SSD is introduced, which
includes the multi-attentionmodule and feature fusion module.

3.1. SSD Introduction and Visualization. In this subsection,
the SSD architecture is introduced first. And then, the
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detection visualization in SSD is shown to find out which
layers are suitable for improving.

3.1.1. SSD Architecture. The SSD [13] is one of the outstanding
one-stage detectors with high speed and accuracy. The
architecture is shown in Figure 1. The VGG-16 is used as its
backbone, and several extra convolution layers on the top of
the network are used for prediction and classification by filters
directly. Unlike other detectors, SSD uses pyramidal multire-
solution feature maps as convolutional detector input, which
means it handles different scales in different resolution feature
maps. The SSD brings significant improvement on speed
because of its one-stage architecture. However, it cannot get
a high detection accuracy on small object. Because the shallow
layers for detection havemuch contextual information but less
semantic information. While the deep layers for detection are
reverse. Small object detection needs enough semantic and
contextual information for its low resolution. So, feature maps
with enough semantic and contextual information should be
designed for hand detection.

3.1.2. Detection Visualization in SSD. To find out which layers
are suitable for improving for small object detection, the
results of feature maps for object detection in SSD are visual-
ized. We select one convolution layer as the input of the detec-
tor and block other convolution layers which means we only
use one specific convolution layer to detect objects. The results
are shown in Figure 2, which shows that the small objects are
easier detected in shallow layers (conv4_3 and conv7 layers),
and large objects are easier detected in deep layers (conv8_2,
conv9_2, and conv10_2 layers). Because the contextual infor-

mation is vital to small object detection and shallow layers
have enough contextual information. However, due to the lack
of semantic information, there are some missing detection
results of small objects in conv4_3 and conv7 layers. Once it
misses the object in shallow layers, it has no chance to be
detected in the subsequent deep layers. To increase the accu-
racy of small object detection, we propose the SCA-SSD. A
multiattention module is employed on conv4_3 and conv7
layers and then fuses them with conv8_2 and conv11_2, sepa-
rately. The details are presented below.

3.2. SCA-SSD Architecture. In this subsection, the overview of
the SCA-SSD is introduced first. Then, the multiattention
module and feature fusion module are introduced, respectively.

3.2.1. Overview of SCA-SSD. The architecture of our pro-
posed SCA-SSD is introduced and shown in Figure 3. From
the figure, we can see that the SCA-SSD reuses the multiscale
and one-stage architecture of the original SSD. Two multiat-
tention branch with feature fusion (MA-FF) modules are
employed on the shallow layers conv4_3 and conv7, respec-
tively. They use the multiattention modules to extract chan-
nel and spatial features and use feature fusion modules to
fuse the two shallow layers (conv4_3 and conv7) with the
deep layers (conv8_2 and conv11_2). Finally, the two new
feature maps output from the MA-FF modules are mainly
used for small object detection.

3.2.2. Multiattention Module. To address the lack of informa-
tion in shallow layers, we propose a multiattention module
with feature fusion, and the improved structure of conv4_3

Table 1: Comparison and summary of the hand-based robot teleoperation methods.

Method Brief methodology Highlights Limitations

Haptic feedback-
based method [3–5]

This method transmits the 6-Dof position and orientation of
human hand to the robot through the haptic feedback controller.

High accuracy and
mature technology.

Contact method and only
be used for 6-DOF control.

sEMG-based
method [10–12]

When hand moves, the arm will generate corresponding motor
neuron information, which can be obtained by decoding the sEMG

signal.
High accuracy.

Contact method and lack
of robustness.

Data glove-based
method [7–9]

This method uses curvature sensors to collect the bending degrees
of the fingers and the posture change of the entire human hand, to

decode the movement of the hand.

High accuracy and
mature technology.

Contact method and lack
of robustness.

Vision-based
method [14–16]

This method uses camera to capture the movements of human
hands and maps the human hand movement information to the

robot.

Strong noise and
immature
technology.

Noncontact method,
strong robustness, and

naturalness.

Table 2: Comparison and summary of the hand detection methods.

Method Brief methodology Highlights Limitations

Traditional visual
hand detection
methods [17]

They mainly include skin color-based hand
detection, motion flow information-based hand

detection, and shape model-based hand detection.

Small amount of
calculation, mature

technology.

These methods only extract the shallow
information of hands, which are subject

to many conditions.

Deep learning-based
hand detection
methods [18–20]

They autonomously extract deep features of hand
images through deep neural networks.

High detection
performance.

They are stuck with the speed and
accuracy dilemma for small object

detection.
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is shown in Figure 4 as an example. The design of the attention
module is inspired by bottleneck attention module (BAM)
[32]. To be specific, first, the spatial attention branch Atts is
employed after conv4_3 and conv7, respectively. After that,
channel attention branch Attc is employed after the conv11_
2 whose resolution is 1 × 1 so that we can skip the global pool-
ing operation in the squeeze stage coincidentally. Then, the
Atts and Attc are combined by element wise add operation
to generate the cross resolution spatial-channel attention
which terms Attsc. Finally, the sigmoid is applied for Attsc to
obtain the weighted Attsc and then multiply with feature maps
from the corresponding feature map. For instance, as shown
in Figure 4, weighted Attsc is obtained from conv4_3 so that
it multiplies and adds with conv4_3.

The spatial branch structure is shown in Figure 5(1).
This branch follows encoder-decoder structure, but we do
not down the resolution of the feature map to preserve more
information. Each branch consists of a 1 × 1 convolution

layer to reduce the dimensions of channels, and two 3 × 3
dilated convolution layers are employed for obtaining long-
range information with a widely receptive field. Then, it will
restore the number of channels as input by another 1 × 1
convolution layer. In practice, each convolution layer and
dilated convolution layer are followed by a batch normaliza-
tion and a ReLU activation function except for the last 1 × 1
convolution layer. Set the input feature map is F, the output
Atts can be expressed as

Atts Fð Þ = σ f 7×7 AvgPool Fð Þ ; MaxPool Fð Þ½ �ð Þ� �
, ð1Þ

where σ denotes the sigmoid function, f 7×7 denotes a
conclusion operation with the filter size of 7 × 7.

The structure of the channel branch is shown in
Figure 5(2). In Attc, in order not to affect the value of
conv11_2 feature map, one 1 × 1 convolution layer following
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Figure 1: Original SSD architecture.

Conv4_3 Conv7 Conv8_2 Conv9_2 Conv10_2 Conv11_2

Figure 2: Detection results for each layer of SSD. In SSD, shallow layers are usually used to detect small objects and deep layers respond to
objects in large scales.
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Figure 3: The architecture of the SCA-SSD.
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ReLU after the conv11_2 is employed. In excitation, two
fully connected layers are used to blend different values in
different channels. Then, they are expanded to match the
sizes of conv4_3 and conv7. Set the input feature map is F,
the output Attc can be expressed as

Attc Fð Þ = σ MLP AvgPool Fð Þð Þ +MLP MaxPool Fð Þð Þð Þ,
ð2Þ

where σ denotes the sigmoid function.

3.2.3. Feature Fusion Module. Even though the multiatten-
tion module brings extra contextual information to shallow
layers, the spatial attention branch still has a drawback.
The context is encoded as an attention mask so that the
value is limited between zero and one. By multiplying with
input feature map, it can enhance the useful information
for detection. However, context and long-range information
are encoded as attention mask Attsc which only provides
weighted value. So, to capture more context, a feature fusion
module which can be embedded within the multiattention
module is proposed, and it is shown in Figure 4.

In the feature fusion module, two deconvolution layers
are employed to restore the size of feature map from 10 ×
10 to 19 × 19 and 38 × 38, so that it can match the size of
conv7 and conv4_3. Our feature fusion module is inspired
by DSSD [26], and two deconvolution layers are only used
to avoid increasing much computational burden. In each
Deconv-n block, it includes a deconvolution layer and a

batch normalization (BN). After deconvolution, fusion opera-
tion is employed to merge a reweighted feature map M’ with
the output of deconvolution D’. Follow the feature-fusion
SSD [27], element-wise add is used as the fuse operation. It
can be proved that element-wise add outperforms the concat-
enate operation in the feature-fusion SSD [27]. At the end of
this module, the ReLU activation function is employed.

4. Experiments and Analysis

In this section, to compare performance with the state-of-
the-art object detection methods, experiments are conducted
on Pascal VOC dataset [33] first. Then, experiments are con-
ducted on the Oxford hands dataset [34] to demonstrate the
effectiveness of our proposed method on public hand detec-
tion datasets. After that, the AHD dataset will be introduced,
and experiments will be conducted on this dataset to prove
the performance of astronaut hand detection. The mean
average precision (mAP) is adopted as evaluation metric to
evaluate our model prediction performance.

We implement the MA-SSD based on PyTorch [35]. The
data augmentation method is followed with SSD [13], and
the VGG-16 is used as the pretrained backbone. All experi-
ments are performed on 4 NVIDIA RTX 2080 Ti GPU.

4.1. Experiments on the Pascal VOC Dataset

4.1.1. Training. In training stage, the batch size is set to 32, and
the learning rate is set to 1 × 10 − 3 with a warm-up phase at
the first 500 times iteration. However, the experiment resulted

512,38,38

1024,19,19
512,10,10

Deconv
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Deconv
2

Channel
attention
branch

Weighted
Attsc

Atts

Attc

Attsc Sig
moid Mʹ++ +×

Dʹ

ReLU
Spatial

attention
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Multi attention module with feature fusion

512,38,38

256,5,5
256,3,3
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Conv4_3
Conv8_2 Conv9_2 Conv10_2

Conv11_2

Conv7

Figure 4: Multiattention module with feature fusion. The structure is the MA-FF on conv4_3 layer. In practice, the output of Deconv-1 adds
with conv7, and the output of Deconv-2 adds with conv4_3. + means the symbol of element wise add operation, and × means the
corresponding element multiply operation.
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the default learning rate is too small. Instead, the learning rate is
set to 4 × 10 − 3 with a warm-up phase at first 2800 iterations.
Learning rate should be increased from 1 × 10 − 6 with warm-
up factor as 0.03333 gradually. The training step is set to 140k
iterations totally, and the learning rate is divided by 10 at 84k
and 112k iterations which is different from original SSD [13]
but similar to RFB-Net [36]. Following the trick in RFB-Net,
the number of prior boxes in conv4_3 is increased to 6.

4.1.2. Introduction of the Pascal VOC Dataset. The objects in
the Pascal VOC 2007 dataset include 4 categories and 20
subcategories, which are vehicle (car, bus, bicycle, motor-
bike, airplane, boat, and train), household (chair, sofa, din-
ing table, TV, bottle, and potted plant), animal (cat, dog,
cow, horse, sheep, and bird), and person. These images are
collected from flickr and Microsoft Research Cambridge
(MSRC) dataset. The dataset includes 9,963 images contain-
ing 24,640 annotated objects.

4.1.3. Comparative Experiments. To demonstrate the perfor-
mance of the proposed SCA-SSD, some other state-of-the-
art methods are compared. The results are shown in Table 3.
For a fair comparison, the updated SSD [37] is used as our
baseline, which can get a 77.7% mAP on the VOC test dataset.
It is slightly higher than that of the original SSD [13], which
mAP is 77.2%. By employing multiattention and fusion mod-
ules on the SSD, it achieves a 79.9%mAP, which is 2.7% higher

than that of the original SSD [13] and 2.2% higher than that of
the baseline [37]. The SCA-SSD brings significant improve-
ment into SSD with the least impact on speed. It is only 15
FPS slower than the original SSD. And the mAP of the SCA-
SSD is even higher than that of the SSD512, which has a higher
input resolution (512 × 512) than that of the SCA-SSD
(300 × 300). We also compare the results of the proposed
SCA-SSD with some state-of-the-art object detection methods
like faster-RCNN [21], YOLO v4 [25], R-FCN [38], and Stair-
Net [39]. From Table 1, we can see that the performance of the
SCA-SSD is higher than most of the state-of-the-art methods
both on accuracy and seed. In addition, we also show the results
of some SSD-series methods like DSSD [26] and FSSD [28]. To
the best of our knowledge, our SCA-SSD achieves the best per-
formance within SSD-series methods. It proves that the pro-
posed SCA-SSD can achieve a great performance for object
detection both on speed and accuracy.

4.2. Experiments on Oxford Hands Dataset

4.2.1. Introduction of the Oxford Hands Dataset. The hand
detection is different with normal object detection. It has small
size and changeable shape. To better prove the performance of
the SCA-SSD for hand detection, the experiments on hand
detection dataset are also conducted. The Oxford hands data-
set [34] which is a public hand detection dataset is used for
training and testing. In the dataset, a total of 13050 hand
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Dilated
Conv 3×3

Encoder Decoder

Conv 1×1 Conv 1×1
Atts

Input
feature map

(a) Spatial attention branch

Expand()

Expand()

512,38,38

1024,19,19

View()
Linear +

ReLU
Linear +

ReLUFlattenConv 1×1

256,1,1
Attc

(b) Channel attention branch

Figure 5: Spatial branch and channel branch in the MA-FF module.
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instances are annotated. Hand instances larger than a fixed area
of bounding box (1500 sq. pixels) are considered “big” enough
for detections and are used for evaluation. This gives around
4170 high-quality hand instances. In each image, all the hands
that can be perceived clearly by humans are annotated.

4.2.2. Ablation Experiment. To understanding SCA-SSD struc-
ture deeper and better, several ablation experiments are con-
ducted to show the effectiveness of each module of the
network on hand detection. The results are summarized in
Table 4. In this experiment, first, we add channel attention
and spatial attention models on the baseline structure, respec-
tively. The mAP can increase 1.6% and 1.3% compared with
the baseline method. And the speeds only drop by 3FPS. It
proves that the proposed channel attention and spatial atten-
tion models are effective in hand detection. Second, we take
the feature fusion module away from the SCA-SSD, which
terms as SCA-SSD w/o fusion. The result decreases from
44.6% to 43.8% compared with the SCA-SSD w/fusion, which
indicates the feature fusion module is effective in hand detec-
tion. The feature fusion module can improve 0.8% of mAP but
it has little impact on the speed of inference, the speed still
keeps on over 100 FPS (104FPS). So, the ablation experiment
results show that the proposed channel attention, spatial
attention, and feature fusion modules are effective to improve
the performance of hand detection.

4.3. Experiments on AHD Dataset

4.3.1. AHD Dataset. To further verify the effectiveness of the
designed SCA-SSD hand detector in hand-based space robot
teleoperation, the experiment on the space environment
images should be conducted. Since there is no such hand
detection dataset, we customize a set of astronaut hand images

in various intra/extravehicular activities from some sci-fi
movies and YouTube resource. We named it AHD dataset.
The dataset includes a total of 2000 images and more than
4000 instances. All hands in the images are labelled as “hand.”

4.3.2. Verification Experiment and Visualization. The AHD
dataset is just used for verification. The hand detector
trained on the Oxford hands dataset is verification on the
AHD dataset, and the results are shown in Table 3. From
Table 5, we can see that when the IoU is 0.50 : 0.95, the hand
detect accuracy is 0.69. And when the IoU is 0.50, the hand
detection accuracy is 0.88. It is proved that the SCA-SSD

Table 3: Comparison of object detection methods on VOC 2007 and VOC 2012 test dataset. In this table, the SCA-SSD is compared with
some state-of-the-art methods and other SSD-based methods to illustrate the promising performance on object detection.

Method Backbone Input size mAP Device FPS

Fast RCNN [21] ResNet-101 600 × 1000 76.4 K40 2.4

YOLO v4 [25] DarkNet-19 352 × 352 78.2 Titan X 81

R-FCN [38] ResNet-101 600 × 1000 79.5 K40 5.8

StairNet [39] VGG-16 300 × 300 78.8 Titan X 30

SSD300 [13] VGG-16 300 × 300 77.2 2080Ti 119

Baseline [37] VGG-16 300 × 300 77.7 2080Ti 119

DSSD321 [26] ResNet-101 321 × 321 78.6 Titan X 9.5

FSSD300 [28] VGG-16 300 × 300 78.8 1080Ti 65.8

FA-SSD300 [40] ResNet-101 300 × 300 78.3 — 34.7

FF-SSD300 [27] VGG-16 300 × 300 78.9 — 43

Shift SSD300 [41] VGG-16 300 × 300 78.3 Titan X 77

ESSD++300 [24] VGG-16 300 × 300 79.2 — 52

DF-SSD300 [29] Dense-32-S-1 300 × 300 78.9 Titan X 11.6

RSSD300 [30] VGG-16 300 × 300 78.5 — 35

SCA-SSD300 VGG-16 300 × 300 79.9 2080Ti 104

Table 4: Ablation experiment results on the Oxford hand dataset.

Model mAP FPS

Baseline [37] 40.2 119

w/ channel 41.8 116

w/ spatial 41.5 116

SCA-SSD w/o fusion 43.8 114

SCA-SSD w/fusion 44.6 104

Table 5: The verification results of the SCA-SSD hand detector on
the AHD dataset.

IoU Area mAP

0.50 : 0.95 All 0.69

0.50 All 0.88

0.75 All 0.82

0.50 : 0.95 Small 0.56

0.50 : 0.95 Medium 0.62

0.50 : 0.95 Large 0.81
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hand detector can achieve good performance on the AHD
dataset. And when the hand areas are small, medium, and
large, the hand detection accuracies are 0.56, 0.62, and 0.81,
respectively. It is proved that the SCA-SSD hand detector
can achieve good performance on hands with various areas.

To better show the results of the hand detection for
astronaut’s hand, some of the result images are visualized
as follows. From Figure 6, we can see that the proposed

SCA-SSD hand detector can detect astronaut’s hands in var-
ious scenes.

4.4. Experiments on Space Robot Teleoperation Platform. The
SCA-SSD hand detector is utilized in a designed space robot
teleoperation platform, which is shown in Figure 7. The teleo-
peration platform includes a hand teleoperation space and a
hand-arm robot motion space. A RealSense camera can
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capture the astronaut’s hands in real time. After that, the SCA-
SSD hand detector can detect hands on the RGB images, and
then, the 2D hand positions can bemapped to the correspond-
ing depth images to obtain the 3D hand positions. Then, the
real-time hand positions in the hand teleoperation space can
be transferred to the hand-arm robot motion space by using
the following mapping relationship equation.

xRi = xRi−1 + λ xHi − xHi−1
� �

,

yRi = yRi−1 + λ yHi − yHi−1
� �

,

zRi = zRi−1 + λ zHi − zHi−1
� �

,

8>><
>>:

ð3Þ

where the ðxR, yR, zRÞ is the position of the end effector of the
robot, and the ðxH , yH , zHÞ is the hand position in the camera
coordinate system. (xRi , y

R
i , z

R
i ) is the hand position in i-th

frame, and (xRi−1, y
R
i−1, z

R
i−1) is the hand position in ði − 1Þ-th

frame. λ is a scale factor, and we set λ = 1 in the teleoperation
experiment.

By collecting the motion trajectories of hand in the cam-
era coordinate system and robot end effector in the robot
coordinate system, the trajectories are shown in Figure 8.

From Figure 8, we can see that the end effector of the
robot can track the movement trajectory of the hand very
well. And the maximum error is only 9.3mm.

5. Conclusion and Future Work

In this work, a fast and accurate hand detection method was
proposed by using a spatial-channel attention single shot
multibox detector (SCA-SSD). And the proposed hand
detector was utilized in a hand-based space robot teleopera-
tion system. Specifically, two shallow layers were fused with
deep layers by using feature fusion modules to increase the
restricted receptive field in shallow layers. And spatial atten-
tion and channel-wise attention were also used to extract
more efficient features. This method can not only ease the

computational burden but also bring more contextual infor-
mation. The comparative experiment, ablation experiment,
and verification experiment have proved the good perfor-
mance of the proposed SCA-SSD hand detector. Finally, the
experiment on space robot teleoperation platform has demon-
strated that the proposed SCA-SSD hand detector can be
applied well in the space robot teleoperation. There are some
limitations of the proposed hand detection and teleoperation
method. First, the proposed method is only trained on public
datasets, and due to the small sizes of the public datasets, the
generalization ability of hand detection is not strong. Second,
only the detection and localization of hands cannot control
the space robots well, and the subsequent recognition of hand
gestures and poses is also required.

In the future, hand gesture recognition methods need
further research to realize space robot teleoperation for com-
plex tasks. In addition, skeleton-based hand detection and
pose estimation also require further research to achieve
more precise teleoperation.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Conflicts of Interest

The authors declare that there are no competing interests
regarding the publication of this paper.

Acknowledgments

This work is supported by theNational Natural Science Founda-
tion of China (62006204 and 62103407) and partly supported by
the Shenzhen Outstanding Scientific and Technological Innova-
tion Talents Training Project (RCBS20210609104516043).

0.3
0.2

00.1
−0.1 −0.2 −0.3 −0.4

−0.05

Hand
UR5

0.2
0.15

0.1
0.05

0−0.6

−0.5

−0.4

−0.3

−0.2

z(
m

)

y(m)
x(m)

−0.1

0.1

0

Figure 8: Motion trajectories of hand and the end effector of UR5.

9International Journal of Aerospace Engineering



References

[1] K. Hambuchen, J. Marquez, and T. Fong, “A review of NASA
human-robot interaction in space,” Current Robotics Reports,
vol. 2, no. 3, pp. 265–272, 2021.

[2] M. Shahbazi, S. F. Atashzar, and R. V. Patel, “A systematic
review of multilateral teleoperation systems,” IEEE Transac-
tions on Haptics, vol. 11, no. 3, pp. 338–356, 2018.

[3] C. Freschi, V. Ferrari, F. Melfi, M. Ferrari, F. Mosca, and
A. Cuschieri, “Technical review of the da Vinci surgical telema-
nipulator,” The International Journal of Medical Robotics and
Computer Assisted Surgery, vol. 9, no. 4, pp. 396–406, 2013.

[4] A. Bolopion and S. Régnier, “A review of haptic feedback tele-
operation systems for micromanipulation and microassem-
bly,” IEEE Transactions on Automation Science and
Engineering, vol. 10, no. 3, pp. 496–502, 2013.

[5] Y. Liang, G. Du, C. Li, C. Chen, X. Wang, and P. X. Liu, “A
gesture-based natural human-robot interaction interface with
unrestricted force feedback,” IEEE Transactions on Instrumen-
tation and Measurement, 2022.

[6] R. Li, H. Wang, and Z. Liu, “Survey on mapping human hand
motion to robotic hands for teleoperation,” IEEE Transactions
on Circuits and Systems for Video Technology, p. 1, 2021.

[7] B. Fang, D. Guo, F. Sun, H. Liu, and Y. Wu, “A robotic hand-
arm teleoperation system using human arm/hand with a novel
data glove,” in In 2015 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pp. 2483–2488, Zhuhai,
China, 2015.

[8] L. Dipietro, A. M. Sabatini, and P. Dario, “A survey of glove-
based systems and their applications,” Ieee transactions on sys-
tems, man, and cybernetics, part c (applications and reviews),
vol. 38, no. 4, pp. 461–482, 2008.

[9] C. Mizera, T. Delrieu, V. Weistroffer, C. Andriot, A. Decatoire,
and J.-P. Gazeau, “Evaluation of hand-tracking systems in tel-
eoperation and virtual dexterous manipulation,” IEEE Sensors
Journal, vol. 20, no. 3, pp. 1642–1655, 2019.

[10] S. Raspopovic, M. Capogrosso, F. M. Petrini et al., “Restoring
natural sensory feedback in real-time bidirectional hand pros-
theses,” Science Translational Medicine, vol. 6, no. 222,
p. 222ra19, 2014.

[11] X. Lv, C. Dai, H. Liu et al., “Gesture recognition based on
sEMG using multi-attention mechanism for remote control,”
Neural Computing and Applications, pp. 1–11, 2022.

[12] S. E. Ovur, X. Zhou, W. Qi et al., “A novel autonomous learn-
ing framework to enhance sEMG-based hand gesture recogni-
tion using depth information,” Biomedical Signal Processing
and Control, vol. 66, p. 102444, 2021.

[13] W. Liu, D. Anguelov, D. Erhan et al., “Ssd: single shot multibox
detector,” in In European conference on computer vision, Com-
puter Vision – ECCV 2016, pp. 21–37, Springer, Cham, 2016.

[14] S. Li, J. Jiang, P. Ruppel et al., “A mobile robot hand-arm tele-
operation system by vision and imu,” in In 2020 IEEE/RSJ
International Conference on Intelligent Robots and Systems
(IROS), pp. 10900–10906, Las Vegas, NV, USA, 2021.

[15] A. Handa, K. V. Wyk, and W. Yang, “Dexpilot: vision-based
teleoperation of dexterous robotic hand-arm system,” in In
2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 9164–9170, Paris, France, 2020.

[16] A. Sivakumar, K. Shaw, and D. Pathak, “Robotic telekinesis:
learning a robotic hand imitator by watching humans on You-
tube,” 2022, http://arxiv.org/abs/2202.10448.

[17] M. Kölsch and M. A. Turk, “Robust hand detection,” Current
Robotics Reports, vol. 4, pp. 614–619, 2004.

[18] Q. Gao, J. Liu, and Z. Ju, “Robust real-time hand detection and
localization for space human–robot interaction based on deep
learning,” Neurocomputing, vol. 390, pp. 198–206, 2020.

[19] Q. Gao, J. Liu, Z. Ju, and X. Zhang, “Dual-hand detection
for human–robot interaction by a parallel network based
on hand detection and body pose estimation,” IEEE Trans-
actions on Industrial Electronics, vol. 66, no. 12, pp. 9663–
9672, 2019.

[20] J. Yu, H. Gao, D. Zhou, J. Liu, Q. Gao, and Z. Ju, “Deep tempo-
ral model-based identity-aware hand detection for space
human-robot interaction,” IEEE Transactions on Cybernetics,
pp. 1–14, 2021.

[21] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: towards
real-time object detection with region proposal networks,”
Advances In Neural Information Processing Systems, vol. 28,
2015.

[22] Z. Cai and N. Vasconcelos, “Cascade r-cnn: delving into high
quality object detection,” in In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pp. 6154–
6162, Salt Lake City, 2018.

[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only
look once: unified, real-time object detection,” in In Proceed-
ings of the IEEE conference on computer vision and pattern rec-
ognition, pp. 779–788, Silicon Valley, 2016.

[24] J. Redmon and A. Farhadi, “Yolov3: an incremental improve-
ment,” 2018, http://arxiv.org/abs/1804.02767.

[25] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: optimal
speed and accuracy of object detection,” 2020, http://arxiv
.org/abs/2004.10934.

[26] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “Dssd:
deconvolutional single shot detector,” 2017, http://arxiv.org/
abs/1701.06659.

[27] G. Cao, X. Xie, W. Yang, Q. Liao, G. Shi, and J. Wu, “Feature-
fused SSD: fast detection for small objects,” In Ninth Interna-
tional Conference on Graphic and Image Processing (ICGIP
2017), vol. 10615, p. 106151E, 2018.

[28] Z. Li and F. Zhou, “FSSD: feature fusion single shot multibox
detector,” 2017, http://arxiv.org/abs/1712.00960.

[29] S. Zhai, D. Shang, S. Wang, and S. Dong, “DF-SSD: an
improved SSD object detection algorithm based on DenseNet
and feature fusion,” IEEE access, vol. 8, pp. 24344–24357, 2020.

[30] J. Jeong, H. Park, and N. Kwak, “Enhancement of SSD by
concatenating feature maps for object detection,” 2017,
http://arxiv.org/abs/1705.09587.

[31] J. Leng and Y. Liu, “An enhanced SSD with feature fusion and
visual reasoning for object detection,” Neural Computing and
Applications, vol. 31, no. 10, pp. 6549–6558, 2019.

[32] J. Park, S. Woo, J. Lee, and I. S. Kweon, “Bam: bottleneck atten-
tion module,” 2018, http://arxiv.org/abs/1807.06514.

[33] M. Everingham, L. V. Gool, C. K. Williams, J. Winn, and
A. Zisserman, “The Pascal visual object classes (voc) chal-
lenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, 2010.

[34] A. Mittal, A. Zisserman, and P. H. Torr, “Hand detection using
multiple proposals,” In Bmvc, vol. 2, no. 3, p. 5, 2011.

[35] A. Paszke, S. Gross, F. Massa et al., “Pytorch: an imperative
style, high-performance deep learning library,” Advances In
Neural Information Processing Systems, vol. 32, 2019.

10 International Journal of Aerospace Engineering

http://arxiv.org/abs/2202.10448
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1701.06659
http://arxiv.org/abs/1712.00960
http://arxiv.org/abs/1705.09587
http://arxiv.org/abs/1807.06514


[36] S. Liu and D. Huang, “Receptive field block net for accurate
and fast object detection,” in In Proceedings of the European
conference on computer vision (ECCV), pp. 385–400, 2018.

[37] C. Li, High Quality, Fast, Modular Reference Implementation
of SSD in PyTorch, 2018, https://github.com/lufficc/SSD.

[38] J. Dai, Y. Li, K. He, and J. Sun, “R-fcn: object detection via
region-based fully convolutional networks,” Advances In Neu-
ral Information Processing Systems, vol. 29, 2016.

[39] S. Woo, S. Hwang, and I. S. Kweon, “Stairnet: top-down
semantic aggregation for accurate one shot detection,” in In
2018 IEEE winter conference on applications of computer vision
(WACV), pp. 1093–1102, Lake Tahoe, NV, USA, 2018.

[40] J. Lim, M. Astrid, H. Yoon, and S. Lee, “Small object detection
using context and attention,” in In 2021 International Confer-
ence on Artificial Intelligence in Information and Communica-
tion (ICAIIC), pp. 181–186, Jeju Island, Korea (South), 2021.

[41] L. Fang, X. Zhao, and S. Zhang, “Small-objectness sensitive
detection based on shifted single shot detector,” Multimedia
Tools and Applications, vol. 78, no. 10, pp. 13227–13245, 2019.

11International Journal of Aerospace Engineering

https://github.com/lufficc/SSD

	Fast and Accurate Hand Visual Detection by Using a Spatial-Channel Attention SSD for Hand-Based Space Robot Teleoperation
	1. Introduction
	2. Related Work
	2.1. Hand-Based Robot Teleoperation
	2.2. Hand Detection Methods

	3. Spatial-Channel Attention SSD
	3.1. SSD Introduction and Visualization
	3.1.1. SSD Architecture
	3.1.2. Detection Visualization in SSD

	3.2. SCA-SSD Architecture
	3.2.1. Overview of SCA-SSD
	3.2.2. Multiattention Module
	3.2.3. Feature Fusion Module


	4. Experiments and Analysis
	4.1. Experiments on the Pascal VOC Dataset
	4.1.1. Training
	4.1.2. Introduction of the Pascal VOC Dataset
	4.1.3. Comparative Experiments

	4.2. Experiments on Oxford Hands Dataset
	4.2.1. Introduction of the Oxford Hands Dataset
	4.2.2. Ablation Experiment

	4.3. Experiments on AHD Dataset
	4.3.1. AHD Dataset
	4.3.2. Verification Experiment and Visualization

	4.4. Experiments on Space Robot Teleoperation Platform

	5. Conclusion and Future Work
	Data Availability
	Conflicts of Interest
	Acknowledgments

