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Abstract—This work proposes and evaluates hierarchical
Bayesian-based localization methods to estimate the position of a
target node in indoor deployment scenarios. The measurements
are acquired through a distributed antenna system which is
connected to a common master anchor node. Each antenna
head is affected by different channels parameters, what makes
the estimation more difficult. The proposed method combines
received signal strength and time of flight measurements to esti-
mate the target location. In our investigations, we also consider a
one-level hierarchical Bayesian network model, which introduces
conditional interdependencies to the model parameters, resulting
in less susceptibility to local variations. The Markov Chain Monte
Carlo sampling method is used to approximate the posterior
distribution of the two-dimensional target’s location coordinates.
The root mean square error is used to evaluate the performance
of the proposed solution in indoor scenarios. Our results show
that by combining hybrid measurements or increasing conditions
between the parameters by a hierarchical approach, the pro-
posed mechanisms outperform the classic Bayesian model when
estimating the target node using even fewer measurements.

Index Terms—Bayesian inference, Hierarchical graphical mod-
els, Indoor Localization, MCMC, DAG.

I. INTRODUCTION

Among the 5G New Radio (NR) study cases, the massive
Machine Type Communications (mMTC) imposes stringent
requirements in terms of accuracy and reliability of the
positioning information [1], [2]. For instance, health care
technologies, transportation systems and object tracking are
important applications that benefit from location information
across industry verticals in Internet of Things (IoT) systems
[3]. Recently, the research on new techniques and algorithms
suitable for Indoor Positioning Systems (IPS) has increased
[4], for the reason that traditional satellite Global Positioning
System (GPS) localization methods and standard cell mul-
tilateration are limited or sometimes impractical in indoor
deployment scenarios.

In an IPS, the position of a target node can be estimated by
using distinct measurement types, for example, the Received
Signal Strength (RSS) [5]. Furthermore, development and
performance evaluation are easy due to the fact that these
measurements can be simulated quickly and using a basic
computational algorithm. However, RSS-based measurements
are affected by radio channel degrading effects – such as
fading, shadowing and signal reflections – that decreases the
target position accuracy. Considering distributed deployment
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scenarios, each anchor node may be subject to different
channels conditions (parameters), which makes the estimation
more difficult.

When estimating the position of the target node, it is
possible to minimize these degrading effects and increase the
accuracy of the estimate by acquiring more measurements,
although the stringent requirements of the mMTC scenarios
regarding low latency and high reliability may not be attained
if the processing time linger too long. Alternatively, the
accuracy of the target position estimate can also be improved
by combining distinct measurements types. In this approach,
e.g., RSS samples are acquired and processed together with the
following metrics: Time of Arrival (TOA), Time Difference of
Arrive (TDOA) and Direction of Arrival (DOA).

Typically, optimization-based algorithms implementing
Nonlinear Least Squares (NLS) and Maximum Likelihood
(ML) estimators [6] are used to estimate the target position.
In their recent work, authors studied Bayesian inference using
probabilistic graphical models as a promising alternative to
estimate the location of a target node [7], [8] – this approach
estimates the position coordinates by sampling its joint pos-
terior distribution. In indoor deployment scenarios, Bayesian
graphical models can use distinct metrics, such as RSS,
TDOA, TOA, and DOA; or combinations, thereof through the
so-called hybrid solutions to find the position of a target [9].

In this context, a hierarchical approach allows to represent
complex models, e.g., incorporating many constituent param-
eters that are allowed to be associated together by proba-
bility rules. Basically, modeling specifications – considering
uncertainties and prior knowledge – are implemented and
coherently linked by a series of conditions, i.e., the hierarchical
Bayesian method organizes the parameters into groups of
different levels of observation that are assumed to be a sample
of the underlying population distribution. The variance of this
population determines the range of the sampling distribution
around a common mean, that results in a posterior distribution
less sensitive [10].

By applying the aforementioned Bayesian models in in-
door deployment scenarios, our work proposes and evaluates
Bayesian-based localization methods using RSS and TOA
measurements. We also consider distributed antennas systems
(DAS) where each anchor (antenna head) may experience
different channel conditions.

The remainder of this paper is organized as follows. Section
II introduces the Bayesian networks through the probabilis-



tic graphical models and the Markov Chain Monte Carlo
(MCMC) sampling algorithms. Section III presents the local-
ization’s models and the evaluation scenarios. The numerical
results, in terms of the root mean square error (RMSE), are
presented in Section IV. Finally, Section V concludes this
work and discusses final remarks.

II. GRAPHICAL MODELS AND BAYESIAN INFERENCE

A probabilistic graphical model is a multivariate statistical
model that allows representing a joint distribution by relating a
set of random variables through conditional interdependencies
between their descriptive parameters. Using the probabilistic
graphical model, Bayesian networks can infer the likelihood
of the related events based on the available prior knowledge.
We model the source localization problem by using Directed
Acyclic Graphs (DAGs) that are a probabilistic graphical
model that have no cycles. DAG can be represented by
G = (V ;E), where V are the vertices and E the edges. In
this model, the vertices correspond to Random Variables (RVs)
while the edges represent the underlying relationships between
them [11].

The RVs in a Bayesian network are assumed to be condi-
tionally independent. In other words, a vertex is only affected
by its own parents (distribution to which it belongs), while be-
ing independent of its non-descendants given its parents [12].
This property implies a factorization of the joint probability
density function p(V ) of the RVs Xv , v ∈ V . From [13], a
Bayesian network model with respect to G is given as

p(V ) =
∏
v∈V

p(v|pa(v)), (1)

where pa(v) represents the parents of v. The conditional
distribution of a RV v in the graph is given by

p(v|V/v) ∝ p(v, V/v)

∝ terms in p(V ) containing v

= p(v|pa(v))
∏

w∈ child(v)

p(w|pa(w)), (2)

where child(v) yields all the children of v.
To carry out approximate inference of a Bayesian statistical

model, it is necessary to use a sampling method as the Markov
Chain Monte Carlo (MCMC) approach. The MCMC uses the
Bayes’ Theorem and the prior knowledge about the network
to estimate the posterior distribution. From [14], the posterior
distribution in a Bayesian statistical model can be estimated
as follows,

p(H|D) =
p(D|H)p(H)

p(D)
, (3)

where H is the hypothesis and D is the observed data, p(H)
is the prior distribution and represents the initial hypothesis,
p(D|H) is the likelihood function and p(D) represents the
probability of all possible values that the parameters can
assume.

A. Hierarchical Bayesian model

When information is available on different observational
units, the data parameters can be organized into groups to
obtain a hierarchical structure [10]. For instance, each mea-
surement corresponds to an observational unit that travels by a
different path and is affected by a distinct coefficient value, we
can organize these parameters to be samples of the same distri-
bution, i.e., with the same mean and variance. This Bayesian
model is called hierarchical and is more accurate than the
non-hierarchical models, because the posterior distribution
became less sensitive to local variations, resulting in less
model variance than the classic method. A one-level hierarchy
Bayesian network model can be represented as follows [15],

p(θ, φ|D) ∝
n∏

i=1

p(Di|θi)p(θi|φ)p(φ), (4)

where H = (θ, φ) is the hypothesis of the system and D
the data. Considering an observation yi and a parameter θi
governing the data generation process for yi. The distribution
of the observations is given by,

yi ∼ N (θi, σ
2
i ),

θi ∼ N (µ, τ2), i = 1, . . . , I,

relating to (4), D = (yi, θi) and φ = (µ, τ). In this case, the
parameters θ1, θ2, . . . , θi are generated from a common popu-
lation, with distribution given by a hyperparameter φ. There-
fore, the posterior distribution of this hierarchical Bayesian
model is given by,

p(θ, φ|D) =
p(D|θ, φ)p(θ|φ)p(φ)

p(D)
. (5)

B. Markov Chain Monte Carlo sampling method

To estimate the posterior distribution of the target posi-
tion, we build (non) hierarchical models and use the Bayes’
Theorem through the MCMC sampling approach. The latter
generates a sequence of random samples from a probability
distribution by first making a random proposal for new pa-
rameter values and then accepting or rejecting the proposal
[16].

The No-U-Turn Sampler (NUTS) algorithm is based on
the Metropolis-Hastings method and finds good estimates
adaptively, i.e., without a random walk (stochastic process).
This NUTS avoids re-exploring local spaces and ensures a
much shorter simulation time [17]. To initialize the NUTS
sampler and find the posterior distribution of the position
of interest, we first make suitable assumptions for the prior
distribution of p(H) in (3) and p(θi|φ)p(φ) in (4); then the
NUTS algorithm explores the sample space and generates the
posterior distribution based on the acquired data and the prior
distributions. It is worth mentioning that the proper choice of
the prior distribution and the input data affects the time of
convergence of the posterior distributions.



III. SYSTEM MODEL AND HIERARCHICAL LOCALIZATION
MECHANISM

A. Evaluation scenario

An indoor deployment scenario that represents, e.g. a ware-
house and has a square shape with side length of 100 meters
(Fig.1) is used to assess the proposed mechanism. Distributed
antenna heads are positioned in each corner of the deployment
area and are connected to a central processing unit (CPU)
that is responsible to estimates the position of a target node
after acquiring a minimum amount of measurements from the
antennas heads with known positions. The target dwells in a
random (unknown) position within the deployment area.

Each receiver (anchor) collects the corresponding Received
Signal Strength (RSS) measurements independently and are
affected by a log-distance shadowed path loss model with
respect to the distance between the target and the receiver.
Fig. 2(a) shows the distance d that represents a circle centered
at the receiver, where the border of the circle represents all
possible target locations. The multilateration concept consists
in estimates the target position considering more than one
receiver, the intersection area generated by the distance of each
antenna heads corresponds to the possible target location. In
Fig. 2(b), the red area represents the density estimation of the
localization. In scenarios with degrading effects, it is possible
to determine the unknown position of the target node by using
the measurements gathered by at least 3 anchor receivers [5].

The radio link RSS function is given by

pri = pt − αi ln(di) + ϕ in dBm, (6)

where pri is the target signal strength received by the ith
receiver, pt is the transmitted power, αi is the path loss
exponent with respect to the ith receiver, di is the Euclidean
distance between the target and the ith receiver, and ϕ is the
shadowing value with zero-mean normal distribution in the
logarithmic scale.

Fig. 1. Indoor deployment scenario - squares represent the antenna heads,
while a red cross identifies the target node.

(a) (b)

Fig. 2. (a) Distance representation considering one antenna head, where the
target node is represented by the red cross and d is the distance between
the target node and the antenna head. (b) Distance representation considering
three antenna heads, where the red area represents the density estimation of
the localization.

We also study hybrid scenarios where two arbitrary anchors
are assumed to collect RSS and TOA measurements. In these
scenarios, assuming DAS, the central unit is responsible for
making the necessary synchronization between the anchors
and information fusion. The TOA function is given by

ti = di/c, (7)

where c is the speed of light and ti is the time of flight
assuming that the source emits a signal at time 0 and the
sensor receives it at time ti.

B. Probabilistic graphical models for source localization

Herein, we consider three Bayesian networks to carry out
our investigations, in each DAG model the parameters inside
the lozenge – xi and yi – are assumed to be known a priori
by the central unit, and represent the receivers’ coordinates,
further the parameters inside the circles correspond to random
variables whose distribution is based on our prior knowledge.
Below we present the DAG model and respective metrics for
each case.

1) Non-hierarchical RSS-based Bayesian network: In this
model the interdependence between the random variables is
represented by the DAG model shown in Fig.3.

di

µrssi

pt αiσrssi

X Y

xi, yi

i = 1, 2..., n

Fig. 3. Graphical model of the non-hierarchical RSS-based source localiza-
tion.



The RSS-based Bayesian network is described by

pt ∼ Normal(0, 100),
αi ∼ Normal(0, 100),
σ2
rssi ∼ InverseGamma(1, 0.1),
µrssi ∼ pt − αi log(di),
X ∼ Uniform(0, L),
Y ∼ Uniform(0, B),

di ∼
√

(X − xi)2 + (Y − yi)2,
where ∼ indicates that a RV follows a specific distribution,
pt is the transmit power at the transmitter, αi is the path loss
exponent, σrssi is the standard deviation of the measurements
collected by the ith receiver point, di is the distance between
the target and the ith receiver and (X,Y ) is a two-dimensional
RV representing the target location coordinates.

2) Hybrid Bayesian network: The hybrid model combines
RSS- and TOA-based Bayesian networks, the interdependence
between the random variables using time of flight measure-
ments, is represented by the DAG in Fig.4.

Similar to the RSS-based model, the assumptions of the
respective TOA-based Bayesian network is given as

µtoai
∼ di/c,

σ2
toai

∼ InverseGamma(1, 0.1)/c,
X ∼ Uniform(0, L),
Y ∼ Uniform(0, B),

di ∼
√

(X − xi)2 + (Y − yi)2.
The hybrid model combines the DAGs presented in Figs. 3

and 4.
3) Hierarchical RSS-based Bayesian network: We create

a one-level hierarchy to the transmit power and the path
loss exponents, so that each of these two data parameters
has a distribution with mean and variance given by (ai, σ2

ai
)

and (bi, σ2
bi

), respectively. It is worth mentioning that the
hierarchical structure includes conditional interdependencies in
the chosen parameters resulting in less model variance. Fig.5
shows the DAG of this network, representing the interdepen-
dence between the random variables.

di

µtoai

σtoai

c

X Y

xi, yi

i = 1, 2..., n

Fig. 4. Graphical model of the non-hierarchical TOA-based source localiza-
tion.
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Fig. 5. Graphical model of the hierarchical RSS-based source localization.

The hierarchical Bayesian network is described as

pt ∼ Normal(a, σ2
a),

a ∼ Normal(0, 10),
σ2
a ∼ InverseGamma(1, 0.1),
αi ∼ Normal(b, σ2

bi
),

bi ∼ Normal(0, 10),
σ2
bi
∼ InverseGamma(1, 0.1),

σ2
hi
∼ InverseGamma(1, 0.1),

µhi
∼ pt − αi log(di),

X ∼ Uniform(0, L),
Y ∼ Uniform(0, B),

di ∼
√

(X − xi)2 + (Y − yi)2,
where a and bi are assumed to follow a normal distribution
with mean 0 and with variance 10 and represent the mean of
pt and αi respectively, σ2

a and σ2
bi

represent the variance of pt
and αi and are assumed to have an inverse gamma distribution
with shape parameter 1 and a scale parameter 0.1.

IV. PERFORMANCE EVALUATION

The indoor deployment scenarios introduced in § III were
implement in Python, more specifically, our estimator was built
using the PyMC3 package [18] and we carry out an exten-
sive simulation campaign to evaluate the proposed Bayesian-
based source localization mechanisms. In our simulations, the
measurements are generated following the radio propagation
channel described in (6) and (7), while the path loss coefficient
is different for each anchor varying from 2 to 3.5. This assump-
tion makes the estimation of the posterior distribution using
the NUTS algorithm more difficult, because there are more
parameters that need to be sampled and less relation between
the anchors. The anchors collect the measurements and send
them to the central unit which employs the NUTS algorithm
to sample the posterior distribution of the parameters, and
determine the Probability Density Function (PDF) of the two-
dimensional coordinate of the target position (X,Y ). In every



simulation, the target node is arbitrarily located at (70, 30) and
is unknown by the algorithm.

To evaluate the performance of the proposed algorithms, we
employ the error distance metric which is given by

e =
1

N

N∑
k=0

√
(Xk −Xr)2 + (Yk − Yr)2, (8)

where N is the number of simulation runs, (Xk, Yk) is a two-
dimensional RV representing the estimated target coordinates
in the kth simulation run and (Xr, Yr) is a two-dimensional
RV representing the real target coordinates.

A. Non-hierarchical analysis of RSS and hybrid models

In Fig. 6, each curve point is averaged over 100 simulation
runs and in each such iteration the localization algorithm is
fed with 50 new measurements. In this simulation set, we
compare the distance error between distinct models by varying
the standard deviation of the error associated to the RSS
measurements, the anchors independently acquire RSS or TOA
measurements and the NUTS algorithm is used to estimate
the position. It is worth mentioning that in this scenario the
error associated to the TOA measurements are constant. The
hybrid approach outperforms the RSS-based one though the
wide gap narrows between the curves in Fig. 6. This occurs
because the hybrid approach has more information acquired
by TOA measurements and this compensates for the values
of the standard deviation of the RSS measurements error
when estimating the location of the target node. In RSS-based
scenarios, we can observe that the error distance between the
points are almost constant, the kernel density estimate (KDE)
of the source location estimate is sparse, as show Fig.7(a)
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Fig. 6. Error distance between the estimated and real target point for
increasing error standard deviation of measurements when using RSS and
hybrid (RSS plus TOA) models.
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Fig. 7. The kernel density estimates of the source location estimate using
(a) RSS-based method and (b) hybrid-based method. In each figure, the real
location of the target is denoted by red circle and the maximum of the
probability density by the black circle.

and represents that the estimated position can be located at
any place of the scenario. Considering the maximum of the
KDE in each iteration, the estimated target position is located
always in the center of the square. In the case of hybrid-based
scenarios, the acquired TOA measurements compensate for the
values of standard deviation of the RSS measurements error,
what generates a less disperse probability density of the source
location and high precision in the estimation target position is
obtained, as shows Fig.7(b).

B. RSS-based method with non- and hierarchical models

Similarly, Fig.8 compares the hierarchical approach fed with
different numbers of RSS measurements, against the RSS-
based models in terms of the distance error as function of
standard deviation of the error associated to the measure-
ments. In this figure, each curve point is averaged over 100
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Fig. 8. Error distance comparison between the non- and hierarchical models
for increasing standard deviation.
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Fig. 9. Error distance comparison between hierarchical models for increasing
standard deviation fed with different numbers of measurements.

simulation runs and in each such iteration the localization
algorithm is fed with new RSS measurements, the anchors
independently acquire RSS measurements and the NUTS
algorithm is used to estimate the target position. We observe
that the hierarchical models achieve better performance than
non-hierarchical models, this occurs because the hierarchical
model has more information about the network than the
non-hierarchical model, i.e., adding one-level hierarchy the
knowledge about the prior distribution increase and the range
of the sampling distribution has a common mean and variance,
thus, the posterior distribution varies in a smaller local space,
resulting in less variation of the model to estimate the target
position.

We observe the number of measurement samples acquired
by the receivers affects the accuracy of the algorithm, because
comparing the hierarchical-based approach with 25 and 50
samples in Fig. 9, the latter shows a more accurate estimate
of the target position, i.e., lower values of error distance –
around 1 meter when the error standard deviation of RSS
measurements is about 4 meters. This occurs because NUTS
algorithm has more data to sample the posterior distribution,
concluding that hierarchical-based approach performs better
by acquiring more measurements. Furthermore, the gap in
performance becomes higher when the error associated with
the measurements increases.

V. CONCLUSION

In this work, three Bayesian-based localization methods
were evaluated. The simulated scenario acquires distinct met-
rics by a distributed antenna system that is connected to a
central unit responsible for fusing and use the data. Each
anchor in the system experiences distinct radio channel im-

pairments (fading coefficient) that make the estimation more
difficult. The target position is estimated by sampling the
corresponding posterior distribution using the MCMC NUTS
algorithm. Results show that by combining RSS and TOA
measurements in a hybrid Bayesian-based method, the target
node position can be estimated with small error distance,
different to non-hybrid Bayesian-based method where the
estimation is inaccurate. In addition, our results show that
RSS-hierarchical models can estimate the target node with
fewer measurements and performance better – about 2 meters
of accuracy – if the number of acquired samples is increased.
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