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ABSTRACT
The emergence of delay-sensitive and computationally-intensive mobile applications and services pose a
significant challenge for Unmanned Aerial Vehicles (UAVs) devices due to the scarcity in their resources
such as computational power and battery lifetime. Mobile cloud computing has been introduced as a
promising solution to overcome these limitations through task offloading. However, high-latency and se-
curity issues are considered the main challenges of this paradigm. Subsequently, the edge-cloud computing
paradigm has been introduced and widely used to help to mitigate these issues. Nevertheless, the current
task offloading models permit UAVs to execute their intensive tasks at the connected edge server, which
leads to excessive loads due to the large number of UAVs and thereby increases the delay. Therefore,
in this paper, we propose a delay-optimal task offloading approach for multi-tier edge-cloud computing
in a multi-user environment. The problem is formulated as an optimization model using Integer Linear
Programming (ILP) techniques to minimize the total service time of UAVs. Simulation results demonstrate
that the proposed approach not only saves the service time by 33.5% and 55% for edge and cloud execution
policies respectively, but also scales well for a large number of UAVs.

INDEX TERMS Computation offloading, edge-cloud computing, mobile edge computing, optimization,
Internet of Things, unmanned aerial vehicles, linear programming.

I. INTRODUCTION

Nowadays, the Internet of Things (IoT) is fully embraced in
virtually every aspect of our lives, owing to the advances
made in Unmanned Aerial Vehicles (UAVs), sensors, and
communication technologies. Such advancements have aided
in the proliferation of complex IoT applications, which can
generate and process a massive amount of data [1]. However,
UAVs have limited resources onboard such as battery and
computational power that restricts the execution of such types
of applications on these devices [2], [3].

To alleviate these limitations and achieve the required
communication and processing delay, intensive computations
can be transmitted and remotely processed at more resource-
ful devices via the computation offloading concept [4], [5].
Consequently, two types of computation offloading models
are proposed namely binary offloading [6] and partial of-

floading [7]. In the case of binary offloading, the computation
task is either executed locally at the UAV or offloaded and
remotely executed at the edge server, whereas, in partial
offloading, the computation task is divided into two parts, one
for local computing and the other one for remote execution.

The Mobile Cloud Computing (MCC) paradigm has been
introduced as a prominent solution, in which the highly
intensive task will be offloaded and remotely executed at a
centralized cloud server [8], [9]. However, high-latency and
security issues are determined as the main challenges of this
paradigm. Subsequently, the cloudlet concept is introduced
to address the latency problem, in which the computational
and storage capabilities of the cloud can be provided within
the radio range of UAVs’ Wi-Fi access points [10]. However,
the scaling and limited acceptability (Wi-Fi range) issues
are considered the main challenges of the cloudlet approach.
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As a result, edge-cloud computing paradigms are considered
viable and promising solutions to provide flexible processing,
storage, and services capabilities, while reducing battery
consumption and service latency [11]–[17].

Recently, researchers have proposed and developed com-
putation offloading models and approaches with different
objectives to address the limitations of these devices [18].
For example, a new trajectory scheduling and stochastic
offloading model was proposed for UAV-enabled MEC, in
which minimizing the total energy consumption was the
main objective [19]. Whereas, minimizing the delay and en-
ergy consumption of computation offloading in UAV-enabled
MEC system was considered in [20]. Moreover, the traffic
monitoring problem was considered in [21] using UAVs, in
which UAVs were able to offload and share the execution
of their computation task among nearby nodes. Regarding
the scheduling of UAV, Trotta et al. [22] proposed a math-
ematical framework for optimizing the hops’ number for
multi-UAVs which is feasible for such average energy con-
sumption of UAVs, device-to-device communications, and
video recording. This framework is based on mixed-integer
linear programming approaches, which aim to maximize the
lifespan of a UAV fleet while monitoring a set of points.
Whereas Song et al. [23] studied the problem of continuous
operation for mobile targets, in which a mixed-integer linear
programming is formulated to orchestrate UAVs’ operations,
missions, and logistics facilities as well as allocate the charg-
ing slots properly for energy replenishment. However, the
main focus of the study was minimizing the computation,
communication and energy costs.

Most of these models are concerned with a single-user
Mobile Edge Computing (MEC) environment, whereas few
works have addressed the multi-user scenarios [24], [25].
In addition, for a large scale of UAVs, the connected edge
servers are limited by computational capacity, which may
lead to long processing delays and thereby render these
devices insufficient for real-time applications. Moreover, ob-
taining the optimal solution in a multi-user wireless edge
cloud computing environment is a non-trivial problem [26].
Therefore, in this work, we proposed a delay optimal task
offloading approach for edge-cloud computing systems in a
multi-user environment. Specifically, we formulated the task
offloading problem and resource allocation for the multi-
user environment as an Integer Linear Programming (ILP)
optimization framework with the objective of minimizing
the total service time for UAVs applications. In addition,
simulation-based tests are conducted to evaluate the perfor-
mance of our proposed models. The main contributions of
this work are summarized as follows:

• Offloading models are designed to determine the opti-
mal computation and communication offloading deci-
sions for UAV-enabled multi-tier edge-cloud systems, in
multi-user environments.

• The offloading problem is formulated as an ILP opti-
mization, which jointly considers task offloading and
resource allocation in order to minimize the total service

time of UAVs.
• Insights obtained from the ILP model are used to de-

velop a delay-optimal task offloading algorithm that is
improved system efficiency and can be used for real-
time implementations.

• Simulation results proved that the proposed approach
not only reduces the service time by 33.5%, 55% and
10.8% with respect to edge execution, cloud execution
and task offloading execution policy in [27], respec-
tively but can scale well for a large number of UAVs.

The rest of the paper is organized as follows. A thorough
discussion of the related work is presented in Section II. In
Section III, we describe our system model and the problem
formulation. Afterwards, Section IV introduces the design of
the proposed algorithm to derive the problem solution. Then,
in Section V, the experimental setup, results, and discussions
are presented. Finally, Section VI concludes the paper and
discusses future work.

II. OFFLOADING APPROACHES IN EDGE-CLOUD
ENVIRONMENT: STATE-OF-THE-ART
Recently, several optimization models and system architec-
tures based on UAV-MEC have been proposed to mitigate
the limitation of UAVs and address the challenges using the
computation offloading method. Most of these models and
approaches have been proposed for a single-tier environment
[28]–[30], whereas a few studies have addressed a multi-
tier environment with and without a remote cloud [31]. In
this section, we provide an overview of these approaches
for single and multi-tier environments with a comparison
summary of the closely related work, as shown in Table 1.

A. SINGLE-TIER ENVIRONMENT
A novel sequential offloading scheme for UAV-enabled
single-tier edge computing system was proposed in [28], in
which the highly intensive tasks are offloaded and remotely
executed at the edge server to decrease the energy overhead
and the execution delay. Specifically, a sequential offloading
decision game is modeled, where a drone, base station,
and edge server cooperatively work together by sharing the
available computational resources for optimizing the energy
consumption and delay. Meanwhile, in [29], a new generic
offloading scheme was proposed based on UAVs in a MEC
environment. Besides, a non-cooperative theoretical game
with N players is formulated as an optimization problem, in
which three different policies are utilized (i.e., local execu-
tion, edge server execution, base station execution) to model
the decision. Furthermore, the main goal of this study is
to combine energy overhead, computation, and communica-
tion delays, while minimizing the communication cost. The
simulation results demonstrated that the proposed scheme of
[28] was able to minimize the response time by an average
of 20.5% and 39% relative to the linear prediction and
fully local computing schemes, respectively. Whereas, the
simulation results demonstrated that the proposed scheme
of [29] could achieve a better global utility by about 19%,
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53% and 71% relative to edge server, base station and drone,
respectively.

In addition, [32] and [33] proposed new energy and effi-
cient solutions for offloading the computation tasks in UAV-
enabled edge computing systems. Specifically, [32] proposed
an energy-efficient computation offloading technique with a
physical layer of security to protect the system from eaves-
droppers, in which a set of security issues have been formu-
lated as different problems which are then transformed into
convex ones. Afterward, the optimal solutions are derived.
On their part, Ouahouah et al. explored the mobility and the
diversity of IoT across UAVs in [33]. Then, they introduced
two efficient formulations using integer linear programming
to minimize the energy consumption and reduce the response
time, respectively.

Similar to the enumerated efforts, Valentino et al. [34] pro-
posed an opportunistic offloading scheme for UAV clustering
networks, in which the UAV with a high-intensity task can
execute their tasks at a nearby UAV cluster. Additionally, a
new shallow neural network prediction module is introduced
to determine the offloading decision based on the response
time. Their simulation results reported that the proposed
scheme could minimize the response time by 20.5% and 39%
relative to the linear prediction and fully local computing
schemes, respectively.

The continuous operation of a UAV in solving problems
that involve the processing of incoming video and audio
streams has high energy costs, thereby reducing the degree
of autonomy and lifetime of the UAV. To solve this prob-
lem, Callegaro et al. [35] proposed an IoT infrastructure
deployed in a city to provide communication between UAVs
and boundary servers, thereby transferring the task from the
UAV to more powerful devices and reducing the energy
needed to complete this task. In their contribution, Qu et
al. [30] proposed a novel framework for UAV video analyt-
ics that utilizes edge computation offloading to coordinate
large video datasets for intelligent processing. Subsequently,
heuristic-based and reinforcement learning-based offloading
policies have been presented for UAV-enabled edge comput-
ing, where minimizing the computation costs and latency
are the main objectives. Finally, the results of [30] verified
that the proposed scheme can improve the time and achieve
better scheduling make-span by about 15% relative to the full
offloading scheme.

Recently, a UAV-enabled ultra-reliable low-latency of-
floading problem was investigated for IoT networks in [36].
Specifically, the failure rate of UAV and tasks redundancy
was formulated as a non-convex and mixed-integer opti-
mization problem with the aim of maximizing the incoming
IoT request rates. In addition, this problem was divided
into two sub-problems. The first one considers long term
task offloading, where the positions of UAVs are optimized.
Whereas, the second sub-problem considers the decision of
offloading and resource allocation, where tasks responses
are optimized. Further, a new hybrid deep-learning-based
offloading platform is proposed in [37], in which ground

vehicles, ground base stations, and UAVs are considered
and optimized, and all the mobile users can offload their
intensive tasks with the goal of minimizing the energy con-
sumption. In addition, a large-scale path-loss fuzzy c-means-
based algorithm is proposed to locate the ground vehicles
and UAVs. Then, the U-based particle swarm optimization-
based algorithm is designed to solve the formulated problem
and derive high-quality data set, which is used later by Deep
Neural Network (DNN) model to make the task admission
and resource allocation decision in real-time.

B. MULTI-TIER ENVIRONMENT
To perform complex tasks at UAVs, Ateya et al. [38] consid-
ered a traffic offloading algorithm for UAVs that is based on
two methods: air traffic unloading, based on the transfer of
computing tasks to neighboring UAVs, and task unloading to
cloud servers from cloud edge devices connected to ground
stations. The method that uploads to the edge cloud server
is the main one in the system. The proposed method takes
into account energy consumption and delay. A device is
selected for traffic offloading and a method of unloading.
The work discusses the use of a multilevel MEC system. The
ground network segment consists of a second and third level,
containing a mini-cloud and a micro-cloud, respectively. The
air segment - the first level of traffic unloading - is rep-
resented by several closely spaced UAVs. Zero-level traffic
offload for local task execution is captured by UAV sources.
Meanwhile, Wang et al. [31] utilized the high controllabil-
ity and flexibility of the UAVs to offer their computation
resources for mobile users through computation offloading.
Besides, a mixed-integer offloading problem is formulated
to decrease the total overhead of time and energy. Further,
an efficient algorithm based on Q-Learning is proposed to
solve this problem and derive the offloading decision. Finally,
simulation results proved that the proposed architecture in
[31] reduce the time by a 5% relative to the traditional two-
layer network architecture.

Recently, machine learning techniques have been ex-
ploited for addressing the complexity of distributed comput-
ing systems such as multi-UAV with the multi-tier environ-
ment, in which [39] and [27] proposed an efficient distributed
framework for computing offloading. More specifically, [39]
introduced a new online distributed machine learning frame-
work for the network-aware multi-UAV-enabled systems in
which the swarm networks have been integrated. Besides,
federated learning is utilized to produce personalized local
models. Whereas in [27], a new efficient framework is in-
troduced for offloading the intensive tasks from UAVs to
edge servers, where minimizing latency and energy cost is
the main goal. Moreover, two algorithms based on trajec-
tory schedule and code parameter design techniques were
developed to solve this problem in an efficient manner. Fi-
nally, simulation results in [39] verified that the presented
method in of [39] retains about 25% energy consumption’s
enhancement against the baseline. Further, a new efficient
and distributed intelligent resource scheduling framework is
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proposed in [40], to reduce the sum latency of tasks and
energy consumption for all users. In addition, task offload-
ing, recourse allocation, and transmission power are jointly
considered in the formulated model.

It is clear from the above review of related work, various
offloading models and approaches have been introduced with
different objectives for single and multi-UAV edge comput-
ing environments. However, there are still some challenges
due to the variable dynamics of wireless networks, thereby
leading to an increase in the time spent on the task at
UAV. In addition, due to the large queues that occur on the
boundary servers when processing several tasks, the total
time task transfer to the boundary server and task processing
time may exceed the time spent analyzing the task locally
on the UAV. Besides, few studies address multi-tier with a
multi-UAV edge computing system. This motivates our work
in this article for proposing a delay-optimal approach for
UAV-enabled multi-tier with multi-UAV edge-cloud systems
Moreover, we present the optimization process that enables
the optimum choice of where the task should be processed.
The communication, computational, and energy aspects of
the proposed process were considered. Finally, the proposed
system is scalable and can support an increase in network
traffic without performance degradation.

III. SYSTEM MODEL
In our work, an environment of a multi-tier edge-cloud
computing system is considered, as shown in Fig. 1, where
the architecture consists of three-tiers: UAV tier, edge tier
and cloud tier. In the first tier, the environment has a set of
N = {1, 2, . . . , N} UAVs, where each UAV has a computa-
tion task that should be processed. The edge tier consists of
a set ofM = {1, 2, . . . ,M} small base stations1, in which
each base station can remotely provide a set of computation
and storage capabilities to UAVs over the wireless channel.
In addition, there is a backbone router2 in the middle layer
which links the base stations with the cloud tier via an IP core
network and is also responsible for controlling and managing
these base stations. Finally, in the last tier (i.e., cloud tier),
there is a single cloud computing server which can provide
a shared pool of virtualized servers, storage, applications,
and services. Note that, cloud servers are more powerful than
edge servers, but cloud suffers from transmission latency and
centralization.

Similar to many previous studies in edge-cloud computing
[41], [42], a quasi-static scenario is assumed in our simula-
tion settings in which during computation offloading periods,
the UAVs’ number will remain unchanged, while this number
may be modified across different periods. Moreover, as the
computation and communication models play a key role in
mobile-edge cloud computing, these models will be further

1This paper uses edge server node and base station interchangeably.
2Mobile Edge Network is managed using the architecture of Software

Defined Network (SDN), in which the backbone router works as a central
controller manager.

described in the following subsections. Table 2 summarizes
the notations that will be used in the models and simulations.

A. COMMUNICATION MODEL
In the communication model, a set of K = {0, 1, 2, . . . ,M}
servers is considered that can provide computational and
storage capabilities, in which 0 denotes the cloud server and
(K ∈ [1..M ]) denotes one of the edge servers. Additionally,
we have a set of N = {1, 2, . . . , N} UAVs, where every
UAV i has a computationally intensive task that needs to
be carefully offloaded and assigned to a server node for
processing after which the output is returned. Our goal is to
minimize the total service time of UAVs by allocating the
computation tasks of UAVs to the appropriate server node.

In this work, we assume that all the tasks are computation-
ally, which make them incompatible with being executed lo-
cally on the UAV devices. Therefore, the process for the task
offloading is considered as follows. Firstly, the computation
and communication requirements for each task are sent to
the central control manager through the base stations. Then,
the central control manager utilizes this information to derive
the best execution place for each computation task, i.e., at the
edge or cloud servers.

Let αi,j,k ∈ {0, 1} represent the binary offloading deci-
sion of UAV task i associated with sBS j, allocated to be
processed at the server k. Specifically, (αi,j,0 = 1) indicates
that the UAV user i associated with sBS j chooses to execute
its computation task remotely at the cloud server, while
(αi,j,k = 1, ∀k ∈ [1..M ]) indicates that the UAV i at sBS j
chooses to offload its computation task remotely at the edge
server node. Also, every UAV’s task must be processed only
once by a single edge server node (i.e. tasks splitting is not
permitted) while

∑M
k=0 αi,j,k = 1; thereby, the offloading

decision binary indicator is defined as follows:

α =

{
αi,j,0 = 1 ∀i,j Cloud Execution
αi,j,k = 1 ∀i,j,k Edge Execution

Subsequently, if the UAV i chooses to transmit its task
to the connected edge node j, then the allocated uplink and
downlink data rates for each UAV can be calculated based on
the Shannon’s law as follows [43]:

RULi,j = BULj log2(1 +
pTi,jg

2
j

ωjBULj
) (1)

RDLi,j = BDLj log2(1 +
pTj g

2
j

ωjBDLj
) (2)

where BULj and BDLj denote the bandwidth of uplink and
downlink channels and pTj and pTi,j indicate the transmission
power of the edge server j and the corresponding UAV i.
Also, gj denotes the corresponding channel gain and ωj
indicates the noise power density for the channel.

Consequently, we assume that the uplink and downlink
data rates are equally shared between UAVs, in case of si-
multaneously offloading via the wireless channel. In addition,
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TABLE 1: A comparison summary of the closely related work.

Reference Objective Proposed Solution UAV Tier Environment Evaluation Methods
Single Multiple Single Multiple

[28] Minimize Energy &
Delay A Sequential Offloading Game Scheme X X Simulation

[29] Minimize
Communication Cost

A Game Theory Based Efficient Computation
Offloading Scheme X X Simulation

[32] Minimize Energy An Energy-Efficient and Secured Offloading
Technique X X

Numerical
Validations,
Simulation

[33] Minimize Energy and
Response Time An Efficient Offloading Mechanism X X Simulation

[34] Minimize Response
Time

An Opportunistic Compuational Offloading
scheme X X Simulation

[30]
Minimize

Computation Cost
and Latency

A Novel Framework for UAV-enabled Video
Analytics X X

Direct Experiment
Simulation

[36]
Maximize served

incoming offloading
requests’ rate

An UAV-enabled ultra-reliable low-latency
offloading problem X X Simulation

[35] Minimize Delay and
Energy Expense

A Framework Enabling Optimal Offloading
Decisions X X Simulation

[38] Minimize Energy and
Latency

An Energy- and Latency-Aware Hybrid
Offloading Algorithm X X Simulation

[31] Minimize Total
Overhead A Multi-UAVs Computation Offloading Scheme X X Simulation

[39] Performance-Energy
consumption Tradeoff

A Hierarchical Nested Personalized Federated
Learning Approach X X Simulation

[27] Minimize Latency
and Energy Cost A Coded Distributed Computing Framework X X Simulation

[37] Minimize Energy
Cconsumption

A Hybrid Deep-Learning-based Offloading
Platform X X Simulation

[40]
Minimize Task

Latency and Energy
Consumption

An Efficient and Distributed Intelligent
Resource Scheduling Framework X X Simulation

Proposed Minimize Total
Service Time A Delay-Optimal Task Offloading Approach X X Simulation

in the cloud execution scenario, the UAVs will transmit and
receive the computation task through the connected base
station.

In this work, an orthogonal frequency [44] is utilized to
mitigate the intracellular interference among simultaneous
transmissions of UAVs in the same cell [45], [46].

Furthermore, the total communication time for transmit-
ting and receiving the computation tasks of UAVs can be
computed as follows:

TCommi,j = TULi,j + TDLi,j + σαi,j,k + δαi,j,0 (3)

where σ and δ indicate the task’s transmission delay
among two edge nodes and between the edge node and the
cloud server. While TULi,j and TDLi,j are denoted the time
of transmission and reception to upload and download the
UAV’s task and its output, which can be expressed as follows:

TULi,j =
M∑
k=0

Di,j

RULj,i
αi,j,k (4)

TDLi,j =
M∑
k=0

Ui,j
RDLj,i

αi,j,k (5)

Moreover, the total communication energy consumption
for transmitting and receiving the computation tasks of UAVs
can be computed as follows:

ECommi,j = (TULi,j P
T
i,j) + (TDLi,j P

R
i,j) (6)

where PRi,j denotes the reception power for the UAVs.

B. COMPUTATION MODEL
In the computation model, N UAVs are considered in our
environment, in which every UAV has a computationally-
intensive task. In addition, the computation task should be
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Edge Layer
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FIGURE 1: A multi-tier edge-cloud computing system.

TABLE 2: Notations summary

Notation Description

M The set of base stations (BSs).

K Servers number.

N The set of UAVs.

N Number of UAVs at each server.

j Denotes the j − th server.

i Denotes the i− th UAV.

Di,j Data size for computation task of UAV i associated with edge server j.

Ci,j CPU cycles to accomplish the task of UAV i associated with edge server j.

Ui,j Output Size for computation task of UAV i associated with edge server j.

αi,j,k Offloading decision for computation task of UAV i.

RUL
i,j Uplink data rate for UAV i associated with edge server j.

RDL
i,j Downlink data rate for UAV i associated with edge server j.

BUL
j Uplink bandwidth at edge server j.

BDL
j Downlink bandwidth at edge server j.

pi,j Transmission power of UAV i associated with edge server j.

gj Channel gain of edge server j.

PR
i,j Reception power for UAV.

ωj Noise power density of the channel at edge server j.

σ Task’s transmission delay among two edge nodes.

δ Task’s transmission delay between the edge node and the cloud.

ζ Energy consumption while the UAV is in an idle state waiting for the results.

fei,j CPU resource of edge server j assigned to UAV i.

fci,j CPU resource of cloud server assigned to UAV i associated with edge server j.

Fj Server computational capability at edge server j.

TUL
i,j Offloading time for transferring task of UAV i associated with edge server j.

TDL
i,j Downloading time for transferring the task output of task of UAV i associated with edge server j.

T e_exec
i,j Execution time for processing task i at edge node j.

T c_exec
i,j Execution time for processing task i at cloud node j.

TComm
i,j Execution time for communication.

TComp
i,j Execution time for computation.

EComm
i,j Energy Consumption for communication.

EComp
i,j Execution time for computation.

T r
i,j Total Service time for processing task remotely.

transmitted and remotely executed at the server node. In
this work, the tuple {Di,j , Ci,j , Ui,j} is utilized to represent
the requirement for each computation task. Specifically, Di,j

denotes the task’s input data (in KB) (code and parameters),

whereas Ci,j and Ui,j denote the total number of CPU cycles
(in Cycle/Byte), which is required to accomplish the com-
putation task and the output size (result) for the computation
task of the UAV i, which is connected to base station j. Given
the application’s nature, the values of Di,j , Ci,j and Ui,j
can be determined. Furthermore, this work is guided by [47]
and [48], where the program profiler is used to obtain these
values.

In practice, the management between base stations can be
achieved by utilizing the Software-Defined Network (SDN)
controller technology and the standardized OpenFlow proto-
col on the backbone router in which SDN has a global view
of the network and provides a scalable and flexible structure
that is capable of making more efficient and precise network
management [49]. As mentioned in section III-A, the com-
putation tasks’ requirements of UAVs are transmitted to the
central control manager via the connected base stations. After
that, the central control manager-based on SDN technology
can determine the best offloading policy for allocating the
tasks to either the edge or cloud servers. Therefore, there are
two main approaches for executing the computation tasks: 1)
edge server approach and 2) cloud server approach, which
are described in further details in the following subsections.

1) Edge Server Approach

With the edge server approach, the computation tasks will
be offloaded and executed remotely on one of the available
edge nodes. Therefore, the processing time for executing the
computation task of UAV i, associated with BS j, remotely
at the edge server node k, can be calculated as follows:

T e_exec
i,j =

Ci,j
fei,j

(7)
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where fei,j denotes the edge node’s computation capability
that is allocated to UAV i.

In this work, the edge servers’ capabilities are supposed to
be unified and equally shared between UAVs in the case of
simultaneous transmission. In addition, during the offloading
period, we note that the computational capacity of the edge
servers j, (denoted as FJ ), should be limited to the following
constraint:

M∑
j=1

N∑
i=1

M∑
k=1

αi,j,kf
e
i,j ≤ FJ (8)

2) Cloud Server Approach
On the other hand, with the cloud server approach, the
computation task will be transmitted and processed remotely
on the cloud server, and returning the output through the
connected base station. Therefore, the processing time for
executing the computation task of UAV i, associated with BS
j, remotely at the cloud server can be calculated as follows:

T c_exec
i,j =

Ci,j
f ci,j

(9)

where f cj,i indicates the computational capability of the cloud
server, which is assigned to UAV i. In general, the compu-
tational capabilities at a cloud server is more powerful than
edge servers fei,j < f ci,j .

Consequently, in Eqs.(7) and (9), the total time for pro-
cessing the computation tasks of UAVs remotely can be
calculated as follows:

TCompi,j = T c_exec
i,j αi,j,0 +

M∑
k=1

T e_exec
i,j αi,j,k (10)

Moreover, the total energy consumption for completing the
UAVs’ tasks remotely can be computed as follows:

ECompi,j = ζTCompi,j (11)

where ζ indicates the energy consumption, while the UAV is
in an idle state waiting for the output.

Finally, in the previous subsections (i.e., communication
and computation models), the total service time for executing
the computation task of UAV i associated with BS j remotely
can be calculated as:

Ti,j = TCommi,j + TCompi,j (12)

C. PROBLEM FORMULATION
In this section we introduce the ILP formulation for the
delay-optimal offloading problem in the multi-tier edge-
cloud computing environment. Moreover, the computation
offloading problem is formulated as a single objective opti-
mization problem, which aims to minimize the total service
time of UAVs:

min
α

[ M∑
j=1

N∑
i=1

Ti,j

]
M∑
j=1

N∑
i=1

M∑
k=1

αi,j,kf
e
i,j ≤ FJ ∀i,j C1

M∑
k=0

αi,j,k = 1 ∀i,j C2

αi,j,k ∈ {0, 1}, ∀i,j C3

(13)

Where C1 is a capacity constraint which ensures that
the computational capabilities of BSs during the offloading
period is not violated. While C2 and C3 ensure that each
UAV’s task is computed only once and the offloading deci-
sion variables for the tasks take on discrete binary values,
respectively.

The problem’s solution can be derived by obtaining the
optimal task offloading’s values, α∗. In addition, this problem
is an integer linear problem, where the objective function
of this problem and its constraints are linear. Moreover, this
problem is NP-hard and has a non-convex feasible set [50],
[51]. Consequently, the binary relaxation approach can be
utilized to transform this problem into a convex one, where
the α variables are relaxed into real variables, and the new
formulation is presented in equation (14) [52], [53]. Further-
more, branch and bound methods can be used to derive the
offloading decision in an efficient manner [54], [55].

min
α

[ M∑
j=1

N∑
i=1

Ti,j

]
M∑
j=1

N∑
i=1

M∑
k=1

αi,j,kf
e
i,j ≤ FJ ∀i,j C1

M∑
k=0

αi,j,k = 1 ∀i,j C2

αi,j,k ∈ [0, 1], ∀i,j C3

(14)

IV. DELAY-OPTIMAL TASK OFFLOADING ALGORITHM
A delay-optimal task offloading algorithm is introduced in
this section, in which the processes for deriving the best
offloading decision for a multi-UAV and multi-tier-enabled
edge-cloud computing system are presented.

To derive the best offloading decision for each computation
task, there is a set of parameters that should be obtained
from the edge servers and UAVs. Consequently, the proposed
optimization model in Eq. (13) used the values of these
parameters to derive the offloading solution for each task.
Subsequently, the proposed algorithm (i.e., Algorithm 1)
describes this process as follows.

First, we initialized the offloading decision for all com-
putation tasks with αi,j,k = 1, which implies the task will
be assigned to be executed at the connected edge execution.
Then, the control manager using SDN technology can iterate
over the edge servers and obtains the available computation
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and storage capabilities as well as the available bandwidth. In
addition, each server iterates over each UAV and gathers their
computation task’s requirements {Di,j , Ci,j , Ui,j , p

T
i , p

T
j }

which are then transmitted to the control manager. Sub-
sequently, based on this information, the control manager
solves the problem in Eq. (13) and determines the best
offloading decision for each computation task α∗ (i.e., com-
putation hosted on the edge and/or cloud servers). Finally,
each UAV receives the optimal offloading decision, thereby
reducing the service time of the entire system.

Algorithm 1 describes the processes involved in the delay-
optimal task offloading scheme. Moreover, O(MN) is the
time complexity, in whichM andN indicate the edge servers
(ESs) and UAVs numbers, respectively.

Algorithm 1 Delay-Optimal Task Offloading Decision

1: Initialization: Each computation task i sets the decision
with αi,j,k = 1

2: for all ESs j and at time slot t do
3: Send the available edge server capabilities and the

bandwidth to control manager.
4: for all UAV i do
5: Upload the task requirements,

{Di,j , Ci,j , Ui,j , p
T
i , p

T
j }, to control manager.

6: end for
7: end for
8: Solve the optimization problem in Eq. (13) and derive

the optimal offloading decision values α∗ which reduces
the total service time.

9: Send the optimal offloading decision values to each
UAV.

V. EXPERIMENTAL SETUP, RESULTS AND
DISCUSSIONS
A simulation-based experiment is presented in this section
to critically evaluate the performance of the proposed mod-
els. First, the environment setup and resources used are
highlighted. Afterward, a comprehensive discussion of the
obtained results is provided.

A. EXPERIMENTAL SETUP
The simulation and experiment are performed on a
MATLAB-based simulator using a PC running Windows 10
Operating System, with an Intel® Core(TM) i7-4770 CPU -
3.4 GHz and 16 GB memory and 1TB SSD of storage has
been used. We consider a mobile network with 5 BSs, in
which each BS has a different number of UAVs that are dis-
tributed across BSs. The CPU capabilities of edge and cloud
nodes are set to 25 GHz and 50 GHz. Moreover, each UAV
is associated with a demand that involves a computationally
intensive task. The size of input and output data for each
task are distributed randomly between the range of [5 MB
to 10 MB and 0 MB to 2 MB], respectively. On the other
hand, the computation requirements for each task are set to
1900 Cycles/Byte. The transmission and reception power are

set to 100 mW and 50 mW, respectively. Furthermore, the
channel bandwidth is set to 20 MHz. Moreover, GAMS is
considered one of the mathematical programming languages
especially suited for optimization problems. Therefore, in our
experiment, we programmed the proposed model in GAMS
language and used MATLAB as an interface to address the
values of parameters to solve the optimization model and
derive the best offloading decision for each computation task
[56]. The simulation experiments are executed 50 times and
the average value is calculated. The other simulation param-
eters for communication and computation are summarized in
Table 3.

TABLE 3: Simulation parameters

Parameter Value

Number of BSs 5

Edge capabilities 25 GHz

Cloud capabilities 50 GHz

Input data size (5, 10) MB Uniform-Distribution

Output data size (0, 2) MB Uniform-Distribution

CPU cycles to accomplish task 1900 Cycle/Byte

Transmission power 100 mW

Reception power 50 mW

System bandwidth 20 MHz

B. EXPERIMENTAL RESULTS AND DISCUSSIONS
This subsection assesses the performance of the proposed
model’s, in which five different strategies are evaluated which
are:

• Edge Execution: In this strategy, all the tasks will be
offloaded and then remotely processed at the connected
edge node.

• Cloud Execution: All the tasks will be offloaded in this
strategy and then remotely processed at the cloud node.

• Random Execution: Within this strategy, all the tasks
will be offloaded and then remotely processed randomly
at edge or cloud node.

• Task Offloading (TO) Execution: In this execution
policy, all the tasks will be offloaded and then remotely
processed at the appropriate node, based on the pro-
posed model in [27].

• Model Execution: Here, all the tasks will be offloaded
and then remotely processed at the appropriate node,
based on our proposed models.

The service time for executing the UAVs’ tasks remotely
using the five different strategies versus different numbers
of UAVs is presented in Fig. 2. It is shown from the figure
that the service time for the strategies is nearly equal for a
small number of UAVs (i.e., less than 10). However, the delay
for the cloud, edge, and random execution strategies rapidly
increases as the number of UAVs increases (i.e., more than
10). Moreover, using the approach in [27] and the proposed
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model, the service time gradually increases as the number of
UAVs increases in comparison to the other approaches and
the proposed model’s performance was superior throughout.
The reason behind the poor performance of the other ap-
proaches is that with the increase in the number of UAVs,
some BSs are overloaded while others are underloaded. In
contrast, the proposed model can smartly select the appro-
priate place for assigning and executing the tasks, whereas
the model in [27], does not consider the cloud server layer in
their execution.
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FIGURE 2: Service time versus number of UAVs.

Fig. 3 depicts the energy consumption of processing tasks
against different numbers of UAVs. It is observed from the
figure that the energy consumption linearly increases as the
number of UAVs increases. In addition, it is also noted that,
while our proposed model outperforms others, the energy gap
between the five strategies is not substantial. This is attributed
to the fact that most of the energy is consumed during the
transmission of data, where UAVs compete for shared and
limited communication resources to offload the computation
tasks’ requirements to the connected BSs in all strategies.

Furthermore, the total service time and energy consump-
tion for processing the computation tasks against different
input data sizes are respectively depicted in Fig 4 and Fig.
5. The four curves denote the time and energy for the four
strategies mentioned above. It is seen from the figure that the
time and energy consumption are significantly increase as the
number of UAVs increase. Moreover, the proposed model has
the least consumption of time and energy compared with the
other three policies. This can be elucidated as follows. As the
data size increases, the communication time increases, which
is reflected in the service time and energy consumption.
However, the proposed model can be adapted to execute the
computation tasks at an optimum location, at either the edge
or the cloud node.

Similarly, Figure 6 demonstrates the service time of exe-
cuting the computation tasks under different capabilities of
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FIGURE 3: Energy consumption versus number of UAVs.
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FIGURE 4: Service time versus input data size.

edge servers. It is observed from the figure that the cloud
execution policy is not impacted by the edge servers’ ca-
pabilities, while the service time for edge and the proposed
model executions gradually decreases as the capabilities of
edge servers increase. Moreover, the proposed model’s per-
formance is superior compared to the other solutions. This is
due to the shorter service time for computation as the UAVs
are allocated more resources at edge servers, whereas the
cloud policy does not use the edge servers’ capabilities.

Finally, the total service time of the four strategies under
five different types of applications (shown in Table 4) is
demonstrated in Fig. 7. As can be seen, the service time of
cloud execution for all types of applications is longer than
the other strategies, while the proposed achieved the shortest
service time. This is due to the long latency required for
cloud execution because of its geographical distance from the
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user. Whereas, the proposed model can select the appropriate
location based on the environment settings.

TABLE 4: Computational intensity of different applications
[57]

Application Label CPU Cycle/Byte

Sustainable Agriculture A 500

Automatic Number Plate Reading B 960

Fire Detection C 1900

Traffic Management D 5900

Video Surveillance E 12000

A B C D E

Different Applications
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FIGURE 7: Service time versus different applications type.

C. DISCUSSION
This subsection discusses the main contributions of the pro-
posed model, we report the difference in comparison to the
other schemes reported in Section II and we discuss the
performance enhancement offered by our model.

As listed in Table 1, most of the reported computation
offloading models only focus on single tier architectures with
multiple or single UAVs. In contrast, the work in this study
addresses a multi-tier edge cloud computing environment
with multiple UAVs. In addition, we present the optimization
framework that enables the optimum choice of where the
task should be processed, in which communication, compu-
tational, and energy aspects of the proposed process were
considered. Finally, simulation results demonstrated that the
proposed approach not only reduces the service time by
33.5%, 55% and 10.8% relative to the edge execution, cloud
execution and task offloading policy in [27], respectively but
can scale well for a large number of UAVs.

VI. CONCLUSION AND FUTURE WORKS
In this paper, a delay-optimal task offloading approach has
been proposed for a multi-tier edge-cloud computing system
in a multi-user environment, in which the execution of UAVs
tasks is efficiently distributed across edge and cloud server
nodes to address the load level between edge nodes. In
addition, we formulated the task offloading problem as an
Integer Linear Programming (ILP) model with the objective
of minimizing the total service time of UAVs. Also, a task-
offloading algorithm of improved efficiency was designed
based on the insights obtained from the ILP model. Finally,
numerical and simulation results showed that the proposed
approach could reduce the service time by 33.5%, 55%
and 10.8% for edge execution, cloud execution and task
offloading execution policy in [27], respectively. In addition,
the proposed approach can scale well as the number of UAVs
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or data size increases.
In ongoing and future work, deep learning approaches

can be utilized to address the complexity of edge-cloud
computing systems, where a neural network can reduce the
multiplication operations in model solving and speed up the
convergence process.
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