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ABSTRACT This paper investigates the warp let-off and take-up mechanism of rapier looms to solve the
problem that the warp tension of rapier looms fluctuates greatly and the warp let-off is difficult to maintain
constant. The design and hardware implementation of a let-off and take-up control system based on fuzzy
neural network (FNN) and vector control (VC) are presented to improve the control level of warp tension and
drive performance of the let-off and take-up system. Firstly, the spring-damper dynamic model of the warp
is established according to the mechanical properties. The parametric expression of warp tension and the
control strategy of fixed angle interval based on let-off and take-up motions are constructed according to the
generation mechanism and fluctuation law of warp tension. Then, based on fuzzy reasoning mechanism and
neural network model, the fusion theory of fuzzy neural network is introduced, and a tension controller based
on T-S fuzzy neural network (FNN) is designed. FNN is trained by introducing genetic optimization and the
backpropagation fusion algorithm (GA-BP). In addition, a specialized let-off and take-up hardware circuit is
constructed through embedded technology, and the SVPWM algorithm is used as the driving scheme of the
hardware circuit. Finally, simulation and actual weaving experiments test the proposed let-off and take-up
control system and hardware circuit. The results show that, compared to PID and fuzzy PID, the proposed
fuzzy neural network algorithm has higher tension control accuracy and can effectively restrain the rapier
loom’s warp tension undulation. The designed hardware circuit and SVPWMalgorithm have a fast and stable
driving ability, which ensures the constant let-off amount.

INDEX TERMS Rapier loom, tension control, vector control, fuzzy neural network, genetic algorithm.

I. INTRODUCTION
The rapier loom is a kind of shuttleless loom widely used in
the textile industry because of its high speed, high degree of
automation, and good production efficiency [1]. In addition to
the characteristics of high speed, high automation and high
efficiency of the shuttleless loom, its active weft insertion
mode has strong variety adaptability. It can adapt to the
weft insertion of all kinds of yarns. Rapier looms also have
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obvious advantages in multi-color weft weaving [2], [3].
The let-off and take-up mechanism is an important part
of the rapier loom. It provides warp yarn for the weaving
process, which directly impacts the quality and efficiency of
weaving cloth. With the advancement of weaving technology
and the demand for the high-speed loom, the traditional
mechanical let-off and take-upmechanism has been gradually
replaced by electronic let-off and electronic take-up devices,
becoming themainstream drivingmode. Therefore, computer
technologymakes it possible to control the let-off and take-up
mechanism more accurately and effectively.
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As the speed of the rapier loom increases, the faster
weaving speed will have a significant impact on warp yarn.
Therefore, the control of warp becomes more and more
important. Too large or too small warp tension will affect
the quality of the fabric. If the tension is too large, the warp
yarn will be broken, and if the tension is too small, the cloth
will relax. At the same time, if the let-off quantity is not
guaranteed, the weft density of the fabric will be affected,
increasing the scrap rate of the fabric. Therefore, it is very
important for fabric quality to realize the stable control of
warp yarn through the research of let-off and take-up control
system.

At present, the research on let-off and take-up control
system mainly focuses on warp tension control. The use of
intelligent control methods effectively ensures the stability
of the warp tension during the loom’s high-speed operation,
allowing the loom to complete high-quality weaving tasks at
various speeds and yarns. Cao [4] developed and applied a
warp tension control algorithm based on fuzzy PI parallel
control and a constant tension fuzzy control strategy to a
yarn winding system. Simulation experiments show that the
controller has good robustness and achieves a good control
effect. Lu and Yang [5] designed and researched the multi-
beam let-off mechanism and established a mathematical
model of carbon fiber warp tension. The warp tension was
controlled by fuzzy PID, and its effectiveness was verified.
To address the warp tension control issue of the carbon
fiber multi-layer twill loom’s let-off and take-up system,
Liu et al. [6] established a dynamic model of the let-off
and take-up system based on dynamic analysis. The tension
network is controlled using adaptive fuzzy PID control.When
compared to the PID control, the adaptive fuzzy PID control
has fewer overshoots, less output tension fluctuation, a better
tracking impact, and more stable simulation under various
situations. Wang et al. [7] investigated the structure and
control method of the loom’s let-off and take-up mechanisms
and developed a let-off and take-up control model based
on a fuzzy neural network adaptive PID algorithm. The
results prove that the model enhances the accuracy of the
let-off and take-up system and the quality of the textiles.
Yang et al. [8] applied a linear interpolation fuzzy controller
to the yarn tension control system based on a correction
factor. By comparing the effect of the classic fuzzy control
on yarn tension control, the fuzzy interpolation control
can fundamentally eliminate the steady-state deviation and
chatter phenomenon of the system. Ni et al. [9] proposed a
fuzzy multi-attribute group decision-making method, which
combines the individual opinions of experts and group
similarity to obtain the group opinion decision matrix and
then uses the fuzzy algorithm to determine the optimal
plan for warp tension detection and control. The findings
validate the method’s feasibility of the proposed. In addition,
equivalent synovial control and speed decentralized control
has been applied in warp tension control [10], [11]. Most
of these algorithms are based on fuzzy control theory.
The simple fuzzification of information by fuzzy control

will cause the control accuracy of the system to decrease.
To improve accuracy, it is often necessary to increase the
number of fuzzy quantities during fuzzification or increase
the set of control rules, which will increase the search time of
control rules and affect the system’s response speed. At the
same time, the establishment of membership functions and
fuzzy rules highly depends on expert experience [12]. As a
result, to overcome the limitations of the aforementioned
fuzzy control, Li et al. [13] applied the multi-neuron
adaptive PID control method on the SAURER400 rapier
loom’s let-off system. The simulation results of Simulink
show that the multi-neuron adaptive PID algorithm has the
advantages of fast response and small overshoot compared
with fuzzy PID. Liu and Zhang [14] proposed a Kalman
filter adaptive PID control algorithm based on RBF neural
network. The results show that the control effect and
dynamic performance of adaptive PID control based on the
neural network are significantly better than conventional PID
control. Wang et al. [15] proposed a PID tension control
algorithm based on RBF neural network tuning in the design
of the integrated controller of let off, take-up and fuzzing
based on an ARM microcontroller. The debugging results
show that the algorithm solves the problems of uneven weft
density and tension control of towel loom. Xu and Yang [16]
proposed a fusion algorithm, including neural network,
fuzzy control algorithm and multi-sensor information fusion
algorithm. The neural network obtains the algorithm weight
through the chaotic optimization method and is then fused
by fuzzy comprehensive evaluation. The experimental results
show that the fusion algorithm improves the tension control
accuracy of the carbon fiber multilayer loom. The above
research shows that using a neural network algorithm further
improves the control accuracy of warp tension compared
to a single fuzzy control. Although neural networks have
strong self-learning and self-adaptation capabilities, neural
networks can only describe complex functional relationships
between large amounts of data and cannot express the
reasoning function of the human brain well. Therefore,
it cannot make effective use of expert knowledge. Therefore,
combining fuzzy control and neural network algorithm
will be a more effective solution. Therefore, fuzzy neural
networks are proposed to solve complex control problems
and have been applied in various control scenarios [17]–[19].
However, the current research on applying fuzzy neural
networks in the warp tension control of rapier looms is still
rare. Compared with the traditional fuzzy control and neural
network, the fuzzy neural network (FNN) fully considers
the complementarity of the two. It has the capabilities of
self-learning, self-adaptive and fuzzy information processing.
However, fuzzy neural networks often use BP algorithms to
train FNN controllers to achieve the expected output. But
the use of the BP algorithm makes FNN need more time to
reach the ideal state. At the same time, the global optimization
ability of the BP algorithm is poor, and it is easy to fall
into the local optimal solution, resulting in unsatisfactory
final optimization accuracy [20]. Therefore, improving the
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training algorithm of FNN, increasing the training speed
and enhancing the global optimization ability have become
important aspects of research.

The dynamic response performance of the let-off and take-
up mechanism is also an important factor affecting fabric
quality. The guarantee of let-off quantity requires that the let-
off and take-up motors adjust the speed in time to ensure
the constant weft density. Therefore, the let-off motor and
take-up motor need speed regulation control. The existing
control methods include backstepping control (BSC), vector
control (VC), direct torque control (DTC), model predictive
control (MPC) and other control methods [21]. Among
them, the vector control method currently has obvious
advantages in the speed control of the motor. Ramasamy
and Krishnasamy [22] applies the SVPWM algorithm to
a three-phase five-level dual inverter-fed open-winding
induction motor. Compared with the traditional PWM
method, SVPWM technology provides better performance
for a three-phase five-level dual NPC inverter, And also
reduces the complexity of switching time calculation and
reference vector identification, making the motor run more
smoothly. To improve the performance of the four-level open-
winding induction motor driver, Lakhimsetty et al. [23] uses
an improved SVPWM driving method. This solution can
achieve better harmonic performance without changing the
power supply circuit configuration or equipment voltage
rating, thereby improving the driving performance of the
motor. Wu et al. [24] proposed an efficient synchronous
modulation method for dual three-phase motors within the
full modulation range based on 24-sector SVPWM. It can
improve control performance during a pulse mode change by
reducing the abrupt drop in switching frequency. Through the
above research, we can see the potential and advantages of
the SVPWM algorithm in optimizing the performance of the
inverter and driving the motor efficiently and smoothly.

Therefore, based on the fuzzy neural network (FNN) and
vector control method, a new let-off and take-up controller
for rapier loom is proposed in this paper. The innovations of
this paper are as follows:

A spring-damper parallel dynamic model of the warp yarn
was proposed based on the dynamic analysis of the let-off
and take-up movement. The relationship between the let-off
and take-up movement and the warp tension was established.
And through the analysis of the influencing factors of tension,
the tension sampling strategy of fixed angle interval is
proposed.

A fuzzy neural network tension control strategy is pro-
posed based on genetic and backpropagation algorithms (GA-
BP FNN). This method is appropriate for controlling loom
warp tension with time-varying, nonlinear and multivariable
coupling. The application of the GA-BP algorithm greatly
improves the training speed and accuracy of FNN. It provides
a practical and effective method to improve rapier loom’s
tension control accuracy and weaving quality.

The hardware circuit of let-off and take-up for rapier loom
is designed based on embedded technology. Its reliability

and practicability are verified by weaving experiments. This
module has high integration, strong flexibility, and is more
practical in engineering.

The SVPWMalgorithm is used as a key driving technology
in the designed let-off and take-up hardware circuit, which
improves the dynamic response performance of the let-off
and take-up system. Its driving performance is verified by
comparison with the SPWM algorithm. The motor no-load
experiment and weaving experiment show that it has good
drive stability in the rapier loom.

II. WORKING PRINCIPLE OF RAPIER LOOM
Rapier looms as one of the three types of shuttles less
looms. The main difference between rapier looms and the
other two shuttle-less looms lie in the way of weft insertion
[25], [26]. At present, rapier looms usually use a flexible
rapier belt to insert weft. Driven by the spindle, the rapier belt
introduces the yarn sent by the weft selection finger into the
shed through reciprocating motion. During the rapier loom
weaving process, as shown in Fig. 1, if the spindle is rotated
one week as a weaving cycle, the loom needs to complete
the fivemajor movements of opening, weft insertion, beating-
up, let-off and take-up according to the rotation angle of the
spindle in each weaving cycle.

FIGURE 1. Schematic diagram of fabric formation of the rapier loom.

III. RESEARCH AND ANALYSIS OF LET-OFF AND TAKE-UP
A. WARP TENSION DYNAMICS MODEL
In the rapier loom, the let-off and take-up mechanism mainly
completes the let-off motion and take-up motion in the
weaving process, continuously leading the fabric away from
the weaving mouth and sending out a certain amount of yarn
in time to ensure the continuous progress of the weaving
process. The let-off and take-up mechanisms are critical in
maintaining constant warp tension and determining fabric
quality. The let-off and take-up structure is shown in Fig. 2.
The arrow denotes the warp or fabric’s movement direction,
the fabric leaves the weaving mouth at a certain speed driven
by the friction force of the friction roller B and basically does
not slip, and the friction roller B is driven by the take-upmotor
and the corresponding deceleration device; the take-up shaft
C winds the fabric into a coil, and a conveyor belt connects
the take-up shaft C and the friction roller B. The let-off shaft
A keeps sending out the warp yarn under the control of the let-
off motor to recompense for the winding length of the friction
roller B and make sure weaving continuity. However, when
the take-up mechanism leads the fabric away from the mouth,
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the warp shape variable increases, resulting in an increase in
warp tension; conversely, when the let-off mechanism sends
out the warp, the warp shape variable decreases, resulting in a
decrease in warp tension. As a result, the dynamic stability of
warp tension in the weaving process can only be guaranteed
if the let-off and take-up are kept in dynamic balance.

FIGURE 2. Schematic diagram of let-off and take-up structure.

Yarns are continuous thread-like objects made of vari-
ous textile fibers, fine and soft, with distinct viscoelastic
mechanical properties. For the mechanical properties of warp
yarns, the most basic viscoelastic components mainly include
elasticity and damping. In the warp drive process, to obtain
the mathematical relationship between warp speed and warp
tension and to achieve real-time and accurate control of warp
tension by the controller, a spring-damper parallel dynamics
model is used by analyzing the dynamic characteristics of the
warp yarn, as shown in Fig. 3.

FIGURE 3. Warp spring-damper model.

The warp yarn elasticity and viscosity coefficient are
assumed to be constant and not affected by time and warp
length.When thewarp yarn is naturally straightened, thewarp
yarn deformation ε (0) = 0 and the warp tension Ft (0) = 0.

At this point, the formula for warp tension is

Ft (t) = ε (t)× k + ε,(t)× η (1)

where Ft (t) is the instantaneous tension of the warp
yarn during weaving; k is the elasticity coefficient in the
viscoelastic model and η is the viscous coefficient in the
viscoelastic model; ε (t) is the total deformation of the warp
yarn due to various motions.

The main factors causing the change of warp tension
are let-off motion and take-up motion. Therefore, the warp
deformation ε (t) caused by let-off motion and take-up
motion can be expressed as:

ε (t) = Lj (t)+ Ls(t) (2)

where Lj (t) is the warp take-up amount per unit time, and
Ls(t) is the warp let-off amount per unit time.

After Laplace transformation of formula (1) and substitu-
tion of formula (2), the warp tension can be obtained:

Ft (s) = k1(1+
η

k1
× s)×

[
Lj (s)− Ls(s)

]
(3)

The coiling amount of friction roller per unit time is:

Lj (t) =
∫ t

0

ωB(t)× (1− af )
2π × λ

dt (4)

where af is the radial shrinkage of the fabric, which can be
taken as 2% for plain cloth yarn, λ is the weft density of the
fabric, and ωB(t) is the speed of friction roller.

From Laplace transform:

Lj (s) =
ωB(s)× (1− af )
s× 2π × λ

(5)

Let-off quantity of warp shaft in unit time:

Ls (t) =
∫ t

0
rA(t)× ωA(t)dt (6)

where ωA(t) is the speed of the let-off shaft and rA(t) is the
radius of let-off shaft.

From Laplace transform:

Ls (s) =
1
s
× rA(s)× ωA(s) (7)

Substituting (5) and (7) into (3),

Ft (s) =
k1
s
(1+

η

k1
× s)× [αωB(s)− rA(s)ωA(s)] (8)

where α = (1−af )
2π×λ .

ωB(t) is linearly related to the spindle speed, when the
loom is running with a certain spindle speed, ωB(t) is also
determined. Suppose ωB(t) = ωj, substitute ωA(t) = I×ω(t)
into (8),

Ft (s) =
k1
s
(1+

η

k1
× s)×

[
αωj − IrA(s)ω(s)

]
(9)

where I is the let-off transmission ratio and ω(t) is the
speed of the let-off motor. The transfer relationship between
the let-off motor speed and the warp tension can be
obtained from formula (9), which provides a basis for the
controller to realize the warp tension control by controlling
the let-off motor speed. In the weaving process, the warp
axis radius rA(s) decreases continuously, resulting in the
continuous change ofG (s). To simplify the calculation, make
rA(s) = rA(0). Before starting the loom, set the fixed reference
input, and the initial radius of the warp axis is 620mm. The
transfer function of the let-off system model is:

G (s) =
0.06s+ 0.45

2.64s2 + 27.12s+ 1
(10)
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B. WARP TENSION CONTROL SCHEME
The opening movement, weft insertion movement and
beating up movement will also affect the warp tension.

The heald frame moves up and down during the opening
movement to divide the entire warp into two parts, forming a
channel (shed) through which the weft yarn can be introduced
and intertwined with the warp yarn. In the process of shed
production, the yarn often deforms. Because the opening
action is periodic in the weaving process, these deformations
will have a periodic impact on the warp tension. Fig. 4 shows
the elongation deformation of warp yarn when opening.

FIGURE 4. Schematic diagram of warp elongation at the opening.

In the figure, L is the length before the warp opening, L1
and L2 are the length before and after the shed, respectively.
Assuming that the elongation of the warp yarns at the front
and back of the shed at time t is λ1 and λ2, respectively, and
the shed height is h, the elongation deformation of the warp
yarn at time t due to the opening is:

ε(t) = λ1 + λ2 =
h2

8
(
1
L1
+

1
L2

) (11)

According to the stress-strain relationship, the change in
tension 1Ft is directly proportional to the square of opening
height h. Due to the periodic movement of the opening
mechanism, the warp will produce periodic deformation,
resulting in periodic fluctuation of warp tension.

After the shed is formed, the weft insertion begins.
Following weft insertion, the warp and weft yarns are
interwoven to form a fabric using a beating-up movement.
Beating-up is when the reed pushes the weft introduced into
the shed to the weaving mouth and tightens it. The schematic
diagram of the beating-up action is shown in Fig. 5. The
reed pushes the weft to the final position of the beating-up,
which produces an instant stretch on the warp yarn, which
causes the yarn tension to increase rapidly and produce a peak
of tension fluctuation. In the weaving process of the loom,
the beating-up movement is a periodic movement, so this
movement will cause periodic high-frequency fluctuations in
the warp tension.

According to the preceding analysis, warp tension is
primarily for yarn distortion caused by let-off and take-up
movement, resulting in the internal tension of the yarn, and
the periodic movement of the opening, weft insertion, and
beating up structure will also cause periodic fluctuations to
the warp. As a result, if the warp tension is measured in
actual time, the average value of periodic tension will vary

FIGURE 5. Schematic diagram of beating-up action process.

greatly. Using this value as the tension controller’s input will
significantly impact the system’s stability.

According to the working sequence diagram of the rapier
loom in Fig. 1, through reasonable division, try to avoid the
peak tension generated during opening and weft beating. The
opening is at its max and remains static when the spindle
angle is between 45◦ and 57◦. During this moment, the weft
insertion action has only just started, but the beating-up has
still not started, and the weft has still not entered the shed,
so the warp tension is unaffected. Therefore, the sampling
angle selected in the system is within the angle range of
45 ◦ ∼ 55 ◦ of the working sequence, as shown in Fig. 6.
Although the sampling range is reduced, the tension peak
caused by opening and beating up is fully avoided.

FIGURE 6. Schematic diagram of warp tension sampling interval.

C. DRIVE STRATEGY AND EMBEDDED IMPLEMENTATION
The weft density is generally fixed in the weaving process,
so the spindle speed is also fixed. To maintain a constant weft
density, the take-up speed should have a linear relationship
with the spindle speed, and the take-up motor speed should
also remain stable. If variable weft density weaving is
required, the speed of the take-up motor needs to be adjusted.
According to the relationship between the speed of the let-
off motor and the warp tension, the speed of the let-off motor
needs to be dynamically adjusted to keep the tension constant.
Therefore, the let-off and take-up motors need speed control.

The let-off and take-up motors are controlled by the let-
off and take-up control module, and the let-off and take-up
movements are completed by receiving the control signals of
the main control module through the CAN bus. To improve
the accuracy of let-off and take-up, the permanent magnet
synchronous motor (PMSM) is used as the executive element,
so the drive and control circuit of the motor should be
included in the structure of the module. At the same time,
the module can also collect tension signals and control the
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tension by adjusting the speed of the let-off or take-up motor.
The hardware circuit structure of the let-off and take-up
control module is shown in Fig. 7.

FIGURE 7. Schematic diagram of the hardware structure of let-off and
take-up control module.

The vector control method is applied to control the let-off
and take-up motors because the let-off and take-up system
need good dynamic response-ability to ensure constant weft
density. At the same time, we need to implement the control
strategy on the hardware circuit, which is a part of building
a complete control system. However, this control method has
a variety of implementation algorithms. It should be pointed
out that SPWM is the most widely used vector algorithm but
compared with SVPWM, it has a larger amplitude and more
dense harmonic distribution, so its harmonic distortion rate is
higher than SVPWM. Therefore, it isn’t easy to obtain good
driving ability using the SPWM algorithm. The SVPWM
(Space Vector Pulse Width Modulation) algorithm is used to
control the three-phase inverter module to output the required
U, V and W phase voltages of the motor, the inverter circuit,
as shown in Fig. 8.

FIGURE 8. Let-off and take-up inverter circuit.

The principle of the SVPWM control algorithm is to
simplify the output of the three-phase voltage and the motor
rotor into a spatially synthesized vector, thereby converting
the control of the three voltage scalars into a voltage vector
control. Since the rotors in the motor are evenly distributed,
and the difference is 120◦ in space, the three-phase voltage
output by the inverter isUA(t),UB(t),UC (t). When the three-
phase voltage is added to the three-phase static coordinate
system, the time difference is 120 ◦, then the combined space

vector EUS (t) is:

EUS (t) = UA(t)ej0 + UB(t)ej
2π
3 + UC (t)e−j

2π
3 =

3
2
Umejωt

(12)

where, Um is the phase voltage amplitude, ω is the phase
voltage angular frequency. It can be seen that EUS (t) is a
rotating space voltage vector with an angular frequency of
ω = 2π f . The purpose of the SVPWM algorithm is to use
the switching state of the three-phase bridge to express the
EUS (t) vector rotating in space.
Since the three-phase bridge arm of the inverter has six

switches in total, to study the space voltage vector output by
the inverter when the upper and lower bridge arms of each
phase are combined with different switches, the switching
function Sx (x = a, b, c) is defined as:

Sx =

{
1, upper bridge arm is on
0, lower bridge arm is off

(13)

When Sx(x = a, b, c) is 1, the corresponding bridge arm
output voltage equals the bus voltage, and when it is 0, the
output voltage is 0. The three pairs of bridge arms have
a maximum of eight states. Combining formula (12), the
inverter output voltage EUout (t) is:

EUout =
2
3
Udc

(
Sa + Sbej

2π
3 + Sce−j

2π
3

)
(14)

FIGURE 9. Schematic diagram of voltage space vector distribution.

Arrange these eight voltage vectors evenly in phase,
as shown in Fig. 9. The figure is divided into six sectors,
and in each sector, assuming that the expected voltage vector
is EUref , the adjacent voltage vectors can be synthesized
according to the principle of average equivalence. If the
switching period of the inverter output voltage is recorded as
T , the composite relationship of EUref can be expressed by the
following formula:∫ T

0

EUref dt =
∫ Tx

0

EUxdt +
∫ Tx+Ty

Tx

EUydt +
∫ T

Tx+Ty

EU ′0dt

(15)
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where, Tx and Ty respectively correspond to the action time
of two non-zero vectors EUx and EUy in the period T . EU ′0 is
the zero vector, which can be EU0 or EU7. The action time
is T-Tx-Ty.

According to the above principle and the vector decompo-
sition principle, the action time of the two non-zero vectors
and the two zero vectors of EUref can be calculated by the
formula (16). 

Ta = (Ts − Tx − Ty)/4
Tb = (Ta + Tx)/2
Tc = (Tb + Ty)/2

(16)

where Tx and Ty are the action time of two components
EUx and EUy, Ts is the inverter switching time. Then, the on-
time corresponding to the three-phase switches of inverters
A, B, and C in each sector can be calculated according to
formula (16), as shown in Table 1.

TABLE 1. Three-phase conduction time of inverter A, B, C.

During programming, the action time can be written into
the corresponding compare register according to Table 1.
In the switch state transition process, to minimize the number
of switching actions, 7-segment modulation is used. The
zero-vector action time is evenly distributed to generate a
symmetrical PWM waveform [27], [28]. The vector control
method is used to experiment with the motor using SVPWM
and SPWM algorithms respectively, setting the speed as
400rad/s and torque as 10N · m. The system response curve
is shown in Fig. 10.

FIGURE 10. Comparison of SVPWM and SPWM motor speed and
electromagnetic torque.

Fig. 10(a) shows the motor speed waveform. Under
the same conditions, the time required to reach a steady
state with the SVPWM algorithm is less than that of the
SPWM algorithm. Fig. 10(b) shows the electromagnetic
torque waveform. The motor starting torque is slightly
higher with the SVPWM algorithm, but the torque pulsation
is less than the SPWM algorithm. It can be seen that

the SVPWM algorithm has better driving performance
than the SPWM algorithm. Therefore, the SVPWM algo-
rithm can make the let-off and take-up motor obtain
a faster response speed and smaller adjustment error.
To maintain constant weft density and ensure fabric
quality.

IV. CONTROLLER DESIGN
With the improvement of the speed of rapier loom and the
time-varying, nonlinear and more interference of the warp
tension system of the rapier loom, it is limited to use the
traditional PID algorithm to control the warp tension. In this
paper, fuzzy neural network and traditional PID control are
combined to control the tension of the rapier loom. The
fuzzified data is input into the neural network using the
complementarity between fuzzy control and neural network.
The fuzzy rules are extracted through the neural network’s
learning, making the fuzzy system with generalization
capability. While retaining the inherent accuracy of PID
control, it enhances the adaptive ability, learning ability and
robustness of the PID controller. Therefore, a PID tension
closed-loop control system model based on fuzzy neural
network (FNN) is established, as shown in Fig. 11:

FIGURE 11. Structure diagram of fuzzy neural network PID tension
closed-loop control system.

A. FUZZY NEURAL NETWORK
The fuzzy neural network in the system adopts a two input
three output control model. The input of the system is the
deviation value e(t) between the tension measurement value
c(t) and the tension setting value r(t) and the tension error
conversion rate ec(t), output as the correction values 1Kp,
1K i and 1K d . The three basic parameters Kp, Ki and Kd of
the PID controller are adjusted online by the correction value,
and the adjustment formula is (17), Kp, Ki and Kd are the
set values during system initialization, which can be obtained
by the traditional PID tuning method. In order to make the
system respond quickly and eliminate the steady-state error
as much as possible without causing system oscillation, the
initial values of the controller parameters were set to Kp = 5,
Ki = 0.8, and Kd = 0.4.

Kp(k) = Kp(k − 1)+1Kp
Ki(k) = Ki(k − 1)+1Ki
Kd (k) = Kd (k − 1)+1Kd

(17)
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Then, the control variable can be calculated as follows:

u (k) = Kp (k) e (k)+ Ki (k)
∑k

i=1
e (i)

+Kd [e (k)− e(k − 1)] (18)

Set the basic domain of the input and output parameters
of the fuzzy neural network. The input variables must
be converted from the basic domain to the fuzzy domain
corresponding to the fuzzy set to carry out the fuzzification
process. The input variables need to be multiplied by the
corresponding quantization factor:

E = e× Ke, EC = ec× Kec (19)

where, Ke and Kec are input quantization factors.
In addition, the control quantity provided by the fuzzy

control algorithm for each sample must be transformed into
the basic domain required by the control object. The fuzzy
output control quantities 1Kp, 1Ki and 1Kd corresponding
to the fuzzy control quantities Kp, Ki and Kd . Then,

1Kp = Kp × FKp
1Ki = Ki × FKi
1Kd = Kd × FKd

(20)

where, FKp , FKi , and FKd are output scale factors. Once
the quantization and scale factors have been determined, the
system can always be mapped to an element on the fuzzy
domain. The fuzzy domain corresponding to each parameter
are shown in Table 2:

TABLE 2. Domain corresponding table of input and output
parameters.

The values in the fuzzy domain in Table 2 are transformed
into a fuzzy subset {NB, NM, NS, ZO, PS, PM, PB}. The
elements in the subset correspond to seven fuzzy language
variables: negative large, negative medium, negative small,
zero, positive small, positive medium and positive large.
Then, the fuzzy subset of each fuzzy variable is defined. That
is, the shape of the membership function of the fuzzy subset
is determined. The membership function adopts the Gaussian
function to effectively simulate the fuzzy concept of human
control activities.

Fuzzy neural network (FNN) uses neural network algo-
rithm structure to realize fuzzy control algorithm. The steps
of input and output variable selection, fuzzification, fuzzy
reasoning and anti-fuzzification of the fuzzy control system

FIGURE 12. T-S fuzzy neural network structure diagram.

are represented by the neural network structure. Fig. 12 shows
the T-S fuzzy neural network (T-S FNN). Unlike the standard
fuzzy neural network, it directly uses numerical information
to establish a specific nonlinear mapping. It uses a small
number of fuzzy rules to express a highly nonlinear complex
system. Compared with the general fuzzy neural network,
its model has more physical significance, fast convergence
speed and high precision. The T-S fuzzy neural network
consists of the antecedent network and consequent network.
The antecedent network has four layers used to match the
antecedents of fuzzy rules. The consequent network has three
layers used for reasoning to generate fuzzy rules.

Suppose the system input vector x = [x1, x2, . . . , xn]T , xi
is a fuzzy language variable.

T (xi) =
{
A1i ,A

2
i , . . . ,A

n
i

}
(i = 1, 2, . . . , n) (21)

where, Aji (j = 1, 2, . . . ,m) is the j th fuzzy set of xi.
Then for the fuzzy neural network of the T-S model, the

fuzzy rules of the input-output relationship are as follows:

if x1 is A
j
1 and x2 is A

j
2 and . . . and xn is A

j
n,

Then yj = pj0 + pj1x1 + pj2x2 + · · · + pjnxn (22)

where, yj represents the output value obtained by the system
according to the fuzzy rule, and pj0 ,. . . , pjn represents the
weight value.

In the antecedent network, the first and second layers are
the input and fuzzification layers respectively. As mentioned
above, Gaussian function is used as the membership function,
then:

µij=exp

(
−

(
xi − cij

)2
σ 2
ij

)
(i = 1, 2; j = 1, 2, . . . ,mi) (23)
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where, xi represents the inputs of the first layer, x1 = e,
x2 = ec; mi stands for xi fuzzy partition number, m1 = 7,
m2 = 7; cij and σij is the antecedent network parameter,
which represents the center value andwidth value of Gaussian
function, and each neuron node in the second layer represents
a fuzzy language variable.

The third layer is the fuzzy reasoning layer, and each node
represents a fuzzy rule; Each input has seven fuzzy language
variables, so there are 49 fuzzy rules. Its function is to match
the antecedents of the fuzzy rules and calculate the fitness αk
of each rule, which is calculated as:

αk = min
{
µ1i1 , µ2i2 , . . . µnin

}
(k = 1, 2, . . . ,m;m =

∏n

i=1
mi) (24)

where, i1 ∈ {1, 2, . . . ,m1}, i2 ∈ {1, 2, . . . ,m2}, . . . ,
in ∈ {1, 2, . . . ,mn}.
The fourth layer is the normalization layer, which realizes

the normalization calculation. The calculation formula is:

ᾱk = αk/
∑m

n=1
αn (25)

In the consequent network, the first layer is also the input
layer, and each node in the second layer corresponds to a
fuzzy rule, which is used to calculate the consequent output
of each fuzzy rule, and the formula is:

ylk = plk0 + p
l
k1x1 + . . .+ p

l
knxn

(k = 1, 2, . . . ,m; l = 1, 2, . . . , r) (26)

where,
{
plk0, p

l
k1, . . . ,p

l
kn

}
is the connection weight from the

first to the second layer of the posterior piece network; l is the
dimension of the output quantity.

The third layer uses the center of gravity method to
calculate the final output of the fuzzy neural network:

yl =
∑m

k=1
ᾱkylk (27)

where, yl is the weighted sum of each rule consequent, and the
output of the antecedent network αk is the connection weight
of the third layer of the consequent network. Therefore,
there are three types of adjustable parameters in the network
structure. The first type of parameter plkn is the connection
weight of the consequent network. The second and third
types of adjustable parameters are cij and σij, which represent
the center and width of the membership function of the
antecedent network. These parameters must be obtained by
the learning algorithm of the fuzzy neural network.

B. GA-BP ALGORITHM
For the existing fuzzy neural network learning algorithms, the
BP learning algorithm is the most widely used. The algorithm
uses gradient search technology to continuously adjust the
weight of each neuron of the neural network to minimize
the mean square error between the actual output value of the
network and the expected output value. When adjusting the
network weight coefficients, set the error cost function as:

E =
1
2

∑r

i=1
(ti − yi)2 (28)

where, yi and ti are the actual and expected outputs of the
network, respectively.

The learning algorithm with parameters cij, σij and plkn can
be described as:

cij (k + 1) = cij (k)− β
∂E
∂cij

σij (k + 1) = σij (k)− β
∂E
∂σij

plkn (k + 1) = plkn (k)− β
∂E

∂plkn

(29)

where, β represents the learning rate. However, when the
BP algorithm trains fuzzy rules without prior knowledge, its
initial state parameter values are randomly set. The network
stops training until the error cost function changes very little.
This method of randomly selecting initial parameters often
causes network learning to fall into a local minimum, causing
the learning process to fail.

In recent years, scholars have extensively studied heuristic
algorithms such as ant colony algorithms, particle swarm
algorithms and genetic algorithms to replace BP neural
networks [29], [30]. Genetic algorithms (GA) in intelligent
algorithms have the characteristics of searching for the best
in the global range and fast search efficiency. The GA
can be described as follows: generating several numerical
codes of the problem, namely chromosomes, to form the
initial population; Individuals with low fitness are removed,
and individuals with high fitness are chosen to join in the
genetic operation, based on a numerical evaluation of each
individual through the fitness function. The individuals after
the genetic operation are collected into the next generation of
a new population, and the new population is evolved in the
next round. Through continuous iteration until the optimal
solution is found.

However, it should be pointed out that genetic algorithm
is an adaptive heuristic group type iterative global search
algorithm with global convergence when optimizing neural
network weights and parameters. Training a fuzzy neural
network with GA can avoid falling into a local minimum, but
the convergence speed will slow down in the later stage of
training with GA. Therefore, it is not ideal whether to use
GA or BP algorithm alone to train the fuzzy neural network.
As a result, this paper uses the GA-BP algorithm to train the
FNN. The algorithm flow is shown in Fig. 13.

In the initial stage, GA is used to obtain fast convergence.
When the maximum number of iterations or preset accuracy
is reached, the optimal initial parameters are assigned to the
FNN by the GA. Then the BP algorithm is used to continue
the training of the FNN to obtain fast convergence in the later
iterations.

Running the GA algorithm requires encoding the fuzzy
neural network. The FNN has three training parameters,
a total of 28 central and width values for the Gaussian
function and 49 connection weights for the consequent
network; therefore, the encoding length of the genetic
algorithm is 77, and real number encoding is used.
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FIGURE 13. GA-BP algorithm flow chart.

The optimization goal of the fuzzy neural network is to
make the actual output corresponding to the input data of
the network approach the given output of the network to the
maximum extent. Take the objective function as shown in
formula (30) to minimize it.

J =
1
2n

∑n

i=1
(ti − yi)2 (30)

where, n represents the number of sample training; ti
represents the expected output of BP neural network; yi
represents prediction output.

Transform the objective function to get the fitness function:

Fit(J ) =
1

1+ J
(31)

The crossover operator selects arithmetic crossover in the
GA. The crossover probability is generally 0.4-0.99, and
the probability range of the mutation operator is generally
0.0001-0.1. However, improper crossover probability and
mutation probability will also affect individual evolution.
Therefore, when determining the crossover probability (Pc)
and mutation probability (Pm), this paper adopts the adaptive
adjustment method to make the randomness of selection and
convergence speed reach a certain balance. The formula is:

Pc =

k1
fmax − f ′

fmax − favg
, f ′ ≥ favg

k3, f ′ ≤ favg
(32)

Pm =

{
k2

fmax−f ′

fmax−favg
, f ′ ≥ favg

k4, f ′ ≤ favg
(33)

where, fmax is the maximum value of population fitness; favg
is the mean value of population fitness; f is the larger value
of fitness of two individuals at the crossover; f ′ is the fitness
value of the individual performing the mutation operation;
k1, k2, k3, and k4 are all constants, and it is guaranteed
that k2 > k1, k4 > k3.

V. SIMULATION AND EXPERIMENT
A. SIMULATION AND TEST OF SVPWM ALGORITHM
The SVPWM motor control algorithm is modelled and
simulated by MATLAB software to verify the feasibility of
the let-off and take-up control strategy. When the DC bus
voltage is 310V and the switching period of the inverter is
the frequency fs = 1/Ts = 10kHz, of the input PWM wave.
Fig. 14 shows the three-phase modulation waveform of the
SVPWM output. The shape is saddle-shaped. Each term is
formed by the superposition of the sine wave and its third
harmonic, which can improve the power supply voltage’s
utilization rate and restrain the harmonic component’s output.

FIGURE 14. Three-phase modulated waveform of SVPWM output.

A hardware platform is constructed to test the motor
without load to verify further the driving ability of the
SVPWM algorithm and the designed hardware circuit.

The let-off and take-up control module detects the rota-
tional speed in the testing process and obtains the rotational
speed detection result shown in Fig. 15. As shown in Fig. 15,
the measured motor speed fluctuates, basically remaining at
50 rpm with an error of 0.84%, which is consistent with the
expected results.

FIGURE 15. Rotational speed test result.

B. TENSION CONTROL ALGORITHM TEST
In the GA-BP FNN algorithm implementation process, the
first iteration is performed using the GA.When the maximum
number of iterations is reached or the fitness function is
optimal, the optimal initial parameters are passed to the
BP. Then, training is performed using the BP algorithm to
obtain the optimal FNN finally. Therefore, the population
number N of the genetic algorithm is set to 50 to generate the
initial population, and the maximum number of evolutionary
generations G = 30 is set. FNN is trained by the BP
algorithm and GA-BP algorithm respectively, and the number
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of training is set to 500. The comparison of error convergence
is shown in Fig. 16.

FIGURE 16. Comparison of training error convergence between BP and
GA-BP.

It can be seen that the early genetic algorithm plays
a major role in searching parameters in the global range.
Therefore, the GA-BP algorithm has a fast convergence
speed at the beginning of the iteration. After 25 iterations,
the training error decreases obviously. At this time, the
range of parameters to be optimized is basically determined.
Then continue to use the BP algorithm for training. After
150 iterations, the training error tends to be stable. At the
end of the iteration, GA-BP can converge to higher accuracy.
In contrast, the convergence speed of the BP algorithm is
slower than the GA-BP algorithm, reaches a stable state after
about 200 iterations, and the convergence accuracy is lower
than the GA-BP algorithm. The fuzzy inference rules trained
by the GA-BP algorithm are shown in Fig. 17.

FIGURE 17. Fuzzy reasoning rules.

Tension experiments are performed on the trained model,
where the input signal is a step signal of amplitude 10 and
the output is the value calculated after PID and fuzzy PID
and GA-BP FNN. In the process of experiments, a step dis-
turbance with amplitude 2 and a triangular wave interference
with amplitude 2 are added, respectively, corresponding to
the influence of beating-up motion and shedding motion on
warp tension. After running the software, the control effect
comparison diagram shown in Fig. 18 is obtained.

It can be seen from Fig. 18 that GA-BP FNN reaches a
stable state in about 2ms, fuzzy PID control reaches a stable
state in about 4ms, while traditional PID control reaches a
stable state in about 6ms; The fluctuation peak of GA-BP
FNN is about 10.15, that of fuzzy PID control is about
11.5, and that of traditional PID control is about 13; after
introducing disturbance, GA-BP FNN control is also better
than fuzzy PID control in stability.

FIGURE 18. PID, Fuzzy-PID and GA-BP FNN step response waveforms.

C. WEAVING EXPERIMENT ON RAPIER LOOM
QJH910 rapier loom is used to test the system. The test
experiment is carried out when the spindle speed is 300 rpm.
The traditional PID control, fuzzy PID control, and GA-BP
FNN control are tested. In the test of traditional PID control,
the set value of tension is 110kg, the PID proportional gain
Kp is 100%, the integration time is 500ms, the differential
control is not used, and the set PID sampling time is 200ms.
In fuzzy PID control, the parameters of PID are adjusted
online through the fuzzy PID control algorithm. To facilitate
comparison, the spindle speed, tension setting value and PID
sampling time in fuzzy PID control are consistent with those
in traditional PID control. The tension fluctuation curve and
error are shown in Fig. 19 and 20. It can be seen that the
tension fluctuates wildly during PID control, and the error
range is about [- 2.8,+ 2.6]. In fuzzy PID control, the tension
fluctuation is less than PID control, and the error range is
about [− 0.8, + 1.0]. Under the control of the GA-BP FNN
algorithm, the tension fluctuation is very small, the tension is
the most stable, and the error range is about [− 0.2, + 0.5].

FIGURE 19. PID, Fuzzy PID and GA-BP FNN tension fluctuation curves.

The constant tension weaving experiment shows that both
fuzzy PID control and GA-BP FNN control can make the
tension fluctuate less near the set value. However, with the
increase of loom speed, the interference factors of the warp
are also increasing, and the control of tension becomes more
difficult. Therefore, it is necessary to experiment with the
two control methods at different weaving speeds. The two
algorithms are tested at six different speeds, and the tension
measurement results are shown in Fig. 21.

According to the tension measurement data in Fig. 21,
the tension setting value is 110kg. Under the fuzzy PID
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FIGURE 20. PID, Fuzzy PID and GA-BP FNN tension error.

FIGURE 21. Fuzzy PID and GA-BP FNN tension curves at different speeds.

algorithm, the relative tension error is stable within 1.1%.
Under the GA-BP FNN algorithm, the tension fluctuation is
relatively small and the relative error is stable within 0.47%.
The stability of the GA-BP FNN algorithm is better than that
of the fuzzy PID algorithm, which can effectively improve
the stability of tension control and ensure fabric quality.

VI. CONCLUSION
This paper introduces the design of the control system of
the let-off and curling system of a rapier loom and the
realization of the hardware circuit. Through the detailed
analysis of the action sequence of the whole process
and the operation mechanism of the let-off and take-up
mechanism, the dynamic relationship between warp tension
and let-off and take-up motion is established. On this basis,
a tension control scheme based on process interval sampling
is proposed. According to the time-varying, nonlinear and
multi-coupling characteristics of warp tension, based on PID
control, by introducing fuzzy inference and neural network
fusion theory, a tension closed-loop control system based on
T-S fuzzy neural network is designed. The fuzzy rules are
extracted through the neural network’s learning ability so
that the fuzzy system has the generalization ability. While
retaining the inherent accuracy of PID control, it enhances
the adaptive ability, learning ability and robustness of the
PID controller. The introduction of genetic mechanism and
backpropagation fusion algorithm overcomes the defects
of long training time and insufficient global optimization
ability of FNN. The design of the let-off and take-up
hardware circuit based on embedded technology improves
the control system’s integration and flexibility, reducing the
functional redundancy, and the SVPWM algorithm improves
the system’s response speed and driving ability. Finally,

PID control, fuzzy PID control and fuzzy neural network
control algorithms are compared through simulation and
weaving experiments. The driving performance of the let-
off and take-up circuit is verified. The results show that the
fuzzy neural network can effectively reduce the fluctuation
of warp tension and improve the stability of warp control.
At the same time, the driving circuit has good dynamic
characteristics and stable driving capability, which ensures
the constant let-off amount. The system provides a possible
solution to improve the stability of warp tension control of
rapier loom and improve fabric quality. At the same time,
it also provides references for researchers engaged in relevant
textile equipment research.

REFERENCES
[1] M. Gao, W. Wang, Y. Zeng, Z. He, and C. Gao, ‘‘A rapier loom HMI

system based on an easy cross-platform GUI software,’’ in Proc. 6th Int.
Conf. Instrum. Meas., Comput., Commun. Control (IMCCC), Jul. 2016,
pp. 874–878.

[2] C. Dong, ‘‘Discussion on the development trend of rapier loom,’’ Mech.
Manage. Develop., vol. 1, pp. 41–42, Jan. 2012.

[3] L. Ma, Y. Zhao, L. Sun, and F. Jia, ‘‘Review and prospect of world textile
technology,’’ China Textile Leader, vol. 1, pp. 29–47, Jan. 2017.

[4] W. Cao, ‘‘Research on fuzzy control strategy of constant tension in yarn
winding system,’’ Adv. Textile Technol., vol. 26, no. 2, pp. 80–84, 2018.

[5] X. Lu and J. Yang, ‘‘Study on calculation and control algorithm of warp
tension of multi-shaft mechanism of carbon fiber multi-layer diagonal
loom,’’ Fiber Reinforced Plastics/Compos., vol. 12, no. 14, pp. 14–18,
2017.

[6] W. Liu, X. Wu, X. Du, G. Xu, and S. Wang, ‘‘Tension networked control
strategy for carbon fiber multilayer diagonal loom,’’ IEEE Access, vol. 8,
pp. 32280–32289, 2020.

[7] Y. Z. Wang, H. Jing, and H. W. Chen, ‘‘Research on tension control model
for traction and take-up system of loom,’’ Adv. Mater. Res., vol. 627,
pp. 444–448, Dec. 2012.

[8] F. Q. Yang, P. C. Wang, and D. G. Chan, ‘‘Application of linear
interpolation fuzzy controller in tension control system of yarn,’’ J. Mech.
Electr. Eng., vol. 32, no. 11, pp. 1494–1497, Nov. 2015.

[9] M. Ni, P. Li, and L. Yan, ‘‘Schemes selection of warp tension measurement
and control based on fuzzy multiple-attribute group decision making,’’
J. Donghua Univ. Natural Sci. Ed., vol. 40, no. 3, pp. 282–287, 2014.

[10] G. Xu, R. Zhou, W. Liu, and F. Hao, ‘‘The equivalent sliding mode tension
control of carbon fiber multilayer diagonal loom,’’ Int. J. Control, Autom.
Syst., vol. 17, no. 7, pp. 1762–1769, Jul. 2019.

[11] Z. Peng, M. Guang, and C. Zhou, ‘‘Tension and velocity decentralized
control of let-off system,’’ J. Textile Res., vol. 32, no. 10, pp. 127–133,
2011.

[12] A. Sala, ‘‘On the conservativeness of fuzzy and fuzzy-polynomial control
of nonlinear systems,’’ Annu. Rev. Control, vol. 33, no. 1, pp. 48–58,
Apr. 2009.

[13] L. Li, J. Yang, Y. Zhao, Y. Liu, and L. Cong, ‘‘The application of fuzzy-
PID and multi-neuron adaptive PID control algorithm in the control of
warp tension,’’ in Proc. 2nd Int. Conf. Comput. Eng. Technol., 2010,
pp. V7-678–V7-681.

[14] G. Liu and S. Zhang, ‘‘Adaptive PID control for warp tension system based
on RBF neural network,’’ J. Textile Res., vol. 29, no. 12, pp. 96–99 and 107,
Dec. 2008.

[15] Z.Wang, Q. Zhou, andQ. Shen, ‘‘Design of embedded controller integrated
let-off, take-up and fuzzing of the towel loom,’’ J. Donghua Univ. Natural
Sci. Ed., vol. 42, no. 6, pp. 869–874, 2016.

[16] X. Xu and J. C. Yang, ‘‘Warp tension detection method of carbon fiber
multilayer loom,’’ Proc. 2nd Int. Conf. Adv. Mech. Eng. Ind. Inform.
(AMEII), vol. 73, 2016, pp. 325–329.

[17] H. Zhang, R. Zhang, Q. He, and L. Liu, ‘‘Variable universe fuzzy
control of high-speed elevator horizontal vibration based on firefly
algorithm and backpropagation fuzzy neural network,’’ IEEE Access,
vol. 9, pp. 57020–57032, 2021.

[18] K. Zheng, Q. Zhang, Y. Hu, and B. Wu, ‘‘Design of fuzzy system-fuzzy
neural network-backstepping control for complex robot system,’’ Inf. Sci.,
vol. 546, pp. 1230–1255, Feb. 2021.

VOLUME 10, 2022 17779



Y. Xiao et al.: Research and Embedded Implementation of Let-Off and Take-Up Dynamic Control

[19] J. Tang, F. Liu, W. Zhang, R. Ke, and Y. Zou, ‘‘Lane-changes prediction
based on adaptive fuzzy neural network,’’ Expert Syst. Appl., vol. 91,
pp. 452–463, Jan. 2018.

[20] R. Xie, X. Wang, Y. Li, and K. Zhao, ‘‘Research and application on
improved BP neural network algorithm,’’ in Proc. 5th IEEE Conf. Ind.
Electron. Appl., Jun. 2010, pp. 1462–1466.

[21] J. Bai, Q. Teng, and T. Liu, ‘‘Comparison of control strategies for
permanent magnet synchronousmotor,’’Control Eng. China, vol. 22, no. 3,
pp. 490–494, May 2015.

[22] P. Ramasamy and V. Krishnasamy, ‘‘SVPWM control strategy for a three
phase five level dual inverter fed open-end winding induction motor,’’ ISA
Trans., vol. 102, pp. 105–116, Jul. 2020.

[23] S. Lakhimsetty, N. Surulivel, and V. T. Somasekhar, ‘‘Improvised SVPWM
strategies for an enhanced performance for a four-level open-end winding
induction motor drive,’’ IEEE Trans. Ind. Electron., vol. 64, no. 4,
pp. 2750–2759, Apr. 2017.

[24] L. Wu, J. Li, Y. Lu, and K. He, ‘‘Strategy of synchronized SVPWM for
dual three-phase machines in full modulation range,’’ IEEE Trans. Power
Electron., vol. 37, no. 3, pp. 3272–3282, Mar. 2022.

[25] G. Chen, J. Zhang, andQ. Zhou, ‘‘Design of weft-insertion system of three-
dimensional loom based on servo-cylinder,’’ J. Textile Res., vol. 34, no. 2,
pp. 146–150, 2013.

[26] X. Zhou, Y. Gu, and Z. Wu, ‘‘Parameter characteristics of weft insertion
mechanism of rapier loom capable of simply adjusting Reed width,’’
J. Textile Res., vol. 40, no. 9, pp. 173–179, 2019.

[27] X. Wang, R. Na, and N. Liu, ‘‘Simulation of PMSM field-oriented
control based on SVPWM,’’ in Proc. IEEE Vehicle Power Propuls. Conf.,
Sep. 2009, pp. 7407–7411.

[28] A. Alouane, A. B. Rhouma, M. Hamouda, and A. Khedher, ‘‘Efficient
FPGA-based real-time implementation of an SVPWMalgorithm for a delta
inverter,’’ IET Power Electron., vol. 11, no. 9, pp. 1611–1619, Aug. 2018.

[29] H.-K. Jia, L.-D. Yu, Y.-Z. Jiang, H.-N. Zhao, and J.-M. Cao, ‘‘Compensa-
tion of rotary encoders using Fourier expansion-back propagation neural
network optimized by genetic algorithm,’’ Sensors, vol. 20, no. 9, p. 2603,
May 2020.

[30] T. Shen, J. Chang, and Z. Liang, ‘‘Swarm optimization improved BP
algorithm for microchannel resistance factor,’’ IEEE Access, vol. 8,
pp. 52749–52758, 2020.

YANJUN XIAO received the bachelor’s degree
in industrial automation and the master’s degree
in machine manufacturing and automation from
the Hebei University of Technology. He currently
works as a Professor at the School of Mechanical
Engineering, Hebei University of Technology.
His main research interests include waste heat
recovery and industrial control.

XIAOLIANG WANG is currently pursuing the
master’s degree with the Hebei University of Tech-
nology. His major is electronic information. His
research interests include embedded technology
and intelligent control.

FURONG HAN graduated from the Hebei Uni-
versity of Technology, in 2020. She is currently
pursuing the master’s degree with the Hebei
University of Technology. Her research interests
include intelligent control and healthmanagement.

PING LIU graduated from the Hebei University
of Technology, in 2020. She is currently pursuing
the master’s degree with the Hebei University
of Technology. Her research interests include
intelligent control and health management.

YUNFENG JIANG is currently pursuing the Ph.D.
degree. He is also an Associate Researcher. His
research interests include new perception and
intelligent control.

17780 VOLUME 10, 2022


