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Abstract
In this paper, we propose several harvesting-aware energy management policies for solar-powered wireless IoT end devices

that asynchronously send status updates for their surrounding environments to a network gateway device. For such devices,

we aim at minimizing the average age of information (AoI) metric which has recently been investigated extensively for

status update systems. The proposed energy management policies are obtained using discrete-time Markov chain-based

modeling of the stochastic intra-day variations of the solar energy harvesting process in conjunction with the average

reward Markov decision process formulation. With this approach, energy management policies are constructed by using the

time of day and month of year information in addition to the instantaneous values of the age of information and the battery

level. The effectiveness of the proposed energy management policies in terms of their capability to reduce the average AoI

as well as improving upon the tail of the AoI distribution, is validated with empirical data for a wide range of system

parameters.

Keywords Internet of things � Solar energy harvesting � Energy management � Age of information � Markov decision

processes

1 Introduction

Low-Power Wide Area Networks (LPWANs) are suit-

able for IoT (Internet of Things) infrastructures which are

built to serve a massive number of IoT End Devices (ED)

each equipped with sensors, (optionally) actuators, and

long-range, low-power radios [11]. In LPWANs, the end

devices are within a single hop from the so-called Network

Gateway (NG) which serves as a bridge for all the IoT end

devices to the IP-based Internet. Figure 1 illustrates a

single-hop LPWAN serving N end devices which are in

charge of sending status update messages to the NG in the

transmit-only configuration which is the focus of this

paper. Although bi-directional communication is supported

in most IoT technologies, we study in this paper the

transmit-only scenario where the IoT end devices of

interest do not necessarily receive traffic from the gateway.

Various LPWAN technologies have been proposed or

rolled out in the recent years such as LoRa, SigFox, Ingenu,

Weightless, LTE-M, NB-IOT, etc. [11, 26, 37, 39] with

different infrastructure choices and service types. Although

IoTs may also be viewed as some form of Wireless Sensor

Networks (WSN) [3], (i) hardware and software com-

plexity of the IoT end devices needs to be far lower than

those used in a typical short-range WSN, (ii) IoT com-

munication infrastructures should support massive con-

nectivity with end devices disseminating information at

relatively very low bit rates corresponding to very low duty

cycles for each device, (iii) energy consumption require-

ments on IoT end devices are more stringent.

Considering non-rechargeable battery-powered IoT end

devices, frequent human attention would be required to

replace the batteries which may neither be desirable nor

possible, in many real-life scenarios. Therefore, end devi-

ces need to be self-sufficient, i.e., not requiring any human

intervention, for a relatively long time [9]. In energy
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harvesting-based solutions, end devices are equipped to

harvest energy from environmental (solar, electromagnetic,

wind, etc.) sources and store the harvested energy in the

rechargeable batteries [14, 27, 51, 59, 62]. However,

energy harvesting may be quite random in nature and

intelligent energy management mechanisms are required

for end devices that take into account the statistical prop-

erties of the underlying energy harvesting process.

In this paper, we consider an information update system

consisting of IoT end devices each equipped with a sen-

sor(s). The state of the device is assumed to change in time

which is detected by its sensor and the device occasionally

generates information packets that contain sensed data

along with a time stamp. The Age of Information (AoI) for

a single information source is defined as the time elapsed

since the generation of the last successfully received update

packet at a remote monitor either held at the NG or the

Internet. The AoI concept was first introduced in [29] and

later studied in more depth in [30, 31] as a metric to

quantify the freshness of knowledge about the status of a

remote information source in a status update system. There

has recently been a surge of interest on AoI-related opti-

mization methods [1, 5, 25, 49, 58] in various contexts.

[34] provide a relatively recent survey of the AoI concept

and its applications. Most existing papers study the con-

tinuous-time setting in which the AoI is allowed to take

continuous values. However, there has recently been sev-

eral studies on the discrete-time setting as well, for which

the AoI takes discrete values [43, 48, 52]. In the current

paper, we follow the discrete-time setting where the AoI is

defined as the age in discrete units of time of the most

recent status update at the remote monitor for the particular

IoT ED of interest.

The focus of this work is on solar-powered end devices

in isolation (from other devices) for which the solar energy

harvester exhibits temporal variations at different time

scales. The goal of the end device is to send status updates

as frequently as possible to the NG to keep the information

fresh. Figure 2 illustrates an energy harvesting IoT end

device sensing status update messages to the gateway.

The operation of the end device is as follows. The

device of interest operates in discrete time by waking up

periodically with period T and making a decision to make a

status update depending on the current status of the device.

Each status update requires a certain energy Es for sensing,

processing, and transmission. If the status update decision

is positive, the environment is sensed, processed, and an

information packet is formed and transmitted towards the

NG after which the end device goes back to sleep again. In

this paper, we assume that suitable forward error correction

mechanisms are in place giving rise to negligible packet

error probabilities. Therefore, the effects of the statistical

parameters of the communication channel, i.e., bit error

rates, signal to noise ratio, etc., as well as MAC-layer

characteristics such as collision rates, packet error rates,

etc., are deliberately left outside the scope of the current

paper. In case the status update decision is negative, the ED

goes back to sleep immediately while consuming an energy

Ef\\Es. Since the slot time T would typically be much

longer in low duty cycle IoT networks compared to the

transmission time of the information packet and network

delay, we will assume throughout the paper that the

information packets carrying status update messages are

delivered immediately upon the sensing event. In Fig. 3,

the AoI process Dk is illustrated as a function of the integer

time index k that keeps track of time in units of time slots

of length T in an example scenario. In this figure, Ai; i� 0

represents the status update instance for the ith status

Fig. 1 A single-hop LPWAN serving N IoT end devices in transmit-

only mode. ED end device, NG network gateway

Fig. 2 Solar-powered IoT ED sending status update messages to a NG

Fig. 3 A sample path for the AoI process Dk; k � 0. Status updates

occur at instances 0, 9, 15, and 19 in this example
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update, and Ii denotes the inter-update time between the

status updates i � 1 and i. Every time a status update

decision is made, the AoI process Dk is brought down to

zero. On the other hand, the AoI process Dk is incremented

at each time slot until the next status update. The Average

AoI (AAoI), also denoted by E½D�, is defined as the fol-

lowing time average due to the ergodicity of the AoI pro-

cess Dk:

E½D� ¼ lim
K!1

PK�1
k¼0 Dk

K
: ð1Þ

In the current paper, we propose to develop various status

update policies for an edge device in isolation so as to

minimize the single metric E½D� as a function of the current
state of the edge device given in terms of some or all of the

following: (i) current battery energy, (ii) current AoI value,

(iii) time of day, (iv) month of year.

Various energy management algorithms have been

developed in the literature for different types of energy

harvesting sources and different metrics. In particular,

adaptive duty cycling methods that adaptively adjust the

inter-sensing times have been developed to maximize

system performance while avoiding power failures

[8, 20, 24, 28, 40, 46, 57, 63]. Energy harvesting sources

usually have a stochastic nature which can well be repre-

sented with Markov Chains (MC) [40]. In such cases,

Markov Decision Processes (MDP) have been proposed

towards the optimal energy management of energy har-

vesting SNs when the underlying stochastic model is MC-

based [4].

In this paper, based on real datasets for solar harvesting,

we model the intra-day variations of the energy harvesting

process of a solar-powered IoT ED by a Discrete-Time MC

(DTMC). Additionally, we propose to use the average

reward MDP framework and the Policy Iteration (PI)-based

DP (Dynamic Programming) method to obtain status

update policies so as to minimize E½D�. The main contri-

butions of this paper are the following:

• Most existing studies employ generic energy harvesting

sources with no emphasis on the specific attributes of

the harvesting source. In this paper, we focus on solar-

powered energy harvesting sources and propose a novel

method for Markov chain modeling of the intra-day

variations of a solar source using empirical data. In this

method, a single day is divided into a certain number of

time intervals so as to keep track of the solar radiation

patterns at different times of the day. For example,

when two time intervals within a day are to be used,

then one can differentiate between daytime and night-

time radiation patterns. When the number of time

intervals is to be increased, the proposed Markov chain

is able to model more accurately the intra-day

variations of the solar source. With the proposed

MDP formulation for AAoI minimization, the time of

day information is naturally used by the energy

manager through the state of the Markov chain

corresponding to the particular time interval of a given

day. Using the time of day information in the energy

manager significantly enhances the AoI performance of

the device as shown through numerical examples.

• For solar sources, seasonal (or monthly) variations of

the solar source are also critical for the energy manager.

The energy management policy to be employed during

Winter days of low solar radiation should be different

than a policy to be used in Summer days with high solar

radiation. In this paper, we propose a new method to

effectively take into account such seasonal variations,

with acceptable complexity and storage requirements,

for the proposed energy manager. In this proposed

method, optimum policies are obtained for each month

of the year with the Policy Iteration approach and the

energy manager employs policy switching at different

months of the year. Using the month of year informa-

tion in the energy manager is shown to have a key effect

on the AoI performance of the end device.

• Two different 20-year long datasets belonging to two

different locations are studied extensively for develop-

ing an energy management policy for each of two

locations and consequently, we validate the effective-

ness of this approach for both locations. We show that

using the time of day and month of year information (in

addition to current battery level and instantaneous AoI)

in the transmission policy is remarkably effective in

reducing AAoI and also the AoI violation probabilities.

The paper is organized as follows. In Sect. 2, related work

on energy management of energy harvesting end devices is

presented. MDPs are briefly described in Sect. 3 along with

the PI algorithm used in this paper. In Sect. 4, the MDP

formulation for the purpose of AAoI minimization is pre-

sented whereas the DTMC model of the solar harvesting

process and various status update policies obtained from

the MDP formulation are presented in Sect. 5. In Sect. 6,

numerical examples are given for two different solar

datasets that validate the effectiveness of the proposed

approach. Finally, we conclude.

2 Related work

Energy management of energy harvesting wireless sensor

nodes has been a topic of research interest in recent years;

see the references [2, 33, 56] for surveys in this area. From

a general perspective, these energy management algorithms

may be categorized into two groups: (i) offline problem and
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(ii) online problem. The offline problem assumes the

availability of knowledge on energy arrivals prior to the

system execution; then, the energy management task turns

into a planning problem. Reference [60] focuses on a

system where energy and data packet sizes are known and

the aim is to minimize the transmission completion time.

[55] present optimal solutions for throughput maximization

for the offline case with consideration of storage losses due

to the battery imperfections. A group size based approach

to adaptively manage the duty cycle of sensor nodes is

proposed to prolong network lifetime in [12].

In the online scenario, data and energy arrivals are not

known prior to operation but they both arrive according to

a statistical model. A recent work in [17] investigates the

stochastic model of a general computing system where the

energy arrivals and job arrivals are both random. In [38], a

threshold-based policy is proposed to maximize an average

reward function in the long-term in a setting where the

harvesting policy is modeled as a two-state Markov chain.

A power consumption planning scheme is constructed by

[54] with the assumption of a deterministic energy arrival

process. The study in [36] also considers the number of

packets waiting in the queue as another dimension to the

Markov chain. Some prediction-based energy managers

[10] use predictions of the future amount of harvested

energy in a finite time horizon for deciding on the energy

consumption of the node. There are also some studies

which focus on optimizing the energy consumption of

sensor nodes with the objective of energy-neutral operation

by modeling the harvesting process as a MDP [18, 47].

While the main focus in these energy-oriented schemes is

to prolong the network lifetime by controlling the node

duty cycles, QoS requirements are not taken into consid-

eration [22].

For the online energy management schemes, adaptive

duty cycling is a commonly used strategy for optimizing

the energy consumption of a sensor node according to the

state of the energy and data sources by making the nodes

sleep or wake at proper times to use the energy of the node

efficiently. Reference [28] proposes a mixed approach that

assumes a periodic discrete model for the harvested energy

to decide on the duty cycles based on this model and

adjusts the duty cycles online with deviations of the real

harvested energy from the estimate. In [18], optimal energy

management algorithms are proposed to maximize the data

rate of the node in the long run for several energy storage

and harvesting models. [58] focus on AoI minimization in a

status update scheme with finite and infinite battery cases

and they offer a threshold based approach for minimizing

the AoI. [6] propose a multi-threshold structure for energy

management for which the sensor sends an update only if

the age of information grows above a certain threshold that

depends on the available energy. The problem of finding an

age-optimal threshold policy is studied in [7] with the

transmission threshold being a function of the energy state

and the estimated current age. [16] study an optimal online

status updating policy to minimize the AAoI at the desti-

nation for a scenario where the communications channel is

noisy and there is a non-zero probability of failures for

status updates. Our work is different than the age-optimal

schemes studied in the literature is that we also use the time

of day and month of year information due to the intra-day

and inter-monthly variations that are known to exist for the

solar harvesting process.

There have also been research studies specific to solar-

powered wireless sensor networks. [32] propose a solar

energy harvesting based MAC protocol which is adaptive

to the changing weather conditions for smart agriculture

applications. A machine learning based adaptive duty cycle

algorithm for energy harvesting wireless sensor networks is

proposed by [45] using solar forecasting. The trade-off

between energy and performance is addressed by [21] via

an MDP formulation of a simple fully solar-powered case

study with finite states representing levels of battery charge

and solar intensity.

Stochastic modeling of the energy harvesting process

has been another area of research. In [44], a day is divided

into time slots with the harvesting power and consumption

in each slot being known and constant. [15] extend this

approach with the objective of maximizing the amount of

data transmitted within a specified finite time horizon. In

[53], the node battery level is represented with a Markov

fluid queue relying on a Continuous Time Markov Chain

(CTMC) that models the harvesting process. [28] model the

harvesting and consumption as two independent bounded

random processes. The reference [61] assumes a two-state

(active and passive) continuous-time Markovian model

with independent exponential random variables to repre-

sent the duration of stay in each state.

3 Discrete-time Markov decision processes

The following brief discussion on discrete-time Markov

Decision Processes (MDP) is based on [50] and [19].

Consider a controlled DTMC Xp
k ; k ¼ 1; 2; . . .; with finite

state-space S ¼ f1; 2; . . .;Ng for each policy p 2 P which

amounts to a mapping from the state-space S to the action

space A for which a deterministic action from the set Ai �
A ¼ f1; 2; . . .;Mg is to be taken when the underlying

Markov chain is at state i 2 S and this policy does not

change with respect to time. Observe that the cardinality of

the entire policy set jPj ¼ MN for the case Ai ¼ A for all i,

which impedes operations with exhaustive search-based

methods to find optimal policies. We use the notation
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p(i, a, j) to denote the one-step transition probability of

transitioning from state i to state j under action a 2 Ai for

i; j 2 S. When policy p is followed, the transition proba-

bility of going from i to j is denoted by pði; pðiÞ; jÞ with an

immediate reward rði; pðiÞ; jÞ collected as an outcome of

this transition. Let

rpðiÞ ¼
X

j

rði; pðiÞ; jÞpði; pðiÞ; jÞ; ð2Þ

denote the expected immediate reward collected when

policy p is applied at state i.

Stemming from the definition of AAoI, the focus of this

paper will be average-reward infinite-horizon MDPs for

which one is charged with the task of finding an optimal

policy p� 2 P to maximize the expected reward per unit

time over an infinite horizon. Let us assume the regularity

of the DTMC Xp
k ; k ¼ 1; 2; . . . when the policy p is applied

so that the unique limiting probability xpðiÞ ¼
limk!1 PrfXp

k ¼ ig; i ¼ 1; . . .;N exists [19]. In this case,

the optimum policy p� is obtained as the solution of the

following optimization problem:

p� ¼ argmax p2Pq
p ¼ argmax p2P

X

i

xpðiÞrpðiÞ; ð3Þ

where qp denotes the average reward collected by the

DTMC Xp
k .

The Policy Iteration (PI) algorithm of [23] for solving

the optimization problem (3) is given below.

Step 1: Set k ¼ 1 and start with an arbitrary policy p1.
Step 2: (Policy Evaluation) Evaluate the policy pk to

obtain qpk and the following value

functions hkðiÞ; i ¼ 1; . . .;N:

hkðiÞ ¼ rpkðiÞ � qpk þ
XN

i¼1

pði; pkðiÞ; jÞhkðjÞ: ð4Þ

Step 3: (Policy Improvement) Choose a new

policy pkþ1 such that

pkþ1ðiÞ¼ argmaxa2Ai

X

j

pði;a;jÞ rði;a;jÞþhkðjÞ
� �

: ð5Þ

Step 4: If pkþ1 ¼ pk, then set p� ¼ pkþ1 and stop.

Otherwise, set k ¼ k þ 1 and go to Step 2.

Implementation details of the PI algorithm are given in

[19] and [23]. We propose to use this PI algorithm to solve

average reward MDPs in this paper.

4 MDP model for the energy manager

For the MDP model for the energy manager, we take the

basic energy unit as e mWh and all the other energy quan-

tities of interest will be assumed to be integer multiples of

this basic unit. Subsequently, we assume a battery with a

finite capacity B, i.e., it can store at most Be mWh. The IoT

end device wakes up at the beginning of each time slot and

decides whether or not to fulfill the combined status update

task of sensing, processing, and transmission. We assume

that this task gives rise to the consumption of Es mWh of

energy when such action is taken and the actual time

duration required to complete this task will be negligibly

small compared to the time slot duration which is defined as

the sleep duration between actions. We also define

Ls ¼ Es=e. We also assume Ef mWh of fixed energy con-

sumption which is required for waking up and processing

required to take an action. Similarly, we define the integer

Lf ¼ Ef =e that is to be used in the MDP formulation.

Obviously, the parameters Ls and Lf are assumed to take

integer values stemming from the discrete-time setting of

our proposed approach. Note that the basic energy unit e can

always be chosen arbitrarily small so that such discretization

does not give rise to an unacceptable inaccuracy.

The harvesting process is assumed to be governed by a

DTMC with N states with probability transition matrix Q

with its (i, j)th entry denoted by Q(i, j). In the next section,

we will describe a method of obtaining such DTMCs. At

state n of this DTMC, n ¼ 1; 2; . . .;N of this DTMC, we

assume ‘ units of energy will be harvested during a time

slot with probability pðn; ‘Þ for ‘ ¼ 0; 1; . . .; L; where

L denotes the maximum amount of harvestable energy

during a time slot, provided the battery limit has not been

reached.

Recall that AoI is defined as the elapsed time slots since

the last status update of the IoT device and our goal is to

minimize the AAoI. To model this system, we propose the

following three-dimensional discrete-time MDP composed

of the following components: the discretized value of the

remaining energy in the battery

XBðkÞ 2 B ¼ f0; 1; . . .;Bg, the value of the age of infor-

mation XIðkÞ 2 I ¼ f0; 1; . . .; Ig in terms of time slots,

and the harvester DTMC XNðkÞ 2 N ¼ f1; 2; . . .;Ng, at
the beginning of time slot k, where a finite value I is

enforced to keep the overall MDP finite-dimensional; see

[35] for data-driven stochastic models for energy har-

vesters. Subsequently, we form our combined state space as

S ¼ B � I � N . The action space for the states can be

written as A ¼ f1; 0g, where 1 and 0 represent whether or

not a status update is made, respectively, in the corre-

sponding state. Note that when XBðkÞ\Lf þ Ls, then the

action A(k) can not be 1. While the transition probability of
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the battery state depends on the harvester state, state

transition probabilities for the AoI state depend only on the

action taken in that state. Subsequently, the stationary

transition probability from state ðXBðkÞ;XIðkÞ;XNðkÞÞ ¼
ðb; i; nÞ to state ðXBðk þ 1Þ;XIðk þ 1Þ;XNðk þ 1ÞÞ ¼
ðb0; i0; n0Þ at the kth time slot, denoted by pb0;i0;n0

b;i;n can be

written as the following product:

pb0;i0;n0

b;i;n ¼ PrfXIðk þ 1Þ ¼ i0 j XIðkÞ ¼ ig
� PrfXBðk þ 1Þ ¼ b0 j ðXBðkÞ;XNðkÞÞ ¼ ðb; nÞg
� PrfXNðk þ 1Þ ¼ n0 j XNðkÞ ¼ ng:

ð6Þ

The transition probability to XIðk þ 1Þ ¼ i0 from XIðkÞ ¼ i

is dependent on the action value AðkÞ 2 A . When

AðkÞ ¼ 1, this relation can be written as:

PrfXIðk þ 1Þ ¼ i0 j XIðkÞ ¼ ig ¼
1; if i0 ¼ 0;

0; otherwise.

�

ð7Þ

When AðkÞ ¼ 0 and i\I,

PrfXIðk þ 1Þ ¼ i0 j XIðkÞ ¼ ig ¼
1; if i0 ¼ i þ 1;

0; otherwise.

�

ð8Þ

If i ¼ I when AðkÞ ¼ 0, then XIðk þ 1Þ is forced to stay at

I with probability 1.

The battery level evolves according to the following

equation for k � 0:

XBðkþ1Þ¼minðB;maxð0;XBðkÞ�Lf Þ�LsAðkÞþXNðkÞÞ;
ð9Þ

and A(k) should be zero when XBðxÞ\Lf þLs. Let pb0
b;n

denote the probability PrfXBðkþ1Þ¼b0 j ðXBðkÞ;XNðkÞÞ
¼ðb;nÞg. For the control action AðkÞ2f0;1g, we have

pb0

b;n ¼
pðn; b0 � b þ Lf þ LsAðkÞÞ; if b0\B;

PL

‘¼B�bþLf þAðkÞLs

pðn; ‘Þ; if b0 ¼ B:

8
><

>:
ð10Þ

Stemming from the DTMC model of the energy harvesting

process,

PrfXNðk þ 1Þ ¼ n0 jXNðkÞ ¼ ng ¼ Qðn; n0Þ; ð11Þ

irrespective of the action. In the next section, a specific

DTMC model for the energy harvesting process will be

proposed and described in detail. On the other hand,

rewards of the MDP model are to be assigned towards the

objective of minimizing AAoI in the long run. For this

purpose, we propose to collect a negative reward �i when

the MDP resides in a state with XIðkÞ ¼ i. With this reward

assignment, the discrete-time MDP formulation is com-

plete with descriptions of the state space, action space,

transition probabilities and rewards. In the next section, we

describe various data-driven DTMC models to capture the

intra-day variations in the amount of harvested energy

using solar data and the subsequently obtained energy

management policies.

5 Energy management policies

In order to obtain an energy management policy using the

discrete-time MDP framework described in the previous

section, we first need a data-driven DTMC model for the

solar energy harvesting process XNðkÞ. For this purpose, let
T denote the slot length in minutes and let Zðd;rÞ be the

actual amount of energy harvested at day d for d ¼
1; 2; . . .;D and in slot r for r ¼ 1; 2; . . .;R from historical

solar data where TR ¼ 1440 amounts to the number of

minutes in a single day. Let zðrÞ denote the average har-

vested energy (over D days) during slot r in units of the

basic energy unit e:

zðrÞ ¼ 1

De

XD

d¼1

Zðd; rÞ; ð12Þ

with zwðrÞ (zf ðrÞ) being the whole (fractional) part of zðrÞ.
Since zðrÞ is real-valued, we define the following

pðr; ‘Þ ¼
zf ðrÞ; if ‘ ¼ zwðrÞ þ 1

1� zf ðrÞ; if ‘ ¼ zwðrÞ
0; otherwise

8
><

>:
ð13Þ

as the probability of harvesting ‘ discrete units of energy

during slot r. Next, we partition the R slots in one single

day into N non-overlapping partitions (or intervals) each

holding m consecutive time slots such that R ¼ mN. Note

that the partitioning parameter N needs to be chosen so that

the parameter m turns out to be an integer. Mathematically,

the nth interval of slots denoted by In; n ¼ 1; 2; . . .;N

stands for the following subset of time slots:

fmðn � 1Þ þ 1;mðn � 1Þ þ 2; . . .;mng;

where the operations above are modulo R. We then define

the following expression

pðn; ‘Þ ¼
X

r2In

pðr; ‘Þ
m

ð14Þ

for the empirical probability of harvesting ‘ discrete units

of energy in the nth time interval In of a given day.

Although each of the intervals consists of exactly m time

slots, we further approximate the interval duration to be

geometrically distributed with mean m. Subsequently, we

have a DTMC model for the energy harvesting process
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XNðkÞ 2 N ¼ f1; 2; . . .;Ng with a probability transition

matrix Q of the form

Qðn; n þ 1Þ ¼QðN; 1Þ ¼ 1

m
; n ¼ 1; 2; . . .;N � 1; ð15Þ

Qðn; nÞ ¼1� 1

m
; n ¼ 1; 2; . . .;N; ð16Þ

where at each state n, we have a probability pðn; ‘Þ (given
in Eqn.14) of harvesting ‘ units of energy. Now that the

DTMC model is established, the MDP model of the pre-

vious section can be solved to obtain optimal policies to

minimize the AAoI in case the DTMC model is exact.

However, since the DTMC model is not exact, the pro-

duced policies will definitely not be optimal but the

effectiveness of these policies will be studied extensively

in the next section.

We are now ready to propose the energy management

policies we propose to study in this paper. The policy

named as the Solar Energy Manager SEM-N uses the

DTMC model with N � 1 states described above for the

energy harvesting model to capture the intra-day variations

in the solar-radiated energy and feeds it to the PI algorithm

for the 3-dimensional MDP of Sect. 4 to generate energy

management policies as a function of the instantaneous

energy level, instantaneous AoI, and also the current state

of the DTMC. Whenever the developed policies are to be

evaluated using historical solar data, the actual time of day

information, i.e., time interval information, is to be used

instead of the state of the corresponding DTMC. Obvi-

ously, SEM-1 does not capture the intra-day variations and

the time of day information is not used at all in SEM-1. By

increasing the number of partitions N, the intra-day varia-

tions are captured more effectively but at the expense of

additional computational complexity for solving the MDP.

The distribution of the harvested energy not only

depends on the time of day but also on the month of the

year. In order to use the month of year information without

having to increase the complexity of the MDP, we propose

the following. Let Zvðd; rÞ be the historical harvested

energy information for slot r on day d which is now

restricted to month v ¼ 1; 2; . . .; 12. Stemming from the

historical data Zvðd; rÞ, we produce a separate SEM-N

policy for each month v ¼ 1; 2; . . .; 12, using the usual

3-dimensional MDP. When the decisions are to be taken in

the on-line scenario, the SEM-N policy is to be used cor-

responding to the instantaneous month of the year, using

the so-called policy switching method. To clarify, one

would have a separate policy (obtained with PI) stored for

each month and we would resort to a new policy when a

month just gets to start. We call the policy switching-based

method as MSEM-N (Monthly-switched SEM-N). Clearly,

MSEM-N has 12 times the computational complexity and

storage requirements in comparison to SEM-N. The num-

ber of sunny days in a year in ATL (SEA) is much more

(a)

Battery Energy Level

In
st

an
ta

ne
ou

s 
A

oI

20 100 200 300 400 500

50

100

150

(b)

Battery Energy Level

In
st

an
ta

ne
ou

s 
A

oI

20 100 200 300 400 500

50

100

150

(c)

Battery Energy Level

In
st

an
ta

ne
ou

s 
A

oI

20 100 200 300 400 500

50

100

150

(d)

Battery Energy Level

In
st

an
ta

ne
ou

s 
A

oI

20 100 200 300 400 500

50

100

150

Fig. 4 MSEM-2 transmission

policy (SEA dataset when Ls ¼
20 and B ¼ 500) as a function

of the instantaneous battery

energy level and instantaneous

AoI for the following four cases

a 7 pm–7 am in January b 7

pm–7 am in July c 7 am–7 pm

in January d 7 am–7 pm in July.

Light green (dark brown) points

indicate a transmission (not

transmission) decision (Color

figure online)
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(significantly less) than the US average. Therefore, these

two datasets exhibit moderately different statistical char-

acteristics. In the next section, we study the performance of

the proposed solar energy managers SEM-N and MSEM-

N for various values of the partitioning parameter N using

these two sufficiently long datasets of radiated energy from

two different locations on earth.

6 Numerical examples

6.1 Setting

In the numerical examples, we fix the time slot duration

T ¼ 10 min, basic energy unit e ¼ 1 mWh, maximum AoI

parameter I ¼ 150, and wake-up energy parameter Lf ¼ 0,

whereas we study the effect of other system parameters,

namely the sensing and transmission energy parameter Ls,

battery capacity B, and the partitioning parameter N, on the

system performance in terms of AAoI. In order to assess

the effectiveness of our approach, we use twenty-year long

datasets obtained from the National Solar Radiation Data-

base (NSRDB) [41] which provides solar radiation data at

hourly resolution. To interpolate between samples within a

single hour, we assume that the solar radiance density is

constant throughout that hour. All test cases are repeated

with solar radiation data pertaining to two distinct locations

in the US, namely the Atlanta Hartsfield International

Airport (referred to as dataset ATL) and the Seattle

Tacoma International Airport (referred to as dataset SEA).

Note that both locations are in middle latitudes for both of

which significant intra-day variations exist in solar radia-

tion data. We use the following expression in [42] to obtain

Zðd; rÞ from the solar radiation data for both of the

locations:

Zðd; rÞ ¼ ApKpSðd; rÞ 1� 0:005ðTe � 25	CÞð Þ; ð17Þ

where Ap is the panel area, Kp is the panel efficiency factor,

Te is the environment temperature in 	C, and Sðd; rÞ is the
solar radiance level in time slot r of day d in appropriate

units. In our numerical experiments, we assume a solar

panel with area Ap ¼ 30 cm2;Kp ¼ 20%, and Te ¼ 25	C.

While partitioning a day into N intervals, we aim to

maximize the difference in the daylight radiation levels

between different partitions. Therefore, we split the day

such that the peak hour of the day in terms of radiation

level, namely 13:00, resides in the center of one of the

partitions, say I1. For example, in the case of N ¼ 2 and

N ¼ 4; I1 will consist of all the 10-min time slots between 7

am and 7 pm, and between 10 am and 4 pm, respectively.

(a) (b) (c)

(d) (e) (f)

Fig. 5 Average Age of Information (AAoI) obtained with the policies SEM-N and MSEM-N as a function of the partitioning parameter N for the

dataset ATL for various values of B and Ls
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Moreover, in the actual simulations, we do not impose a

bound on the peak AoI value whereas the policies are to be

produced with I ¼ 150 for numerical tractability.

6.2 Validation of the proposed policies

In the first example, the structure of a representative

transmission policy MSEM-2 obtained with the PI algo-

rithm is depicted in Fig. 4 for two months of the year, i.e.,

January and July, for the SEA dataset when Ls ¼ 20 and

B ¼ 500. It is clear that the obtained policies for different

months and for different partitions of a single day exhibit

substantial discrepancies. We also note that for a given

partition of a day, the optimum policy is a threshold policy,

i.e., at a given value of the battery level, there exists a

battery level-dependent AoI threshold such that when the

instantaneous AoI exceeds that threshold, the optimum

decision is to make a status update and not to make an

update otherwise. Moreover, this battery level-dependent

threshold decreases with increased battery level. A note-

worthy implication of this observation for memory-con-

strained devices is that the memory required to store the

optimal transmission policies can be reduced by storing the

thresholds only or the curves obtained in Fig. 4 can further

be approximated by piece-wise constant curves with much

fewer jumps with further reductions in storage

requirements.

In the next example, the transmission policies SEM-N

and MSEM-N are obtained using the PI algorithm as a

function of the partitioning parameter N 2 f1; 2; 4; 6; 8g
for various values of B and Ls for both datasets ATL and

SEA, and the corresponding AAoI figures are depicted in

Figs. 5 and 6, respectively. Our main observation is that for

a fixed choice of N, the policy MSEM-N substantially

outperforms SEM-N which underlines the effectiveness of

monthly policy switching. This is not surprising since with

MSEM-N, one switches to more conservative policies in

Winters when solar radiation figures are considerably less,

(a) (b) (c)

(d) (e) (f)

Fig. 6 Average Age of Information (AAoI) obtained with the policies SEM-N and MSEM-N as a function of the partitioning parameter N for the

dataset SEA for various values of B and Ls

Table 1 Percentage AAoI reduction with MSEM-4 compared to

SEM-4

Dataset B Improvement in AAoI (%)

Ls ¼ 1 Ls ¼ 5 Ls ¼ 10 Ls ¼ 20

ATL 100 72.6131 17.5803 13.0993 10.3484

500 86.5479 19.3695 15.5620 11.7682

SEA 100 75.7445 33.7392 24.6557 15.3989

500 85.1143 48.0696 27.2739 18.5223
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whereas the month of year information is not used at all for

SEM-N. The second main observation is related to the

performance of both policies SEM-N and MSEM-N (in

terms of AAoI reduction) increasing with increasing

partitioning parameter N. However, in most of the sce-

narios, performance improvement beyond N ¼ 4 is

minuscule for MSEM-N with the exception of the Ls ¼ 20

case when further partitioning presents slight reduction in

AAoI. However, note that choice of larger partitioning

parameter N gives rise to longer off-line computation times

for the underlying MDP but more importantly, to larger

storage requirements for the IoT device. As a consequence

of this trade-off, for the majority of the remaining

numerical examples, the partitioning parameter N will be

fixed to 4.

When N ¼ 4, the percentage reduction in AAoI obtained

with MSEM-4 with respect to SEM-4 is tabulated in

Table 1 for two values of B and four values of Ls. We

conclude the following:

• For fixed B, the relative improvement with MSEM-4 in

AAoI increases with reduced Ls.

(a)

(b)

Fig. 7 The AoI process Dk depicted as a function of time for the dataset SEA for the particular case Ls ¼ 5;B ¼ 100, and N ¼ 4 obtained by

simulations according to the solar radiation data of the year 2010 a SEM-4 b MSEM-4

Fig. 8 Empirical CDF of AoI for the dataset SEA
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• For fixed Ls, the relative improvement with MSEM-4 in

AAoI is only slight for increased B except for the case

Ls ¼ 1.

• The AAoI reduction with the policy MSEM-4 relative

to SEM-4 is more apparent for the dataset SEA which

offers more seasonal variations due to the higher

latitude of the corresponding location.

We also present a snapshot of the instantaneous AoI,

i.e., Dk; k � 0 in Fig. 7 which is depicted as a function of

the time index k, for the dataset SEA and for the particular

scenario Ls ¼ 5;B ¼ 100, and N ¼ 4 obtained by simula-

tions according to the solar radiation data of the year 2010.

Figure 7 reveals that monthly-switched SEM not only

reduces the average AAoI but also substantially reduces the

peak AoI values that appear to exist on Winter days when

the solar radiation is lower. Note that a peak AoI value of

100 (exceeded several times with SEM-4) amounts to

slightly more than two thirds of a day which may be quite

harmful for the underlying status update application. On

the contrary, for the same year, the AoI value exceeded 25

only for one single instance throughout the year which

shows that MSEM-4 also significantly improves upon the

peak AoI values as well. To further elaborate on the tail

distribution of the AoI, we provide the empirical CDF of

the AoI for the dataset SEA in Fig. 8 obtained through

simulations over twenty years when SEM-4 and MSEM-4

are used as the energy management policies for the same

example. We observe that with MSEM-4, the tail distri-

bution of the AoI is improved significantly when compared

to SEM-4. Although minimizing the AAoI has received

considerable attention in the literature, some applications

impose stricter requirements on the tail of the AoI distri-

bution [13]. For a different view, we provide the yearly

(per annum) AoI violation probability PrfDk [ dg for two

values of the violation threshold d ¼ 20; 50 obtained with

Table 2 The yearly AoI

violation probabilities

PrfDk [ dg for two values of

d ¼ 20; 50 obtained with four

energy managers SEM-1, SEM-

4, MSEM-1, and MSEM-4 for a

span of twenty years

Year PrfDk [ 20g PrfDk [ 50g

SEM-1 SEM-4 MSEM-1 MSEM-4 SEM-1 SEM-4 MSEM-1 MSEM-4

1991 .2481 .0649 .1458 .0037 .1293 .0185 .0386 0

1992 .2401 .0554 .1267 .0015 .1265 .0150 .0300 0

1993 .2230 .0358 .1042 .0004 .1060 .0096 .0172 0

1994 .2339 .0577 .1218 .0028 .1227 .0176 .0254 0

1995 .2323 .0448 .1117 .0007 .1123 .0136 .0224 0

1996 .2518 .0719 .1443 .0029 .1313 .0217 .0351 0

1997 .2596 .0522 .1449 .0024 .1315 .0156 .0324 0

1998 .2641 .0596 .1489 .0010 .1318 .0178 .0325 0

1999 .2491 .0592 .1351 .0012 .1286 .0171 .0305 0

2000 .2308 .0339 .1039 .0002 .1100 .0103 .0186 0

2001 .2376 .0437 .1138 .0002 .1171 .0118 .0227 0

2002 .2449 .0557 .1303 .0004 .1243 .0127 .0294 0

2003 .2390 .0479 .1147 .0001 .1217 .0109 .0240 0

2004 .2473 .0606 .1283 .0004 .1257 .0170 .0242 0

2005 .2355 .0407 .1122 .0001 .1111 .0103 .0196 0

2006 .2463 .0586 .1296 .0013 .1243 .0165 .0260 0

2007 .2531 .0474 .1256 .0001 .1264 .0114 .0221 0

2008 .2417 .0475 .1190 .0008 .1190 .0128 .0220 0

2009 .2384 .0495 .1187 .0015 .1194 .0148 .0242 0

2010 .2529 .0518 .1309 .0006 .1248 .0145 .0272 0

Avg. .2435 .0520 .1256 .0012 .1222 .0145 .0263 0

Fig. 9 The AAoI depicted as a function of the solar panel area for the

dataset SEA when Ls ¼ 5 and N ¼ 4, for two different values of B
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four energy managers SEM-1, SEM-4, MSEM-1, and

MSEM-4 for a span of twenty years in Table 2 from 1991

to 2010. Using four time intervals in a given day in the

Markov model and producing an energy management

policy for each of the 12 months of the year as in MSEM-4

appears to be very effective in keeping the AoI violation

probability low and also throughout each of the 20 years

constituting the entire simulation period. With MSEM-4,

the AoI did not exceed 50 (corresponding to

500 min = 8.33 h) even once in a 20 year simulation run.

Again when MSEM-4 is employed, the AoI exceeded 20

(corresponding to 200 mins = 3.33 h) only in 0.12% of the

cases which is a remarkable improvement over the other

variants of the same algorithm which either do not use the

month of year information (SEM-1 and SEM-4) or the time

of day information (SEM-1 and MSEM-1). Moreover, such

behavior is shown to be even across the years in the

20-years long time window demonstrating robustness of

the proposed MSEM-4 energy management policy

(Table 2).

As a final example, we plot in Fig. 9 the AAoI as a

function of the solar panel area when MSEM-4 is deployed

on the status update system with Ls ¼ 5 for two different

values of B for the dataset SEA. For a fixed battery

capacity, the AAoI decreases as a function of increased

panel area but beyond a certain value of the panel area, the

reduction in AAoI is non-significant. This example shows

that a suitable combination of the panel area as well as the

battery capacity need to be used to attain a desirable AAoI.

7 Conclusions

In this paper, we study the optimal transmission policies for

solar-powered IoT devices with the goal of minimizing the

Average Age of Information (AAoI). Using historical

datasets, we employ DTMC models for intra-day variations

of harvestable solar energy and subsequently use the

average reward MDP framework to obtain harvesting-

aware energy management policies. When making a

transmission decision, these proposed policies take into

account of the instantaneous AoI, the instantaneous battery

level, as well as the time of day and the month of year. We

show that the obtained policies are effective in AAoI

reduction and also in improving upon the tail distribution

of AoI. A time of day resolution of 4 partitions per day is

deemed to provide satisfactory results for a wide range of

scenarios. Depending on the latitude of the location for the

corresponding dataset, using the month of year information

in energy management policies results in up to about 85%

reduction in AAoI. Future work will consist of the study of

non-solar powered energy harvesting sources as well as

other model-free optimization techniques such as rein-

forcement learning for AAoI reduction.
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