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Abstract: The virtual synchronous generator (VSG) is a promising technology for future utility grids,
since it can mimic the output characteristics of a synchronous generator, which provides the necessary
inertia to a utility grid. However, the large-scale application of VSGs is limited due to the harmonic
interaction between VSGs and the utility grid. Therefore, in order to investigate the stability issue
as well as improve the practical application for large-scale power stations, the harmonic interaction
mechanism between the VSG cluster and the utility grid is addressed. Firstly, the output impedance
model of a single VSG is established, and it is found that the resonance frequency is related to
parameters including the output filter, controller, and grid impedance. On this basis, the capacitor
current control for a grid-connected inverter based on a VSG is proposed to enhance the resonance
suppression. Furthermore, the output impedance of the VSG cluster is established, which reveals
the harmonic interaction characteristics between the VSG cluster and the utility grid. In addition, in
order to suppress the resonance and improve the stability, an inner-loop control strategy of VSG is
introduced. Finally, the simulation and experimental results verified the correctness of the established
modeling and analysis of the harmonic interaction between the clustered VSGs and the utility grid.
The results show that the proposed impedance model is correct and can predict the resonant point
accuracy (which is around 2.3 kHz in the simulation and experimental cases). The total harmonic
distortion (THD) can be reduced to 3.2% which meets the requirements of IEEE standard 519.

Keywords: output impedance; virtual synchronous generator; harmonic interaction; resonance

1. Introduction

With the penetration of renewable energy, which is normally dominated by power
electronics converters, the rotating inertia and damping of the utility grid are decreasing,
affecting the stability and safety of the grid [1–3]. In order to deal with the lack of inertia,
VSG technology is proposed, which could be a promising technology for the next generation
power grid [4]. The basic idea of a VSG is to simulate the droop characteristics and rotating
inertia of traditional synchronous generators [5].

When the distributed energy (for instance, the primary power of PV and wind en-
ergy) changes dramatically, a VSG can effectively suppress the oscillation of the output
frequency and output power due to the virtual inertia guaranteeing the safety and stability
of the system [6–10]. However, a VSG will have the issue of low-frequency oscillation
if the parameter of virtual inertia is not chosen properly [11]. Therefore, regarding the
low-frequency oscillation of a VSG, the parameter of virtual inertia is tuned by different
methods in order to achieve a good performance [12,13]. An adaptive control algorithm ad-
justing the rotating inertia is proposed in [14]. This method can adjust the inertia according
to the different situations. Specifically, the purpose of suppressing power and frequency os-
cillation is achieved by selecting expected rotating inertias according to different operating
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states such as acceleration and deceleration. Furthermore, a model is established in [15],
aiming at the minimization of transient response time. The idea of this method is to use the
constraint of frequency, amplitude and its change rate are also considered. To deal with
the low-frequency oscillations, Ref. [16] proposed a method that can retain the optimal
damping ratio according to the different situations.

Furthermore, a VSG is a converter that is composed of power electronics components;
it has the characteristics of power electronics converters. Therefore, a VSG will have
the same problem as the conventional grid-connected inverter, which is the harmonic
interaction with the utility grid. A distorted utility grid or weak utility grid will affect the
system stability and quality of the grid current [17,18]. In addition, it cannot effectively deal
with the influence of the polluted grid by adjusting the parameters of the power outer-loop
controller, such as the rotational inertia or droop coefficient, since the response time of the
outer loop is much lower than the harmonics frequency. Therefore, in order to suppress the
grid current harmonics, a multi-loop control method is employed in [19], which is based
on the voltage feedback control. By feeding the output voltage, the grid voltage harmonic
disturbance is effectively suppressed. Since the nonlinear load will distort the voltage and
introduce harmonics into network, Ref. [20] proposes virtual impedance by increasing the
output impedance amplitude to improve the current quality. The authors of [21,22] propose
a sequence impedance model of a grid-connected VSG; however, only capacitor voltage
loop is used, and only one converter is considered.

The above conventional methods to suppress the harmonic currents of a VSG are
still unclear as to the mechanism. Therefore, the output impedance model of a VSG was
established in order to explain the harmonic interaction in the mechanism. However,
the inner-loop controller was not considered in the model, ignoring the influence of the
inner-loop controller on the output impedance and resonant characteristics of the system.
Furthermore, the output impedance model of an LCL-type grid-connected VSG was built
in [23]; however, only a single VSG grid-connected inverter was investigated.

In order to investigate the stability issue of VSG clustered inverters, this paper estab-
lishes the output impedance model of a VSG cluster under the d-q coordinate according
to the theoretical basis of the interaction between the inverter and grid [24]. Furthermore,
the sensitivity of a VSG to the filter parameters and controller parameters is addressed,
revealing the harmonic interaction characteristics between the inverter clusters based on a
VSG and the grid. The research results in this paper demonstrate that the low-impedance
characteristic of the VSG cluster is beneficial to deal with the inverter–grid interaction,
weakening the influence of the number of shunt inverters on the resonance frequency of
the system. Most research is focused on the harmonic interaction of a single VSG; however,
in reality, a large number of VSGs should be connected to the grid for a large-scale power
station. Therefore, in order to investigate the stability issue in terms of harmonics interac-
tion, the impedance model of cluster-VSG grid-connected inverters is proposed. Moreover,
the parameters of controllers and filters will affect the stability issue. The sensitivity of the
parameters is analyzed.

Based on the above mechanism analysis, taking the LCL-type grid-connected VSG
as an example, the improvement of the cluster stability is simplified to the resonance
suppression of a single VSG in this paper. Furthermore, the inner-loop control based
on the capacitive current is introduced to effectively suppress the resonance peak, while
retaining the weak inverter–grid interaction characteristics of the VSG. The simulation and
experimental results verify the correctness of the modeling and analysis of the harmonic
interaction between the clustered inverters based on a VSG and the grid.

2. Description of a VSG Grid-Connected Inverter
2.1. Topology Description of a VSG Grid-Connected System

Figure 1 shows the overall diagram of a VSG grid-connected system. Udc, uga/gb/gc,
uoa/ob/oc, and ea/b/c are the dc bus voltage, the grid voltage, the voltage at the point of
common coupling, and the capacitor voltage, respectively. ia/b/c, iga/gb/gc, and ica/cb/cc are
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the dc inverter-side current, the grid-side current, and the capacitor current, respectively.
Cf, Zg, L1, and L2, are the filter capacitors, the grid impedance, the inverter-side inductor,
and the grid-side inductor, respectively.
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Figure 1. Overall diagram of a VSG grid-connected inverter system.

2.2. Control Loops Description of a VSG Grid-Connected Inverter

In Figure 1, the VSG grid-connected inverter system consists of three control loops, an
outer loop: the power outer control loop; an inner loop: the capacitor voltage control loop,
and the capacitor current control loop. It should be mentioned that a capacitor current is
proposed in this paper, which can suppress the harmonics interaction. The specific analysis
will be discussed in the following sections. The specific control diagram in Figure 1 is
shown in Figure 2, where Pe, Qe, P0, and Q0 are the output active power, output reactive
power, input active power, and input reactive power, respectively. Dp, Dq, J, ωn, ω0, and ω
are the active droop coefficient, the reactive droop coefficient, the rotating inertia, the rated
frequency, the grid frequency, and the output frequency, respectively.
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Figure 2. Control loop diagram of a VSG grid-connected inverter system.

The reference capacitor voltage ed_ref and eq_ref are obtained by adjusting the power
outer loop. Gecd, Gecq, Gicd, and Gicq are the PI regulators of the capacitor voltage control
loop and the capacitor current control loop. Since the inner loop is much faster than
the outer loop, regarding the harmonic interaction issue, the effect of the outer loop is
negligible. Meanwhile, in DC to AC converters, the DC side and AC side are normally
decoupled. Therefore, the small-signal model regarding the issue of harmonics interaction
is not considered an effect of the DC-link voltage, since they are on different time scales [25].

3. Output Impedance Model of a VSG
3.1. Output Impedance Model of a Single VSG

The impedance model is useful to analyze the stability issue; therefore, in order to
obtain the output impedance model, the small signal model of a VSG grid-connected
inverter is obtained, as shown in Figure 3. The relation between the input and output is
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shown in Equation (1). According to Equation (1), the transfer matrix is off diagonal, and
the input and output are coupled, which is caused by the rotating transformation.[

êcd
êcq

]
=

[
Gidd Gidq
Giqd Giqq

][
êd_ref
êq_ref

]
(1)
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Recently, the resonance frequency range considered in most of the literature on har-
monic currents has exceeded the response range of the outer loop. Therefore, the effect of
the outer loop on the harmonic interaction is not considered when establishing the output
impedance model in the frequency domain.

According to Figure 3, ed_ref and eq_ref are the given inputs, ud and uq are the PCC
voltages affected by grid voltages, and igd and igq are the outputs. Equation (2) shows
the relation among these variables, in which G is the voltage gain matrix, and Y is the
output admittance matrix. G and Y can be calculated by Equation (3), in which Z repre-
sents the output impedance matrix. The expression of the admittance matrix is shown in
Equations (4) and (5). The specific expressions of Ydd, Ydq, Yqd, and Yqq are represented
by Equation (6).[

îgd
îgq

]
}
^
ig

=

[
Ydd Ydq
Yqd Yqq

]
}
Y

[
Gdd Gdq
Gqd Gqq

]
}
G

[
êd_ref
êq_ref

]
}

^
eref

−
[

Ydd Ydq
Yqd Yqq

][
ûd
ûq

]
}
^
u

(2)

G =
u

eref

∣∣∣ig=0 , Z = Y−1 =
u
ig

∣∣eref=0 (3)

Y =
(
GecGicGinvZ2 + Z−1

c Z2GicGinv + Z2 + Z1Z−1
c Z2 + Z1

)
•(

Z2 + Z1Z−1
c Z2 + Z1 + Z1Z−1

c + E + Z−1
c Z2GicGinv

)−1 (4)

where Gec, Gic, Ginv, Z1, Z2, and Zc are shown in Equation (5).

Gec =

[
Gecd

Gecq

]
, Gic =

[
Gicd

Gicq

]
, Ginv =

[
Ginv

Ginv

]
Z1 =

[
sL1 ωoL1
−ωoL1 sL1

]
, Z2 =

[
sL2 ωoL2
−ωoL2 sL2

]
, Z−1

c =

[
sCf ωoCf
−ωoCf sCf

] (5)

[
Ydd Ydq
Yqd Yqq

]
=

 Zqq
ZddZqq−ZdqZqd

−Zdq
ZddZqq−ZdqZqd

−Zqd
ZddZqq−ZdqZqd

Zdd
ZddZqq−ZdqZqd

 (6)

It can be found in Equation (2) that the main factors affecting the grid-side currents
include Y, G, e_ref, and u. e_ref is the voltage reference, which is adjusted by the outer loop.
The dynamic response time of the power outer loop is much slower than that of the inner
loop; hence, the influence of the harmonic interference of the grid-connected current on
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the voltage reference e_ref can be ignored. In addition, the voltage gain matrix G is a unit
gain in the low frequencies, indicating that the voltage gain has no influence on the output
current in the low frequencies.

According to the expression of the grid-connected current in Equation (2), the out-
put impedance model of a single VSG can be obtained, as shown in Figure 4, where Zg
represents the grid impedance matrix, expressed as Equation (7).

Zg =

[
Zgdd Zgdq
Zgqd Zgqq

]
(7)
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3.2. Output Impedance Model of a VSG Cluster

Furthermore, the impedance model of the VSG cluster can be obtained, as shown in
Figure 5. Therefore, the grid-side current of the VSG cluster is represented by Equation (8).

igt = Yg

(
n

∑
i=1

Yi + Yg

)−1 n

∑
i=1

YiGierefi −
(

n

∑
i=1

Yi

)(
n

∑
i=1

Yi + Yg

)−1

Ygug (8)

where Yi represents the output admittance matrix of each inverter, which is the inverse
matrix of the output impedance Zi. Yg is the grid admittance impedance, and it is the
inverse matrix of grid impedance Zg. When the parameters of each inverter controller and
filter are identical, Equation (8) can be simplified into Equation (9).

igt =

(
Z
n
+ Zg

)−1
Geref −

(
Z
n
+ Zg

)−1
ug (9)

Equation (9) is the relation of the output current and grid when n inverters are con-
nected in parallel. It can be found that the total output impedance is equal to the out-
put impedance of a single inverter divided by the number of inverters in parallel. The
impedance matrix (Z/n + Zg)−1 is related to the parameters such as controllers, filters,
grid impedance, and the number of the inverters in parallel. In addition, Z and Zg can be
expressed as Equation (10). Therefore, Z/n + Zg can be shown as Equation (11).
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c, Zg =

[
Zgdd Zgdq
Zgqd Zgqq

]
(10)

Z
n
+ Zg =

[
Zdd

n + Zgdd
Zdq

n + Zgdq
Zqd

n + Zgqd
Zqq

n + Zgqq

]
(11)

Combining Equation (9) and Equation (11), when the value of the impedance matrix
Z/n + Zg is zero or approaching zero in a certain frequency or frequency band, the harmonic
current will be amplified to cause resonance at the frequency point or frequency band.
Moreover, the impedance matrix Z/n + Zg can be reformulated as Equation (12).∣∣∣∣(Z

n
+ Zg

)∣∣∣∣ = (Zdd
n

+ Zgdd

)(
Zqq

n
+ Zgqq

)
−
(Zqd

n
+ Zgqd

)(Zdq

n
+ Zgdq

)
(12)

Zdd, Zqq, Zdq and Zqd are related to the controller parameters of the inner loop, and
the control parameters in the d-q coordinate are generally the same. Therefore, Zdd = Zqq,
Zdq = −Zqd, Zgdd = Zgqq, and Zgdq = −Zgqd. Therefore, Equation (12) can be simplified
into Equation (13). ∣∣∣∣(Z

n
+ Zg

)∣∣∣∣ = (Zdd
n

+ Zgdd

)2
+

(Zdq

n
+ Zgdq

)2

(13)

To simplify the expressions of Zdd and Zqq, they can be defined as Equation (14).

Zdd =

n
∑

i=0
aisn−i

n
∑

j=0
bjsn−j

, Zdq =

n
∑

i=0
cisn−i

n
∑

j=0
djsn−j

(14)

Furthermore, the grid impedance can be described by Equation (15). Therefore,
Equation (13) can be specifically expressed as Equation (16).

Zg =

[
Rg + sLg ωLg
−ωLg Rg + sLg

]
(15)
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∣∣∣∣(Z
n
+ Zg

)∣∣∣∣ =


n
∑

i=0
aisn−i

n
n
∑

j=0
bjsn−j

+ Rg + sLg


2

+


n
∑

i=0
cisn−i

n
n
∑

j=0
djsn−j

+ ωLg


2

(16)

If Equation (16) has a zero point in the right half plane of the frequency domain, there
is a certain frequency point where the value of Equation (16) is zero, indicating a resonance
point in the system. In addition, Equation (16) is a function of the inner-loop controller
and the grid impedance, as reformulated in Equation (17). Therefore, the characteristics
of the harmonic interaction between the clustered LCL-type VSG and the utility grid can
be researched by exploring the zero-point distribution in Equation (17), relating to the
inner-loop controller parameters, filter parameters, and grid impedance. It should be
pointed out that at least one VSG should be connected to the grid. (n = 1,2,3 . . . ).

n
∑

i=0
aisn−i

n
n
∑

j=0
bjsn−j

+ Rg + sLg = f1

(
Gecdq, Gicdq, L1, L2, Cf, Rg, Lg, n

)
n
∑

i=0
cisn−i

n
n
∑

j=0
djsn−j

+ ωLg = f2

(
Gecdq, Gicdq, L1, L2, Cf, Lg, n

) (17)

4. Parameter Sensitivity Analysis of a VSG cluster

According to Equation (17), the output impedance Z is jointly determined by the
output impedance of the filter and the controller, as shown in Figure 6, where Zin1, Zin2, and
Zinn are the output impedance of the inner loop under the different controller parameters,
and ZLCL1, ZLCL2, and ZLCLn are the output impedance under the different filter parameters,
both of which have an impact on the output impedances Z1, Z2, and Zn. Therefore, to
reveal the resonant mechanism of the grid-connected VSG, the influence of filter parameters
and controller parameters on the VSG output characteristics are analyzed in this section.
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4.1. Sensitivity Analysis of Filter Parameter

To analyze the influence of the different filter parameters on the resonant characteristics
and the resonant frequency distribution of a grid-connected VSG, different LCL filter
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parameters were selected for analysis, and the Bode plots of the output impedance were
obtained, as shown in Figure 7, demonstrating the low-impedance characteristic of the
VSG. In addition, the sum of the output impedance without an inner regulator (i.e., without
Zin1, Zin2, and Zinn) and the grid impedance has the resonance points. Therefore, when
the LCL-type inverter based on a VSG is connected to the grid, there is a risk of harmonic
resonance, and the resonance point is related to the filter parameters.
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In Figure 8, a VSG has a risk of harmonic resonance with the grid impedance increasing;
that is, there is a resonance point between the output impedance of a VSG and the grid
impedance. Moreover, with the grid impedance increasing, the resonance point offset is
not obvious, indicating that the interaction with the grid is weak.

Furthermore, in Figure 9, with the number of parallel inverters increasing, the reso-
nance point offset is also not obvious. Therefore, when the clustered LCL-type inverters
based on a VSG are connected to the grid, the range of resonant frequency is basically
unchanged despite the risk of harmonic resonance.

In summary, the above analysis was based on the interaction between the VSG cluster
without an inner regulator and the grid. It can be found that the frequency range of the
harmonic interaction between the LCL-type VSG cluster and the grid was mainly deter-
mined by the filter parameters. In addition, because of the low impedance characteristic of
an LCL-type VSG, its interaction characteristic with the grid was weak. With the number
of parallel VSGs increasing, the interaction characteristic between the VSG cluster and the
grid was also weaker.

In fact, the changes in the inner regulator affect the VSG output impedance. Therefore,
the influence of the inner-loop controllers on the output impedance characteristics are
analyzed below.
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Figure 9. Impedance Bode plots under different inverters paralleled without an inner regulator.
(a) Impedance characteristics on the main diagonal. (b) Impedance characteristics on the subdiagonal.

4.2. Sensitivity Analysis of the Inner-Loop Controller Parameter

In order to analyze the influence of the different inner-loop controller parameters on the
output characteristics and the resonant frequency distribution of the grid-connected VSGs,
different controller parameters are selected. The output impedance Bode plots are shown
in Figure 10. It can be found that the capacitor voltage regulator has changed the resonance
frequency, making the resonance point offsetting. When a capacitor voltage regulator design
is not reasonable, the corresponding resonance point will be within the range of harmonic
excitation frequency bands. Therefore, the capacitor voltage controller parameters need to
be designed reasonably, to avoid the resonance point falling into the frequency range of the
harmonic excitation and causing resonance. In order to investigate the sensitivity of the
inner loop parameters, different values are used where Kp = 0.1, 1, and 5; Ki = 5, 10, and 20;
and Kic = 0.1, 1, 10, and 20. The basic parameters used in this paper are Kp = 0.1, Ki = 20,
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and Kic = 20; that is, Gecd = Gecq= Kp + Ki/s (0.1 + 20/s), and Gicd = Gicq= Kic (20). The
design of the parameters is based on [26].
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As shown in Figure 11, the impedance Bode plots under different parameters of the
capacitor current regulator are obtained. It can be seen that the capacitor current regulator
mainly suppresses the amplitude of the resonant peak, while the change in the resonant
frequency is small. Therefore, in order to reduce the resonance risk of an LCL-type VSG
and its cluster, a capacitor current controller needs to be adopted.
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5. Simulation and Experimental Results 

Figure 11. Impedance Bode plots under different parameters of a capacitor current regulator.
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As can be seen from Figure 11, with the number of parallel inverters increasing, the
resonance point offset is also not obvious. Compared with the LCL-type VSG without an
inner-loop controller in Figure 9, the resonance peak in Figure 12 is significantly suppressed.
Therefore, when a cluster LCL-type inverter based on a VSG is connected to the grid, the
resonance risk can be reduced through the inner-loop regulator. However, there is still a
risk of harmonic resonance, and its resonant frequency range does not change much with
the number of parallel inverters increasing.
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Figure 12. Impedance Bode plots under different paralleled inverters. (a) Impedance characteristics
on the main diagonal. (b) Impedance characteristics on the subdiagonal.

5. Simulation and Experimental Results

To verify the effectiveness of the established VSG impedance model, the harmonic
interaction model between the converter and the utility grid was established based on
Simulink software. The simulation parameters are shown in Table 1.

Table 1. Parameters of an LCL-type three-phase inverter.

Parameter Value Parameter Value

Grid voltage 220 V Proportional coefficient of capacitor voltage Kp 0.1

Grid frequency 50 Hz Integral coefficient of capacitor voltage Ki 20

DC bus voltage 800 V Proportional coefficient of capacitor current Kic 20

Inverter-side inductor 2.4 mH Rotational inertia 0.057

Grid-side inductor 2.4 mH Droop coefficient 1592

Filter capacitor 4 µF Grid resistance 0.5 Ω

Switching frequency 16 kHz Grid inductor 0.08 mH

The correctness of the VSG impedance model and its cluster impedance model estab-
lished in Section 3 were verified firstly. It can be seen from the time-domain simulation
results in Figure 13 that the output currents of the impedance model and the switching
model were identical in an ideal grid. In addition, according to the simulation results in
Figure 14, the impedance model and the switching model were also identical in a distorted
grid, indicating the effectiveness of the VSG impedance model.
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Meanwhile, the impedance scanning method was used to compare the actual values
with the theoretical calculation values, and the comparison results were obtained, as shown
in Figure 15. The results showed that the output impedance of the theoretical calculation
was identical to the scanned impedance, indicating the effectiveness of the impedance
model of the VSG established in this paper.

Furthermore, the resonance characteristics analysis of a VSG and its cluster in Section 4.1
was verified. According to the above analysis, the resonant frequency of a VSG without
an inner-loop controller is determined by the resonant frequency of the LCL-type filter.
According to the parameters in Table 1, the resonant frequency of the LCL-type filter
was 2.3 kHz. To intuitively reveal the resonance characteristics, 2.3 kHz, 2.1 kHz, and
2.5 kHz harmonic components were added to the grid voltage respectively after 2 s, with
1% of harmonic voltage. The simulation results were obtained, as shown in Figure 16.
This indicates that the system in Figure 15a was excited by a harmonic excitation source,
resulting in resonance and serious distortion of the output currents. Interestingly, in other
harmonic frequency bands, the current distortion was not serious, as shown in Figure 16b,c.

As shown in Figure 17, when the three VSGs were in parallel, the resonance point was
slightly offset, which was 2.25 kHz. This indicates that the resonant frequency of parallel
LCL-type VSGs was mainly determined by the filter, and the resonant point changed little
with the number of the clustered inverters increasing, which further demonstrates that the
harmonic interaction between an LCL-type VSG and the grid is weak.
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Figure 15. Comparison results of the output impedance in theory and calculation. (a) Comparison
results of the output impedance of a single VSG. (b) Comparison results of the output impedance of
three VSGs.

According to the analysis in Section 4.2, the resonant frequency points of a VSG
can be changed by the different capacitor voltage controller parameters, but the resonant
frequency band remains unchanged after the introduction of the inner-loop controller.
The corresponding simulation results were obtained, as shown in Figure 18. When the
parameters of the inner-loop controller were Kp = 0.1, Ki = 20, and Kic = 0.1, the resonant
frequency was 2.35 kHz, as shown in Figure 18a. When Ki increased from 5 to 20, the
resonant frequency was 2.3 kHz, as shown in Figure 18b.

When the parameter of the capacitor current controller Kic changed, the resonant
peak was significantly suppressed. As shown in Figure 19, this indicates that the grid-side
current quality was improved obviously under the same harmonic excitation, and the THD
of the grid-connected currents was just 3.2%. Therefore, the capacitor current controller can
effectively suppress the resonant peak of an LCL-type VSG and its cluster.
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Table 2 shows that the model will be resonant when injecting the harmonics at the
resonant frequency. It is shown that the established model was correct to predict the
resonance in the VSG-clusters grid-connected inverters system.

Table 2. Comparison in terms of injected harmonics.

Injected Harmonics THD

2.1 kHz 5.64%

2.3 kHz 32%

2.5 kHz 5.78%

Table 3 shows the comparison in terms of THD, in which it can be seen that the THD
was suppressed by the capacitor current feedback loop. With capacitor current (CC) control,
the THD was 3.2%, which was 10 times lower than the result without CC control. Therefore,
the proposed scheme can effectively suppress the harmonics, which meets the requirements
of IEEE Standard 519.
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Table 3. Comparison in terms of control strategy.

Without CC Control With CC Control

THD 32% 3.2%

To further verify the above resonance characteristics analysis of a VSG based on the
output impedance model, an experimental platform with three parallel VSGs was built
in the laboratory, and the harmonic excitation was generated by a grid simulator. The
experimental parameters were the same as the simulation parameters in Table 1. Figure 20
shows the experimental platform including a grid simulator (Chroma 61830) from Chroma
Company (Taoyuan City, Taiwan), three grid-connected inverters, a PC, and three electron-
ics loads. Other equipment included a digital signal processor (DSP TMS320F28335) from
TI Company (Dallas, TX, USA), a current probe (CWTMini 3B) form PEM Company (Surrey,
UK), and an oscilloscope (Tektronix MDO3024) from Tektronix Company (Beaverton, OR,
USA). The configuration of the experiment used the grid simulator to generate three-phase
voltages with high-frequency harmonics (2.3 kHz). Then, it used different control strategies
to control the three VSGs in order to suppress the harmonics. As shown in Figure 21a,
the current waveforms of a single VSG generated severe resonance in a polluted grid
with 2.3 kHz harmonic voltage. In addition, for the three VSGs in parallel, the resonant
frequency was shifted slightly to 2.25 kHz. When the 2.25 kHz harmonic excitation was
injected into the grid, the system also generated resonance, as shown in Figure 21b.
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After the introduction of the inner-loop controllers, especially the capacitor current
inner-loop controller, the resonance peak of the LCL-type inverter based on a VSG was well
suppressed, as shown in Figure 22. Therefore, for an LCL-type inverter based on a VSG, it
is significant to adopt the inner-loop controller to reduce the risk of harmonic resonance.
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Figure 22. Current waveform of a VSG with an inner regulator. 

6. Conclusions 

(1) In this paper, the output impedance model of the VSG cluster was established, which 

revealed that the VSG-type grid-connected inverters had a resonant risk. Further-

more, the simulation and experimental results verified the effectiveness of the output 

impedance model. 

(2) The influence of the filter parameters, controller parameters, and grid parameters on 

the output impedance characteristics was addressed. It was concluded that the reso-

nant frequency of the inverter-grid system based on a VSG was mainly determined 

by the filter. In the experimental case, the resonant point was around 2.3 kHz when 

the number of grid-connected inverters increased to three. 

Figure 21. Current waveform of a VSG injected harmonic voltage in a weak grid. (a) Current
waveform of a single VSG. (b) Current waveform of three VSGs.
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6. Conclusions

(1) In this paper, the output impedance model of the VSG cluster was established, which
revealed that the VSG-type grid-connected inverters had a resonant risk. Further-
more, the simulation and experimental results verified the effectiveness of the output
impedance model.
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(2) The influence of the filter parameters, controller parameters, and grid parameters
on the output impedance characteristics was addressed. It was concluded that the
resonant frequency of the inverter-grid system based on a VSG was mainly determined
by the filter. In the experimental case, the resonant point was around 2.3 kHz when
the number of grid-connected inverters increased to three.

(3) In addition, the capacitor current control for grid-connected inverters based on a VSG
was proposed. With the dual-loop control strategy, the resonant peak was suppressed.
Therefore, for an LCL-type grid-connected VSG cluster control, it is significant to add
a capacitor current inner-loop controller to suppress the resonant peak and improve
the system stability. The total harmonic distortion (THD) was reduced to 3.2%, which
meets the requirements of IEEE standard 519.

(4) Furthermore, the inverter-grid system based on a VSG presented low-impedance
characteristics, indicating weak harmonic interaction characteristics. With the number
of clustered VSG increasing, the weak interaction characteristics did not change.
Therefore, the weak interaction characteristics are conducive for the VSG cluster to be
connected to the grid.
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