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Image manipulation methods, such as the copy-move, splicing, and removal methods, have become increasingly mature and
changed the common perception of “seeing is believing.” -e credibility of digital media has been seriously damaged with the
development of image manipulation methods. Most image manipulation detection methods detect traces of tampering pixel by
pixel. As a result, the detected manipulation areas are separated, which results in insufficient consideration of content ma-
nipulation at the object level. In this paper, the detection of image manipulation areas based on forgery object detection and pixel
discrimination is proposed. Specifically, the pixel-level detection branch resamples features and uses an LSTM to detect ma-
nipulations, such as resampling, rotation, and cropping. -e goal of the forgery object detection branch, which is based on Faster
R-CNN, is to extract the regions of interest and analyze the regions with high contrast as well as the forgery objects of the image.
Furthermore, the fused heatmaps of the two branches are integrated with the object detection results. -e noise in the heatmaps is
shielded based on the forgery object information of the region proposal network. Experimental results on multiple standard
forgery datasets have demonstrated the superiority of our proposed method compared with the state-of-the-art methods.

1. Introduction

With the rapid evolution of digital image manipulation,
digital images can be tampered with or forged through
various methods, i.e., the splicing, copy-move, and image
removal methods. When splicing is implemented, a portion
of the source image splits into the target image to form a new
image, as shown in Figure 1(a). -e copy-move method is
used to paste an area of an image into the same image, as
shown in Figure 1(b). In the removal method, an area in the
image is removed and the area restored, as shown in
Figure 1(c).

Early image manipulation detection methods employed
deep neural networks to determine the type of manipulation
in advance. A detection method can only solve one kind of
manipulation problem. -is kind of method, which is re-
ferred to as known manipulation-based detection, uses the

Daubechies wavelet features to detect image patches [1] and
edge reinforcement methods to build a multitask detection
task [2]. Chen et al. [3] propose a parallel deep neural
network scheme BusterNet for image copy-move forgery
localization. With the development of manipulation
methods, it has become easy to superimpose multiple image
manipulations. -erefore, it is increasingly challenging to
detect manipulated images based on unknownmanipulation
types.

-e first line is splicing, the second line is copy-move,
and the third line is removal.

Unknown manipulation-based detection has more sig-
nificant applications than the above approach. Most existing
detection approaches [4, 5] combine resampling and deep
learning features to detect manipulated regions. Park et al.
[6] utilized double JPEG compression features, which were
merged with the additional information in the quantization
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table, to determine whether the image contains manipulated
areas and locate them. Zhou et al. [7] proposed a framework
that effectively combined a region proposal network (RPN)
to localize the synthesis region at the object level and carry
out a two-stream fine-grained bilinear pooling operation.
Xiao et al. [8] proposed an approach that combines a coarse
convolutional neural network (C-CNN) and a refined CNN
(R-CNN) to learn the differences in the image properties to
catch manipulated images. Chen et al. [9] utilize the dual-
color spaces and improve the Xception architecture to detect
GAN-generated faces. However, most of these approaches
are pixel-level oriented. We find that image manipulation is
more likely to occur at the object level. -e image manip-
ulation regions can be detected at the pixel level and object
level to simultaneously contribute to improving the detec-
tion accuracy.

We have developed an approach, whose architecture is
shown in Figure 2, which combines both pixel-level and
object-level information. Our method consists of four parts,
i.e., a forgery object-level branch, a pixel-level detection
branch, a feature fusion module, and an integrated fusion
module. First, the forgery object-level branch is used to
extract the image features using CNNs and feed the features
into the feature fusion module. -en, the ROIs are obtained
based on Faster R-CNN [10]. Inspired by Bappy et al. [5], the
pixel-level detection branch is designed to divide the image
into 8×8 patches and resample them one by one.

Meanwhile, the LSTM learns to establish the temporal
correlations between patches. Equipped with the outputs of
two branches combined, the feature fusion module uses a
decoder to reconstruct the features, and the heatmaps of the
manipulation area are generated. -e manipulation areas
from the pixel-level branch are used to fine-tune the forgery
object-level branch to achieve accurate forgery area labeling.
-e contributions of our work are summarized as follows:

(1) We propose a novel two-branch image manipulation
detection framework consisting of a forgery object-
level branch and a pixel-level branch. -e image
manipulation region is refined by two fusion

modules, making our work significantly different
from other state-of-the-art methods.

(2) We employ the region of interest in the forgery
object-level branch to optimize the heatmap in the
feature fusion module. -e noise in the heatmap is
masked by bounding boxes to decrease the error
caused by the pixel-level detection branch and im-
prove the detection precision of the manipulated
image regions.

(3) Extensive experiments on four benchmarks have
demonstrated the effectiveness of our proposed
method.

-e rest of this paper is organized as follows. In Section
2, we summarize the current image manipulation detection
technologies. In Section 3, we elaborate on the details of our
proposed method. -e conducted experiments and analysis
are presented in Section 4. Finally, in Section 5, we conclude
the paper.

2. Related Work

Researches on detecting unknownmanipulation type images
consist of various approaches. Some earlier approaches
[4, 6, 11] are based on manually designed features. Wu et al.
[11] propose a method to divide the image into blocks and
extract the resampling features for each block. A deep neural
network is utilized to construct a classifier and a Gaussian
conditional random field model to create a thermodynamic
diagram. Meanwhile, they use the random walk method to
locate the synthetic region.

Some approaches that are based on adaptive feature
extraction are proposed to reduce the limitations of manual
design features and improve the method’s adaptability.
Bappy et al. [5] construct a two-branch manipulation image
detection architecture by combining the resampling feature,
LSTM, and encoder-decoder architecture. A resampling
detection model is utilized to extract the resampling feature
of the image from each patch, and the LSTM establishes the

Source image Manipulated image Ground-truth

(a)

Source image Manipulated image Ground-truth

(b)

Source image Manipulated image Ground-truth

(c)

Figure 1: Image manipulation detection method. (a) Splicing. (b) Copy-move. (c) Removal.
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correlation between patches. �e encoder is used to capture
the spatial information of the image. After fusing the fre-
quency and spatial features, the decoder is used to enlarge
the feature to obtain the synthetic region located at the pixel
level.

Mohammed et al. [12] use the CNN to obtain the ab-
normal image boundary features and the LSTM to establish
the connection between image patches. A separate detection
model is used to obtain more accurate detection results to
enhance the detection e­ect of the copy-move manipulation
image. Mazumdar et al. [13] present a two-stream encoder-
decoder network.�e �rst stream extracts the noise residuals
to learn the low-level features through the encoder of the
high-pass �lter. �e second stream extracts high-level fea-
tures from the RGB values of the input image. �e feature
maps of both streams generated pixel-level predictions.
Some other typical methods also detect pixel modi�cations
such as resampling, copy-move, and removal.

By summarizing the above work, forgers mainly perform
manipulation on objects, such as a car and sofa. �erefore,
the forgery detection is based on object-level to explore the
semantic information. Meanwhile, pixel-level detection is
more accurate, especially at detecting edges of fake ones. It is
necessary to combine both object- and pixel-level infor-
mation to detect forgeries. Based on this, we present a novel
framework to e­ectively detect the manipulation region, in
which both object- and pixel-level features contribute to the
detection results.

3. Network Architecture Overview

�e purpose of the proposed framework is to detect image
manipulations. A multitask framework is employed to
model both object-level and pixel-level structures and
consists of a forgery object-level branch and a pixel-level
branch. A feature fusion module is further used to fuse both

forgery object-level and pixel-level features. �e generated
heatmaps are merged with the forgery object information of
the manipulated areas through an integrated fusion module
to detect the manipulated areas.

3.1. Forgery Object-Level Detection Branch. We utilize Faster
R-CNN in the forgery object-level branch to detect ma-
nipulation areas. A convolutional network is used to learn
manipulation features, and the RPN is utilized to generate
ROIs for bounding box regression.

3.1.1. Feature Extraction Network. It is essential in image
manipulation detection to extract features using convolu-
tional neural networks and ensure that the classi�er can
learn to discriminate the manipulated areas. In our work, we
employ ResNet-101 to extract image features. Speci�cally, we
utilize di­erent convolution kernels to locate the manipu-
lated area. In the �rst layer, the image is taken as input with
dimensions of 256× 256× 3. �e network contains multiple
convolutions, pooling layers, and activation functions. �e
residual module utilizes a parameter-free shortcut connec-
tion to optimize the residual mapping and model training.

Following [5], we utilize a convolution kernel size of 3×3
to generate 32, 64, 128, and 256 feature maps. Each residual
unit in the network generates a set of feature maps nor-
malized by batch processing in the convolutional layer. �e
recti�ed linear unit (ReLU) function is utilized as an acti-
vation function followed by amax-pooling layer with a stride
of two at the end of each residual unit.

3.1.2. Region Proposal Network. �e RPN in Faster R-CNN
is used to extract the proposed regions. Compared with the
selective search method, RPN is more e�cient and easier to
combine with Faster R-CNN. As the anchor is the center

64 (8*8) Extracted
Patches

(8,8,Nh)
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(Conv Layer)
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Manipulated Mask

Feature Maps
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Figure 2:�e overall architecture of our method. Forgery object-level branch: the features are extracted from the whole image using several
convolutional layers. �e forgery object information is extracted using encoder to form the feature maps to RPN. Pixel-level branch: the
image is divided into 8× 8 image patches, and the resampling features are extracted for each patch, combined with LSTM to build a temporal
relationship. Feature fusion module: the forgery object-level features in the upper branch and the pixel-level features in the lower branch are
integrated to produce the heat maps using a decoder. Integrated fusion module: according to the forgery object information of the RPN
network, the noises in the heat maps are masked.
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point of the sliding window in the original pixel space, we
use the anchor as the center point to generate the proposed
regions.

We first map the ROIs to the corresponding area on the
feature map and shape the different ROIs to a fixed size. We
take the maximum pixel value of each divided region. -en,
each ROI will have a fixed size.

-e loss of the forgery object-level branch is composed of
two items, i.e., classification loss and regression loss, which
are based on the RPN in Faster R-CNN.-e i-th anchor can
be represented as
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where p is denoted as the probability of a manipulation area,
p∗ represents the ground-truth label, t is the 4-dimensional
bounding box, Ncls and Nreg represent the RPN network
batch and the number of anchors at each location, re-
spectively, Lcls is the standard cross-entropy loss for the RPN
network, Lreg is the smooth L1 regression loss for the pro-
posal bounding boxes, and the hyperparameter λ is utilized
to balance the two loss items with a value of 10.-e output of
the forgery object-level branch is ZObject, as shown in
Figure 3.

3.2. Pixel-Level Detection Branch. -e pixel-level detection
branch is used to detect the natural statistics of copy-move,
splicing, and removal, consisting of a resampling feature
extraction network and an LSTM network. Following [5], we
utilize the pixel-level features as the input of the feature
fusion module.

3.2.1. Resampling Feature Extraction Network. Mahdian
et al. [14] proposed a resampling detection approach using
the Radon transform. -ey employed the Laplacian filter to
resample each patch after the Radon transform. Bappy et al.
[5] utilized the Radon transform to detect manipulations
such as copy-move, splicing, and removal. -ey detected the
tampered regions by distorting the natural statistics at the
boundary. -e Radon transform was proven to be effective
in distinguishing manipulated and nonmanipulated patches.

Following [5], we set the size of the input image to
256× 256× 3 and extracted 64 nonoverlapping patches from
the images. -e size of each block is 32× 32× 3. -en, we
utilize the square root of the 3×3 Laplacian filter to generate
a linear prediction error for each patch. To prevent the
periodic correlation of resampling features in linear pre-
diction loss, the Radon transform is used to accelerate the
gradient descent along with ten angles of projection. Ulti-
mately, the fast Fourier transform (FFT) is applied to obtain
the periodic signal. We balance the size of the patch and
resize it to 32×32 to capture the resampling features of
additional information.

3.2.2. LSTM Networks. -e LSTM networks are utilized to
establish the relationship between patches to analyze

manipulations in the overall image. Following [5], we use a
Hilbert curve to convert the multidimensional problem into
a single dimension to capture the correlation between
patches and guarantee the local spatial positioning for
patches.

From Figure 4(a), we find the results of the Hilbert curve
on the image. All the patches are connected in order. -e
Hilbert curve includes “cups” and “joins.” A square with one
open side represents a “cup.” -e vector connections of two
“cups” are called “joins.” Every cup has an entry point and an
exit point. In Figure 4(b), a cup is marked with a dashed box
from Figure 4(a). -e curve starts at the entry point (red)
and ends at the exit point (green). Meanwhile, the curve
traverses four adjacent squares connected to the next cup
through a dotted line. As a result, the order of the input that
is fed into the LSTM network is established.

-e LSTM network takes the patches associated with the
Hilbert curve one by one as input and learns the relationship
between adjacent patches by calculating the logarithmic
interval. In our work, we employ 64 steps in the LSTM
network, where each step represents a patch, and a 64-di-
mensional feature vector is obtained in the last layer of the
LSTM. First, we denote the n-th feature of the LSTM as Fn

(FnϵR1×Nh) and the feature map as Nt. -e next feature from
the LSTM network can be represented as

Fn
′ � Fn · Wn + Bn. (2)

where Wn ∈ RNh×Nt is a matrix and Bn ∈ R1×Nt is the bias.
Following [5], we choose Nh � 128 and Nt � 64 in our

experiment, and each patch can obtain the feature matrix of
64 × Nt and is reshaped to 8 × 8 × Nt. We set the cross-
entropy loss as
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Here, M represents the number of pixels, N represents
the number of classes, y represents the input pixel, and φ(.)

is an indicator function. If m � n, the loss equals 1; other-
wise, it equals 0.

3.3. Feature FusionModule. -e feature fusion module aims
to synthesize forgery object and pixel features, as shown in
Figure 2. Following [15], we utilize a decoder to reconstruct
the fusion features and divide the manipulation area to re-
place the fully connected layer. We utilize multichannel filters
to generate heatmaps for manipulating images for the con-
volutional operation. Each decoder upsamples the feature
maps discovered in the previous layer and performs con-
volution and batch normalization operations. We employ a
3 × 3 size kernel [5] for the decoder and obtain 64 and 16
feature maps in the first and second layers, respectively. -e
output of the feature fusion module is a heatmap ZFusion 1
containing manipulation areas, as shown in Figure 3.

3.4. Integrated Fusion Module. -e heatmaps generated by
the pixel-level detection branch may contain many noisy
areas, such as the blue circles in Figure 3. Generally, there are
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two typical fusion methods when fusing ZObject and ZFusion 1
to ZFusion 2, i.e., the AND operation and OR operation.

ZFusion 2 � ZFusion 1ⓁZObject. (4)

For the AND operation, we keep the heatmap in the
bounding box from ZFusion 1. Meanwhile, the heatmap areas
that are out of the bounding box are ignored, as shown in
Figure 5(a). In the OR operation, we preserve all the areas in
the bounding box and the heatmaps, as shown in Figure 5(b).

We devise a multiresolution fusion (MRF) strategy based
on the bounding box from both the pixel and object levels, as
shown in Figure 5(c). We follow the AND operation if the
bounding box in the forgery object detection branch en-
compasses the pixel-level detection results. Meanwhile, we
take all the areas in the bounding box if there are no pixel-
level detection results, as described in Algorithm 1.

4. Experiments

4.1. Experimental Datasets and Evaluation Metrics.
Implementation Details. We implement our proposed ap-
proach in TensorFlow.We utilize two NVIDIAQuadro RTX

5000 GPUs to expedite our computational load. We set the
batch size to 16. �e learning rate is set to 0.00003 in pixel
level. We set 0.001 as the initial value in object level and then
reduce it to 0.0001 after 40k steps.

Datasets: we compared our method with current state-
of-the-art methods on NIST Nimble 2016 (NIST′16) [16],
CASIA [17, 18], Coverage [19], and Columbia [20].

(1) NIST′16 dataset was released in 2016, and it is a
standard dataset for image manipulation detection.
It covers the three types of manipulations: splicing,
copy-move, and removal.

(2) CASIA dataset was released in 2013, and it covers
two types of manipulations: splicing and copy-move.
Some postprocessing is used in manipulation re-
gions, like �ltering and blurring, to improve the
di�culty of detection.

(3) Coverage dataset was released in 2016, and it covers
six types of copy-move manipulation, such as copy
only and shape change. �e dataset includes the
source andmask images and has a similarity measure
for manipulating images.

(4) Columbia dataset focuses on splicing based on
uncompressed images.

Evaluation metric: we utilize the F1 score in pixel- and
object-level under the area under curve (AUC) as our
evaluation metrics for performance comparison.

(1) F1 score is a pixel-level evaluation index for image
manipulation detection, and it is used to estimate the
similarity between predicted results and actual value.

(2) AUC is the area under the ROC curve, an essential
indicator for measuring detection accuracy. Based on
the intersections between ROC curves, we can
evaluate the consequence of the model.

Source image Manipulated image

�e detection results 
of forgery object-

level branch
ZObject

Pixel detection with
feature fusion module

ZFusion1

Two branches with 
integrated fusion 

module
ZFusion2

Ground-truth

Figure 3: �e outputs of our approach. �e �rst row indicates the
source image, the manipulated images, and the ground truth. �e
second row demonstrates the detection result of forgery object-
level branch (ZObject), the pixel-level branch with the feature fusion
module (ZFusion 1), and the two branches with the integrated fusion
module (ZFusion 2).

(a) (b)

Figure 4: How the Hilbert curve works in an image.

ZObject

ZFusion1

ZFusion2 (AND) = ZObject ∩ ZFusion1

(a)

ZFusion2 (OR) = ZObject ∪ ZFusion1
(b)

ZFusion2 - MRF
(c)

Figure 5: Using integrated fusion method to choose the manip-
ulation area.
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Baseline models: we compare our approach with dif-
ferent baseline models.

(1) ELA [21]: this approach detects quality loss caused by
JPEG compression by calculating the error between
the actual and manipulation areas.

(2) NOI1 [22]: this approach simulates local noise
through wavelet coefficients and utilizes the incon-
sistency of the noise to detect the manipulation area.

(3) CFA1 [23]: this approach is based on the CFA es-
timation method. It employs adjacent pixels to
simulate the filter array image from the camera and
calculate the manipulation probability for each pixel.

(4) MFCN [2]: this approach is based on an edge-en-
hanced multitask complete convolutional network.
Moreover, it is used to detect manipulation by
predicting the area edge.

(5) J-LSTM [24]: this approach is based on the LSTM
network, which judges the pixel-level manipulations
by separating the image into blocks.

(6) RGB-N [7]: this approach is based on Faster R-CNN
to establish a model for RGB and noise streams.

(7) LSTM-Encoder [5]: this approach employs a hybrid
CNN-LSTM model to detect manipulation regions.

(8) C2RNet [8]: this approach includes C-CNN and
R-CNN to distinguish the genuine and manipulation
images.

Pretrained model: we train the forgery object-level and
pixel-level branch separately. -e forgery object-level
branch, which needs to set the bounding box as the object
label by the frame around the pixel-level ground truth, is
trained first. -en, we train the pixel branch and employ the
features extracted by the forgery object encoder to train the
feature fusion module. Finally, we combine the results in an
integrated fusion module using logical operations in Section
3.4.

We utilize the synthetic dataset created by Bappy et al.
[5] in the pixel-level branch using the DRESDEN, COCO,
and NIST′16 datasets. We follow [7] to set up the forgery
object-level branch. Moreover, we utilize ResNet-101 in

Faster R-CNN, which is pretrained on ImageNet, to extract
the features. We train the pixel branch by using 90% of the
images for training and 10% for validation.

4.2. Experimental Analysis. Experiment preparation: we test
our proposed method on four datasets, NIST′16 [16], CASIA
[17, 18], Coverage [19], and Columbia. Table 1 shows the
comparison results of the pixel-level F1 score and AUC. We
compare four sets of experiments. -e first column and the
second column are the results of the single pixel-level branch
and single forgery object-level branch. -e third column is
the result of the double branch, which includes the AND
operation, OR operation, and the MRF proposed in Section
3.4.

-e MRF has a better performance, as shown in Table 1.
-erefore, we choose theMRF as the follow-up experimental
approach and set 0.2 as the manipulated threshold in the
heatmap.

Result analysis: Table 2 lists the F1 score comparison
between our method and the baselines. Table 3 provides the
AUC comparison. We utilize the experimental results from
[7, 13] and [5].

As shown in Table 2, the F1 score is a classification
accuracy metric that combines precision and recall, which
means the larger the F1 score is, the more robust the model
is. -e CASIA dataset has postprocessing methods, which
affect our forgery object-level branch in detected forged
objects. In comparison to our method, the LSTM-encoder
[5] approach utilizes pixel-level detection and focuses on
spatial cues. As a result, the LSTM-encoder [5] approach’s F1
score is 0.3% higher than ours on CASIA. However, our
approach combines both object- and pixel-level branches.
Using our model, the F1 score on the other datasets is
improved and the detection of postprocessing methods is
considered. As a result, our approach performs better than
other methods on the NIST′16 [16], Coverage [19], and
Columbia [20] datasets.

Our approach outperforms the baselines on the CASIA,
Coverage, and Columbia datasets for the pixel-level AUC
comparison. Especially on the Coverage dataset, our ap-
proach has 1.1% improvement compared to the second-best

Input: Bounding boxes in the forgery object detection branch: Bi, i � 1, 2, . . . , N. N: -e number of bounding boxes. Pixel-level
detection results in pixel-level detection branch: Pj, j � 1, 2, . . . , M. M: -e number of results.
Output: forgery areas: Fp, p � 1, 2, . . . , N

assign Intersectionij to Bi AND Pj

for each Bi do
if Intersectionij is not null:
assign Intersectionij to Fp

else
assign Bi to Fp

return Fp

ALGORITHM 1: -e preprocessing of the multi-resolution fusion (MRF) strategy.
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result. Moreover, RGB-N [7] outperforms our approach on
the NIST′16 dataset. -is is mainly because the forged image
quality is low in NIST′16. -e pixel-level branch has inac-
curate pixel classification, leading to poor boundary box
regression. However, RGN-N only uses forgery object-level
information and performs better on NIST′16. -erefore, the
manipulation of object detection at different scales is the
next point of study.

Visualization results: we illustrate some visualization
results in Figures 6 and 7 in comparison with the pixel-level,
forgery object-level, and the dual branch (MRF). Images are
selected from Coverage and NIST′16. We illustrate better
results in Figure 6. As we can see, our approach can detect
image manipulation accurately. -e two branches can
correct for each other. -e pixel-level branch can segment
the forged objects from the bounding box detected by the
forgery object-level branch, which makes the results finer-

grained, such as Line 1 in Figure 6. Meanwhile, the forgery
object-level branch shields the noise points of the pixel-level
branch and obtains better performance, such as Line 4 in
Figure 6.

Meanwhile, in Figure 7, we select a few poor cases, in
which the pixel branch causes the result in the first row, and
the forgery object-level branch causes the result in the
second row. Similar to Line 1 in Figure 7, the forgery object-
level branch detects the manipulated region precisely, but
the pixel-level branch does not detect the whole manipulated
region, which causes the poor result. Similarly, in Line 2, the
pixel-level branch successfully detects part of the image
manipulation area, but the forgery object-level branch does
not detect the bounding box. Both situations lead to de-
tection failures. We will balance the detection results of the
two branches as much as possible in future work to obtain
better experimental results.

Table 1: -e pixel-level F1 score/AUC comparison on four standard datasets.

Pixel-level Forgery object-
level

Dual branch
“AND” “OR” “MRF”

F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
NIST′16 [16] 0.780 0.796 0.717 0.912 0.739 0.854 0.828 0.892 0.807 0.929
CASIA [17, 18] 0.751 0.713 0.688 0.844 0.744 0.743 0.742 0.851 0.789 0.862
Coverage [19] 0.551 0.723 0.433 0.802 0.531 0.808 0.561 0.828 0.563 0.828
Columbia [20] 0.831 0.641 0.398 0.756 0.529 0.809 0.776 0.803 0.833 0.801

Table 2: -e pixel-level F1 score comparison on the standard datasets.

NIST′16 [16] CASIA [17, 18] Coverage [19] Columbia [20]
ELA [21] 0.236 0.470 0.222 0.214
NOI1 [22] 0.285 0.574 0.269 0.263
CFA1 [23] 0.174 0.467 0.190 0.207
MFCN [2] 0.571 0.612 - 0.541
RGB-N [7] 0.722 0.697 0.437 0.408
LSTM-encoder [5] 0.789 0.792 — 0.823
C2RNet [8] 0.55 0.676 — 0.695
Ours 0.807 0.789 0.563 0.833

Table 3: -e pixel-level AUC comparison on the standard datasets.

NIST′16 [16] CASIA [17, 18] Coverage [19] Columbia [20]
ELA [21] 0.429 0.581 0.583 0.613
NOI1 [22] 0.487 0.546 0.578 0.612
CFA1 [23] 0.501 0.720 0.485 0.522
J-LSTM [24] 0.764 — 0.614 —
RGB-N [7] 0.937 0.858 0.817 0.795
LSTM-encoder [5] 0.794 — 0.712 —
Ours 0.929 0.862 0.828 0.801
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Figure 6: Visualization results from our approach.
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Figure 7: Poor visualization results from our approach.
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5. Conclusion

We present a framework for image manipulation detection
that combines a forgery object-level branch, a pixel-level
branch, and two fusion modules. We utilize Faster R-CNN
to detect manipulation areas on the forgery object-level
branch. Meanwhile, we extract the resampling feature for
each patch and utilize the Hilbert curve and LSTM network
to detect the manipulated regions in the pixel-level branch.
We fuse the two branches with the fusion modules and
obtain a binary map of the manipulation regions. Experi-
mental results show superior performance compared with
the state-of-the-art methods. However, we also find that the
two branches can affect each other when the manipulated
object is of low quality. We will balance the two branches as
much as possible in future work to obtain better experi-
mental results.
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