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ABSTRACT One of themost promising renewable energy technologies is photovoltaics (PV). Fault detection
and diagnosis (FDD) becomes more and more important in order to guarantee high reliability in PV systems.
FDD of PV systems using machine learning technique aims to develop effective models that can provide a
better rate of accuracy. Recently, numerous machine learning based ensemble models have been applied in
FDD using different combination techniques. Ensemble method is a tool that merges several base models
in order to produce one optimal predictive model. In this study, we propose six effective Ensemble Leaning
(EL)-based FDD paradigms for uncertain Grid-Connected PV systems. First, EL-based interval centers and
ranges and interval upper and lower bounds techniques are proposed to deal with PV system uncertainties
(current/voltage variability, noise, measurement errors, . . . ). Next, in order to more improve the diagnosis
abilities, two interval kernel PCA (IKPCA)-based EL classifiers are developed. The IKPCA-EL techniques
are addressed so that the features extraction and selection phases are performed using the IKPCAmodels and
the sensitive and significant interval-valued characteristics are transmitted to the EL model for classification
purposes. Finally, the number of observations in the training data set is reduced using Hierarchical K-means
techniques in order to overcome the problem of computation time and storage cost. Therefore, two interval
reduced KPCA-EL techniques are proposed. The study demonstrated the feasibility and efficiency of the
proposed techniques for fault diagnosis of Grid-Connected PV systems.

INDEX TERMS Uncertain systems, ensemble learning, fault diagnosis, interval-valued data, kernel principal
component analysis (KPCA), grid-connected PV (GCPV).
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I. INTRODUCTION
In recent decades, photovoltaic (PV) energy has gained great
importance in the world with major developments in grid-
connected applications, since it has desirable characteristics
such as decreasing cost, environmental compatibility, short
installation time, and low maintenance cost. Grid-Connected
PV (GCPV) energy systems got the most interest and have
been an increased attention. Faults in any components of
GCPV systems such as grid-connection, converters, inverters,
open-circuit/short-circuit, panels, modules and arrays, can
earnestly affect the efficiency, security and reliability of
the all GCPV plant. Therefore, fault detection and diagno-
sis (FDD) is very crucial for achieving the best functioning
and ensure safe and continuous operation of GCPV systems.
Addressing these issues, different techniques have been
proposed to detect and diagnose faults in PV systems.
The proposed methods vary in complexity, rapidity, and
capability to identify a large number of faults. Most of
traditional fault diagnosis techniques are based on machine
learning algorithms [1]–[3]. In [4], a review on artificial
intelligence techniques for GCPV Systems is presented. This
study demonstrates that the ANN and its sub-architectures
are the most widely used machine learning techniques to
diagnose photovoltaic systems. However, most of the existing
ANN techniques suffer from the problems of overfitting
and complexity time. Therefore, improved versions of
ANNs based on backpropagation algorithms like multilayer
perceptron networks (MLPN) are proposed to overcome
these challenges. ANN has been developed to predict the
electrical outputs of a PV module and detect the faulty
case in [5]. This proposed technique consists in determining
the measured PV output values and the values predicted
by the ANN method. The operating state is considered
as a faulty state if the difference between the measured
values and the predicted one exceeds a threshold value. The
proposed method can accurately estimate PV production
without complex mathematical calculations and can detect
any decrease in output power. However, it is recommended to
train the ANN periodically to preserve accuracy. In addition,
other types of faults (open circuit, short circuit, . . . ) are
not taken into account in the proposed method. In [6],
a fault diagnosis method based on Modified neural networks
has been proposed to detect faults in PV systems. In this
proposal, the PV system was simulated using a solar Pro
software package for gathering power generation data from
PVmodules under normal and faulty operating modes. In [7],
a proposed method based on feature extraction using wavelet
transform and classification attributes of radial basis function
networks (RBFNs) is presented. In this proposal, the dynamic
fusion of kernels is performed in order to improve the
performance of the proposed method. In [8], a fault diagnosis
model is proposed for fault detection and classification in
PV systems. In this proposal, different faulty and normal
datasets are normalized and preprocessed using several data-
mining techniques and then fed into a probabilistic neural
network (PNN) to predict and classify faults. However, the

main drawback of this method is the significantly depending
on the proper choice of the smoothing parameter to enhance
the accuracy. In [9], the authors propose an online reduced
kernel generalized likelihood ratio test technique for fault
detection in PV systems with MPP operation data. Support
vector machines (SVM) is one of the widely used technique
in classification and nonlinear function estimation [10]. The
main drawback of the classical SVM technique presented
in the selection of features that may sometimes lead to
wrong output especially when the data set has more noise.
In [11], a fault diagnosis method based on experimental data,
combined with the KNN technique is proposed. The main
idea behind this proposal is to detect and classify different
faults like open circuits, line-line, partial shading in real-
time. KNN is one of the topmost used machine learning
algorithms thanks to her simplicity and high capacity [12].
KNN does not require any assumption for underlying data
distribution and any training data points for model generation.
This in turn gives high performances when using real
datasets [12], [13]. But KNN suffers from some limitations in
the case of the large dataset because the instance calculation
of distances between each samples would be very costly. The
DT algorithm belongs to the family of supervised learning
algorithms and it has been widely used in literature. The main
idea of this technique is to predict the class or value of the
target variable by learning simple decision rules allowed from
training data. DT algorithm executes classification without
requiring much computation and generates understandable
rules. In [14], a decision tree method has been proposed
to detect and classify open circuits, line-line short circuits,
partial shading, and degradation. This proposal can accurately
detect different conventional faults. The main drawback
of this technique is the assumption that the PV array is
operating at the (MPP), which is not ensured in real PV
systems [15]. Besides, it generally undergoes problems of
overfitting, especially in the case of a large data size.

During the last decades, ensemble learning (EL) models
have gained significant attention from the scientific com-
munity [16]. EL is a technique that creates and combines
multiple machine learning models in order to produce one
optimal predictive model which gives improved results [16].
Bagging, boosting, stacking and random subspace are the
main types of ensemble methods [17]. Bagging is used as a
way to decrease the variance in order to improve the accuracy
of models through decision trees. Boosting aims to learn from
precedent predictor errors to make better predictions in the
future (decrease bias). Stacking allows a learning algorithm
to group together several other predictions of similar
learning algorithms (improve predictions). Random subspace
combines the predictions of multiple decision trees trained
on different subsets of columns in the training dataset by
simplemajority voting in the final decision rule [18]. Bagging
helps eliminate the overfitting of models in the procedure
by decreasing variance. However, the resultant model using
bagging ensemble methods can experience lots of bias when
the proper procedure is ignored and it introduces a loss of
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interpretability of a model [19]. Boosting algorithm seeks to
reduce the model’s bias and it is used when high bias and
low variance are presented. In addition, Boosting generates an
unified model with fewer errors as it focuses on maximizing
benefits and reducing shortcomings in a single model [19].
The main advantage of the random subspace technique is
the random selection of subsets of features, resulting in
weakly correlated multiple weak learners [20]. In conclusion,
when the challenge in a single model is overfitting, the
bagging method performs better than the boosting technique.
Boosting faces the challenge of handling over-fitting since
it comes with over-fitting in itself. When the challenge is
to obtain low-correlated multiple weak learners, the random
subspace technique method is better than boosting and
bagging. A Comparison study between single and ensemble
learning algorithms is presented in [17], [21]. It is showed
that ensemble learning techniques can outperform classical
single machine learning methods in many cases [21]. The
first one is when the training algorithm fails to find the
best solution (computational problems). The second one is
when the available training data are too small compared
to the search space (statistical problems). The last one is
when the learning algorithms miss affecting fitness functions
(representation problems) [21]. Another study demonstrates
that boosting ensemble techniques outperformed bagged
ensemble techniques to predict the stock market [22]. In the
literature, ensemble learning algorithms are widely used to
affect maximum performance and they have been applied
in a variety of real-world applications [17], [23]. In [24],
the authors propose a technique to improve the predictive
performance of existing conventional machine learning (ML)
algorithms as an arc fault detection method. This proposal
is based on the superposition of conventional ML algorithm
to create an enhanced classifier that decreases the bias and
decision variance. Another fault detection method based on
ensemble machine learning is introduced in [25]. In [17],
an enhanced ensemble learning method was proposed to
provide a better and higher rate of prediction accuracy
of stock-market prediction. In this proposal, boosting,
bagging, stacking, blending, and simple maximum voting
combination techniques are used to construct twenty-five
different ensemble classifiers using DT, SVM, and multilayer
perceptron (MLP) neural networks. Despite numerous studies
revealing the dominance of ensemble learning methods over
single learning methods, most of these works only ensemble
a specific type of classifier. In addition, the previously
investigated ensemble learning-based fault classification
approaches use only single-valued data, and the uncertainties
of the system are not taken into account. The uncertainty in
the systems, which is presented by the interval-valued data,
is the consideration of the minimum and maximum recorded
values, while the single-valued data representation is obtained
by a simplification of data during the mining procedure.
Thus, the interval-valued data representation offers a better
overview of the measured phenomenon compared to the
representation of the average value. However, inaccuracy,

uncertainty, or parameters variability might characterize the
important information describing the real systems [26]. Thus,
classical data is not able to present these dissimilarities
and for this reason, it is important to represent the data as
interval-valued data. In [27], a KNN approach to deal with
uncertainties by using data in the form of intervals. In other
studies, a new approach for constructing regression and
classification models for interval-valued data using support
vector machine method is proposed [28]. An uncertainty
analysis technique based on a non-parametric statistical
modelling method for photovoltaic array output is proposed
in [29]. This proposal aims to resolve the problem of
differences between the parameter estimation (PE) results
and the real output distributions by using nonparametric
kernel density estimation (NKDE) methods. Besides, another
main drawback of the classical ensemble learning classifiers
is the direct use of the raw information from the process
data. In the literature, different FDD techniques based on
feature extraction and selection steps using a single classifier
have been proposed [30], [31]. The main idea behind the
extraction and selection steps is to extract and to select the
most pertinent and informative data features, which will
consequently enhance the use of the ML algorithm in the
classification step for diagnosis purposes [32]. Literature
has shown that the applications of some techniques for
feature extraction and selection have significantly enhanced
the accuracy of classification. In [33], a fault classification
method based on multiscale interval PCA (MSIPCA) and
ML method was proposed for uncertain HVAC systems.
The MSIPCA technique is also proposed for enhancing the
diagnosis performance by extracting the most significant
linear features from data. However, popular complex systems
show strong nonlinear correlations between their variables.
Various nonlinear Kernel PCA (IKPCA) methods have been
presented [34], [35]. The main objective of the IKPCA
method is to i) transform the interval-valued data matrix on a
numerical data matrix, (ii) map the input numerical data onto
the feature space using a nonlinear mapping function, and (iii)
use PCA into a feature space [35].

In this work, we propose innovative ensemble learning
paradigms to deal with the problem of fault detection
and diagnosis of uncertain PV systems. The principal
contributions of this article are threefold.

1) The first contribution of this paper aims to develop
an effective EL models for interval valued data
with KNN, SVM and DT classifiers using bagging,
boosting and random subspace combination tools. The
developed paradigms are so-called interval EL (IEL)-
based centers and ranges (IELCR), and upper and lower
bounds (IELUL). The objective behind these proposed
methods is to show the impact of using interval-
valued data instead of single-valued data to improve
the fault diagnosis abilities. The main idea of the
developed techniques is to represent the interval-valued
data matrix using centers and ranges or upper and
lower bounds approaches. Then, the feature matrices
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are constructed and introduced to the proposed EL
classifier for fault classification purposes. In this
study, we use two methods based on interval-valued
data to further assess the effectiveness of using model
uncertainties. The developed techniques achieve higher
classification accuracy compared to the single-valued
data EL approaches. However, the two proposed
techniques suffer from some limitations due to the
direct use of interval-valued features at the nodes.

2) To surmount this problem, two interval-valued data
kernel PCA (IKPCA) methods are applied to extract
features by transforming the single-valued data set
into interval-valued latent variables. The IKPCACR
consists first to compute the new numerical matrix by
the concatenation of center and range matrices and
then to perform KPCA model on the new matrix. The
second method, the IKPCAUL , aims to fit two KPCA
models on the lower and upper bounds of the interval
values. Next, to enhance the diagnosis effectiveness,
it is important to select the most significant and
relevant features before doing the classification task.
Finally, the faults are classified using the EL model.
Second, in order to further improve the classification
accuracy, EL-based IKPCAmethods are proposed. The
proposed EL-IKPCA schemes are addressed such that
the interval kernel PCA (IKPCACR and IKPCAUL)
techniques are developed for features extraction and
selection. Then, the more relevant features are fed to
the EL for classification purposes.

3) An improved IKPCA technique, called interval reduced
KPCA (IRKPCA) is proposed. This proposal aims
to overcome the problem of computation time and
storage cost. The improved IKPCA technique consists
of reducing the number of observations in the training
data set using Hierarchical K-means (H-K-means)
clustering method.

To summarize, six multi-class (MC) classifiers called
IELCR, IELUL , IKPCACR-based EL, IKPCAUL-based EL,
IRKPCACR-based EL, IRKPCAUL-based EL are used. The
main goals behind the proposed methods are to show the
efficiency of using interval-valued data, features extraction
and selection, and data size reduction step by step. The MC
classifiers consist of classifying instances into one or more
classes. To further improve the classification performances of
the developed classifiers, a set of one-class (OC) classifiers is
proposed. To do that, a bank of OC IELCR, IELUL , IKPCACR-
based EL and IKPCAUL-based EL, IRKPCACR-based EL
and IRKPCAUL-based EL classifiers are developed (there
are as many classifiers as classes). An emulated PV system
is applied to demonstrate the effectiveness of the proposed
diagnosis methods.

The rest of the work is presented as follows. Section II
presents the GCPV system description and data collection.
A brief description of machine based ensemble learning
techniques is given in Section III. Section IV presents the
proposed paradigms. The performance of the proposed

methods is evaluated in Section V. At last, some conclusions
are drawn in Section VI.

II. PV IMPLEMENTATION AND DATA COLLECTION
Figure 1 shows the synoptic of the GCPV system under
study, where PV and grid emulators are used to emulate
the operation of PV panels and a 3-phase grid respectively
(under different operating modes). Table 1 shows the system
variables considered in this study, where the measurements
are recorded each 5-15s depending on the nature of the faults
and their occurrence.

The faults were emulated at different system stages
(common coupling point, inverter, sensors, emulated PV
arrays, . . . ) to ensure a comprehensive analysis [30], [32].
A first fault F1 was emulated by introducing an open-circuit
fault on one of the inverter switches at the time (inverter fault).
Another AC side fault F3 was emulated by disconnecting
the grid at the common coupling point (islanding referred
as grid-connection fault). On the PV side, three types of
faults were emulated. The fault F2 was introduced at the
sensor level (output current sensor fault) to emulate the sensor
wiring/reading issues. Moreover, using the PV emulator
features, a 10-20% permanent partial shading was introduced
to emulate the PV panel fault (F4) while the connection faults
(F5) were emulated by introducing an open-circuit/short-
circuit on PV cells connection.

1) Grid-side faults
• F1: Inverter fault (open-circuit fault on one switch
at the time),

• F3: Grid-connection fault (switch to the standalone
operation for protection reasons).

2) PV-side faults
• F2: Output current sensor fault (poor connection
and/or erroneous reading),

• F4: PV panel fault (permanent 10-20 % partial
shading)

• F5: PV panel connection fault (open-circuit, short-
circuit, sudden disconnection)

The healthy and faulty operation modes are showed in
Table 2.

III. MACHINE LEARNING ALGORITHMS
A. CLASSIFICATION TECHNIQUES
In this study, we use SVM, KNN, and DTmodels to construct
different ensemble classifiers. The main advantage of SVM
technique is that it is able to handle high dimensional data
without overfitting problems. Moreover, the kernel trick is a
real strength of SVM in which one can solve any complex
problem [36]. However, SVM does not perform very well
when the data set has more noise which affects the final
decision. The KNN model is a very efficient classifier in
terms of improvisation for random modeling on available
data [37]. A tree model is very useful for solving decision-
related problems and it can work well even if the assumptions
are somewhat violated by the dataset from which the data is
extracted [38]. Therefore, in this work, we propose threewell-
used machine learning algorithms, each of which differs in its

47676 VOLUME 10, 2022



K. Dhibi et al.: Interval-Valued Reduced EL Based FDD Techniques for Uncertain GCPV Systems

FIGURE 1. Synoptic of the grid-connected PV system under study.

TABLE 1. Measured system variables.

TABLE 2. Construction of database for fault diagnosis system.

way of training from the other, to overcome the shortcomings
that result from the use of a single classifier. Thus, they work
in an integrated way.

1) SUPPORT VECTOR MACHINES (SVM)
SVM has been first introduced by Vapnik [39]. There are
two main categories for SVM: support vector classifica-
tion (SVC) and support vector regression (SVR). In this study,
an overview of the basic ideas underlying support vector (SV)
machines for classification is presented. For a considered
training data set with N samples {xk , yk}Nk=1, with input data
xk ∈ Rm and output yk ∈ {−1 1} which represents a set
of labeled training features. The SVM for classification is
presented as following:

yk = f (xk ) = wT xk + b (1)

where w ∈ Rm and b ∈ R.

2) DECISION TREE (DT)
Decision Tree (DT) is a well-known technique that has
been applied to real-world problems [40]. DT is a symbolic
learning technique that organizes information extracted from
a training dataset in a hierarchical structure composed of
nodes and ramifications. The main advantage of using DT
algorithms is that they involve minimal requirements for data
preparation and are robust on large datasets.

3) K-NEAREST NEIGHBORS (KNN)
KNN is a non-parametric algorithm, which means it does not
make any assumption on underlying data [41]. The main step
of KNN technique is to classify samples from the available
data based on similarity. Therefore, when new data appears
then it can be easily classified into a good suite category by
using K- NN method [42]. The Euclidean distance is used to
compute the KNN class as follows,

For a given known class X = [x1, x2, . . . , xk ] and a data to
be classified Y = [y1, y2, . . . , yk ]. So, the distance is given
by

d(X ,Y ) =
√
(x1 − y1)2 + (x2 − y2)2 + · · · + (xk − yk )2

(2)

Then a class is assigned to which the distance defined as in
Eq. 2 is minimum.

B. ENSEMBLE LEARNING TECHNIQUES
Ensemble technique is a machine learning technique that
combines the decisions from multiple models in order to
generate one optimal predictive model and to enhance global
performance. The main idea behind ensemble techniques is
to improve predictability in models and decrease bias and
variance to boost the accuracy of models [43]. Boosting,
bagging, and random subspace are themost popular ensemble
methods. Next, we discuss the three advanced ensemble
methods.

1) BOOSTING
Boosting is one of themost popular ensemble techniques. The
main objective behind boosting algorithm is to combinemany
weak learners into strong learners [44]. So, it learns from
previous predictor mistakes to make improved predictions
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in the future. Therefore, it significantly improved the
predictability of models [45]. The main steps of boosting
technique are threefold: i) Bias the training data towards
those examples which are difficult to predict, ii) add assembly
members to correct predictions from previous models, and
iii) combine predictions using a weighted average of the
models. Some commonly boosting algorithms are adaptive
boosting (AdaBoost), extreme gradient boosting (XGBoost)
and gradient boosting.

2) BAGGING
Bagging, also called bootstrap aggregating, is an ensemble
learning method that decreases the variance and improves
the accuracy of different models to form one ensemble
model [44]. The first step of the bagging technique is to create
multiple models. Then, the created models are generated
based on the actual method with random sub-samples of
the dataset which are constructed from the original dataset
randomly using bootstrap sampling technique [45].

3) RANDOM SUBSPACE
Random subspace (RS) is similar to the bagging method
but the variables are randomly sampled, with replacement,
for each learner [46]. By training the estimators on random
samples of characteristics instead of all characteristics
set, RS aims to decrease the correlation between models.
RS outperforms other ensemble techniques in terms of
computational cost thanks to the use of random subsets [20].

IV. PROPOSED TECHNIQUES
The main contributions are threefold. First, two alternative
and effective interval-valued learningmethods (interval ELCR
and interval ELUL) based on the direct use of variables
measured with uncertainties are presented. In this study,
we used three classification algorithms and three ensemble
techniques. The used classification algorithms are SVM,
DT, and KNN. The used EL techniques are Bagging,
Boosting, and Random sub-space. The main steps of interval-
valued raw data-based EL (IEL) techniques are illustrated in
Figure 2. Then, in order to further improve the efficiency of
the developed IEL methods, two additional intervals KPCA
(IKPCA)-based FDD techniques are developed, where the
most relevant characteristics are first extracted and selected
from the original data then the final features are fed to
the proposed EL model for classification purposes. Once
the samples representing the healthy and different possible
faulty scenarios in the process are available, the IKPCA
models are constructed using only the healthy data. The
built models are applied to extract and select the most
significant features. However, the main disadvantage of
IKPCA-EL is the computational cost which is proportional
to the number of measurements. To overcome this challenge,
an improved IKPCA technique based on a data reduction
scheme using H-K-means clustering is proposed. The first
objective behind this proposed technique is to reduce the
number of samples. The improved IRKPCA-EL not only

FIGURE 2. Schematic diagram of the interval RF (IRF)-based
interval-valued raw data.

decreases the computation time and storage cost but also
keeps the diagnosis capacity. Next, some arbitrary groups of
selected features are applied to train the EL classifier. Finally,
to make efficient decisions, we compare the EL output results
using the different picked arbitrary groups.

A. INTERVAL-VALUED Data
In order to keep the variable information, it is more relevant
to present these measurements by interval values instead of
single values. Given that xij, i = 1, . . . ,N and j = 1, . . . ,m,
is an observation is the i−th sample of the j−th variable, the
interval representation of the data measurement xij is given
by,

[xij] = [xij, xij] (3)

where xij and xij are the lower bound and upper bound of
the interval,respectively. The interval-valued matrix [X ] is
defined as follows:

[X ] =


[
x11, x11

]
. .

[
x1m, x1m

]
. . .

. . .[
xN1, xN1

]
. .

[
xNm, xNm

]


= ([x1], . . . , [xN ])T (4)

where [xk ] =
(
[x1k , x1k ], . . . , [xmk , xmk ]

)
.

The generic interval [xjk ] can be also represented as
a couple {xcjk , x

r
jk}. The center xcjk of the interval is

given as [47], [48]

xcj (k) =
1
2
(x jk + x jk ) (5)

and the range xrj (k) of the interval is expressed by:

xrjk =
1
2
(x jk − x jk ) (6)
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Usually, data is composed of variables that belong to
different physical quantities with different scales and spreads.
To deal with this problem, the data matrix is scaled to zero
mean and unit variance. Thus, the pre-processing step is very
important and it is recommended before applying any model
in order to enhance the simulation results.

B. ENSEMBLE LEARNING FOR INTERVAL-VALUED
DATA (IEL) METHOD
In this section, EL techniques based on interval centers and
ranges IELCR and interval upper and lower bounds IELUL are
presented.

1) EL BASED ON INTERVAL CENTERS AND RANGES (IELCR)
In this method, the Center and Range (CR) approach is
used. The CR technique is one of the most used models for
analyzing interval-valued data. Let X be the training data sets,
where m is the number of variables and N is the number of
observations.

In the CR technique, the interval-valued data matrix is first
transformed into center and range matrices as:

X c =
1
2


x11 + x11 . . x1m + x1m

. . .

. . .

xN1 + xN1 . . xNm + xNm

 (7)

X r =
1
2


x11 − x11 . . x1m − x1m

. . .

. . .

xN1 − xN1 . . xNm − xNm

 (8)

Then, the obtained data matrix is constructed by the
concatenation of center and range data matrices. Thus, the
new input XCR data matrix is presented as:

XCR =
[
X c X r

]
∈ RN×2m (9)

2) EL BASED ON INTERVAL UPPER AND LOWER BOUNDS
(IELUL)
For the interval ELLU method, an upper-lower approach is
considered to classify the data. Let XL and XU be the lower
and upper bounds of the input matrices, respectively.

XL =


x11 . . x1m
. . .

. . .

xN1 . . xNm

 (10)

XU =


x11 . . x1m
. . .

. . .

xN1 . . xNm

 (11)

The upper and lower matrices can be considered at the
same time. According to the above definitions, let XLU be
the upper-lower value that can be represented by:

xLUij = γ x ij + (1− γ )x ij (12)

where, γ ∈ [0, 1], γ can be used as the adjustment weight
of interval-valued data unit, which is used to balance the
relationship between the upper and lower bounds of the
interval-valued data unit. The upper and lower matrix is given
by:

XLU =


xLU11 . . xLU1m
. . .

. . .

xLUN1 . . xLUNm

 (13)

When γ = 1, it can be studied as a lower scheme with one
feature. If γ = 0, then, it can be represented by an upper
bound that contains the size information of x.

The next section proposes two EL algorithms based on
IKPCA models. In the proposed IKPCA-EL methods, only
the most informative extracted features from the dataset are
selected and applied to the EL algorithm for classification in
the diagnosis problem.

C. ENSEMBLE LEARNING BASED INTERVAL KPCA
METHODS
The main idea behind the proposed IKPCA-EL methods is
to extract and select the most pertinent nonlinear features
from interval-valued data using two IKPCA models. Then,
the selected pertinent nonlinear features are fed to the
EL to address the fault classification problem. The feature
extraction and selection steps are used to retain only the
most relevant and effective measurements in order to better
present any system under different operating modes. IKPCA
method consists of transforming the interval-valued dataset
on a numerical dataset and then a KPCA is applied to
the created numerical dataset. Besides, it aims to calculate
the interval kernel principal components (IKPCs) in the
characteristics space using nonlinear kernel functions and
integral operators [49]. Let us consider three data matrices
XCR ∈ RN×2m, XL ∈ RN×m, and XU ∈ RN×m, which
represent the center and range matrix, the lower matrix
and the upper matrix, respectively. IKPCA technique consist
of applying the KPCA model in the given interval data
matrices.

1) FEATURE EXTRACTION USING IKPCA
Given a training interval data matrix [X ]. The matrix
regrouping the mapped interval vectors is arranged as
follows: [X ] =

[
φ([x1]) φ([x2]) . . . φ([x1])

]T
∈ RN×h,

where h�m is the dimension of the characteristic space.
Using the kernel trick, we can compute the kernel principal
components (KPCs) using eigenvector expression as follows:

λα = Kα (14)

where λ and α are the eigenvector and eigenvalue of the gram
matrix K .
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The interval kernel matrix K can be expressed as follows:

[K ] = [X ]
[
X T

]

=


k([x1]), ([x1]) . . . k([x1]), ([xN ])

.

. . . . .

. .

k([xN ]), ([x1]) . . . k([xN ]), ([xN ])

 (15)

where k([x]) is defined as:

k([x]) = (k([x1]), [x] , . . . , k([xN ]), ([x]))T (16)

2) FEATURE SELECTION USING IKPCA
Let be consider the eigenvector of the kernel matrix in the
feature space v = λ−1

[
X T

]
α [34]. The matrix with the `

leading eigenvectors is computed as,

P =
[
λ1
−1
[
X T

]
α1, . . . , λ`

−1
[
X T

]
α` ] (17)

where 3 = diag {λ1, . . . , λ`} is the ` largest eigenvalues of
the matrix [K ].

Then, the kernel principal components are defined as, [34],

t = 3−1/2PT k([x]) (18)

Additional to the ` first KPCs, IRKPCA based features
extraction is performed using the Hotelling’s T 2, squared
prediction error (Q) and combined ϕ statistics which are used
to select the optimal features [50]. The statistical features are
calculated as follows:

T 2
= k([x])TP3−1PT k([x]) (19)

SPE = k([x] , [x])− kT ([x])Ck([x]) (20)

ϕ =
SPE
τ SPEα

+
T 2
CR

τT
2

α

(21)

τT
2

α and τ SPEα represent thresholds of T 2 and SPE at the
confidence level α, respectively.

τT
2

α =
`(Nr − 1)(Nr + 1)

Nr (Nr − `)
Fα(`,Nr − `) (22)

where Fα(`,Nr − `) an F-distribution with ` and Nr − `
degrees of freedom.

τ SPEα = gSPEχ2
hSPE ,α (23)

where gSPE = b
2a and hSPE =

2a2

b
, with a and b are

the mean and variance of the SPE index, respectively. For
the IKPCA based on upper and lower bounds, new interval
squared prediction error (ISPE) index is given by:

ISPE = γ SPE + (1− γ )SPE (24)

where γ ∈ [0, 1], γ is the weight that defines the trade-off
between the upper and lower bounds.
In the same way, the interval Hotteling’s IT 2 statistic is given
by:

IT 2
= γT 2

+ (1− γ )T 2 (25)

where, SPE and T 2 are the statistical characteristics for lower
bound and SPE and T 2 are the statistical characteristics for
upper bound of interval-valued data. The interval combined
index Iϕ is given by,

Iϕ =
ISPE
τ ISPEα

+
IT 2

τ IT
2

α

(26)

where τ IT
2

α and τ ISPEα represent control limits of IT 2 and ISPE
at the confidence level α = 95%, respectively.

τ IT
2

α =
`(Nr − 1)(Nr + 1)

Nr (Nr − `)
Fα(`,Nr − `) (27)

where Fα(`,Nr − `) an F-distribution with ` and Nr − `
degrees of freedom.

τ ISPEα = gISPEχ2
hISPE ,α (28)

where gISPE = b
2a and hISPE =

2a2

b
, with a and b are the

mean and variance of the ISPE index, respectively.
The variance D2, mean m, kurtosis K and skewness S of
the first ` retained KPCs t = [t1, . . . , tN ]T , where tk =
[tk1, . . . , tk`]; k = 1, . . . ,N are calculated by [34],

mj =
1
`

∑̀
i=1

tji (29)

D2
j =

1
`

∑̀
i=1

(tji − mj)2 (30)

Kj =
1
`

∑̀
i=1

(
tji − mj
D2
j

)4

(31)

Sj =
1
`

∑̀
i=1

(
tji − mj
D2
j

)3

(32)

D. EL BASED INTERVAL REDUCED KPCA METHODS
(IRKPCAHKMEANS )
1) HIERARCHICAL CLUSTERING
Hierarchical clustering aims to group similar objects into
groups called clusters [51]. We can compute the distance
between two clusters as following,
• Single Linkage: Compute the minimum distance d(s, c)
between any single data point in the two S and C
clusters:

D(S, c) = min(d(s, c)) s ∈ S, c ∈ C (33)

• Complete Linkage: Compute the maximum distance
between a S and C :

D(S,C) = max(d(S,C)) s ∈ S, c ∈ C (34)

• Ward’s linkage: Regroup the clusters in which the
inertial losses within clusters 1(S,C) at each step are
decreased.

1I (S,C) =
mS mC
mS + mC

d2(gS gC ) (35)
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where mS and mC are the total weight of the obser-
vations, gS and gC are the center of gravity of S and
C ,respectively, and d2(gS gC ) is the Euclidean distance
between gS and gC .

In this work, we use theWard’s linkage distance method [31].
Let consider the the original matrix X =

[
x1 x2 · · · xN

]T
∈

Rm×N i = 1, . . . ,N . Using the Agglomerative hierarchical
clustering [52], Nr clusters are obtained {C ′1,C

′

2, . . . ,C
′
Nr }

where xj ∈ C ′i j = 1, . . . , n′i, i = 1, . . . ,Nr with n′i is the
number of samples in C ′i .

2) K-MEANS CLUSTERING
K-means clustering is one of the simplest and popular
machine learning techniques [53]. The main idea behind
K-means clustering is to attributes samples to the cluster
with a smallest distance between samples to centroid cluster.
The objective of using K-means clustering is to improve the
quality of the clusters result obtained using Agglomerative
hierarchical clustering. It compute the squared distances
between the data and centroids, and attributes data to the
nearest centroid. We purpose to enhance the Nr clusters
{C ′1,C

′

2, . . . ,C
′
Nr } and we classify into Nr disjoint subsets

{C1,C2, . . . ,CNr } each containing ni observations, where
xj ∈ Ci j = 1, . . . , ni, i = 1, . . . ,Nr by the reduction of
the mean-square-error cost function

E1 =
Nr∑
i=1

∑
xj∈ Ci

||xj −Mi||
2, (36)

The resulting input data set obtained using H-K-means is
given as,

X r =
{
xr1 x

r
2 · · · x

r
Nr

}
(37)

where

xr (i) =
1
ni

∑
xj∈ Ci

xj, i = 1, . . . ,Nr (38)

with xj ∈ Rm, j = 1, . . . , ni and Nr = `+ 1, . . . ,N .

3) FEATURE EXTRACTION AND SELECTION USING
IRKPCAHKMEANS
Let be consider a mapped interval valued data X r defined as,

X r
=
[
φ(xr (1)) φ(xr (2)) · · · φ(xr (Nr ))

]T
∈ RNr×h (39)

The reduced kernel Kr ∈ RNr×Nr is constructed as follows:

K r
= X r (X r )T

=

 k(xr1, x
r
1) · · · k(xr1, x

r
Nr )

...
. . .

...

k(xr (Nr ), xr1) · · · k(xrNr , x
r
Nr )

 (40)

The eigenvector λr and the corresponding eigenvalue αr of
the new reduced kernel matrix K r are determined by solving
the following equation:

λrαr = K rαr (41)

Next we extract and select the most significant features
from the reduced interval valued data using IKPCA methods
as given in section IV-C2.

E. FAULT CLASSIFICATION METHODS
During the classification stage, once the global characteristics
are extracted and selected using the four proposed methods
IKPCAUL , IKPCACR,IRKPCAUL , and IRKPCACR, they are
used as input data for the proposed EL technique. Finally,
to make efficient decisions, we compare the EL output results
and choose the best one. The main steps of the proposed
techniques are illustrated in Algorithm 1.

Algorithm 1 IRKPCA-EL Algorithm
Input: Collect the normal N × m interval data matrix X .
Offline phase
1. Normalize X to zero mean and unit variance,
2. Compute the reduced interval data matrix X ′,
3. Calculate the kernel matrix K ,
4. Extract characteristics using IRKPCA technique,
5. Select the pertinent characteristics using IRKPCA
method,
6. Present the selected characteristics as input to the EL
model,
7. Classify the faults using EL model,
8. Determine the classification task,
Online phase
1. standardize a new samples using the mean and the
variance computed from the training data,
2.Determine the kernel vector k(x),
3. Extract the characteristics using IRKPCA technique,
4. Select the efficient characteristics using IRKPCA
method,
5. Present the selected features as input to the EL classifier,

6. Classify the faults using EL model,
7. Determine the prediction model,
8. Compute the fault diagnosis results.

V. RESULTS AND DISCUSSIONS
This section presents the results and discussions of our
experimental.

A. EVALUATION PARAMETERS
In this section, a set of emulated PV system data is used
to assess the effectiveness of the proposed methods. The
adopted criteria are: Normalized Classification Accuracy
(NCA), which represents the number of correct predictions
divided by the total number of input samples. Normalized
Recall (NR), which represents the number of correct positive
results divided by the number of all pertinent samples.
Normalized Precision (NP), which represents the number of
correct positive results divided by the number of positive
results predicted by the classifier. Computation time (CT (s))
which represents the time needed to execute the algorithm.
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TABLE 3. Global performances using EL, IELCR and IELUL methods.

B. MULTI-CLASS (MC) CLASSIFICATION RESULTS
In this study, we use the minimum root mean-square error
(RMSE) as a selection criterion for different ML classifiers.
The 10-fold cross-validation approach was used to obtain
the classification accuracy and to illustrate the efficiency
of the proposed techniques for FDD purposes. For the
proposed ensemble learning techniques, the DT was tested
with 50 trees, the K and C parameters for SVM are selected
with the lowest RMSEvalue and theK value for KNN is equal
to 1, 3, and 5. For the FFNN, MNN, GRNN, CFNN, PNN,
NN, RNN, and CNN classifiers, the number of hidden layers
chosen is ten and the number of hidden neurons in the hidden
layer is equal to 50.

The first step of this work aims to compare the perfor-
mance of the presented interval IELCR and interval IELUL
techniques, the results are compared to EL for single valued-
data. The number of variables m equals to 9 and the number
of samples N equals to 1501 for both IELCR and IELUL
techniques. The results of the multi-class classification
are summarized in the Table 3 where it can be distinctly
noticed that the classification metrics obtained using the two
proposed methods is higher than the one obtained using the
EL for single-valued data. It is easy to conclude that the use of
interval representation instead of a single value representation
enhances the fault classification performance.

At the second phase, in order to further improve the per-
formance of the proposed IEL-based techniques, novel EL-
based frameworks (IKPCACR, IKPCAUL , IRKPCACR and
IRKPCAUL) were proposed. Firstly, the data set is normal-
ized under normal operating modes. Secondly, the interval
KPCA (IKPCA) and interval reduced KPCA (IRKPCA)
models are constructed in which the cumulative percent
variance (CPV) criterion is equal to 95% as confidence
level. CPV criterion is adopted to retain the number of
first kernel component `. The reduced datasets (number of
samples N ) obtained through H-K-means equal to 806 and
800 have fed to respectively IRKPCACR and IRKPCAUL
techniques. The IKPCA models are structured by 31
interval kernel principal components (IKPCs) while the
selected number of IKPCs using CPV criterion is equal
to 18 and 17 using IRKPCACR and IRKPCAUL models,
respectively. To generate the simulation data 6 operating
modes are considered. The operating modes include one
healthy referred to class C0 and 5 faulty modes (F1 − F5)
assigned to classes C1-C5 (Table 2). In this study, 5 groups
of features are extracted and then we select the best
one from them. Table 4 shows the performed groups of
features.

TABLE 4. Selected features for fault classification.

TABLE 5. Accuracies using IKPCACR -EL, IKPCAUL-EL, IRKPCACR -EL,
IRKPCAUL-EL techniques.

TABLE 6. Global performances using IKPCACR -RF, IKPCAUL-RF methods.

The main goal of this part is to extract and select the
most effective characteristics from raw data in order to
obtain the best classification results. In the first stage,
emulation data is used to collect and label the database in
faulty mode. Then, we apply the labeled data as inputs for
the proposed techniques. For this purpose, a comparison
between five arbitrary groups using the proposed techniques
is presented in Table 5. From this table, we can see that
the proposed methods based on data reduction scheme
can achieve higher accuracy using group 5 of features.
Both EL-based methods provide an accuracy of 0.99
(EL-IKPCA) and 1 (EL-IRKPCA) using group 5 of features.
As shown in Table 5, the accuracy of the proposed
EL-based methods performed better the classification results
comparing with IEL techniques. The overall accuracy can
improve from about 0.72 using IEL to 1 using EL-based
IRKPCA techniques. Additionally, to further evaluate the
results, recall and precision classification metrics are used.
As shown in Table 6, the proposed EL-based methods present
perfect results in all used classification metrics.

Additionally, we used confusion matrix to more demon-
strate the diagnosis performance of the proposed methods
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TABLE 7. Confusion matrix of IKPCACR -EL and IKPCAUL-EL classifiers
using group 5.

TABLE 8. Confusion matrix of IRKPCACR -EL and IRKPCAUL-EL classifiers
using group 5.

(see Tables 7 and 8). The confusion matrix represent the
visualization of the performance of the proposed algo-
rithms. The rows present instances in an actual class while
the columns represent the instances in a predicted class.
In addition, the confusion matrix represents the correct
classified and mis-classified samples for the condition modes
(C0 to C5). Referring to the results given in Tables 7 and 8, the
proposed EL-based methods achieved the highest accuracy
correctly identifying 1501 measurements among 1501 during
the healthy case (C0). Furthermore, the NP is 1 and its
recall is 1 for all different modes using both IRKPCA-EL
during all faulty cases with 0 of misclassification. We can
conclude from these results that the proposed methods are
able to distinguish the six different modes and obtain good
classification results.

To further evaluate the effectiveness of the proposed
techniques, a comparative study between 14machine learning
(ML) methods is done. The ML techniques include the pro-
posed methods, interval principal components analysis based
EL (IPCA-based EL) [30], Feed-Foward Neural Network
(FFNN) [54], Multiple Layers (MNN) [55], Generalized
Regression Neural Network (GRNN) [56], Cascade Foward
Neural Network (CFNN) [55], Probabilistic Neural Network
(PNN) [8], Neural Network (NN) [54], Recurrent Neural
Network (RNN) [57] and Convolutional Neural Network
(CNN) [58]. Table 9 presents the results according to
the NCA and computation time (CT). The classification
outcomes, given in Table 9, demonstrate that the enhanced
ensemble methods using IKPCA and IRKPCA models
provide the best results in terms of NCA compared to
other techniques. Besides, one can notice from Tables 9
that the results are significantly improved compared to
the IPCA-based EL. IPCA-based EL classifier reached
quite high performance, with an NCA value of 0.92 and
with a misclassification rate equal to 0.08. From Table 9,
it is shown that both IKPCA and IRKPCA improve the

TABLE 9. Comparative classification accuracy and computation time
results using group 5.

TABLE 10. Multiple one class classifier logic for fault diagnosis.

feature extraction results and outperform the linear IPCA
model because they can handle the nonlinearity of the PV
system. Also, we can be noticed that the presented IEL
classifier makes the performance of fault diagnosis efficient
for fault classification. The IELCR and IELUL classifiers
provide a classification NCA equal to 0.72% and 0.74%.
A classification error of 0.28 is achieved using IELCR and
for IELUL , the misclassification is 0.26. The poor NCA using
IELCR and IELUL are due to the use of measured variables
without characteristics extraction and selection steps which
indicates the effectiveness of the developed IKPCA-EL and
IRKPCA-EL techniques to perform the classification task.
In addition, we can conclude from the results summarized in
Table 9 that the developed IRKPCACR-EL and IRKPCAUL-
EL methods afford the best tread-off between NCA and
computation time (CT). Therefore, the proposed methods
based on characteristics extraction and selection phases and
data reduction scheme are considered as good alternatives for
faults classification due to their high NCA and reliability.
For FFNN, MNN, GRNN, CFNN, PNN, NN, and RNN
classifiers, the best results in terms of NCA are obtained using
MNN with NCA values of 0.86 and misclassification value
of 0.14.

C. ONE-CLASS (OC) CLASSIFICATION RESULTS
To more highlight the effectiveness of the developed
techniques a bank one class classifiers is presented. One
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TABLE 11. NCA using group 5 with different one class classifiers.

class classification is a specific type of classification task
done by only instances of one class. In our case study,
we apply one healthy and five faulty classes [59]. As shown
in Table 10, each one is trained in order to classify a specific
class labeled by 1 or -1. The performance of the proposed
methods in terms of NCA is presented in Table 11 using
the selected features of group 5. Classification results of all
classifiers, given in Table 11, demonstrate the effectiveness
of the proposed techniques based on feature extraction and
selection steps thanks to the high ability of the proposed
kernel-based methods to extract and select the most pertinent
and significant characteristics from interval raw data.

VI. CONCLUSION
New fault detection and diagnosis (FDD) techniques dealing
with uncertain Grid-Connected Photovoltaic (PV) systems
have been proposed in this paper. The uncertainty was
addressed by using the interval-valued data representation.
Firstly, two interval-valued ensemble learning (IEL) classi-
fiers based on the direct application of the interval-valued
dataset were proposed. Secondly, two enhanced IEL methods
based on features extraction, selection, and fault classification
steps were developed. For the features extraction and selec-
tion steps, two interval KPCA (IKPCA) methods were per-
formed to extract and select the most significant features by
transforming the single-valued data set into interval-valued
latent variables. Then, the most pertinent characteristics were
fed to the proposed EL technique for classification purposes.
Finally, in order to further improve the diagnosis results
in terms of computation time, an improved IEL techniques
based on data reduction and interval KPCA (IRKPCA) were
proposed. The proposed methods applied the Hierarchical
K-means (H-K-means) clustering measure to remove the
irrelevant and redundant samples. The simulation results
using a grid-connected PV system under healthy and faulty
conditions showed the impact of using interval-valued instead
of single value representation and the effectiveness of the
proposed techniques for features extraction and selection to
provide the best compromise between diagnosis metrics and
low computation time.
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