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15 Abstract
16 Missing observations in trait datasets pose an obstacle for analyses in myriad biological 

17 disciplines. Imputation offers an alternative to removing cases with missing values from datasets. 

18 Imputation techniques that incorporate phylogenetic information into their estimations have 

19 demonstrated improved accuracy over standard techniques. However, previous studies of 

20 phylogenetic imputation tools are largely limited to simulations of numerical trait data, with 

21 categorical data not evaluated. It also remains to be explored whether the type of genetic data 

22 used affects imputation accuracy. We conducted a real data-based simulation study to compare 

23 the performance of imputation methods using a mixed-type trait dataset (lizards and 

24 amphisbaenians; order: Squamata). Selected methods included mean/mode imputation, k-nearest 

25 neighbour, random forests, and multivariate imputation by chained equations (MICE). Known 

26 values were removed from a complete-case dataset to simulate different missingness scenarios: 

27 missing completely at random (MCAR), missing at random (MAR), and missing not at random 

28 (MNAR). Each method (with and without phylogenetic information derived from mitochondrial 

29 and nuclear gene trees) was used to impute the removed values. The performances of the 

30 methods were evaluated for each trait and in each missingness scenario. A random forest method 

31 supplemented with a nuclear-derived phylogeny performed best overall, and this method was 

32 used to impute missing values in the original squamate dataset. Data with imputed values better 

33 reflected the characteristics and distributions of the original data compared to the complete-case 

34 data. However, phylogeny did not always improve performance for every trait and in every 

35 missingness scenario, and caution should be taken when imputing trait data, particularly in cases 

36 of extreme bias. Ultimately, these results support the use of a real data-based simulation 

37 procedure to select a suitable imputation strategy for a given mixed-type trait dataset. Moreover, 

38 they highlight the potential biases that complete-case usage may introduce into analyses.
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39 Author summary
40 The issue of missing data is problematic in trait datasets as observations for rare or threatened 

41 species are often missing disproportionately. When only complete cases are used in an analysis, 

42 derived results may be biased. Imputation is an alternative to complete-case analysis and entails 

43 filling in the missing values using known observations. It has been demonstrated that including 

44 phylogenetic information in the imputation process improves accuracy of predicted values. 

45 However, most previous evaluations of imputation methods for trait datasets are limited to 

46 numerical, simulated data, with categorical traits not considered. Using a reptile dataset 

47 comprised of both numerical and categorical trait data, we employed a real data-based simulation 

48 strategy to select an optimal imputation method for the dataset. We evaluated the performance of 

49 four different imputation methods across different missingness scenarios (e.g. missing 

50 completely at random, values missing disproportionately for smaller species. Results indicate 

51 that imputed data better reflected the original dataset characteristics compared to complete-case 

52 data; however, the optimal imputation strategy for a given scenario was contingent on 

53 missingness scenario and trait type. As imputation performance varies depending on the 

54 properties of a given dataset, a real data-based simulation strategy can be used to provide 

55 guidance on best imputation practices.

56
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57 Introduction
58 Trait data are used in a wide variety of biological disciplines, including evolutionary 

59 biology, community ecology, and biodiversity conservation. For instance, trait data pertaining to 

60 the life history of a species, such as longevity, metabolic rate, and generation time, are integral in 

61 studies of biological aging (1,2). Environmental trait data, such as latitude, temperature, and 

62 habitat type, may be used to identify those species most at risk of extinction (3,4). However, an 

63 extensive proportion of these trait data are often missing. Missingness may stem from a 

64 taxonomic bias: data are available in copious amounts for well-researched or charismatic species 

65 and are lacking for endangered species or those that inhabit remote environments (e.g. deep sea) 

66 (5–7). Mammal and bird taxa tend to be well sampled, and data for a large and diverse array of 

67 traits are available for many groups (8,9). However, regional and phylogenetic biases are 

68 common in trait data for groups such as reptiles and amphibians, and observations are largely 

69 limited to body size and habitat traits (9). Species traits are often tied to evolutionary history, a 

70 concept referred to as phylogenetic signal (10). Closely related species can share the 

71 characteristics that render them elusive or difficult to study (e.g. small body size), resulting in 

72 sparse or unreliable data for entire taxonomic clades (5,6,8). Certain types of trait data may also 

73 be easier to quantify (e.g. morphometric data) as opposed to traits that require arduous or 

74 invasive data collection techniques (e.g. age or reproductive data) (11; see Fig 1 for a 

75 visualization of missingness in reptiles). When trait datasets are used in studies, these biases can 

76 lead researchers to make erroneous conclusions about the data. Consequently, the development 

77 of approaches for handling missing data is an important area of research that spans across 

78 multiple biological disciplines.
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79 Fig 1. Visualization of missingness. Visualization of missingness (proportion of present vs. 

80 missing observations) in Squamata trait data obtained from the primary literature. Superscripts 

81 indicate the original sources of the trait data: 1) amniote life history database (12,13), 2) 

82 vertebrate home range sizes dataset (14,15), 3) traits of lizards of the world (16,17) and 4) 

83 AnAge (18,19). See S1 File for further detail on trait sources.

84 The use of complete-case datasets can result in a large proportion of information being 

85 discarded (7,20). If data are “missing completely at random” (MCAR), the removal of cases 

86 leads to a reduction in the size of the dataset, and in turn, a reduction in statistical power (7,21). 

87 Trait data, however, are often “missing at random” (MAR): observations that are missing for a 

88 particular trait are related to known values for some other traits. Simply removing incomplete 

89 cases when data are MAR can result in biased estimations of model parameters (7,11,22). In 

90 more extreme cases, trait data may be “missing not at random” (MNAR): the reason data are 

91 missing is related to the unobserved data themselves. In such scenarios, the reason for 

92 missingness may be unclear to the researcher and thus difficult to verify empirically (23). 

93 Imputing missing observations is a common alternative to the complete-case analysis. 

94 Imputation techniques use known observations to estimate the missing and unobserved values of 

95 a variable (or variables) of interest. Single imputation techniques such as hot deck imputation or 

96 k-nearest neighbour (KNN; 16) offer an efficient means for estimating missing values; however, 

97 these methods provide only a single estimate of the missing value. Random forest methods such 

98 as missForest (25) are also growing in popularity as they make no prior assumptions about the 

99 distributions of variables. Multiple imputation techniques have been developed that perform 

100 single imputation several times and are therefore capable of providing a measure of uncertainty 

101 of the imputed values (7,26). An example of a multiple imputation method is multivariate 
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102 imputation by chained equations (MICE; 19), which offers numerous models for imputing data 

103 of different types. Incorporating phylogenetic information into the imputation process has also 

104 been shown to increase the accuracy of imputed values (11,28). This increase in accuracy is a 

105 result of the phylogenetic signal that is often inherent in trait data. A commonly used method for 

106 incorporating phylogenetic information into the imputation process is the use of phylogenetic 

107 eigenvectors. More specifically, methods such as phylogenetic eigenvector regression (PVR) 

108 (29) and phylogenetic eigenvector mapping (PEM) (30) employ a principal coordinates analysis 

109 (PCoA) to derive eigenvectors from a phylogenetic tree. PEM expands on the PVR method by 

110 applying an additional branch length transformation based on the Ornstein-Uhlenbeck 

111 evolutionary model (30,31). Phylogenetic eigenvectors may then be used as additional predictor 

112 variables in the imputation process (see 11,24,25). 

113 As missing data are a major concern in trait datasets, we are motivated to consider 

114 imputing these missing values. The correlative nature of trait data makes them suitable 

115 candidates for imputation, particularly when phylogenetic signal is also present (34). In an 

116 evaluation of imputation methods using mammalian trait data, Penone et al. (11) found that 

117 supplementing the imputation process with phylogenetic information improved the accuracy of 

118 KNN, missForest, and MICE for several life history traits. Kim et al. (24) similarly found that 

119 adding phylogenetic information to MICE improved accuracy rates of estimated functional 

120 diversity metrics. However, when imputing bird demographic traits with moderate phylogenetic 

121 signal (Pagel’s λ < 0.8), Johnson et al. (27) found that use of phylogenetic information improved 

122 error rates by a margin of less than 1%. Moreover, they suggest that the use of auxiliary traits 

123 (traits that are present in the dataset but not the target of imputation) were often sufficient for 

124 accurate imputations. In sum, these findings indicate that improvements conferred by 
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125 phylogenetic imputation methods are context-dependent, contingent upon the presence of 

126 phylogenetic signal and relationships among traits in the dataset.

127 Trait data exist in several forms, ranging from the discrete categories of foraging 

128 behaviour to the countable number of eggs in a nest. Available trait datasets are often comprised 

129 of mixed types that contain categorical, count, and numerical data. Many contemporary 

130 imputation methods are able to estimate both categorical and numerical values. However, most 

131 previous studies have only evaluated their performances using simulated trait data, and the few 

132 studies that have utilized real data are limited to numerical traits. Additionally, phylogenetic 

133 information is usually included in the form of a multigene tree; it remains to be explored whether 

134 the type of genetic data used to construct the phylogeny affects imputation accuracy. 

135 Phylogenetic resolution varies among gene trees (36,37), and certain genes may be more or less 

136 suited for imputation in a given taxon and taxonomic rank. To determine the best-suited 

137 imputation method for a given mixed-type dataset, we propose a method-selection strategy that 

138 employs real data-based simulations. Results from the real-data simulations will address: 1) 

139 whether there is an optimal imputation strategy for a specific data type (continuous, count, 

140 categorical) and missingness scenario (MCAR, MAR, and MNAR); 2) which imputation method 

141 performs the best for a given dataset containing mixed data types; 3) whether phylogenetic 

142 information improves the imputation performance; and 4) which type of phylogenetic 

143 information is influential (mitochondrial, nuclear). The strategy proposed here may be 

144 considered for future trait-based analyses to reduce biases that may occur if researchers analyze 

145 only complete cases, bolster sample size and improve statistical power, and mitigate error rates 

146 when imputing missing values. In turn, this will facilitate the pursuit of new research directions, 

147 particularly in those fields impeded by sparsely available trait data. 
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148 Results
149 Performance comparison without phylogeny
150 In general, when missing data were generated under MCAR, error rate increased with 

151 missingness proportion; this trend was observed for all trait and method combinations (Fig 2). 

152 Under the same simulation setting, k-nearest neighbour (KNN; 24,38), random forests (RF; 

153 “missForest” R package 25,39) and multivariate imputation by chained equations (MICE; 27) 

154 outperformed mode and mean imputation for the majority of traits. However, there were 

155 exceptions to this pattern. For the categorical trait activity time, mode imputation resulted in a 

156 lower error rate than RF and KNN at 30-40% missingness (Fig 2a). Additionally, for smallest 

157 clutch, the mean imputation method outperformed KNN (10-40%) and RF (10%, 30-40%) (Fig 

158 2d). MICE resulted in lower error rates than KNN and RF for most traits across all missingness 

159 proportions. However, KNN resulted in the lowest error rate for activity time at 10%, and RF 

160 resulted in the lowest error rate across all missingness proportions settings for the insular 

161 endemic trait (Fig 2b) and at 10% missingness for largest clutch (Fig 2g). In both MAR and 

162 MNAR scenarios without phylogenetic information added, MICE generally outperformed both 

163 RF and KNN (see Fig 3).

164 Fig 2. MCAR performance without phylogeny. Performance of the methods mean imputation, 

165 KNN, missForest (RF), and multivariate imputation by chained equations (MICE) across 

166 different proportions of missingness when data were MCAR. MICE_LR and MICE_PMM signify 

167 the use of logistic regression and predictive mean matching for imputing categorical and 

168 numerical traits, respectively. Error rate was measured as PFC for the categorical traits a) activity 

169 time and b) insular endemic and as MSE for the numerical traits c) largest clutch, d) smallest 

170 clutch, e) female snout-vent length (SVL), f) maximum SVL, and g) latitude. In both cases, error 

171 rates closer to 0 are indicative of better performance.
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172 Fig 3. Imputation performance across all missingness scenarios. Comparison of error rates 

173 for the methods mode imputation, KNN, RF, and MICE for different missingness scenarios with 

174 and without the addition of phylogenetic information. Phylogenetic information was added in the 

175 form of trees built from sequence data of mitochondrial cytochrome c oxidase subunit I (COI) 

176 and nuclear oocyte maturation factor (c-mos) and recombination activating gene 1 (RAG1). 

177 Performance was quantified using PFC for the categorical traits a) activity time and b) insular 

178 endemic and using MSE for the numerical traits c) largest clutch, d) smallest clutch, e) female 

179 SVL, f) maximum SVL, and g) latitude. MCAR = missing completely at random; MAR = 

180 missing at random; MNAR = missing not at random.

181 Phylogenetic imputation performance
182 All traits exhibited significant phylogenetic signal in all gene trees (S1 Fig; see S1 File 

183 for more details on phylogenetic signal measures). However, improvements to imputation 

184 performance through the addition of phylogeny were contingent on method, data type, and 

185 missingness scenario (Fig 3). For instance, when considering the categorical trait activity time, 

186 supplementing phylogenetic information from any of the three genes generally improved 

187 performance for each method and in each missingness scenario (Fig 3a). On the contrary, in the 

188 case of the binary trait insular endemic, adding phylogenetic information to MICE at low 

189 missingness levels (10%) resulted in an increased error rate (Fig 3b). For most traits, MAR 

190 results reflected those in the MCAR scenarios; however, deviations from the general pattern 

191 occurred in some MNAR cases. For example, in the MNAR scenario for insular endemic, 

192 phylogeny was only beneficial when nuclear information was added to KNN. 

193 For the traits largest clutch, smallest clutch, and latitude, KNN and RF performances were 

194 improved by the addition of any type of phylogenetic information in the MCAR and MAR 
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195 scenarios; this was particularly evident in the case of nuclear oocyte maturation factor (c-mos) 

196 (Fig 3c-d, g). However, phylogeny did not improve MICE performance consistently for these 

197 traits. In the MAR scenarios, phylogenetic information improved MICE performance for smallest 

198 clutch and latitude; conversely, for largest clutch, any type of phylogenetic information increased 

199 error rate for MICE. In the MNAR scenarios, the addition of any type of phylogenetic 

200 information increased error rate for MICE imputation for all of these traits drastically in several 

201 situations (e.g. more than doubling the error rate for largest clutch and latitude). The traits female 

202 snout-vent length (SVL) and maximum SVL displayed somewhat dissimilar patterns from the 

203 other traits (Figs 4e-f) as phylogenetic information tended to decrease imputation performance 

204 for most methods and in most scenarios. 

205 The relationship between phylogenetic signal and error ratio varied depending on data 

206 type. For categorical traits, higher error ratio, indicative of better performance due to phylogeny, 

207 was associated with higher phylogenetic signal strength (Fig 4a). This same pattern was not 

208 observed for numerical traits (Fig 4b). Moreover, in MNAR scenarios for numerical traits, many 

209 error ratio values fell below 1 at higher levels of phylogenetic signal, indicative of a reduction in 

210 performance due to phylogeny. Generally, the improvement in imputation performance resulting 

211 from phylogeny was most apparent for KNN and RF, as these methods account for the majority 

212 of error ratio values greater than 1; error ratio values for MICE, however, often fell below 1, 

213 particularly in the case of numerical traits.

214 Fig 4. Association between error ratio and phylogenetic signal. Association between error 

215 ratio (error rate without phylogeny/error rate with phylogeny) and phylogenetic signal for the c-

216 mos gene (Fritz and Purvis’ D (40) for categorical traits and Pagel’s λ (41) for numerical traits) 

217 at different proportions of missingness. Error ratio values above 1 (indicated by the gray line) 
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218 signify an improvement in performance when phylogeny is added. In the case of D, lower values 

219 are indicative of higher levels of phylogenetic conservation for the trait; conversely, higher 

220 values of λ suggest stronger phylogenetic signal. Results are not shown for MAR in a) as only 

221 one trait (activity time) was simulated for this scenario. To improve visualization, values were 

222 jittered (random noise introduced to data) using the package “ggplot2” (42). Additionally, results 

223 are only shown for the c-mos gene as results for cytochrome c oxidase subunit I (COI) and 

224 recombination activating gene 1 (RAG1) follow similar patterns.

225 Imputation of original dataset using best strategy
226 Although results varied considerably, particularly in MNAR scenarios, the method that 

227 resulted in the lowest error rates overall was RF with c-mos. Consequently, this method was 

228 chosen to impute the original dataset. Out of the total species in the original dataset (n = 6657), 

229 those with available c-mos sequence records were included in the imputed subset (n = 921). The 

230 proportion of missingness varied for each trait in this subset as 0.16 for activity time, 0 for 

231 insular endemic, 0.21 for largest clutch, 0.21 for smallest clutch, 0.23 for female SVL, 0 for 

232 maximum SVL, and 0 for latitude. As insular endemic, maximum SVL, and latitude had 

233 complete observations in this subset, these traits were not imputed.

234 Distributions and categorical frequencies of the complete-case, original, and imputed data 

235 can be observed in Fig 5. For the trait activity time, when compared to the original data, 

236 discrepancies in the categorical frequencies were more apparent in the complete-case data than in 

237 the imputed data (Fig 5a). The complete-case data displayed a greater overrepresentation of the 

238 rarest category (cathemeral: 11% vs. 8.9%) and underrepresentation of the most common 

239 category (diurnal: 57.9% vs. 64.4%). Conversely, the imputed data displayed a greater 

240 representation of observations in the most common category compared to the original data 
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241 (diurnal: 67.5% vs. 64.4%). For all numerical traits, the imputed data distributions followed the 

242 distributions of the original more closely than did the complete-case distributions (Figs 6b-d; 

243 Table 1). Perhaps most apparent are the discrepancies in the maximum values in the complete-

244 case data compared to those in the original and imputed data (e.g. for largest clutch, 68 vs. 88; 

245 for smallest clutch, 8 vs. 30). Although the discrepancies in the complete-case data were greater, 

246 both complete-case and imputed data displayed reduced variance relative to the original data for 

247 the traits largest clutch, smallest clutch, and female SVL.

248 Fig 5. Comparison of quantitative characteristics across datasets. Comparison of a) 

249 categorical frequencies for the trait activity time and distributions for the traits b) largest clutch, 

250 c) smallest clutch, and d) female SVL of the complete-case, original, and imputed data. The 

251 natural logarithm (ln) of the numerical data were taken to improve visualization.

252 Discussion
253 In agreement with previous evaluations of imputation methods using trait data (11,34,43), 

254 there was no “optimal” method for imputing values in all scenarios. In the absence of phylogeny, 

255 the best overall method for imputing mixed-type trait data was MICE. This trend was apparent 

256 even in cases of MNAR, as MICE resulted in the lowest error rates for five out of seven traits in 

257 these scenarios when phylogeny was not included. MICE demonstrated strong performances in 

258 previous evaluations of imputation techniques in mammalian (11) and plant (43) trait datasets. 

259 Furthermore, the robustness of predictive mean matching is appealing for the non-linear 

260 relationships and non-normal distributions commonly observed in numerical trait data (44,45). 

261 This may explain the superior performance of MICE in the case of smallest clutch, a count trait 

262 with a right-skewed distribution (many species with smallest clutch size = 1). 
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264 Summary statistics of the complete-case (CC), original (O), and imputed (I) datasets for the numerical traits largest clutch, smallest clutch, female 

265 snout-vent length (SVL), and latitude. As the proportion of missingness was 0 for the traits maximum SVL and latitude in the original data subset, 

266 these traits were not imputed. Original trait data obtained from Meiri (16).

263 Table 1. Summary statistics for the complete-case, original, and imputed datasets. 

Largest clutch
(# eggs/neonates)

Smallest clutch
(# eggs/neonates)

Female SVL
(mm)

Maximum SVL
(mm) Latitude (°)

CC O I CC O I CC O I CC O CC O

N 141 731 921 141 731 921 137 705 921 152 921 152 921

Min 1 1 1 1 1 1 18.7 18.7 18.7 21.7 21.7 -40.36 -47.89

Max 68 88 88 8 30 30 499.5 534.3 534.3 1170 1170 56.6 56.6

Range 67 87 87 7 29 29 480.8 515.6 515.6 1148.3 1148.3 96.96 104.49

Median 2 3 3 1 2 2 60.1 62.7 65.2 77 80 -11.36 -9.48

Mean 5.79 6.08 6.06 1.63 2.06 2.14 75.82 83.4 84.36 103.44 110.35 1.65 -3.8

SE (mean) 0.67 0.33 0.27 0.09 0.07 0.06 4.76 2.43 2.07 8.58 3.30 2.03 0.75

0.95 CI 
(mean) 1.33 0.65 0.53 0.18 0.14 0.12 9.41 4.76 4.06 16.96 6.48 4.01 1.48

Variance 63.85 79.46 67.41 1.22 3.90 3.46 3103.49 4151.01 3950.16 11197.05 10048.39 627.38 521.53

Standard 
deviation 7.99 8.91 8.21 1.10 1.98 1.86 55.71 64.43 62.85 105.82 100.24 25.05 22.84
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267 Predictive mean matching has also been shown to perform well on smaller sample sizes (45), as 

268 seen in the current study (n = 152). Its use in trait imputation is therefore an appealing option 

269 when phylogenetic information is scarce. 

270 As reported in previous studies (11), imputation error rates tended to increase with 

271 missingness proportion and varied amongst different traits. Adding phylogenetic information, 

272 however, did not always improve imputation performance; on the contrary, in some instances its 

273 inclusion led to increased error rates. The effect of phylogeny therefore appears to be situational 

274 and linked to the method used, the underlying mechanism of the missingness in the data, and 

275 quantitative attributes and evolutionary history of the target trait. The performances of KNN and 

276 RF were often improved when any type of phylogenetic information was provided, even in some 

277 cases of MNAR. This pattern was more prominent at higher missingness proportions, as 

278 phylogeny can offset the loss of the trait data. Conversely, phylogeny often increased the error 

279 rate for MICE. This increase in error rate was also found in Johnson et al. (34) when 

280 phylogenetic information was added to MICE, particularly in MNAR scenarios (e.g. larger 

281 values more likely to be missing). The authors suggest this may stem from an issue relating to 

282 the large number of eigenvectors used in the imputation process (e.g. more than 20 eigenvectors 

283 were included in biased missingness scenarios). Penone et al. (11) restricted their maximum 

284 number of eigenvectors to 10 and suggest that the use of too many eigenvectors can mask the 

285 information provided by other traits in the imputation process. Indeed, in the current study, 

286 MICE performed well when the number of predictors were low, as in the case of trait-only 

287 imputation. As phylogenetic resolution varies between nuclear and mitochondrial gene trees, the 

288 number of eigenvectors used for imputation varied in accordance. In this study, the 65% 

289 variation method was used to determine the number of eigenvectors to be included; however, it is 
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290 possible that the use of too many eigenvectors (i.e. more than 40; 62), with less information 

291 provided by each eigenvector, would introduce more noise or lead to overfitting by the 

292 regression-based models. Thus, analyses using phylogenetic eigenvectors for imputation may 

293 consider the use of tree-based methods such as RF (or recursive partitioning; see Kim et al. (32)) 

294 that are more robust to high-dimensional data. Future studies may also consider exploring 

295 whether the optimal number of phylogenetic eigenvectors to use for imputation changes under 

296 varying degrees of missingness bias.

297 RF with phylogeny demonstrated the strongest performance overall as it resulted in the 

298 lowest error rates across all missingness scenarios. This result supports previous evaluations of 

299 the effectiveness of RF for mixed-type data (25). For both KNN and RF, adding phylogenetic 

300 information reduced imputation error rate for traits of all types (categorical, count, continuous). 

301 Nuclear-derived phylogenetic information (i.e. c-mos or RAG1) generally conferred a greater 

302 improvement in imputation performance relative to mitochondrial COI. Due to their faster rates 

303 of nucleotide substitution, mitochondrial genes are less adept at resolving deeper phylogenetic 

304 relationships relative to nuclear genes (47). Consequently, the relationships resolved by nuclear 

305 gene trees may more closely follow the evolutionary trajectory of the traits used in this study. 

306 However, COI often still conferred a reduction in error rate, in some cases more so than the 

307 nuclear genes (e.g. smallest clutch); mitochondrial sequences therefore should be used when 

308 nuclear data are unavailable and may be more advantageous when studying more closely related 

309 species. Strength of phylogenetic signal also appeared to correlate with error ratio (i.e. the 

310 magnitude of performance enhancement) for categorical traits. The same pattern was not 

311 apparent for numerical traits, however. This may stem from the limited range of phylogenetic 

312 signal observed for these other types: all genes displayed significant levels of phylogenetic signal 
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313 for all traits, many of which verged toward λ = 1 (higher trait conservation). This may suggest 

314 that the boost in performance due to phylogeny is negligible beyond a certain level of 

315 phylogenetic signal. However, imputation of a greater number and variety of traits that do not 

316 display any evidence of phylogenetic signal would need to be included to test this assertion.

317 The comparison between the distributions and categorical frequencies of the complete-

318 case, original, and imputed trait data support the efficacy of imputation for mixed-type data. A 

319 greater than 6-fold increase in sample size when using imputed data (n = 151 for complete-case 

320 vs. n = 921 for imputed data) is striking and illustrates the information loss that can occur when 

321 using a complete-case approach. Moreover, complete-case data often do not capture the true 

322 variability of the data; instead, they comprise a biased subset and, in turn, the potential for 

323 erroneous inferences. Previous studies using clinical data (64) and mammalian trait data (11) 

324 found that inferences derived from imputed datasets are less biased when compared to those 

325 obtained using complete-case datasets. However, the missing values in these studies were 

326 introduced either completely at random (MCAR) or at random (MAR). Although imputation 

327 performs well under MCAR and MAR, the mechanism of missingness is often difficult to 

328 determine in practice (23,49). Imputation has been shown to perform poorly in scenarios with 

329 biased missingness, such as when extreme values or values in the tails of the distribution of the 

330 population are disproportionately missing (34). The results from our study provide reason for 

331 further discretion in these instances as the most extreme error rates were observed in MNAR 

332 scenarios. If data are truly MNAR and the imputation method is not carefully chosen, imputed 

333 values and the inferences derived therein may be inaccurate. A recent study completed by Jardim 

334 et al. (50) suggests that accurate estimation of phylogenetic signal from imputed datasets is 

335 contingent on several variables, including the amount of missing data, missing mechanism, and 
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336 the evolutionary trajectory of the trait itself. For example, as values closer to the equator were 

337 missing in the latitude MNAR scenario, mean imputation outperformed most other imputation 

338 methods. Due to the prevalence of allopatric speciation modes in diversification (51,52), closely 

339 related species can inhabit different latitudes or distributions; traits with such evolutionary 

340 histories may be less suitable for imputation. Therefore, we agree with Johnson et al. (34) and 

341 Jardim et al. (50) that caution should be taken when imputing data and the properties of the 

342 dataset of interest be inspected beforehand. Testing imputation methods using a real data-based 

343 simulation strategy as we demonstrate here would provide useful insight as to whether 

344 imputation is a suitable alternative to complete-case analysis.

345 As is often the case when constructing a complete-case dataset, several traits were 

346 excluded from this study. These included many categorical traits that were invariant in the 

347 complete-case dataset, such as those containing information about geography or habitat. In turn, 

348 the range of phylogenetic signal for traits was also limited. It was therefore not feasible to truly 

349 gauge the relationship between error ratio and phylogenetic signal strength in traits as they all 

350 exhibited significant levels. The continued collection of high-quality trait data for both known 

351 and novel species is necessary to further probe these types of relationships. For instance, in the 

352 case of Squamata, snake species are disproportionally undersampled (9) and were thus not 

353 included in the current study. An increase in data availability would also facilitate additional 

354 research on the use of imputation methods in real datasets. Simulated trait data do not fully 

355 capture the nuances of real datasets, and comparative evaluations using real data and different 

356 taxonomic groups are needed to test whether imputing values is practical, particularly in cases of 

357 severe biases. 
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358 Missingness in datasets is a pervasive issue in the realm of biological research. It is 

359 particularly problematic for those taxonomic groups threatened by extinction, or that are small or 

360 reside in understudied areas of the globe. As trait data can take on many forms, methods that can 

361 accurately predict missing values for diverse data types are invaluable for the study of these 

362 obscure groups. Previous research has focused largely on numerical data, and consideration of 

363 imputation performance for categorical traits is imperative in driving this field forward. The 

364 results presented here provide support for the use of imputation methods in real mixed-type 

365 datasets. Supplementing these methods with phylogenetic information is often beneficial, even if 

366 sequence data are available for only one or a limited number of markers. However, researchers 

367 should take care to understand the properties of their dataset and consider the ramifications of 

368 using imputation. In such situations, a real data-based simulation strategy can provide guidance 

369 on best imputation practices for a given biological or ecological dataset. Simulating missingness 

370 using real data more accurately reflects the characteristics and the nature of the unobserved 

371 values. The imputation method that is robust in these scenarios and across diverse trait types can 

372 be used to bolster sample size while simultaneously preserving the original properties of a 

373 dataset. Derived inferences may then more accurately represent the biological phenomena under 

374 investigation.

375 Materials and methods
376 Complete-case dataset creation
377 Traits are defined here as characteristics that are typical of a species. These may refer to 

378 characteristics relating to the biology of a species or the environment in which it resides. Data for 

379 squamates (lizards and amphisbaenians; order: Squamata) were selected for analysis as 

380 complete-case observations were available for at least 100 species as well as both categorical and 
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381 numerical traits. In addition, these species had DNA sequence records publicly available for both 

382 mitochondrial and nuclear markers. Squamata represent an incredibly diverse group of 

383 vertebrates (~10,000 species; 30), inhabiting disparate environments and boasting a broad range 

384 of morphological features. However, trait data for Squamata are undersampled relative to 

385 mammal and bird groups, particularly in tropical regions that are home to diverse species at risk 

386 (9). As of 2022, 19.6% of squamate species are estimated to be under threat of extinction (54). 

387 Imputation may offer additional avenues to identify those traits correlated with risk status in 

388 squamates (e.g. 32,33) and in doing so, contribute to biodiversity conservation efforts in 

389 vulnerable areas. Trait data were obtained from a dataset published by Meiri (16) (other datasets 

390 were also considered, see S1 File). This dataset contains information about the habitat, life 

391 history, morphology, behaviour, and conservation threat level of 6,657 squamate species (lizards 

392 and amphisbaenians, not including snakes) (34,35). The raw trait data were downloaded into R v. 

393 4.0.3 (57). 

394 The Barcode of Life Data System (BOLD) (58) was used as the source for mitochondrial 

395 sequence data as it contains thousands of published cytochrome c oxidase subunit I (COI) partial 

396 gene sequence records (16,676 sequences for over 2000 Squamata species as of July 16th, 2021). 

397 COI sequence data were downloaded into R on March 12th, 2020 (59). Data were filtered for 

398 records that have been identified to the species level, as this information was necessary for trait 

399 matching purposes. Additional quality control checks on the sequence data included trimming N 

400 and gap content from sequence ends and removing sequences with greater than 1% of internal N 

401 and/or gap content across their entire sequence length. Sequences between 650 and 1000 bp were 

402 retained to facilitate downstream multiple sequence alignment. As multiple COI sequence 

403 records are available for many species, a centroid sequence selection process was employed to 
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404 find a typical representative sequence for each species (Orton et al., 2019; see S1 File for details 

405 on this process). The AlignTranslation function from the R package “DECIPHER” v. 2.18.1 

406 (61,62) was used to perform a multiple sequence alignment on the centroid sequences. 

407 AlignTranslation was used as it performs a multiple sequence alignment guided by the translated 

408 amino acid sequence, which is more reliable than an alignment based on nucleotide data alone 

409 (61). The translated final alignment was visualized using the ggmsa function from the R package 

410 “ggmsa” v. 0.06 (42) to verify the nucleotides were in the correct reading frame and to check for 

411 the presence of stop codons. Nuclear sequence data were obtained from a multigene alignment 

412 published in Pyron et al. (64,65). This alignment is comprised of sequence data for 12 genes 

413 (seven nuclear, five mitochondrial) and 4161 species of Squamata (64). The alignment was 

414 partitioned into its constituent gene alignments using RAxML v. 8 (66). 

415 Species names from the COI alignment were matched against the species names in the 

416 trait dataset. Those species that had available data for at least five traits (both categorical and 

417 numerical) and a corresponding COI sequence record were then matched against the species 

418 names in the nuclear multigene alignment. The nuclear markers oocyte maturation factor (c-mos) 

419 and recombination activating gene 1 (RAG1) had the largest number of available records for the 

420 species in the complete-case dataset and were selected for analyses (see S1 Table for sequence 

421 identifiers of those records selected). Final checks were performed on the trait data in the 

422 complete-case subset. Categorical traits with severe class imbalances and very low variability 

423 (e.g. more than 90% of observations in one of the categories and/or the remaining observations 

424 sparsely dispersed across other categories), such as reproductive mode, geographic range, and 

425 substrate, were excluded from the study. The distributions of numerical trait data were visualized 

426 to check for the presence of severe outliers. For each numerical trait, an upper threshold was 
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427 calculated as follows: quartile 3 + (3 × the interquartile range of the data). Severe outliers are 

428 defined here as those values that exceed the upper threshold. If identified, these values were 

429 verified in the primary literature to ensure they were real datapoints and not the result of data 

430 entry error. The final dataset contains information for the seven most complete traits, including 

431 the categorical traits: activity time and insular endemic, the count traits: largest clutch and 

432 smallest clutch, and the continuous traits: female snout-vent length (SVL), maximum snout-vent 

433 length (SVL), and latitude (geographic centroid for the species; Roll et al. 2017). The final 

434 dataset is referred to as the “complete-case dataset” including, 152 species, representing 25 

435 Squamata families (S2 Table). To maintain a sufficient sample size, we permitted some missing 

436 values (no more than 10% for each trait) present in the so-called “complete-case dataset”; 

437 otherwise, the sample size will drop to 121 if only species without missing values in their traits 

438 are included. For further details on these traits, see S3 Table.

439 Phylogenetic information
440 The alignments for the COI, c-mos, and RAG1 sequences were used to build maximum 

441 likelihood gene trees in RAxML v. 8 (66). The model GTRGAMMAI was specified (option -m), 

442 and the alignment was partitioned based on codon position (option -q). The gene trees were then 

443 read into R and made ultrametric using the chronos function in the R package “ape” v. 5.4.1 

444 (68). Phylogenetic eigenvectors were extracted from each gene tree and for each trait using the 

445 “MPSEM” package v. 0.3.6 in R (47). To prevent overfitting, the number of eigenvectors that 

446 explained greater than or equal to 65% of the phylogenetic structure variance was used (see S1 

447 File for further details on this process). Following the method of Penone et al. (11), the 

448 phylogenetic eigenvectors were appended to the complete-case dataset and treated as predictors 

449 in the model to impute the missing value of a given trait.
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450 Previous studies have suggested that phylogenetic signal strength in simulated trait data is 

451 positively correlated with imputation accuracy (32,70). To assess this association using real data, 

452 we measured phylogenetic signal for each trait using Pagel’s λ (41) for numerical traits and the D 

453 metric (40) for categorical traits. Pagel’s λ is estimated using maximum likelihood and represents 

454 the value that optimally transforms a phylogenetic variance-covariance matrix to fit the observed 

455 trait data structure. A λ value of 0 indicates no phylogenetic signal (star-shaped phylogeny), 

456 whereas a λ value of 1 suggests that the trait data adhere to a Brownian motion (BM) model of 

457 evolution (41). The D metric represents whether the number of transitions of a binary trait varies 

458 from the expected number under a BM model (40). A D value of 0 indicates that the trait data 

459 adhere to a BM model, and a D value of 1 indicates that there is no phylogenetic signal in the 

460 trait data. A D value greater than 1 signifies phylogenetic overdispersion. Alternatively, a D 

461 value less than 0 suggests the trait is phylogenetically conserved (40). These metrics were 

462 calculated separately for each trait using each gene tree (S1 File). The phylosig function in the R 

463 package “phytools” v. 0.7.70 (51) and phylo.d function in the R package “caper” v. 1.0.1 (52) 

464 were used to measure λ and D, respectively.

465 Imputation process
466 Four imputation methods were considered: mean/mode imputation, k-nearest neighbour 

467 (KNN) (“VIM” package v. 6.1.0; 16), random forests (RF) (“missForest” package v. 1.4; 53,54), 

468 and multivariate imputations by chained equations (MICE) (“mice” package v. 3.13.0; 19). Mean 

469 (for numerical traits) / mode (for categorical traits) imputation, the simplest method, was used as 

470 a baseline for comparison. The remaining methods were chosen due to their popularity in trait-

471 based studies (e.g. 27,55) and capacity to impute both continuous and categorical traits. These 

472 methods have also been evaluated in previous studies of trait data imputation (11,34,43). KNN 
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473 and RF are single imputation methods as they provide a single estimation of the missing value. 

474 MICE is a multiple imputation method that performs imputation m times on the dataset with 

475 missing values, resulting in m imputed datasets. The MICE algorithm utilizes chained equations 

476 to estimate missing values and offers several different models for imputing data. In this study, 

477 the predictive mean matching model was used to estimate missing continuous data. Predictive 

478 mean matching is the default model for continuous data in MICE and performed well in previous 

479 evaluations using trait data (43,75). Predictive mean matching fills the missing observation with 

480 a random value selected from a “donor” pool for the missing observations. This pool is created 

481 by fitting a regression model on the observed data and selecting k fitted values that are closest to 

482 the predicted value for the missing observation (44,45). Logistic regression is a common 

483 approach for predicting missing categorical data and is the default method for imputing 

484 categorical data in MICE. Logistic regression and polytomous logistic regression models were 

485 used to impute values for the binary trait insular endemic and the nominal multi-categorical trait 

486 activity time, respectively. To obtain a final imputed value for MICE, the mean and mode values 

487 were taken across the m datasets for numerical traits and categorical traits, respectively. See S1 

488 File for further details on imputation algorithms. 

489 When imputing the missing values of each trait (“target trait”) using the observed values 

490 of the other traits (“auxiliary traits”), not all of the auxiliary traits are useful for imputing the 

491 missing values of the target trait. Association tests between each pair of traits were used to filter 

492 out irrelevant auxiliary traits and build a more parsimonious imputation model for the target trait. 

493 Regression models were used in the association tests in which the target trait was specified as the 

494 response variable and each one of the auxiliary traits was specified as the covariate. Linear 

495 regression, Poisson regression, and logistic regression models were used for continuous, count, 
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496 and categorical target traits, respectively. Only auxiliary traits with a coefficient not significantly 

497 equal to zero were retained in the imputation model for a particular target trait. Finally, as 

498 methods such as KNN are sensitive to the range of the data, numerical traits were natural log-

499 transformed prior to imputation. 

500 Simulation study
501 To simulate missing data, three different missingness scenarios were considered: 1) 

502 missing completely at random (“MCAR”); 2) missing at random (“MAR”); and 3) missing not at 

503 random (“MNAR”). Within the MCAR scenario, missing values were randomly introduced into 

504 the complete-case dataset at different proportions (0.10, 0.20, 0.30, and 0.40). In cases where 

505 traits had values that were already missing (up to 10%), missing values were introduced on top 

506 of these (i.e. up to 50% missingness). To reduce stochasticity and maintain a fair comparison of 

507 imputation performance across different missing proportions, and not introducing variability 

508 relating to species identity, missing data for each increase in proportion (e.g. from 0.10 to 0.20 

509 missingness) were added upon the missing values of the previous proportion. To simulate MAR 

510 scenarios using real data, logistic regression models were fitted to the original Meiri (16) dataset 

511 (n = 6657) to identify which auxiliary traits were significantly associated with the missingness 

512 for each target trait. In the fitted model, the indicator of whether an observation is missing or not 

513 was treated as the response variable and auxiliary traits specified as predictors. The fitted models 

514 were then used to introduce missing values into the complete-case datasets (for further details see 

515 S1 File). To test how the imputation methods perform in cases of extreme bias, MNAR scenarios 

516 were simulated for each trait. Values were removed from the 10th percentile of the tail of data 

517 distribution for numerical biological traits, e.g., the 10th percentile of the lower latitudes 

518 (between 10° and -10°); and from a single category for categorical traits, e.g., “nocturnal” 
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519 category for activity time and “yes” category for insular endemic. These values were removed to 

520 emulate realistic MNAR scenarios for Squamata (see S1 File for further information). 

521 A range of parameters and their values were considered for the different imputation 

522 methods (see S1 File for details on this process). The parameters that resulted in the lowest error 

523 rate were used in the imputation model. Imputations using only trait data were first performed on 

524 the simulated missing dataset. Imputations were again performed using trait data and 

525 phylogenetic eigenvectors derived from either COI, RAG1, or c-mos gene trees. This amounted 

526 to 78 different combination settings with respect to method and missingness scenario. The entire 

527 process was repeated 100 times for each combination of settings, resulting in 7,800 runs of the 

528 simulation and imputation pipeline procedure (see Fig 6 for a visualization of the process).  

529 Fig 6. Workflow of the pipeline for a particular combination of variables. 1) 20% of the trait 

530 observations are removed missing completely at random (MCAR) from the complete-case 

531 dataset; 2) missing values are imputed using k-nearest neighbour (KNN). Phylogenetic 

532 information in the form of a cytochrome c oxidase subunit I (COI) gene tree and known trait data 

533 are used to estimate the missing trait data; and 3) the imputed values are compared to those in the 

534 complete-case dataset. Mean squared error (MSE) or proportion falsely classified (PFC) are 

535 calculated for numerical and categorical traits, respectively, and averaged across 100 replicates.

536 Evaluation of methods
537 To assess imputation accuracy, imputed values were compared against the known values 

538 in the complete-case dataset. Mean squared error (MSE) rates and proportion falsely classified 

539 (PFC) rates were computed for numerical and categorical traits, respectively. These rates were 

540 averaged across the 100 replicates for each combination of methods for each trait. For both 
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541 metrics, values closer to 0 are indicative of better performance. The packages “ggplot2” v. 3.3.5 

542 (42) and “plotly” v. 4.10.0 (76) were used to visualize results in R.

543 Real data imputation application and comparison
544 To select the most suitable method for imputing missing values in the original trait 

545 dataset, the results of the MAR simulations were first considered as these mimic realistic 

546 biological scenarios. In case of more than one method performing equally well, the method that 

547 was most robust across different missingness scenarios and that resulted in the lowest average 

548 error rate for the majority of traits was selected. To investigate whether imputed values alter the 

549 quantitative distributional characteristics of the data, summary statistics for each trait were 

550 calculated using the dataset that includes imputed values and compared with the corresponding 

551 summary statistics of both the original and complete-case datasets. To investigate whether the 

552 phylogenetic information improves the imputation accuracy for a given trait and imputation 

553 method, the following error ratio was calculated for each trait and each method:

554 𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑖𝑜 =  
𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 (𝑀𝑆𝐸 𝑜𝑟 𝑃𝐹𝐶) 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

𝐸𝑟𝑟𝑜𝑟 𝑟𝑎𝑡𝑒 (𝑀𝑆𝐸 𝑜𝑟 𝑃𝐹𝐶) 𝑤𝑖𝑡ℎ 𝑝ℎ𝑦𝑙𝑜𝑔𝑒𝑛𝑦

555 An error ratio value greater than 1 indicates an improvement in imputation performance resulting 

556 from the addition of phylogenetic information. To observe the trend of the effect of phylogenetic 

557 signal strength on the imputation of different traits, the error ratio values were plotted against the 

558 λ and D metrics for numerical and categorical traits, respectively. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490388
http://creativecommons.org/licenses/by/4.0/


27

559 Acknowledgements
560 We would like to thank Dr. Cameron Nugent and Dr. Karl Cottenie for their helpful insights 

561 regarding the design and structure of the simulation pipeline. We also thank Dr. Tyler Elliott for 

562 his valuable comments on the manuscript and code. Finally, we thank many researchers who 

563 have collected trait and sequence data and made them publicly available. This work would not 

564 have been possible without you.

565 References
566 1. Voituron Y, de Fraipont M, Issartel J, Guillaume O, Clobert J. Extreme lifespan of the 
567 human fish (Proteus anguinus): a challenge for ageing mechanisms. Biol Lett. 
568 2011;7(1):105–7. 

569 2. Valcu M, Dale J, Griesser M, Nakagawa S, Kempenaers B. Global gradients of avian 
570 longevity support the classic evolutionary theory of ageing. Ecography. 2014 Oct 
571 1;37(10):930–8. 

572 3. Howard SD, Bickford DP. Amphibians over the edge: silent extinction risk of Data 
573 Deficient species. Divers Distrib. 2014 Jul 1;20(7):837–46. 

574 4. Pacifici M, Visconti P, Butchart SHM, Watson JEM, Cassola FM, Rondinini C. Species’ 
575 traits influenced their response to recent climate change. Nat Clim Change. 2017 Mar 
576 1;7(3):205–8. 

577 5. Garamszegi LZ, Møller AP. Nonrandom variation in within-species sample size and 
578 missing data in phylogenetic comparative studies. Syst Biol. 2011;60(6):876–80. 

579 6. González-Suárez M, Lucas PM, Revilla E. Biases in comparative analyses of extinction 
580 risk: mind the gap. J Anim Ecol. 2012 Nov 1;81(6):1211–22. 

581 7. Nakagawa S, Freckleton RP. Missing inaction: the dangers of ignoring missing data. Trends 
582 Ecol Evol. 2008;23:592–6. 

583 8. Titley MA, Snaddon JL, Turner EC. Scientific research on animal biodiversity is 
584 systematically biased towards vertebrates and temperate regions. PLOS ONE. 2017 Dec 
585 14;12(12):e0189577. 

586 9. Etard A, Morrill S, Newbold T. Global gaps in trait data for terrestrial vertebrates. Glob 
587 Ecol Biogeogr. 2020;29(12):2143–58. 

588 10. Blomberg SP, Garland TJr, Ives AR. Testing for phylogenetic signal in comparative data: 
589 Behavioral traits are more labile. Evolution. 2003;57:717–45. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490388
http://creativecommons.org/licenses/by/4.0/


IMPUTATION STRATEGY FOR MIXED-TYPE TRAIT DATA

28

590 11. Penone C, Davidson AD, Shoemaker KT, Di Marco M, Rondinini C, Brooks TM, et al. 
591 Imputation of missing data in life-history trait datasets: which approach performs the best? 
592 Methods Ecol Evol. 2014;5:961–70. 

593 12. Myhrvold NP, Baldridge E, Chan B, Sivam D, Freeman DL, Ernest SKM. An amniote life-
594 history database to perform comparative analyses with birds, mammals, and reptiles. 
595 Ecology. 2015;96(11):3109. 

596 13. Nathan P. Myhrvold, Elita Baldridge, Benjamin Chan, Dhileep Sivam, Daniel L. Freeman, 
597 S. K. Morgan Ernest. Data from: An amniote life-history database to perform comparative 
598 analyses with birds, mammals, and reptiles [Internet]. Wiley. Collection.; 2016. Available 
599 from: https://wiley.figshare.com/articles/dataset/Full_Archive/3563457

600 14. Tamburello N, Côté IM, Dulvy NK. Energy and the Scaling of Animal Space Use. Am Nat. 
601 2015 Aug 1;186(2):196–211. 

602 15. Tamburello N, Côté IM, Dulvy NK. Data from: Energy and the Scaling of Animal Space 
603 Use. Dryad Dataset. 2015; 

604 16. Meiri S. Traits of lizards of the world: Variation around a successful evolutionary design. 
605 Glob Ecol Biogeogr. 2018;27(10):1168–72. 

606 17. Meiri S. Data from: Traits of lizards of the world: Variation around a successful 
607 evolutionary design. Dryad Dataset [Internet]. 2019; Available from: 
608 https://doi.org/10.5061/dryad.f6t39kj

609 18. de Magalhães JP, Costa J. A database of vertebrate longevity records and their relation to 
610 other life-history traits. J Evol Biol. 2009;22:1770–4. 

611 19. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, et al. Human Ageing 
612 Genomic Resources: new and updated databases. Nucleic Acids Res. 2018 Jan 
613 4;46(D1):D1083–90. 

614 20. Zhang Z. Missing data imputation: focusing on single imputation. Ann Transl Med. 
615 2015;4(1):9. 

616 21. Rubin DB. Inference and missing data. Biometrika. 1976;63(3):581–92. 

617 22. Donders ART, van der Heijden GJMG, Stijnen T, Moons KGM. Review: A gentle 
618 introduction to imputation of missing values. J Clin Epidemiol. 2006;59:1087–91. 

619 23. van Buuren S. Flexible Imputation of Missing Data. Boca Raton, FL: CRC Press, Taylor & 
620 Francis Group; 2012. 

621 24. Kowarik A, Templ M. Imputation with the R Package VIM. J Stat Softw. 2016;74(7):1–16. 

622 25. Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for 
623 mixed-type data. Bioinformatics. 2012 Jan 1;28(1):112–8. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490388
http://creativecommons.org/licenses/by/4.0/


IMPUTATION STRATEGY FOR MIXED-TYPE TRAIT DATA

29

624 26. Schafer JL. Multiple imputation: a primer. Stat Methods Med Res. 1999;8:3–15. 

625 27. Van Buuren S, Groothuis-Oudshoorn K. MICE: Multivariate Imputation by Chained 
626 Equations in R. J Stat Softw. 2011;45(3):1–67. 

627 28. Swenson NG. Phylogenetic imputation of plant functional trait databases. Ecography. 
628 2014;37:105–10. 

629 29. Diniz-Filho JAF, Ramos de Sant’ana CE, Bini LM. An eigenvector method for estimating 
630 phylogenetic inertia. Evolution. 1998;52:1247–62. 

631 30. Guénard G, Legendre P, Peres-Neto P. Phylogenetic eigenvector maps: a framework to 
632 model and predict species traits. Methods Ecol Evol. 2013 Dec 1;4(12):1120–31. 

633 31. Guénard G. A phylogenetic modelling tutorial using Phylogenetic Eigenvector Maps 
634 (PEM) as implemented in R package MPSEM (0.3-6). 2019. 

635 32. Kim SW, Blomberg SP, Pandolfi JM. Transcending data gaps: a framework to reduce 
636 inferential errors in ecological analyses. Ecol Lett. 2018;21(8):1200–10. 

637 33. Fournier A, Penone C, Pennino MG, Courchamp F. Predicting future invaders and future 
638 invasions. Proc Natl Acad Sci U S A. 2019/03/29 ed. 2019 Apr 16;116(16):7905–10. 

639 34. Johnson TF, Isaac NJB, Paviolo A, González-Suárez M. Handling missing values in trait 
640 data. Glob Ecol Biogeogr. 2021 Jan 1;30(1):51–62. 

641 35. James TD, Salguero-Gómez R, Jones OR, Childs DZ, Beckerman AP. Bridging gaps in 
642 demographic analysis with phylogenetic imputation. Conserv Biol. 2021;35(4):1210–21. 

643 36. Keck BP, Near TJ. Assessing phylogenetic resolution among mitochondrial, nuclear, and 
644 morphological datasets in Nothonotus darters (Teleostei: Percidae). Mol Phylogenet Evol. 
645 2008 Feb 1;46(2):708–20. 

646 37. Blom MPK, Bragg JG, Potter S, Moritz C. Accounting for Uncertainty in Gene Tree 
647 Estimation: Summary-Coalescent Species Tree Inference in a Challenging Radiation of 
648 Australian Lizards. Syst Biol. 2017 May 1;66(3):352–66. 

649 38. Templ M, Kowarik A, Alfons A, de Cillia G, Prantner B, Rannetbauer W. R package 
650 “VIM”: Visualization and Imputation of Missing Values [Internet]. 2021. Available from: 
651 https://cran.r-project.org/web/packages/VIM/VIM.pdf

652 39. Stekhoven DJ. missForest: Nonparametric Missing Value Imputation using Random Forest. 
653 2013. 

654 40. Fritz SA, Purvis A. Selectivity in Mammalian Extinction Risk and Threat Types: a New 
655 Measure of Phylogenetic Signal Strength in Binary Traits. Conserv Biol. 2010 Aug 
656 1;24(4):1042–51. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490388
http://creativecommons.org/licenses/by/4.0/


IMPUTATION STRATEGY FOR MIXED-TYPE TRAIT DATA

30

657 41. Pagel M. Inferring the historical patterns of biological evolution. Nature. 1999 Oct 
658 1;401(6756):877–84. 

659 42. Wickham H. ggplot2: Elegant Graphics for Data Analysis. [Internet]. New York: Springer-
660 Verlag; 2016. Available from: https://ggplot2.tidyverse.org

661 43. Poyatos R, Sus O, Badiella L, Mencuccini M, Martínez-Vilalta J. Gap-filling a spatially 
662 explicit plant trait database: comparing imputation methods and different levels of 
663 environmental information. Biogeosciences. 2018;15:2601–17. 

664 44. Morris TP, White IR, Royston P. Tuning multiple imputation by predictive mean matching 
665 and local residual draws. BMC Med Res Methodol. 2014 Jun 5;14(1):75. 

666 45. Kleinke K. Multiple Imputation by Predictive Mean Matching When Sample Size Is 
667 Small. Methodology. 2018 Jan 1;14(1):3–15. 

668 46. Diniz-Filho JAF, Bini LM, Rangel TF, Morales-Castilla I, Olalla-Tárraga MÁ, Rodríguez 
669 MÁ, et al. On the selection of phylogenetic eigenvectors for ecological analyses. 
670 Ecography. 2012 Mar 1;35(3):239–49. 

671 47. Springer MS, DeBry RW, Douady C, Amrine HM, Madsen O, de Jong WW, et al. 
672 Mitochondrial Versus Nuclear Gene Sequences in Deep-Level Mammalian Phylogeny 
673 Reconstruction. Mol Biol Evol. 2001;18(2):132–43. 

674 48. Madley-Dowd P, Hughes R, Tilling K, Heron J. The proportion of missing data should not 
675 be used to guide decisions on multiple imputation. J Clin Epidemiol. 2019;110:63–73. 

676 49. Enders CK. Applied Missing Data Analysis. New York: The Guilford Press; 2010. 
677 (Methology in the Social Sciences). 

678 50. Jardim L, Bini LM, Diniz-Filho JAF, Villalobos F. A Cautionary Note on Phylogenetic 
679 Signal Estimation from Imputed Databases. Evol Biol. 2021 Jun 1;48(2):246–58. 

680 51. Esquerré D, Brennan IG, Catullo RA, Torres-Pérez F, Keogh JS. How mountains shape 
681 biodiversity: The role of the Andes in biogeography, diversification, and reproductive 
682 biology in South America’s most species-rich lizard radiation (Squamata: Liolaemidae). 
683 Evolution. 2019;73(2):214–30. 

684 52. Skeels A, Cardillo M. Reconstructing the Geography of Speciation from Contemporary 
685 Biodiversity Data. Am Nat. 2019 Feb 1;193(2):240–55. 

686 53. Uetz P, Aguilar P, Hošek J, editors. The Reptile Database. 2021; Available from: 
687 http://www.reptile-database.org

688 54. Cox N, Young BE, Bowles P, Fernandez M, Marin J, Rapacciuolo G, et al. A global reptile 
689 assessment highlights shared conservation needs of tetrapods. Nature [Internet]. 2022 Apr 
690 27; Available from: https://doi.org/10.1038/s41586-022-04664-7

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490388
http://creativecommons.org/licenses/by/4.0/


IMPUTATION STRATEGY FOR MIXED-TYPE TRAIT DATA

31

691 55. Böhm M, Williams R, Bramhall HR, McMillan KM, Davidson AD, Garcia A, et al. 
692 Correlates of extinction risk in squamate reptiles: the relative importance of biology, 
693 geography, threat and range size. Glob Ecol Biogeogr. 2016;25(4):391–405. 

694 56. Munstermann MJ, Heim NA, McCauley DJ, Payne JL, Upham NS, Wang SC, et al. A 
695 global ecological signal of extinction risk in terrestrial vertebrates. Conserv Biol [Internet]. 
696 n/a(n/a). Available from: https://doi.org/10.1111/cobi.13852

697 57. R Core Team. R: A language and environment for statistical computing. [Internet]. Vienna, 
698 Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-
699 project.org/

700 58. Ratnasingham S, Hebert PDN. bold: The Barcode of Life Data System 
701 (http://www.barcodinglife.org). Mol Ecol Notes. 2007 May 1;7(3):355–64. 

702 59. Data from: Barcode of Life Data System: DS-IMPMIX2: Squamata cytochrome c oxidase 
703 subunit I (COI) dataset. [Internet]. 2020. Available from: dx.doi.org/10.5883/DS-IMPMIX2

704 60. Orton MG, May JA, Ly W, Lee DJ, Adamowicz SJ. Is molecular evolution faster in the 
705 tropics? Heredity. 2019 May 1;122(5):513–24. 

706 61. Wright ES. DECIPHER: harnessing local sequence context to improve protein multiple 
707 sequence alignment. BMC Bioinformatics. 2015 Oct 6;16(1):322. 

708 62. Wright ES. RNAconTest: comparing tools for noncoding RNA multiple sequence 
709 alignment based on structural consistency. RNA. 2020 May 1;26(5):531–40. 

710 63. Yu G, Zhou L, Huang H. Package “ggmsa”. Plot Multiple Sequence Alignment using 
711 ’ggplot2. 2021. 

712 64. Pyron RA, Burbrink FT, Wiens JJ. A phylogeny and revised classification of Squamata, 
713 including 4161 species of lizards and snakes. BMC Evol Biol. 2013 Apr 29;13(1):93. 

714 65. Pyron RA, Burbrink FT, Wiens JJ. Data from: A phylogeny and revised classification of 
715 Squamata, including 4161 species of lizards and snakes. Dryad Dataset [Internet]. 2013; 
716 Available from: https://doi.org/10.5061/dryad.82h0m

717 66. Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of 
718 large phylogenies. Bioinformatics. 2014;30:1312–3. 

719 67. Roll U, Feldman A, Novosolov M, Allison A, Bauer AM, Bernard R, et al. The global 
720 distribution of tetrapods reveals a need for targeted reptile conservation. Nat Ecol Evol. 
721 2017 Nov 1;1(11):1677–82. 

722 68. Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary 
723 analyses in R. Bioinformatics. 2019;35:526–8. 

724 69. Guénard G, Legendre P. Modeling Phylogenetic Signals using Eigenvector Maps. 2019. 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2022.05.03.490388doi: bioRxiv preprint 

https://doi.org/10.1101/2022.05.03.490388
http://creativecommons.org/licenses/by/4.0/


IMPUTATION STRATEGY FOR MIXED-TYPE TRAIT DATA

32

725 70. Molina-Venegas R, Moreno-Saiz JC, Castro Parga I, Davies TJ, Peres-Neto PR, Rodríguez 
726 MÁ. Assessing among-lineage variability in phylogenetic imputation of functional trait 
727 datasets. Ecography. 2018 Oct 1;41(10):1740–9. 

728 71. Revell L. phytools: An R package for phylogenetic comparative biology (and other things). 
729 Methods Ecol Evol. 2012;3:217–23. 

730 72. Orme D, Freckleton RP, Thomas G, Petzoldt T, Fritz S, Isaac N, et al. Package “caper”: 
731 Comparative Analyses of Phylogenetics and Evolution in R. 2018. 

732 73. Stekhoven DJ, Buehlmann P. MissForest - non-parametric missing value imputation for 
733 mixed-type data. Bioinformatics. 2012;28(1):112–8. 

734 74. Richards C, Cooke RSC, Bates AE. Biological traits of seabirds predict extinction risk and 
735 vulnerability to anthropogenic threats. Glob Ecol Biogeogr. 2021 May 1;30(5):973–86. 

736 75. Taugourdeau S, Villerd J, Plantureux S, Huguenin-Elie O, Amiaud B. Filling the gap in 
737 functional trait databases: use of ecological hypotheses to replace missing data. Ecol Evol. 
738 2014;4(7):944–58. 

739 76. Sievert C. Interactive Web-Based Data Visualization with R, plotly, and shiny. [Internet]. 
740 Florida: Chapman and Hall/CRC; 2020. Available from: https://plotly-r.com

741

742 Supporting information
743

744 S1 File. Supplementary Information.

745 S1 Fig. Phylogenetic signal measurements. Measures of phylogenetic signal for a) categorical 

746 and b) numerical traits in gene trees constructed for mitochondrial COI and nuclear c-mos and 

747 RAG1. Asterisks indicate significance at the 0.05 level, according to results from hypothesis 

748 tests comparing the results to a null model (no phylogenetic signal). Fritz and Purvis’ D metric 
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