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a b s t r a c t 

The annotation of brain lesion images is a key step in clinical diagnosis and treatment of a wide spectrum of brain 

diseases. In recent years, segmentation methods based on deep learning have gained unprecedented popularity, 

leveraging a large amount of data with high-quality voxel-level annotations. However, due to the limited time 

clinicians can provide for the cumbersome task of manual image segmentation, semi-supervised medical image 

segmentation methods present an alternative solution as they require only a few labeled samples for training. In 

this paper, we propose a novel semi-supervised segmentation framework that combines improved mean teacher 

and adversarial network. Specifically, our framework consists of (i) a student model and a teacher model for 

segmenting the target and generating the signed distance maps of object surfaces, and (ii) a discriminator net- 

work for extracting hierarchical features and distinguishing the signed distance maps of labeled and unlabeled 

data. Besides, based on two different adversarial learning processes, a multi-scale feature consistency loss derived 

from the student and teacher models is proposed, and a shape-aware embedding scheme is integrated into our 

framework. We evaluated the proposed method on the public brain lesion datasets from ISBI 2015, ISLES 2015, 

and BRATS 2018 for the multiple sclerosis lesion, ischemic stroke lesion, and brain tumor segmentation respec- 

tively. Experiments demonstrate that our method can effectively leverage unlabeled data while outperforming 

the supervised baseline and other state-of-the-art semi-supervised methods trained with the same labeled data. 

The proposed framework is suitable for joint training of limited labeled data and additional unlabeled data, which 

is expected to reduce the effort of obtaining annotated images. 
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. Introduction 

Automatic segmentation of magnetic resonance images (MRI) is a

undamental problem and challenge in the field of medical image anal-

sis. Image segmentation can provide important quantitative measures

or lesion grading, classification, and disease diagnosis. Accurate med-

cal image segmentation can further assist clinicians in evaluating the

reatment response to related diseases and providing a reliable basis for

urgical planning and rehabilitation strategies ( Kaus et al., 2001 ). 

In recent years, computer-aided automatic segmentation frameworks

or brain lesion images such as multiple sclerosis, ischemic stroke and

rain tumor have achieved significant advances ( Zhang et al., 2019 ,

kkus et al., 2017 , Chen et al., 2020 , Kamnitsas et al., 2017 ). However,

ost existing brain lesion segmentation methods, especially those based
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n deep learning, relied on a large number of high-quality labeled data.

t was always time-consuming and expensive to produce accurate voxel-

evel annotations of medical images for training deep learning models

n a particular clinical task. Besides, such segmentations might suffer

rom inter- and intra-annotator (e.g., clinician) variability. Hence, ide-

lly one would design an automated deep learning architecture to accu-

ately segment medical images using a few labeled samples. 

To circumvent the need for labeled data, unsupervised learning has

een proposed for medical image labeling ( Dalca et al., 2018 ). However,

ue to the very low segmentation accuracy, such fully unsupervised ap-

roaches might not only fail to provide reliable automated clinical diag-

oses of patients but also be agnostic to complex anatomical structures

r lesions with large variability in shape and size. As another solution,

eakly-supervised learning ( Ahn and Kwak, 2018 , Huang et al., 2018 ,

u et al., 2017 , Song et al., 2019 ) did not require voxel-level labeled
ticle under the CC BY-NC-ND license 
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ata but used image-level labeled data instead as the weak supervised

ignal in the network training. Nevertheless, the image-level annotations

r boundary boxes for 3D medical images also need domain knowledge

nd were expensive to acquire. The application of weakly-supervised

earning models in medical imaging was still limited. Besides, semi-

upervised learning methods ( Cheplygina et al., 2019 ) struck a balance

etween cumbersome supervision and no-supervision, which presents a

ew lead for designing hybrid medical data analysis methods without

he need of time-consuming labels. 

The application of semi-supervised learning in image segmentation

as attracted significant attention. Papandreou et al. ( Papandreou et al.,

015 ) proposed a semi-supervised method using deep convolutional

eural networks that required image-level annotations and bounding

oxes for semantic segmentation. Hong et al. ( Hong et al., 2015 ) used

 few labeled samples and a large number of weakly class annotations

o train separate classification and segmentation networks and trans-

er class information between the networks. Similarly, the segmentation

etwork was also trained by combining image-level weak annotations

 Lee et al., 2019 , Wei et al., 2018 ). In addition to the unlabeled data,

hese methods also required image-level signals to assist semi-supervised

earning. 

With the development of generative adversarial networks (GAN)

 Goodfellow et al., 2014 ), some methods based on GAN have been pro-

osed for image semantic segmentation by only using unlabeled data.

ouly et al. ( Souly et al., 2017 ) expanded the training data using a

enerator network that produced images to remove the dependence

n the weakly annotations for auxiliary training. Similarly, Sun et al.

 Sun et al., 2019 ) introduced GAN into the brain tumor segmentation

ask, and its network was composed of a segmentor, a generator and a

iscriminator. The discriminator could better learn the boundary infor-

ation of the brain tumor through the label maps from the segmentor

nd the fake label maps from the generator. However, with such meth-

ds, the generated image examples may not be realistic enough to help

he training process. Zhang et al. ( Zhang et al., 2017 ) proposed a deep

dversarial network (DAN) without producing additional data, in which

he discriminator was used for evaluating the segmentation results of la-

eled images and unlabeled ones to distinguish them. To better use the

iscriminator to improve performance, Hung et al. ( Hung et al., 2018 )

roposed an adversarial learning strategy that the supervised model was

egarded as a generator while training a discriminator to determine the

uality of the segmentation results, and the reliable results were used as

seudo-labels to achieve the self-training scheme. Nie et al. ( Nie et al.,

018 ) further combined the adversarial network based on ( Hung et al.,

018 ) with a sample attention mechanism that could automatically se-

ect unlabeled data. As the current state-of-the-art method for semi-

upervised medical image segmentation, Li et al. ( Li et al., 2020 ) used

he adversarial network to capture shape-aware features with signed

istance maps (SDM) ( Dangi et al., 2019 , Xue et al., 2019 ) and im-

osed constraints on the segmentation output of unlabeled data. How-

ver, these methods have not yet explored the multi-task training of the

iscriminator. 

The methods based on consistency training ( Laine and Aila, 2017 ,

iyato et al., 2019 , Ouali et al., 2020 , Tarvainen and Valpola, 2017 )

ave gained success in semi-supervised learning, and are further ex-

lored for semi-supervised medical segmentation. The idea is that the

rediction results remain consistent after adding noise to the input data.

pecifically, the mean teacher model ( Tarvainen and Valpola, 2017 )

as a consistency-based method, which encouraged the segmentation

esults of two models (student model and teacher model) with the

ame network architecture to be consistent for the same unlabeled input

ith different noises, and improved the performance of semi-supervised

earning by averaging the model weights. Then, this consistency reg-

larization was extended for MR segmentation ( Perone and Cohen-

dad, 2018 ). Peng et al. ( Peng et al., 2020 ) further proposed deep co-

raining that encouraged different classifiers to output consistency pre-

ictions while increasing the diversity of models based on adversarial
2 
amples. The disadvantage of this method was that it needed to train

ultiple segmentation networks simultaneously and combine multiple

egmentation results in the test stage, which required greater compu-

ational resources. In addition, Cui et al. ( Cui et al., 2019 ) adapted the

ean teacher model to the segmentation task of ischemic stroke lesions.

u et al. ( Yu et al., 2019 ) further proposed improved consistency loss un-

er the guidance of uncertainty maps for semi-supervised segmentation.

uch applications showed the effectiveness of the mean teacher model

or the segmentation of binary medical images and have the potential to

e further improved to make better use of the unlabeled data. Recently,

ittal et al. ( Mittal et al., 2019 ) proposed a dual-branch framework with

 branch of GAN-based supervised segmentation network and another

ranch of mean teacher-based semi-supervised classification network,

hat was the state-of-the-art semi-supervised segmentation method for

atural images. This work demonstrated the complementarity of the

ean teacher model and the adversarial learning model. However, in

uch a framework, both models were trained separately, and the net-

ork fusion was required to combine the output of the two models. 

To solve these shortcomings, inspired by the related works, we pro-

ose a novel semi-supervised learning framework that deeply integrates

he adversarial network into the improved multi-scale mean teacher for

rain lesion segmentation. Our framework consists of a student model,

 teacher model, and a discriminator, all of which adopt convolutional

eural networks (CNNs). The student and teacher models based on the

ame segmentation network are trained to produce the segmentation

robability maps and SDM. According to the principle of consistency

raining, these two models encourage their segmentation maps to be

onsistent. However, unlike the previous work ( Cui et al., 2019 , Yu et al.,

019 ) that directly calculated the consistency loss between the segmen-

ation probability maps of the student model and teacher model, a new

onsistency loss derived from the segmentation regions is proposed in

ur framework. First, we multiply the segmentation results from two

odels with the same input images, obtaining two sets of segmenta-

ion regions, which represent the lesion regions of the original MRI

orresponding to the segmentation results. Then, the two sets of re-

ion images are passed to the discriminator for similarity comparison.

fter extracting hierarchical image features from multi-layer convolu-

ion modules, the multi-scale feature consistency loss is finally calcu-

ated to represent the similarity between the outputs of the student and

eacher models. Also, in our framework, the shape-aware embedding

cheme is introduced by an adversarial loss based on the discrimina-

or. Through learning the shape information from SDM of labeled and

nlabeled data, geometric constraints are imposed on the segmentation

esults, which can effectively guide the learning of the student model.

n the training process, the parameters of the teacher model are updated

ccording to the student model by using the exponential moving average

 Tarvainen and Valpola, 2017 ) (EMA) strategy. 

The major contributions of our work can be articulated as follows: 

1) We propose a multi-scale consistency strategy for semi-supervised

segmentation. Compared with previous consistency loss, which is

only computed between the segmentation results of the student

and teacher models, the new loss function pushes both models to

map their segmentation results to the lesion regions of the orig-

inal image, thereby incorporating voxel-level regularization infor-

mation and further improving the performance of teacher-student

co-learning. 

2) A joint training framework based on two different adversarial learn-

ing processes is explored. On one hand, the discriminator in the pro-

posed framework is used for supervised adversarial learning, forc-

ing the segmentation probability maps from the student model to be

closer to the ground truth by maximizing a multi-scale loss function.

On the other hand, the same discriminator is used to distinguish the

SDM from labeled and unlabeled data for implementing the shape-

aware embedding scheme through another adversarial learning. 
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Fig. 1. The overview of our proposed semi-supervised framework for brain lesion segmentation using multimodal MRI. The student model and the teacher model 

both produce the segmentation probability maps and signed distance maps (SDM), while the segmentation regions and SDM serve as inputs to the discriminator. It 

is worth noting that the same discriminator in two training processes is represented as two discriminators in this figure. The blue solid lines and the black solid lines 

represent the processing flow of unlabeled and labeled images, respectively (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.). 
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3) We have conducted extensive experiments on three different multi-

modal brain lesion segmentation datasets, including ISBI 2015,

ISLES 2015, and BRATS 2018. Compared with related state-of-the-

art semi-supervised segmentation methods, our framework can ef-

ficiently leverage the unlabeled data in each task to improve the

segmentation quality, demonstrating its stability and generalizabil-

ity. 

. Methods 

The overview of the proposed framework for semi-supervised 3D

rain lesion segmentation applied to multimodal MRI of brain tumor

s shown in Fig. 1 . Our framework is mainly composed of two networks:

 segmentation network for building student model and teacher model,

nd a discriminator as an adversarial network. Aiming at the training of

he student and teacher models on both labeled and unlabeled images,

 multi-scale consistency achieved by adversarial learning is proposed.

esides, the shape-aware feature learning is further embedded to con-

train the segmentation results. 

Given two sets of images, the labeled images 𝑋 𝑙 and the unlabeled

mages 𝑋 𝑢 , the size of the entire training set is 𝑁 , where the number

f labeled and unlabeled images is 𝐿 and 𝑈 , respectively. The entire
3 
raining set can be expressed as the set 𝑆 = { 𝑋 𝑛 , 𝑌 𝑙 } , comprising the

otal images 𝑋 𝑛 and the ground truth 𝑌 𝑙 corresponding to 𝑋 𝑙 . 𝑋 𝑛 =
 𝑋 𝑙 , 𝑋 𝑢 } = { 𝑥 1 , … , 𝑥 𝐿 , 𝑥 𝐿 +1 , … , 𝑥 𝐿 + 𝑈 } ∈ 𝑅 

𝐻×𝑊 ×𝐷×𝑁 , 𝑌 𝑙 = { 𝑦 1 , … , 𝑦 𝐿 } ∈
 

𝐻×𝑊 ×𝐷×𝐶×𝐿 . 𝐻 ×𝑊 ×𝐷 denotes the size of each image, where 𝐻 ,

 , 𝐷 represent the height, width and depth, respectively. The number

f label classes in each segmentation task is 𝐶. 

.1. Multi-scale consistency 

The multi-scale mean teacher is one of the fundamental parts of the

roposed framework, with an improved consistency training strategy.

imilar to the original architecture of the student and teacher models

 Tarvainen and Valpola, 2017 ), our framework also contains a student

odel 𝑆 and a teacher model 𝑇 , which have the same CNNs structure for

egmentation. During the training stage, the original mean teacher opti-

ized two kinds of losses, one is the segmentation loss based on labeled

mages, the other is the consistency loss, which was generally calculated

irectly based on the output probability maps of the student model and

eacher model. To enforce the consistency training, the clean unlabeled

mages were fed into the student model while the same one with addi-

ional Gaussian noise was input to the teacher model simultaneously.

ased on the assumption of the consistency strategy, these two models
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a  
ere expected to produce similar segmentation results when trained on

lean and noisy samples. 

In our framework, different from the previous methods, a discrimina-

or 𝐴 for adversarial learning is introduced as an important component

here we further propose a new consistency loss based on multi-scale

eatures extracted from this discriminator. Specifically, given the seg-

entation maps of unlabeled images generated from the student model

nd teacher model, we overlay them with the original input images to

roduce segmentation regions. 

As shown in Fig. 1 , these two sets of segmentation regions are gen-

rated from voxel-by-voxel multiplication of the input MRI and the seg-

entation probability maps, which can be regarded as the student seg-

entation regions and the teacher segmentation regions, respectively.

n our consistency training, these two segmentation regions are encour-

ged to be similar instead of only considering the consistency of the

robability maps like the original mean teacher model. 

Since CNNs can effectively learn image features with multi-layer

cales. To better measure the consistency of segmentation regions, the

ierarchical features of the segmentation regions from the CNNs-based

iscriminator are extracted and concatenated at multiple layers. Then,

he multi-scale features of two inputs from the corresponding network

ayers are compared by computing the difference between the student

egmentation regions and the teacher ones. 

More formally, the multi-scale loss ( Xue et al., 2018 ) calculated

ased on the hierarchical features from the discriminator is regarded

s our proposed new consistency loss  𝑐𝑜𝑛 : 

 𝑐𝑜𝑛 = 

∑
ℎ,𝑤,𝑑 

𝛿𝑚𝑎𝑒 

(
𝐴 

(
𝑋 𝑢 ⊗𝑆 𝑠𝑒𝑔 

(
𝑋 𝑢 

))( ℎ,𝑤,𝑑 ) 
, 𝐴 

(
𝑋 𝑢 ⊗ 𝑇 𝑠𝑒𝑔 

(
𝑋 𝑢 

))( ℎ,𝑤,𝑑 ) )
(1)

here 𝑆 𝑠𝑒𝑔 ( ⋅) and 𝑇 𝑠𝑒𝑔 ( ⋅) represent the segmentation probability maps

rom the student model and the teacher model, respectively. ⊗ indicates

he voxel-by-voxel multiplication operation of two images, thus 𝑋 𝑢 ⊗

 𝑠𝑒𝑔 ( 𝑋 𝑢 ) and 𝑋 𝑢 ⊗ 𝑇 𝑠𝑒𝑔 ( 𝑋 𝑢 ) denote the student segmentation regions and

eacher segmentation regions that are obtained by multiplying the same

nlabeled input image and two corresponding segmentation probability

aps. And 𝛿𝑚𝑎𝑒 is defined as: 

𝑚𝑎𝑒 

(
𝐴 𝑓 ( 𝑋 ) , 𝐴 𝑓 

(
𝑋 

′)) = 

1 
𝐾 

𝐾 ∑
𝑖 =1 

|||𝐴 𝑓 ( 𝑋 ) 𝑖 − 𝐴 𝑓 

(
𝑋 

′)𝑖 ||| (2)

here 𝐾 is the number of network layers in the discriminator and

 𝑓 ( 𝑋) 𝑖 is the feature vector output at the 𝑖 -th layer. The purpose of

ptimizing  𝑐𝑜𝑛 is that the probability map produced by 𝑆 is closer to

hat of 𝑇 , and to better learn the distribution of unlabeled images. 

.2. Shape-aware feature learning 

To further improve the model performance using unlabeled images,

e also implement a shape-aware embedding scheme based on our dis-

riminator. Therefore, the function of the proposed segmentation net-

ork is expanded, which can generate not only the segmentation prob-

bility maps but also the 3D signed distance maps (SDM). Specifically,

he tanh activation function is used in the final output layer of the stu-

ent model ( Xue et al., 2019 ) to obtain SDM. In our framework, each

oxel point in the SDM image is assigned a value, which indicates the

istance from the point to the closest point on the surface of the target

esion. 

First, from the labeled images, we can effectively learn the represen-

ation of shape-aware features and the loss  𝑠𝑑𝑚 based on SDM can be

ormulated as follows: 

 𝑠𝑑𝑚 = 

∑
ℎ,𝑤,𝑑 

𝛿𝑚𝑠𝑒 

(
𝑆 𝑠𝑑𝑚 

(
𝑋 𝑙 

)( ℎ,𝑤,𝑑 ) 
, 𝑍 𝑙 

( ℎ,𝑤,𝑑 ) 
)

(3)

here 𝛿𝑚𝑠𝑒 denotes the commonly used mean square error loss. 𝑆 𝑠𝑑𝑚 ( 𝑋 𝑙 )
epresents the SDM of labeled images generated from the student model.

 is the SDM derived from the corresponding ground truth 𝑌 . 
𝑙 𝑙 

4 
For utilizing unlabeled images to constrain the segmentation results

f the student model, we employ SDM-based adversarial training be-

ween unlabeled images and labeled images to better learn and encode

he shape features of the target object. 

Thus, the SDM and the corresponding segmentation regions will si-

ultaneously serve as the inputs of the discriminator. Specifically, for

ll input images 𝑋 𝑛 , in addition to the hierarchical features generated

or the student and teacher models, the discriminator will also produce

he SDM related output 𝐴 𝑠𝑑𝑚 ( 𝑋 𝑛 ) only for the student model. 

In general, the discriminator generates multi-scale features corre-

ponding to the unlabeled images, so that the student and teacher mod-

ls are consistent, and it is also used to force the SDM output of the

nlabeled and labeled images from the student model to be consistent. 

On one hand, the discriminator generates multi-scale features corre-

ponding to the unlabeled images to improve the consistency training of

he student and teacher models. On the other hand, discriminator-based

dversarial learning is used to force the SDM output of the unlabeled

nd labeled images from the student model to be consistent. 

.3. Network training 

In the adversarial training process of our framework, the student

odel is forced to generate SDM to fool the discriminator, while the

iscriminator is trained to distinguish between the input SDM from la-

eled images or unlabeled images so that the information we learn can

e closer to the geometric shape of the ground truth. To train the dis-

riminator network, we minimize the following spatial cross-entropy

oss  𝐴 for the discriminator defined as: 

 𝐴 = 

∑
ℎ,𝑤,𝑑 

𝛿𝑏𝑐𝑒 

(
𝐴 𝑠𝑑𝑚 

(
𝑋 𝑙 

)( ℎ,𝑤,𝑑 ) 
, 1 
)
+ 𝛿𝑏𝑐𝑒 

(
𝐴 𝑠𝑑𝑚 

(
𝑋 𝑢 

)( ℎ,𝑤,𝑑 ) 
, 0 
)

(4)

here 𝛿𝑏𝑐𝑒 is the binary cross-entropy loss. 𝐴 𝑠𝑑𝑚 ( 𝑋 𝑙 ) and 𝐴 𝑠𝑑𝑚 ( 𝑋 𝑢 ) rep-

esent the outputs of the discriminator corresponding to the SDM gener-

ted by the labeled images and unlabeled images, respectively. During

he training phase, the discriminator is encouraged to give the SDM in-

uts that are produced from the labeled images higher scores, while the

DM inputs of the unlabeled images correspond to lower scores. This

oss is used to train the discriminator to separate the unlabeled SDM

rom the labeled SDM distribution more precisely. 

For the student model, the multi-class cross-entropy is adopted as

he supervised segmentation loss, bring the segmentation results closer

o the distribution of the ground truth. Also, the dice loss ( Isensee et al.,

018 ) is integrated into this segmentation loss. More specifically, this

oxel-wise loss between the probability maps from the student model

nd the corresponding ground truth is given as: 

 seg = 

∑
ℎ,𝑤,𝑑 

(
𝛿mce 

(
𝑆 seg 

(
𝑋 𝑙 

)( ℎ,𝑤,𝑑 ) 
, 𝑌 𝑙 

)
+ 𝛿dc 

(
𝑆 seg 

(
𝑋 𝑙 

)( ℎ,𝑤,𝑑 ) 
, 𝑌 𝑙 

))
(5) 

here 𝛿𝑚𝑐𝑒 and 𝛿𝑑𝑐 is the multi-class cross-entropy loss and the dice

oss, 𝑌 𝑙 is the one-hot encoded ground truth vector. 

Also, an adversarial loss  𝑎𝑑𝑣 that is given by discriminator is calcu-

ated: 

 𝑎𝑑𝑣 = − 

∑
ℎ,𝑤,𝑑 

𝛿𝑏𝑐𝑒 

(
𝐴 𝑠𝑑𝑚 

(
𝑋 𝑢 

)( ℎ,𝑤,𝑑 ) 
, 0 
)

(6)

As in ( Goodfellow et al., 2014 ), when training the segmentation net-

ork and updating the parameters, we replace the term of  𝑎𝑑𝑣 with

 

∑
ℎ,𝑤,𝑑 

𝛿𝑏𝑐𝑒 ( 𝐴 𝑠𝑑𝑚 ( 𝑋 𝑢 ) ( ℎ,𝑤,𝑑 ) , 1 ) , which is used to maximize the probability

hat the SDM corresponding to the unlabeled images is considered as

he distribution that is generated by the ground truth. 

Finally, we optimize the segmentation network with the total loss

 𝑆 that can be defined as the sum of the four losses described above: 

 𝑆 =  𝑠𝑒𝑔 + 𝜆𝑠𝑑𝑚  𝑠𝑑𝑚 + 𝜆𝑐𝑜𝑛  𝑐𝑜𝑛 + 𝜆𝑎𝑑𝑣  𝑎𝑑𝑣 (7)

 𝑠𝑒𝑔 represents the sum of multi-class cross-entropy and dice loss,

nd  represents the shape-aware mean square loss, both of which
𝑠𝑑𝑚 
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1 https://smart-stats-tools.org/lesion-challenge-2015/ 
2 https://ipp.cbica.upenn.edu/ 
re based on labeled images.  𝑐𝑜𝑛 and  𝑎𝑑𝑣 represent the multi-scale con-

istency loss and the adversarial loss that are computed with unlabeled

mages respectively. 𝜆𝑠𝑑𝑚 , 𝜆𝑐𝑜𝑛 and 𝜆𝑎𝑑𝑣 are the corresponding weighting

oefficients to balance the relative importance of the proposed losses. 

During the training stage, to force the output of the student model

o be more reliable, we also introduce a supervised adversarial training

rocess based on another multi-scale feature loss. This loss was calcu-

ated from the ground truth and segmentation results when training with

abeled images. Similar to  𝑐𝑜𝑛 , we multiply the input labeled image

ith the segmentation results of the student model and the ground truth

nes, to produce the segmentation regions and the real lesion regions

f the original MRI, respectively. Next, we input these region images to

he discriminator separately, and another multi-scale feature loss  𝑀 

is

btained: 

 𝑀 

= 

∑
ℎ,𝑤,𝑑 

𝛿𝑚𝑎𝑒 

(
𝐴 

(
𝑋 𝑙 ⊗𝑆 𝑠𝑒𝑔 

(
𝑋 𝑙 

))( ℎ,𝑤,𝑑 ) 
, 𝐴 

(
𝑋 𝑙 ⊗ 𝑌 𝑙 

)( ℎ,𝑤,𝑑 ) )
(8)

here 𝐴 ( 𝑋 𝑙 ⊗ 𝑌 𝑙 ) represents the hierarchical features of the real lesion

egions extracted from the discriminator. Thus, our training objective

f the student model and discriminator can be jointly described as a

in-max process, which can be written as: 

in 
𝜃𝑆 

max 
𝜃𝐴 

 

(
𝜃𝑆 , 𝜃𝐴 

)
=  𝑆 +  𝐴 +  𝑀 

(9)

Overall, the student model 𝑆 and discriminator 𝐴 in our framework

re trained by backpropagation using the loss  . In the alternating train-

ng process, given a fixed 𝐴 , 𝑆 aims to minimize the loss  𝑆 and  𝑀 

for

he parameters 𝜃𝑆 . Next, we fix 𝑆, while 𝐴 aims to minimize the loss  𝐴 

nd maximize the loss  𝑀 

for the parameters 𝜃𝐴 . 

Besides, in every training step 𝑗, the parameters of the teacher model

𝑇 are updated based on the parameters 𝜃𝑆 using the exponential mov-

ng average (EMA). This update strategy can be defined as: 

𝑇 ( 𝑗 ) = 𝛼𝜃𝑇 ( 𝑗 − 1 ) + ( 1 − 𝛼) 𝜃𝑆 (10)

here 𝛼 is the hyperparameter that controls the EMA decay. 

. Experiments 

The proposed architecture was evaluated on three public datasets of

D MRI for brain lesion segmentation tasks, including multiple sclero-

is lesion segmentation, ischemic stroke lesion segmentation, and brain

umor segmentation. 

.1. Datasets 

.1.1. Multiple sclerosis lesion 

Firstly, the dataset of the ISBI longitudinal multiple sclerosis lesion

egmentation challenge (ISBI 2015) ( Carass et al., 2017 ) was selected

o evaluate the performance of our proposed framework on brain le-

ion segmentation. In this dataset, a total of 21 images from 5 patients

ith different time points are available as training data. Since the longi-

udinal image information was not considered in our experiment, each

ime-point was treated as a separate training image. Each time-point im-

ge in the training data corresponds to two manual segmentation labels

hat are annotated by two different raters. Thus, the training data were

nally considered to be 42 images to make full use of each label. The

nseen test data contains 14 patients with 4 to 6 time-points, resulting

n 61 images. The images of training and test data both contain four

ifferent MRI modalities: FLAIR, MPRAGE, T2 and Proton Density (PD).

n our semi-supervised settings, we first randomly split the training data

nto 35 scans as a training set and 7 scans as a test set, then considered

0% (7 scans) of the training set as labeled images and the remaining

0% (28 scans) as unlabeled images. 

.1.2. Ischemic stroke lesion 

The ischemic stroke lesion dataset from MICCAI 2015 (ISLES 2015)

 Maier et al., 2017 ) contains 28 labeled MRI scans of ischemic stroke
5 
esion cases. Each scan contains four MRI modalities: T1, Diffusion-

eighted Imaging (DWI), T2, and FLAIR. The images also have been

reprocessed by experts. We split 28 scans into 20 scans and 8 scans

or training and testing. To evaluate models trained with different ra-

ios of the training set, we used 10% (2 scans) and 20% (4 scans) of the

raining set as labeled input images and the corresponding remaining as

nlabeled images. Besides, due to the size limit of this dataset, an ad-

itional cross-validation experiment under 10% of the semi-supervised

ettings was performed to make the proposed method more convincing.

pecifically, 18 scans of the dataset were randomly taken as unlabeled

mages, and 5-fold cross-validation was applied on the remaining 10

cans. 

.1.3. Brain tumor 

Then, we extended our experiment on multi-class imbalanced data,

ith the brain tumor segmentation dataset at MICCAI 2018 (BRATS

018) ( Menze et al., 2015 ). It consists of 285 training MRI scans, which

re randomly grouped into a training set with 228 scans and a testing

et with 57 scans. Each scan of the patient contains four MRI modali-

ies: T1, T2, FLAIR, and post-contrast T1-weighted (T1c). Further details

bout preprocess steps that have been performed on this dataset can be

ound in ( Menze et al., 2015 ). We also randomly drew nearly 10% (22

cans) and 20% (45 scans) from the whole training set as labeled images

nd the remaining data as unlabeled images. To verify the generaliza-

ion of our model, we also evaluated the trained models on 66 unseen

est data. The goal of this task is to evaluate three tumor regions: whole

umor (WT), tumor core (TC), and enhancing tumor (ET). 

In each experiment, the baseline model was trained without unla-

eled data, and other semi-supervised methods used the same data set-

ings as our framework. 

.2. Evaluation metrics 

For different brain lesion datasets, we used evaluation methods and

etrics consistent with each segmentation challenge. In the evaluation

f ISBI 2015, the Dice, positive predictive value (PPV), true positive

ate (TPR), lesion false positive rate (LFPR), lesion true positive rate

LTPR), and the Pearson’s correlation coefficient of the volumes (VC)

ere calculated to describe the difference between the segmentation

esults from the methods and the ground truth from two human rates.

o better evaluate important metrics, the methods were ranked based

n the website score (WS), which was computed independently by the

hallenge website 1 , and can be described as the total weighted score of

he above metrics: 

 𝑆 = 

1 
|𝑅 |

1 
|𝑆 |

∑
𝑅,𝑆 

(
𝐷𝑖𝑐𝑒 

8 
+ 

𝑃 𝑃 𝑉 

8 
+ 

1 − 𝐿𝐹 𝑃 𝑅 

4 
+ 

𝐿𝑇 𝑃 𝑅 

4 
+ 

𝑉 𝐶 

4 

)
(14)

here 𝑆 is the set of all subjects, 𝑅 is the set of all raters. A method with

 WS score of 90 is considered to be comparable to the performance of

uman raters ( Carass et al., 2017 ). 

In addition to the commonly used Dice, Precision, Sensitivity, and

ausdorff Distance (HD), Average Symmetric Surface Distance (ASSD)

as also evaluated in ISLES 2015 ( Maier et al., 2017 ). As for the metrics

f the BRATS dataset, we used Dice, Specificity, Sensitivity, and HD95

 Menze et al., 2015 ), which can be calculated from the online evaluation

ystem 

2 . 

.3. Network Architecture and implementation 

In our experiments, for the segmentation network of the proposed

ramework, the patch-based 3D U-Net modified from ( Kao et al., 2019 )

as employed, which can process 3D input patches of 128 × 128 × 128

oxels. The network has an encoder path and a decoder path composed
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Table 1 

Quantitative comparison for the performance of the supervised baseline trained with 20% and 100% labeled set and semi-supervised methods trained with 20% 

labeled and 80% unlabeled set on the ISBI 2015 training data. 

Lab/All Method Dice(%) PPV(%) TPR(%) LFPR(%) LTPR(%) 

baseline 77.46 ± 7.06 79.81 ± 13.04 77.23 ± 11.02 51.65 ± 18.19 79.67 ± 14.69 

MT 77.37 ± 6.36 80.62 ± 13.52 76.80 ± 11.86 42.76 ± 19.56 81.63 ± 11.68 

20% UA-MT 77.12 ± 6.59 79.43 ± 13.81 77.49 ± 11.95 39.19 ± 20.86 81.72 ± 11.68 

SASSNet 77.39 ± 7.18 75.95 ± 14.93 82.19 ± 11.09 49.07 ± 15.23 82.33 ± 10.38 

MTAN 77.11 ± 6.43 80.27 ± 13.29 76.60 ± 11.97 37.34 ± 17.77 80.85 ± 11.37 

MTANS 78.51 ± 6.24 79.32 ± 13.16 79.58 ± 8.05 12.67 ± 11.50 76.87 ± 11.01 

100% baseline 81.60 ± 6.35 78.28 ± 11.27 86.32 ± 5.77 43.06 ± 12.11 88.53 ± 5.77 

o  

fi  

2  

c  

v  

t  

c

 

w  

l  

t  

m  

a  

i  

r

 

s  

T  

s  

d

 

w  

d  

i  

i  

i

 

i  

G  

fi  

I

 

2  

o  

u  

i  

d  

v  

𝜆  

a  

t  

0  

B  

i  

a  

V

 

a  

p  

a  

a  

o  

f  

T  

a  

o  

t  

h

4

4

 

o  

t  

d  

m  

t  

t  

t  

d

 

w  

t  

s  

d  

m  

D  

a  

a  

m  

m

 

b  

T  

m  

s  

o  

a  

p  

t  

A  

i  

o

 

c  

p  

b  

b  

m

4

 

i  
f four context modules with the convolutional layer. The number of

lters in the layers of the encoder-decoder path are 32, 64, 128, and

56, respectively. Moreover, the tanh activation is added to the final 3D

onvolution block to form an SDM module. The discriminator is the 3D

ersion extended from ( Xue et al., 2018 ), which consists of 6 convolu-

ional layers for downsampling and a multilayer perceptron for binary

lassification. 

For better comparison, the 3D U-Net ( Kao et al., 2019 ) backbone

as employed as a supervised baseline, which trained with the same

abeled data as other semi-supervised methods on all three tasks. As

he semi-supervised methods that were related to our framework, the

ean teacher (MT) was trained with the same segmentation network

rchitecture and parameter settings. Besides, the segmentation networks

n UA-MT ( Yu et al., 2019 ) and SASSNet ( Li et al., 2020 ) were also

eplaced by 3D U-Net. 

In the experiments, for MT, UA-MT and our framework, both the

tudent model and teacher model were evaluated for better comparison.

hus, when testing the unseen data of ISBI 2015 and BRATS 2018, the

tudent model or teacher model which performed better in the training

ata, was selected for testing. 

In particular, two versions of our framework, MTAN and MTANS,

ere trained to test the strategies adopted in our framework. MTAN

enotes the combination of the MT model and adversarial learning with

ntroducing the multi-scale feature consistency loss for training, which

s the main component of our framework. MTANS represents the further

mplementation of the MTAN with shape-aware embedding. 

The implementation of our proposed framework was developed us-

ng PyTorch. All models were trained on NVIDIA GeForce RTX 2080 Ti

PU with 11GB of RAM. The maximum number of training epochs was

xed to 600, and the training time of MTANS was nearly 20.5 hours on

SBI 2015, 10 hours on ISLES 2015 and 163 hours on BRATS 2018. 

For the segmentation network, AMSGrad optimizer ( Reddi et al.,

018 ) was adopted for all models, both with an initial learning rate

f 3 × 10 − 4 and a weight decay of 3 × 10 − 5 . For the discriminator, we

sed the Stochastic Gradient Descent (SGD) ( Bottou, 2010 ), with the

nitial learning rate of 1 × 10 − 4 , the momentum of 0.5 and the weight

ecay of 1 × 10 − 4 for all three tasks. For the three hyperparameters in-

olved in our proposed framework, 𝜆𝑐𝑜𝑛 , 𝜆𝑠𝑑𝑚 and 𝜆𝑎𝑑𝑣 , we first fixed

𝑐𝑜𝑛 to be 0.1, which is the same as the original Mean-Teacher model

nd UA-MT. Then we built a series of experiments for hyperparameter

uning on the ISLES 2015 dataset to determine 𝜆𝑠𝑑𝑚 and 𝜆𝑎𝑑𝑣 as 0.3 and

.1 respectively. In the other two brain lesion datasets, ISBI 2015 and

RATS 2018, our framework also used the same hyperparameters and

nitial weights. The detailed update strategy for each step was the same

s ( Li et al., 2020 ). Besides, the EMA decay 𝛼 was 0.99 ( Tarvainen and

alpola, 2017 ). 

For the processing of the datasets, we have not used any image

ugmentation during the training of the evaluated methods in our ex-

eriments. Since the preprocessed versions of training and test im-

ges in this challenge have been provided for experiments, we only

pplied N4 bias field correction ( Tustison et al., 2010 ) for all images

f ISLES 2015 and BRATS 2018. Then, z-score normalization was per-

ormed on each image of three datasets as another preprocessing step.

m  

6 
he random crop strategy was used to produce the 3D patch-wise im-

ges as input for training. In the testing stage, we fed the uncropped

riginal images into the trained model and obtained the segmenta-

ion labels. The source code of our proposed framework is available at

ttps://github.com/wzcgx/MTANS. 

. Results 

.1. Multiple sclerosis lesion segmentation 

We first evaluated the performance of the proposed framework and

ther comparison methods for multiple sclerosis lesion segmentation on

he ISBI 2015. The supervised 3D U-Net trained with labeled training

ata is used as a baseline model, several recent semi-supervised seg-

entation methods, including MT, UA-MT and SASSNet were selected

o compare with our proposed methods. In this experiment, in addition

o the baseline trained with the same labeled data (20%, 7 labeled) as

he semi-supervised methods, a fully supervised baseline with all labeled

ata (100%, 35 labeled) was also trained. 

First, as shown in Table 1 , model training and testing experiments

ere conducted on ISBI 2015 training data. We can observe that from

he perspective of various metrics, there was no comparison semi-

upervised method has particularly outstanding performance on this

ataset, which meant achieving higher scores than other methods on all

etrics. Among them, the proposed MTANS has the best performance in

ice compared with other semi-supervised methods and even achieved

 lower LFPR score than the full supervised baseline. More specifically,

ccording to the quantitative segmentation results shown in Fig. 2 , our

ethod generated relatively fewer false positives than other comparison

ethods. 

Table 2 shows the quantitative results of unseen test data obtained

y the baseline and the methods trained with 20% labeled training set.

hrough further comparison among the results between semi-supervised

ethods, the role of the proposed multi-scale feature consistency and

hape-aware embedding in our framework can be investigated. As one

f the state-of-the-art semi-supervised segmentation methods, SASSNet

chieved the best scores in Dice, its WS score was worse than our pro-

osed methods due to the poor performance in LFPR. In comparison,

he performance of MTAN in PPV and LFPR was better than SASSNet.

s seen in Fig. 3 , when comparing the results of MTAN and MTANS, it

s noticeable that MTANS further significantly improved the LFPR score

f MTAN thanks to the shape-aware embedding. 

As a combination of the metrics, the score of WS shows that the

omprehensive performance of the methods. It is worth noting that our

roposed MTAN and MTANS achieved high scores of 89.39 and 90.86,

oth were superior to other comparative semi-supervised methods and

aseline. In particular, the score of MTANS was higher than the baseline

odel trained by the 100% training set, with a score of 89.77. 

.2. Ischemic stroke lesion segmentation 

In the experiments of the proposed semi-supervised method for

schemic stroke segmentation, we analyzed the segmentation perfor-

ance and effect of our framework under different settings. In Table 3 ,
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Fig. 2. Examples of three cases from the ISBI 2015 dataset. The segmentation results of each method trained with 20% labeled set are overlapped with the ground 

truth. The true positives, false negatives and false positives of the result images are colored in blue, green and red, respectively (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.). 

Table 2 

Quantitative comparison for the performance of proposed semi-supervised methods, supervised baseline and other semi-supervised methods on the ISBI 2015 

unseen test data. 

Lab/All Method WS Dice(%) PPV(%) TPR(%) LFPR(%) LTPR(%) VC 

baseline 88.48 53.81 ± 12.22 78.71 ± 14.44 43.14 ± 14.78 54.99 ± 20.27 45.03 ± 19.49 0.8325 

MT 88.92 54.15 ± 13.12 79.21 ± 15.53 43.68 ± 15.89 48.94 ± 20.50 45.40 ± 20.53 0.8127 

20% UA-MT 89.33 56.00 ± 13.92 80.99 ± 14.71 45.58 ± 17.15 46.44 ± 21.19 46.17 ± 21.28 0.8197 

SASSNet 89.16 56.89 ± 12.57 76.76 ± 17.08 47.95 ± 14.90 46.71 ± 19.22 44.64 ± 20.94 0.8431 

MTAN 89.39 53.80 ± 14.29 81.88 ± 15.63 42.48 ± 16.02 43.79 ± 21.54 44.42 ± 20.67 0.8291 

MTANS 90.86 53.12 ± 15.03 84.26 ± 16.61 41.21 ± 15.68 15.09 ± 16.49 34.29 ± 18.89 0.8301 

100% baseline 89.77 61.75 ± 13.70 78.13 ± 16.16 53.80 ± 17.08 51.63 ± 20.32 53.11 ± 22.33 0.8719 

Fig. 3. Box plot of positive predictive value (PPV) and lesion false positive rate (LFPR) for the segmentation results of ISBI test data when trained with 7 scans as 

labeled images. We have performed a paired student’s t-test between the proposed MTANS and other models to calculate p-values. ∗ denotes p < 0.05, ∗ ∗ denotes p 

< 0.005, and ∗ ∗ ∗ denotes p < 0.0005. 

7 
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Table 3 

Quantitative evaluation of our methods and other comparison methods on the ISLES 2015 dataset under the two ratios of labeled training set. 

Lab/All Method Dice(%) Precision(%) Sensitivity(%) ASSD HD 

baseline 55.47 ± 25.48 57.24 ± 25.20 67.04 ± 3.23 7.70 ± 8.35 61.29 ± 18.45 

MT 55.39 ± 32.58 59.70 ± 34.64 67.19 ± 38.17 9.65 ± 15.63 48.84 ± 26.02 

10% UA-MT 57.45 ± 26.65 61.25 ± 23.73 68.42 ± 34.55 7.58 ± 8.17 61.95 ± 18.88 

SASSNet 59.63 ± 24.12 63.33 ± 30.03 74.18 ± 23.55 5.37 ± 2.75 39.08 ± 22.17 

MTAN 56.16 ± 26.96 65.62 ± 26.05 66.89 ± 33.03 7.10 ± 5.73 70.00 ± 13.24 

MTANS 61.66 ± 20.71 72.52 ± 20.74 68.10 ± 31.51 4.65 ± 2.58 37.39 ± 22.81 

baseline 59.21 ± 25.37 69.42 ± 23.72 65.63 ± 29.59 4.31 ± 2.07 37.56 ± 15.58 

MT 64.73 ± 18.60 75.75 ± 19.24 64.78 ± 26.86 3.16 ± 1.40 38.92 ± 25.26 

20% UA-MT 64.41 ± 21.84 72.59 ± 18.67 68.82 ± 27.85 3.56 ± 1.38 47.65 ± 21.25 

SASSNet 63.99 ± 24.64 60.47 ± 26.19 79.38 ± 16.61 5.30 ± 4.26 49.48 ± 23.30 

MTAN 60.34 ± 25.41 68.62 ± 26.01 69.55 ± 28.41 4.16 ± 2.27 45.87 ± 16.25 

MTANS 69.08 ± 12.56 67.97 ± 21.65 79.51 ± 17.42 3.51 ± 2.43 29.75 ± 14.95 

Fig. 4. Qualitative results of segmentation examples ob- 

tained by proposed MTAN and MTANS models, and other 

comparison methods that all trained with only 10% labeled 

training set on ISLES 2015 dataset. 
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e present the performance of the models trained on the ISLES 2015

ataset. 

Specifically, we first experimented with 10% images of the train-

ng set that were regarded as the labeled samples, and the remaining

mages of the training set that were considered as the unlabeled sam-

les. The proposed MTAN achieved a Dice score of 56.16%, only higher

han baseline and MT, but as far as Precision is concerned, the per-

ormance of MTAN obtained a better score of 65.62% than comparable

emi-supervised methods. Additionally, we can observe that our MTANS

as the best semi-supervised performance, with higher Dice and Preci-

ion, and lower ASSD and HD measurements. Qualitative results of the

everal models trained with 10% labeled set on ISLES 2015 are shown

n Fig. 4 . 

Then, we increased the ratio of the labeled training set up to 20%

o find out the effect of different labeled and unlabeled data on the

egmentation performance. As seen in Fig. 5 , with the increase of labeled

ata, the performance of UA-MT and SASSNet in this experiment was

orse than that of the MT model. In contrast, MTANS achieved a Dice

core of 69.08%, which was nearly 10% higher than the baseline. 

Finally, we performed 5-fold cross-validation on all methods under

he 10% setting. The proposed MTAN obtained a better Dice score than

A-MT, which is one of the state-of-the-art methods based on consis-

ency training. In addition, MTAN also achieved better performance in

ensitivity and HD. Although the best score of Precision was obtained,

he overall performance of UA-MT on this dataset was not ideal. Consid-

ring the Dice and HD scores of MTAN, we notice that its performance

as better than the consistency-based methods. Overall, the results in

able 4 show that MTANS was still the best semi-supervised method,

nd compared to other methods, it has outstanding performance on al-

ost all metrics in this experiment. 
8 
.3. Brain tumor segmentation 

We further evaluated the performance of our semi-supervised frame-

ork for the segmentation of multi-class lesions in brain tumor images.

ables 5 and 6 present the evaluation performance of our framework

nd other methods on the BRATS 2018 training data under 10% and

0% experiment settings, respectively. The visual segmentation exam-

les of models trained with 10% setting can be found in Fig. 6 , and Fig. 7

hows the detailed boxplot for this experiment. 

First of all, when our MTAN only used 10% of the labeled train-

ng set, it outperformed other methods only in Specificity. However,

he shape-aware embedding still shows an all-around improvement to

ur MTAN. It can be observed from Fig. 7 that our MTANS was bet-

er than MTAN and other methods in Dice, Sensitivity and HD scores

f the whole tumor and tumor core regions. We can also observe from

able 6 that not all semi-supervised methods could boost the perfor-

ance while the labeled training data increases and the unlabeled data

ecreases, especially for the segmentation of the tumor core region, the

ice of MT, UA-MT, and our MTAN were all lower than the baseline. And

or the Dice measurement of the enhancing tumor region, UA-MT per-

ormed poorly, while MTAN achieved the highest segmentation score.

esides, MTANS obtained higher scores on most evaluation items than

ther methods, proving the effectiveness of our semi-supervised frame-

ork in this task. Specifically, under both experimental settings, it is

specially noticeable when comparing MTANS with baseline, the Dice

ncreased from 79.74% to 83.03%, 81.04% to 84.86% for whole tumor

egions, 66.90% to 71.79%, 72.53% to 74.15% for the tumor core. With

he comparison of both Sensitivity and HD95, MTANS still achieved the

est performance than other semi-supervised methods in these two re-

ions. 
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Fig. 5. The bar plot of the performance of mean 

and standard deviation measured by Dice for base- 

line, MT, UA-MT, SASSNet, our proposed MTAN and 

MTANS trained with 10% and 20% labeled training 

set on ISLES 2015 dataset. 

Table 4 

Quantitative comparison of our proposed framework and other methods all trained with 10% labeled set, using 5-fold cross-validation on ISLES2015 dataset. 

Method Dice(%) Precision(%) Sensitivity(%) ASSD HD 

baseline 58.41 ± 24.03 70.14 ± 28.37 57.16 ± 27.32 8.32 ± 11.65 55.13 ± 21.71 

MT 59.26 ± 23.95 74.28 ± 25.72 57.49 ± 28.53 7.14 ± 10.34 51.87 ± 24.92 

UA-MT 59.54 ± 22.27 77.40 ± 22.68 57.51 ± 27.55 6.02 ± 5.82 51.40 ± 20.66 

SASSNet 61.91 ± 21.25 67.63 ± 27.02 65.54 ± 20.45 7.31 ± 8.41 48.21 ± 31.51 

MTAN 61.85 ± 21.13 74.74 ± 22.40 60.33 ± 25.64 7.23 ± 15.33 48.32 ± 22.05 

MTANS 64.41 ± 18.40 68.43 ± 21.49 68.11 ± 22.31 4.93 ± 4.45 40.39 ± 23.70 

Fig. 6. Qualitative brain tumor segmentation results of two cases from BRATS 2018 dataset achieved by the supervised baseline, comparison semi-supervised methods 

and the proposed methods that all trained with 10% labeled data. 
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We further verified the generalizability of all models by directly ap-

lying the trained model to the unseen test data. Tables 7 and 8 show the

etailed quantitative experiment results of each method on the BRATS

018 unseen test data. Overall, we can conclude that in terms of the

umber of best results obtained in these metrics, our proposed MTANS

erformed better than comparable methods. As seen in Table 7 , the Dice

f our method on the whole tumor is better than other comparison meth-

ds when only trained with 10% labeled data. It is worth noting that the

ice score of MTANS in the whole tumor region is 85.68%, which is even

etter than the results of other methods trained with 20% labeled data

n Table 8 , except for UA-MT. In addition, our method has the best score

f Specificity and Sensitivity in this region. And in the experiments of

0% setting, MTANS achieved the best results on more metrics, espe-

ially the improvement of the Dice and Sensitivity in the tumor core

egion. 
9 
. Discussion 

We have evaluated the performance of our proposed semi-supervised

ramework and other comparison methods, with their applicability in

hree different brain lesion segmentation tasks. As one of the relevant

emi-supervised methods, the consistency-based model has been evalu-

ted and compared in detail. In the first segmentation task, the proposed

ulti-scale consistency loss shown more comprehensive performance.

he website score of our MTAN was better than methods based on

riginal consistency loss, uncertainty-based consistency loss, and shape-

ware semi-supervised strategy, as shown in Table 2 . Also, we can ob-

erve that these consistency-based models may not be stable enough

rom the further ischemic stroke lesion segmentation experiments. As

een in Table 3 , although MT performed better than UA-MT and MTAN

n Dice under 20% experimental setting, it could not outperform base-
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Table 5 

Evaluation results using four metrics obtained by our methods trained with 10% labeled training set on BRATS 2018 training dataset and the comparison with supervised baseline and other semi-supervised 

methods. 

Method Dice (%) Specificity (%) Sensitivity (%) HD95 (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

baseline 79.74 ± 17.75 66.90 ± 26.22 60.23 ± 32.07 99.75 ± 0.38 99.90 ± 1.41 99.96 ± 0.58 82.10 ± 17.00 68.13 ± 28.25 62.87 ± 33.67 18.71 ± 21.97 20.51 ± 25.10 20.21 ± 31.81 

MT 80.19 ± 15.95 71.09 ± 24.59 64.71 ± 28.74 99.72 ± 0.43 99.90 ± 0.15 99.95 ± 0.08 84.16 ± 14.72 72.14 ± 26.14 67.36 ± 30.51 16.98 ± 17.99 17.28 ± 22.84 18.32 ± 30.00 

UA-MT 81.18 ± 17.29 70.72 ± 25.16 62.79 ± 30.74 99.73 ± 0.43 99.91 ± 0.14 99.96 ± 0.06 85.68 ± 15.68 71.69 ± 26.85 63.78 ± 33.39 14.32 ± 18.12 16.52 ± 22.38 18.86 ± 31.32 

SASSNet 82.95 ± 13.81 71.25 ± 24.20 64.17 ± 26.97 99.75 ± 0.32 99.91 ± 0.12 99.93 ± 0.08 87.32 ± 12.20 71.42 ± 27.24 70.55 ± 30.29 14.37 ± 18.83 14.70 ± 20.46 18.87 ± 31.42 

MTAN 81.14 ± 16.32 70.04 ± 25.10 62.42 ± 30.24 99.77 ± 0.32 99.92 ± 0.10 99.96 ± 0.06 84.03 ± 16.59 69.59 ± 27.43 63.19 ± 32.56 14.62 ± 16.99 15.27 ± 21.23 19.25 ± 31.23 

MTANS 83.03 ± 17.44 71.79 ± 24.62 60.99 ± 28.82 99.77 ± 0.32 99.91 ± 0.11 99.94 ± 0.10 87.66 ± 16.02 74.38 ± 28.09 64.16 ± 32.60 12.38 ± 18.95 12.75 ± 17.75 16.67 ± 26.59 

1
0
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Table 6 

Evaluation results using four metrics obtained by our methods trained with 20% labeled set on BRATS 2018 training dataset and the comparison with supervised baseline and other semi-supervised methods. 

Method Dice (%) Specificity (%) Sensitivity (%) HD95 (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

baseline 81.04 ± 18.33 72.53 ± 25.18 64.83 ± 28.98 99.68 ± 0.75 99.90 ± 0.15 99.94 ± 0.08 84.51 ± 16.58 74.70 ± 27.27 70.30 ± 31.97 13.99 ± 17.55 15.23 ± 20.23 16.50 ± 28.52 

MT 81.72 ± 18.83 71.86 ± 25.65 64.95 ± 29.53 99.72 ± 0.60 99.91 ± 0.18 99.95 ± 0.06 84.30 ± 15.77 71.38 ± 27.35 67.97 ± 31.80 14.25 ± 18.61 15.32 ± 21.36 14.75 ± 27.62 

UA-MT 83.52 ± 13.10 71.29 ± 25.37 64.30 ± 30.27 99.87 ± 0.24 99.91 ± 0.17 99.97 ± 0.05 81.08 ± 16.07 71.27 ± 27.26 63.17 ± 31.32 10.01 ± 11.83 13.45 ± 19.60 15.71 ± 28.41 

SASSNet 83.93 ± 14.98 72.68 ± 24.71 65.00 ± 29.07 99.77 ± 0.49 99.85 ± 0.25 99.95 ± 0.07 85.14 ± 13.18 75.40 ± 25.49 67.41 ± 31.88 12.03 ± 16.91 12.75 ± 17.54 16.98 ± 27.86 

MTAN 82.56 ± 15.72 70.82 ± 25.16 65.93 ± 29.61 99.85 ± 0.23 99.94 ± 0.09 99.96 ± 0.05 81.68 ± 16.76 69.39 ± 28.05 67.18 ± 31.36 13.65 ± 18.16 12.94 ± 16.67 16.18 ± 28.42 

MTANS 84.86 ± 14.43 74.15 ± 22.99 65.05 ± 27.85 99.82 ± 0.22 99.89 ± 0.15 99.95 ± 0.05 86.97 ± 14.33 77.05 ± 24.83 68.82 ± 30.43 9.16 ± 11.86 11.23 ± 13.99 14.20 ± 24.66 

1
1
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Table 7 

Segmentation performance of proposed semi-supervised methods on the BRATS 2018 unseen test data and the comparison with supervised baseline and other semi-supervised methods that all trained with 10% 

labeled set. 

Method Dice (%) Specificity (%) Sensitivity (%) HD95 (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

baseline 82.77 ± 14.73 66.94 ± 26.37 70.22 ± 27.31 97.13 ± 12.35 97.83 ± 12.27 98.23 ± 12.28 86.27 ± 17.42 70.98 ± 28.89 76.17 ± 25.08 16.74 ± 21.33 18.08 ± 21.44 26.85 ± 78.45 

MT 82.65 ± 14.19 69.64 ± 27.12 72.40 ± 25.20 97.01 ± 12.45 98.04 ± 12.28 98.21 ± 12.28 87.00 ± 16.54 70.69 ± 29.65 76.79 ± 24.24 15.98 ± 18.06 16.41 ± 20.37 21.52 ± 65.91 

UA-MT 83.93 ± 12.79 69.75 ± 28.21 72.18 ± 26.11 98.72 ± 1.78 99.66 ± 0.44 99.77 ± 0.26 88.56 ± 16.02 70.60 ± 29.98 76.75 ± 25.84 14.46 ± 19.34 14.24 ± 17.74 8.45 ± 15.44 

SASSNet 84.20 ± 10.81 70.22 ± 28.42 71.88 ± 26.49 98.61 ± 1.85 99.65 ± 0.47 99.68 ± 0.34 89.65 ± 14.00 70.86 ± 30.89 80.97 ± 23.34 13.29 ± 17.37 15.89 ± 20.65 8.81 ± 16.01 

MTAN 83.74 ± 13.56 68.10 ± 27.72 72.00 ± 26.69 97.18 ± 12.25 98.02 ± 12.28 98.26 ± 12.28 87.54 ± 16.15 68.17 ± 29.97 74.89 ± 26.52 13.62 ± 17.83 21.58 ± 48.80 25.29 ± 78.87 

MTANS 85.68 ± 8.70 68.80 ± 27.30 69.63 ± 27.55 98.79 ± 1.15 99.42 ± 0.89 99.75 ± 0.30 90.39 ± 11.38 73.18 ± 29.75 74.90 ± 26.70 13.87 ± 20.38 15.18 ± 21.19 7.69 ± 12.96 

1
2
 



G
.
 C

h
en

,
 J.
 R

u
,
 Y

.
 Z

h
o
u
 et
 a

l.
 

N
eu

ro
Im

a
ge
 2

4
4
 (2

0
2
1
)
 1

1
8
5
6
8
 

Table 8 

Segmentation performance of proposed semi-supervised methods on the BRATS 2018 unseen test data and the comparison with supervised baseline and other semi-supervised methods that all trained with 20% 

labeled set. 

Method Dice (%) Specificity (%) Sensitivity (%) HD95 (mm) 

WT TC ET WT TC ET WT TC ET WT TC ET 

baseline 85.27 ± 9.35 71.97 ± 26.70 72.64 ± 25.97 98.48 ± 3.88 99.35 ± 1.14 99.68 ± 0.38 88.87 ± 10.75 76.68 ± 27.53 80.37 ± 23.07 10.36 ± 12.07 11.59 ± 12.03 6.28 ± 9.90 

MT 84.34 ± 15.92 73.55 ± 25.45 72.53 ± 25.37 98.66 ± 4.49 99.45 ± 1.75 99.64 ± 0.83 86.29 ± 17.56 74.61 ± 27.84 78.82 ± 22.34 9.19 ± 8.92 10.97 ± 14.23 5.59 ± 9.73 

UA-MT 85.80 ± 13.33 73.61 ± 25.77 71.83 ± 26.09 97.69 ± 12.32 98.13 ± 12.28 98.28 ± 12.29 85.47 ± 15.67 73.70 ± 27.38 73.58 ± 25.22 8.95 ± 13.90 22.41 ± 64.90 22.96 ± 78.50 

SASSNet 85.15 ± 16.29 73.32 ± 27.10 71.82 ± 26.14 97.14 ± 13.13 97.80 ± 12.41 98.17 ± 12.28 86.75 ± 17.85 76.34 ± 27.79 78.65 ± 25.61 8.17 ± 13.80 22.81 ± 65.13 18.54 ± 65.15 

MTAN 84.45 ± 16.70 73.26 ± 26.13 73.40 ± 24.58 97.33 ± 12.82 98.11 ± 12.29 98.25 ± 12.28 85.01 ± 19.01 72.63 ± 28.12 77.11 ± 23.77 9.38 ± 14.50 18.24 ± 48.02 18.80 ± 65.44 

MTANS 86.35 ± 8.14 73.66 ± 24.82 71.68 ± 26.10 98.66 ± 2.72 99.43 ± 0.84 99.73 ± 0.34 91.15 ± 10.07 78.00 ± 25.84 77.79 ± 24.29 8.17 ± 9.88 12.10 ± 15.53 5.69 ± 8.80 

1
3
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Fig. 7. Box plot of the experimental results of our proposed MTAN and MTANS models, and other comparison methods on BRATS 2018 training dataset, when 

training with 10% labeled set. 
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ine under 10% experimental setting with fewer labeled data and more

nlabeled data. In contrast, when the ratio of the labeled training set

s smaller, the multi-scale consistency loss could effectively use more

nlabeled data to improve the original consistency loss, and was com-

arable to the uncertainty-based model. Similarly, for the segmentation

f brain tumor with more classes, as shown in Tables 7 and 8 , the Dice

erformance of MT was better than that of UA-MT in enhancing tumor

egmentation but was worse than baseline in the segmentation of the

hole tumor region. 

The semi-supervised application of the adversarial network mainly

enefits from the ability of the discriminator to provide extra supervi-

ion for the unlabeled data. In our framework, the proposed multi-scale

onsistency loss requires a modality showing obvious brain lesions, and

his loss is designed for capturing the semantic information of labeled

ata through adversarial learning and achieving anatomical consistency

f unlabeled data based on the student and teacher models. As shown

n Table 2 , Fig. 3 and Table 4 , The overall performance of MTAN on

SBI 2015 and cross-validation results on ISLES 2015 were both slightly

etter than UA-MT. 

Our experiments also show that the combination of the proposed

onsistency loss and shape-aware embedding based on another adver-

arial learning is obvious for performance improvement. As shown in

ables 1 and 2 , the proposed MTANS has achieved the best LFPR scores

n both training data and test data from ISBI 2015. According to the

ow LFPR of MTAN and the high TPR of SASSNet, we interpret the best

erformance of MTANS in LFPR as the effective combination of the re-

uction of false positives due to multi-scale consistency learning and
14 
he increase of true positives due to shape-aware learning. The quanti-

ative results in Fig. 2 also show that MTAN generated relatively few

alse positives, while SASSNet generated relatively more true positives.

n general, the human-level performance of ISBI 2015 can be achieved in

ur framework with only 7 labeled images for training. Similarly, for is-

hemic stroke and brain tumor, the lesion area is uncertain and its shape

s irregular, but the performance can also be improved by applying shape

onstraint combined with our consistency strategy. In the experiments

f ISLES 2015 and the segmentation of whole tumor regions on BRATS

018, MTANS achieved the best results on more metrics compared with

ther methods. 

In clinical applications, the labeling of 3D medical images often re-

uires efforts and time from experts, and the existing automatic labeling

ools often need large-scale labeled data for training. Semi-supervised

earning allows experts to label only a small amount of data and the

ools can be trained with the remaining unlabeled data. As our experi-

ental results show, the segmentation performance of semi-supervised

ethods using extra unlabeled data is better than baseline using only

abeled data, so how to train models with both labeled and unlabeled

ata more effectively is one of the important research directions of semi-

upervised learning. Compared with the related work, our method shows

table and better performance in three experimental datasets without

hanging the architecture and hyperparameters. Therefore, this frame-

ork has the potential to be used as a universal tool for the annotation

f brain lesion images. 

One of the limitations of our semi-supervised segmentation frame-

ork is that although its overall performance was better than other com-
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arison semi-supervised methods, it could not achieve the best scores of

ll metrics in the three segmentation tasks. In our future work, since the

roposed framework is extensible, we would consider replacing the seg-

entation network with the current state-of-the-art models on the three

hallenge datasets to improve the performance. In addition, we will col-

ect more clinical or cross-modal brain lesion images as unlabeled data

o further validate the effectiveness of the proposed framework. Besides,

he influence of the different ratios between unlabeled data and labeled

ata on the performance of semi-supervised learning also needs to be

urther studied. 

. Conclusions 

In this paper, a novel semi-supervised framework for joint training of

ulti-scale mean teacher and improved adversarial network for multi-

odal brain lesion segmentation is presented. Based on two kinds of

dversarial learning, we embed a shape-aware strategy into the stu-

ent and teacher models which also integrate the proposed multi-scale

onsistent regularization. Three public datasets related to 3D brain le-

ion segmentation were used to evaluate the performance of our semi-

upervised framework on multiple sclerosis lesion, ischemic stroke le-

ion, and brain tumor segmentation tasks. Compared with the super-

ised methods trained with the same labeled data, the proposed frame-

ork improved the segmentation results, and the overall performance

as also better than current state-of-the-art consistency training and

hape-aware learning methods for semi-supervised medical image seg-

entation. Our work is expected to reduce the need for large-scale la-

eling in medical imaging and be served as an auxiliary tool to produce

nnotations for unlabeled data by only using a small amount of labeled

ata. 
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