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Fingerprints play a central role in any field where person identification is required. In forensics and biometrics, three-
dimensional fingerprint-based imaging technologies, and corresponding recognition methods, have been vastly investigated.
In cultural heritage, preliminary studies provide evidence that the three-dimensional impressions left on objects from the
past (ancient fingerprints) are of paramount relevance to understand the socio-cultural systems of former societies, to possi-
bly identify a single producer of multiple potteries, and to authenticate the artist of a sculpture. These findings suggest that
the study of ancient fingerprints can be further investigated and open new avenues of research. However, the potential for
capturing and analyzing ancient fingerprints is still largely unexplored in the context of cultural heritage research. In fact,
most of the existing studies have focused on plane fingerprint representations and commercial software for image processing.
Our aim is to outline the opportunities and challenges of digital fingerprint recognition in answering a range of questions
in cultural heritage research. Therefore, we summarize the fingerprint-based imaging technologies, reconstruction methods,
and analyses used in biometrics that could be beneficial to the study of ancient fingerprints in cultural heritage. In addition,
we analyze the works conducted on ancient fingerprints from potteries and ceramic/fired clay sculptures. We conclude with
a discussion on the open challenges and future works that could initiate novel strategies for ancient fingerprint acquisition,
digitization, and processing within the cultural heritage community.
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1 INTRODUCTION

For more than a century, the development of fingerprint-based technology for person identification has been
applied in forensics, governmental border control, building security access, and, most recently, in smartphone
locking systems, e-commerce, and e-governance applications [36, 56, 68]. The identification of persons via fin-
gerprints is more successful than other biometrics because of the fundamental premises that a fingerprint is
persistent/permanent (i.e., a person’s physical characteristic/trait that does not change over time) and unique
(i.e., the patterns from distinct fingers are different). In forensic science and paleodermatoglyphics (i.e., the study
of fingerprints that survive for centuries on the surface of artifacts), research on the relationships between ridge
breadth and age [13, 34], and between ridge density and biological sex in diverse ethnic groups [23, 35, 59], have
led to the discovery of robust statistical patterns distinguishing adults from children, and males from females.
Moreover, evidence shows that similar fingerprint patterns appear in female twins [54], and that the genetic
variant influences such patterns [25].

Interestingly, the inference of demographic data (biological sex, age) from fingerprint patterns is investigated
as to provide more nuanced understandings about the role of juveniles/adults and men/women in the making
process of such artifacts in the past societies [16, 17, 32, 34]. We refer to “ancient fingerprints” as the three-

dimensional (3-D) impressions left on items by past producers; ancient fingerprints are molds in reverse of
the actual prints. A variety of media contain ancient fingerprints [33], yet these are displayed predominantly on
ceramic clay, and this is especially due to the clay’s plasticity for imprinting, and to the necessity to be molded by
bare hands. Examples of artifacts displaying ancient fingerprints (small figurines, utilitarian pots, roof/floor tiles,
bricks, vessels) are found during field excavations. Importantly, ancient fingerprints come in different conditions
with respect to their original status, as certain treatments may have deteriorated the surface, such as wiping,
burnishing, smoothing or polishing. As such, ancient fingerprints displayed on potteries and ceramic/fired clay
sculptures collected in museums always appear partial or fragmented. We highlight that we refer to the archaeo-
logical artifacts and sculptures as cultural heritage items, namely those objects with exceptional universal value
from the point of view of history, art, or science [82].

With this survey, we outline the key similarities and differences between fingerprint-based biometrics as it
is used for day-to-day person identification, the opportunities of digital fingerprint recognition in answering
a range of questions in cultural heritage research, and the specific problems and challenges that arise when
analyzing fingerprints in cultural heritage.

The organization of the manuscript is depicted in Figure 1. First, an overview of the imaging modalities used
in the biometrics systems to acquire two-dimensional (2-D) and 3-D fingerprints is provided. Next, we ex-
plore the literature on the fingerprints features and how these are matched for person recognition, followed
by a section on different machine learning methods used in distinct stages of fingerprint analysis. Analogous
to the summary on scanning devices adopted in biometrics, an overview of the imaging modalities used in
cultural heritage studies is presented together with the research works grounded on fingerprints. To simu-
late a case study on fingerprint images lifted from fired clay sculptures, we provide a proxy scheme with
the basic steps of 2-D fingerprint recognition evaluated on a subset of publicly available images. In conclu-
sion, the challenges and open questions on fingerprint-based research within the cultural heritage domain are
discussed.
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Fig. 1. Organizational chart of the article.

Fig. 2. The schematic outline of Section 2 follows the steps of a standard workflow in fingerprint biometrics. From left to

right: The acquisition module reads the input fingerprint and delivers an image that is further enhanced. A postprocessing

block is used to determine useful characteristics to be matched against stored characteristics and determine a fitting match.

Depending on the matching score, the decision-making unit determines whether the entry user was genuine/imposter.

2 STATE-OF-THE-ART IN FINGERPRINT-BASED BIOMETRICS

Following Figure 2, we examine the main 2-D/3-D fingerprint acquisition modalities, the enhancement strate-
gies for noise removal from raw data, the 2-D/3-D types of features, and how these are matched for person
recognition.

2.1 3-D Fingerprint Imaging Acquisition Systems

For decades, the fingerprint-based biometrics community has developed 2-D touch-based devices, which remain
the most used technology for authentication worldwide. In general, the user is required to press his/her own
fingerprint on a flat surface that represents the front-end interface of a sensor. Unfortunately, the acquired im-
age is often degraded (smearing, slippages, elastic skin deformation, sweat, sensor/finger dirt). To decrease the
impact of noise on the image quality and, correspondingly, to improve the recognition accuracy and the iden-
tification rate of spoof attacks (e.g., artificial fingerprints, fingerprint tampering), touchless 2-D scanners have
been developed. In these systems, the illumination sources could be placed either on the same side as the imaging
camera or behind/toward the fingernail side of the finger; in the former, the fingerprint image is generated by the
illumination reflected on the finger ridges, whereas in the latter, the resulting image captures the illumination
that penetrated the fingerprint. However, contactless 2-D fingerprint systems suffer from low contrast between
ridges and valleys, and require further enhancement steps prior to any further feature extraction. To reduce the
shortcomings of 2-D touchless devices, 3-D touchless technologies have been implemented (Figure 3).

The structured light 3-D scanner (SLS) utilizes the distortion of projected light patterns onto the fingerprint
to obtain its 3-D surface profile using the principle of triangulation (Figure 3(a), Table 1) [47, 87]. This principle
implies that the location of the contact point of the beam to the 3-D fingerprint, the camera, and the projector
form a triangle that is used to compute the depth information. Such device has attracted growing interest from
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Fig. 3. Schematic overview of the most commonly used 3-D fingerprints touchless imaging devices in biometrics and the

corresponding imaging principle for 3-D surface/volume recovery. (a) The projector sends light patterns to the fingerprint;

given the location of each stripe and of the corresponding distorted projection, the full 3-D model is recovered. (b) The 3-D

fingerprint is hit by a laser beam and the signal response is captured by the camera; the exact position of the camera and

the source allows to recover the exact 3-D location of each point. (c) More than two cameras are positioned at different

angles around the fingerprint and shoot simultaneously; the reconstruction is possible given the exact spatial location of the

cameras and their correspondingly matching spatial points. (d) The light beam emitted by the source penetrates the finger

skin; the location of the mirror is in equal path from the beam splitter as the location of the finger. The beam splitter separates

the input light beam into a component that is reflected to the mirror and another that hits the finger. The light reflected

from the mirror (dashed line) and the finger (dotted line) is collected by the detector. (e) An ultrasonic pulse is transmitted

by a transducer against the finger that is placed over the scanner; the pulse can be absorbed or reflected to the scanner,

depending on the fingerprint structure. (f) Multiple 2-D fingerprint images are acquired from a fixed viewpoint/camera

under different illumination sources (LEDs).

both researchers and practitioners, especially for its use in the documentation and storage of plastic prints as
opposed to traditional photographs [94], and for the acquisition of fingerprints from fingers of living/deceased
individuals [62]. A 3-D SLS captures the full field of view at once, which significantly increases the scanning speed
and considerably reduces noise emerging from motion. However, these scanners display poor performances in
handling of translucent materials and misalignment in the data modeled by each pattern, and are characterized
by lower resolution than other laser-based triangulation methods. Stereo vision systems also compute the depth
information using the triangulation principle [36]. Active stereo vision systems use a digital camera that records
the response from a known laser signal [31], after its projection to the 3-D finger surface (Figure 3(b)); however,
these strategies are vulnerable to high-frequency noise and finger motion during acquisition. In passive stereo
vision systems, the laser source is substituted with a second camera and a cylindrical model for the presented
finger is generated using silhouettes from each acquired image (Figure 3(c)) [40, 49, 63]. Shape from silhouette
approaches lack details on the fingerprint ridge information that is essentially derived from the surface reflection
variation (i.e., albedo) information, thus being affected by skin pigmentation, surface reflectance, and finger shape.
Another challenging step in passive stereo vision is determining accurately the location of correspondence points
in two images taken from different 3-D views. Recently, the use of optical coherence tomography (OCT)

has expanded the research frontiers on 3-D touchless fingerprint recognition [10, 48, 85]. OCT acquires the
information beneath the fingertip skin up to 2 to 3 mm and reconstructs the fingerprint using the principle of
interferometry (Figure 3(d)), where light reflected from the finger skin is combined with light reflected from a
reference mirror in an attached detector; the depth information is retrieved using the spectral modulations in the
interference patterns between the light reflected by the reference mirror and the finger surface layers. OCT 3-D
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Table 1. Summary of 3-D Fingerprint Image Acquisition Systems

Method Source Data Cost Accuracy Reference Year Resolution Capture Time

Structured
light imaging

Range image Moderate High Zhang et al. [94] 2020 SLI1: < 12 μm; SLI2: 0.1 mm SLI1: N.A.; SLI2: 7.5 fps

Panetta et al. [62] 2019 ~1,344 ppi 0.7 s
Liu et al. [47] 2017 380 dpi N.A.
Wang et al. [87] 2010 ~1,344 ppi <1 s

Active stereo
camera

Range image High High Kanhangad et al. [31] 2011 HR: 640 × 480 pixels; LR: 320 ×
240 pixels

HR: 2.5 s; LR: 0.3 s

Passive
stereo camera

Range image Low Low Labati et al. [40] 2015 Camera image: 1,280 × 960 pixels 529 μs

Liu & Zhang [49] 2014 ~400 dpi 100 ms
Parziale et al. [63] 2006 500–700 dpi 120 ms

Optical
coherence
tomography

Backscattered
light
amplitude

High High Wang et al. [85] 2020 Z-direction of A-scan: 7 μm N.A.

Liu et al. [48] 2020 Axial: 8 μm; Lateral: 12 μm N.A.
Chugh & Jain [10] 2019 Axial (Air/Water):

5.5 μm/4.2 μm
<1 s

Ultrasound Acoustic
impedance

Low Moderate Jiang et al. [28] 2017 Axial: 150 μm; Lateral: 75 μm N.A.

Lu et al. [53] 2015 Axial: 68 μm; Lateral: 60 μm N.A.
Photometric
stereo

Surface
normal
orientation

Low High Lin & Kumar [45] 2017 1,400 × 900 pixels Two shots: ~250 ms;
Three shots: ~800 ms

Kumar & Kwong [37] 2013 2,592 × 1,944 pixels 10 fps
Xie et al. [89] 2013 659 × 493 pixels <0.1 s

Method: 3-D fingerprint acquisition technology; Source Data: 3-D fingerprint image representation; Cost: device cost estimate; Accuracy:
reconstruction accuracy estimate; Reference: reference to relevant studies in biometrics; Year: year of publication; Resolution: resolution
of the camera (in pixels, dpi, ppi) or the step of the grid (in millimeters) that the algorithm uses to reconstruct a polygonal model; Capture
Time: scanning time (in fps, s, ms); N.A.: information not reported in the paper/manual; HR: high resolution; LR: low resolution; SLIn : n-th
Structured Light Imaging device.

fingerprint-based imaging is invariant to skin damage and is less sensitive to spoof attacks. Another example of
3-D touchless strategy is ultrasonic imaging, where the 3-D fingerprint is reconstructed based on the acoustic
time of flight (Figure 3(e)) [28, 53], which measures the time that the acoustic pulse travels from the transmitter to
the fingerprint, and backward to the receiver. Even though ultrasound-based sensing technology delivers high-
resolution images, its voluminous hardware makes it less attractive compared to other 3-D touchless devices;
moreover, despite the increase in ultrasonic 3-D imaging techniques, touchless 3-D fingerprint recognition based
on ultrasonic images is yet to be attempted in the literature. Among the 3-D fingerprint touchless methods,
photometric stereo is the most widely used approach because it combines affordable costs with high-frequency
fingerprint ridge details [37, 45, 89]. This system consists of multiple 2-D fingerprint images acquired from a
fixed viewpoint/camera under different illuminations (Figure 3(f)). Given the locations of fixed illuminations,
the fingerprint is reconstructed by calculating the 3-D surface orientations. Unfortunately, involuntary finger
motion may occur during the acquisition and deteriorate the reconstruction accuracy.

2.2 Data Enhancement

In general, the data enhancement stage is required prior to any 2-D/3-D feature extraction method. The en-
hancement strategy recovers the ridge pattern from unwanted noise occurring during scanning/reconstruction
by connecting interrupted ridges, separating incorrectly joined ridges, and removing overlapping patterns. In
the 2-D fingerprint domain, the enhancement methods could use filters [21, 26, 86], include the prior knowledge
of the fingerprint structure [29], apply distinct frequency bands at different image scales [19, 42], and implement
methods based on tensors and their decomposition [41]. In the context of 3-D fingerprint touchless devices, such
as photometric stereo and SLS, a median filter is used to suppress speckle-like noise on the input point cloud
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Fig. 4. Schematic overview of a filter-based thinning process, followed by minutiae extraction and matching. The orientation

field/map (red oriented lines) indicates the block-wise average ridge orientation. In a frequency map, the brighter the color

of a block, the denser the ridges in that area. The minutiae can be, for example, the bifurcation points and split ends (colored

markers), both represented with their corresponding orientations (colored lines). The image is taken from the FVC2002 1A

database.

(i.e., each point is expressed with its x , y, z−location in the 3-D space), which is then subjected to further 3-D
smoothing [37].

2.3 Feature Extraction

A feature/pattern is a measurable property/characteristic that uniquely determines a fingerprint and can be
used to differentiate distinct impressions. In the authentication settings, a set of features from a fingerprint
(probe/query) of a person with unknown identity are compared against the features from fingerprints (tem-
plates) of known individuals stored in a database/gallery; the result of each matching is a probability score that
expresses how well the probe matches the templates. In traditional fingerprint recognition systems, the most
commonly used features from the 2-D touch-based or touchless generated image (with resolution of at least
500 dpi) correspond to the global ridge patterns (ridge orientation fields) and local ridge singularities known as
minutiae points [36] (Figure 4). Fingerprint images can be considered as an oriented texture pattern. As such,
the ridge orientation field indicates the optimal dominant ridge direction in each squared window/block of the
input image, and it is calculated using the horizontal and vertical gradients within each window/block. Since
the early inception of an enhancement process for touch-based fingerprint images [26], the orientation field
serves to select the parameters of adaptive filters in subsequent stages. Local ridge frequency is another intrin-
sic property of a fingerprint image: in a local neighborhood where no minutiae appear, the gray levels along
ridges/valleys are modeled as a sinusoidal-shaped wave along a direction normal to the local ridge orientation.
As such, given the mean orientation within the block, the spatial frequency of the ridges is determined by di-
viding the distance between the first and last peaks by the number of peaks found in the block. If no peaks are
detected, or the wavelength is outside the allowed bounds, the frequency image is set to zero. Finally, using the
orientation and frequency maps, the filters corresponding to these distinct frequencies and orientations are com-
puted. The resulting filtered image appears enhanced—that is, the ridge/valleys alternate and flow in a locally
constant direction (Figure 4). The most traditional approach for minutiae extraction is based on the thinned ridge
patterns, namely those patterns where each ridge is converted to one pixel width after the enhancement stage.
The enhanced image is transformed to binary image that is usually further thinned; in the thinned image, ridge
structures are reduced to one pixel width (skeleton), to aid minutiae detection. As such, the resulting thinned
binary image has each pixel analyzed to find the minutiae location. A minutia is commonly described with its
x, y-coordinate, the angular direction of the main ridge, and type (e.g., bifurcation, ending). Minutiae detection
is achieved by having the eight-neighborhood circularly traversed in an anti-clockwise manner to produce the
Rutovitz crossing number, which allows the identification of ridge endings/bifurcations.

Since the majority of fingerprint recognition systems have been developed in 2-D, substantial research has
been dedicated to the detection of 2-D features from the unwrapped/unrolled representations of 3-D finger-
prints [39].
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Despite the impressive performance of biometric systems using 2-D global/local patterns, the rise of
3-D and high-resolution imaging have recently attracted increasing attention to generate a novel set of fea-
tures [50, 51, 90], such as principal curvatures, the 3-D minutiae, and tetrahedron [36, 37, 45]. A recent work has
focused on 2.5-D ridge pattern representation and image processing techniques to perform a full 3-D fingerprint
recognition [20].

2.4 Feature Matching and Performance Analysis

In general, the main focus of 2-D/3-D minutiae-based matching is to perform a one-to-one mapping/pairing of
minutiae points from a test minutiae set to a template minutiae set [36]. Since minutiae-based matching has lim-
ited performance in case of missing minutiae and non-linear fingerprint deformations, alternative approaches
have been proposed, such as the topology-based and correlation-based matching in the 2-D domain, and tetra-
hedron matching in the 3-D space. In standard biometric practice, the matching is evaluated by two distinct
operative modes: the identification and verification setups. In the biometric identification setup, a one-to-many
comparison of probe fingerprint with multiple fingerprints stored in a gallery is performed. The identity is es-
tablished by looking at the best-matching candidates after sorting the gallery from highest to lowest matching
scores. In the biometric verification setup, a one-to-one comparison with a single fingerprint candidate is per-
formed. The performance is evaluated using receiving operating characteristic analyses. For a range of thresholds
on the matching score, the true positive fraction is plotted against the false positive fraction. Performance values
that are generally reported are the area under the curve (AUC) and the equal error rate (EER), which is the
point where the fractions of true and false positive are equal. Higher AUC and lower EER values indicate better
performance.

2.5 Learning Approaches for Fingerprint Recognition

The advances in 2-D/3-D fingerprint acquisition technologies and the successful usage of deep convolutional

neural networks (CNNs) for a range of computer vision problems [77, 81, 93] have attracted researchers to use
neural networks for fingerprint recognition tasks. The problem of minutiae extraction in 2-D plain fingerprints
(i.e., finger impressions against a flat surface) is challenged by the fingerprint quality, unwanted fingerprint mo-
tion, and scanner conditions. The traditional enhance-thinning-extract trilogy is outperformed in accuracy and
robustness by automatic minutiae detection algorithms established on deep neural networks [12, 27, 60]. Sim-
ilarly, a deep learning–based pipeline applied on rolled and slap fingerprints (i.e., nail-to-nail impressions and
multiple flat fingerprints captured at the same time, respectively) has shown promising results [80], outperform-
ing the state-of-the-art minutiae extraction algorithms. Several efforts have also been dedicated to automatic
minutiae detection from latent images (i.e., impressions lifted from the surfaces of objects) using CNN-based
algorithms [60, 79]. Moreover, CNNs have also been implemented to enhance the overall image quality, without
the need of estimating actual orientation maps to perform enhancement [43], and to implement an alternative
strategy for latent/partial fingerprint segmentation [84]. Despite the advances on deep learning methods on
contact-based images, research on deep learning methods applied on contactless 2-D images has received little
attention. In these settings, the finger excessive rotations and incorrect alignments are hard to control and can
significantly degrade the matching accuracy of the biometric system. Efforts have been addressed toward pose
compensation using neural networks [78].

Several publications have investigated 3-D shape recognition using approaches based on CNNs [22, 67, 75, 88].
Since most of the fingerprints found on ceramic/fired clay sculptures and potteries are incomplete, the study
of partial 3-D fingerprints in biometrics is particularly interesting for the cultural heritage domain. Essentially,
partial fingerprints in biometrics occur from the unintentional rotation of fingers in the 3-D space. Although
existing methods have improved the recognition of 2-D partial fingerprints, partial 3-D fingerprint recognition
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has attracted less attention. We cite the work of Lin and Kumar [46] as a preliminary attempt for partial 3-D
fingerprint recognition using deep learning.

Interestingly, different algorithms have been implemented for fingerprint 2-D image generation [76, 91]. As a
matter of fact, research on partial 3-D fingerprint recovery is currently missing.

3 3-D FINGERPRINT-BASED RESEARCH IN CULTURAL HERITAGE

Despite the successes of 3-D fingerprint-based technologies, and the evidence that fingerprints can contribute
to the identification of makers, cultural heritage research on 3-D fingerprints has lagged behind. These delays
have various origins.

Ancient fingerprints are always partial and have long been considered by archaeologists as physiological
traits carrying poor information content, and thus, even though listed in the records, these have been neglected.
In archaeology, fingerprint-based research contrasts with approaches based on ethnographic analogy and cross-
cultural comparisons [32]. In this sense, the latest studies based on 2-D fingerprint acquisitions represent already
a major contribution to the field [16, 17, 32].

Ancient fingerprints are delicate and transient, posing challenges for sample collection, transportation, and
storage. The use of 2-D cameras is a common choice for archaeologists when other collection methods are not
suitable. 2-D cameras are easy to transport and use in excavations sites, the acquired images are quickly en-
hanced on commercially available software, and they are less expensive devices than complex ones. However,
the irregular shape of the object can distort the perspective of traditional photography, the object aging reduces
the fingerprint visibility, and there is actual chance that fingerprints are left on hard-to-reach patches even by an
experienced operator. Moreover, the transient nature of ancient fingerprints poses a risk of destruction during
measurement procedures.

The value and fragility of artworks stored in museums require trained experts who are proficient in imaging
computational methods. Often, museum research laboratories rely on a third party that is equipped with the
necessary setup and knowledge. An additional issue refers to the lack of research budgets, which hampers the
progress for this kind of fundamental research.

In this section, we provide an overview of the distinct imaging techniques for object acquisition in cultural her-
itage, together with a list of imaging strategies tailored to ancient fingerprints from potteries and ceramic/fired
clay sculptures. This is then followed by a report on different types of studies based on ancient fingerprint images
and a simulation study on 2-D fingerprint recognition.

3.1 3-D Imaging Acquisition Modalities in Cultural Heritage

In cultural heritage, the fragility and value of artworks and archaeological items impose the use of non-contact
and non-destructive acquisition techniques. Most of the acquisition setups in museum workshops and studios
are used to investigate the conservation condition and the monitoring of the restoration treatments, as well as
to allow the general public to have access to the museum artworks, either through a digital archive or physical
replica printed from the scanned item [18, 24, 57, 64]. Some of the most used technologies include laser-based
systems for artworks’ structural diagnostics [5, 8, 15, 70], structured light scanning for documentation and data
interpretation [6, 71], photogrammetry for object decay assessment, digitization, texture visualization, data ac-
quisition ranging from small items to historic buildings [1, 2, 92], and 3-D computed tomography (CT) for
full volume inspection [7, 58]. For example, 3-D CT scanning has helped restorers reconstruct the fragments of
the damaged sculpture “Adam” at the Metropolitan Museum of Art in New York [83]; the experts used computa-
tional imaging as a valuable diagnostic tool to analyze the cracks of the sculpture, as opposed to more traditional
methods that would have implied a faster and more invasive restoration approach. In dendroarchaeology, the
discipline that investigates the dating of wooden objects, 3-D imaging research has provided a major impact on
the study of cultural heritage objects; for instance, 3-D magnetic resonance imaging and CT are used to measure
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tree rings of musical instruments, historic buildings, artifacts, and art objects [14]. Moreover, progress has been
made in the combination of distinct techniques to obtain complementary information. The scanning and the
reconstruction of delicate glass items of marine invertebrates made by Rudolf and Leopold Blaschka in the late
19th century is a prime example [18]. Fried et al. [18] combine photogrammetry (high-resolution texture infor-
mation) and CT scanning (high-resolution structure information) to digitize masterpieces that are considered
challenging to scan. Along this line, photogrammetry coupled with virtual, mixed, and augmented reality allows
to recreate, examine, and visualize archaeological sites, architectural buildings, sculptures, and ceramic tiles, and
silver, marble, and wooden artifacts [3, 9].

3.2 Imaging Systems for Ancient Fingerprints Acquisition

The acquisition of fingerprints by contactless acquisition imaging systems on ceramic/fired clay sculptures or
potteries reduces the errors of direct measurements, like with calipers. The key difference between the fingerprint
acquisition systems in biometrics as opposed to cultural heritage is that the former is usually tailored on the
active participation from the subject, both in the 2-D and the 3-D settings; in contrast, the latter is based on the
notion that fingerprints are always left inadvertently, often by a producer from the past in the act of sculpting
or pottery making, and that these impressions are typically found on less conspicuous parts of sculptures and
often hidden from view in the internal voids. The fingerprint-based research in cultural heritage is currently
sparse and uncatalogued. As such, Table 2 provides a comprehensive list of fingerprint-based studies, or works
where fingerprints have been detected during an object inspection. In general, contactless multi-camera systems
are of preference in cultural heritage to scan large and precious items; however, such systems are complex and
challenging to transport in excavation sites, and they are not ideal to acquire small patches such as fingerprints.
Sanders [72] uses 2-D images of ancient fingerprints to infer the sex of the maker from vessels found in Tell
Leilan in northern Mesopotamia (Syria). Fowler et al. [17] investigate the sex and age from 2-D images of ancient
fingerprints found with exceptional preservation quality. Ceramic sherds are scanned at high resolution (600 dpi)
on a flatbed scanner, photographed on a flat tabletop using a digital single-lens reflex camera. In addition, they
use a high-resolution camera from a commercially available smartphone; photographs from either type of camera
produce images from which the measurements of epidermal ridge breadths are more accurate than those from the
scans. All images are contrast/exposure adjusted in Photoshop; consequently, the enhanced images are calibrated
for measurement in Macnification. The same acquisition settings are adopted by Fowler et al. [16], where a larger
dataset of ancient fingerprints is acquired from the same geographical region and historical period. Similarly,
Kantner et al. [32] study the sex-based labor division based on ceramic sherds acquired with a stereo microscope
and a high-resolution camera. The work of Lichtenberger and Moran [44] investigates the ancient fingerprints
detected on Late Roman oil lamps and figurines. The 2-D fingerprint images are used to locate the minutiae
across multiple and distinct clay items. Bennison-Chapman and Hager [4] apply Reflectance Transformation
Imaging to fingerprints on Neolithic clay “tokens.” The subject is shot from a stationary camera position, and
light is projected from a different known direction for each photograph. Eventually, a polynomial texture map
is generated based on the pattern of light reflection from the surface under study, and based on the color data in
each acquired image.

In the context of fingerprints found on sculptures, Lloyd [52] analyzes fingerprints on sculptures that are
associated with the sculptor Gian Lorenzo Bernini (Italy, 1698–1680). Each image, representing one fingerprint,
is preprocessed before being printed and given to a forensic expert for identification. The work of Labati et al. [38]
is an early attempt to scan and reconstruct the 3-D fingerprint on a clay artwork associated with the sculptor
Antonio Canova (Italy, 1757–1822). In their setup, the patch displaying the fingerprint is placed in the middle of
two cameras shooting at the same time, and the camera geometry is used to establish the reconstruction model.
Their proposed approach establishes a metric, view-independent, and less distorted reconstructed models when
compared to 2-D photographs. Ancient fingerprints on sculptures are often detected during the documentation

ACM Journal on Computing and Cultural Heritage, Vol. 14, No. 4, Article 51. Publication date: July 2021.



51:10 • D. Sero et al.

Table 2. 3-D Fingerprint-Related Publications in Cultural Heritage

Reference Year Sample Producer Period Device Image Processing

Rees-Jones [69] 1978 Terracotta
relief
“Madonna and
Child”

School of Verrocchio c. 1460s 2-D camera N.A.

Kamp et al. [30] 1999 Sinagua clay
vessels

Ancestral Pueblan
groups, northern
Arizona

N.A. Digital
calipers

N.A.

Lloyd [52] 1999 13 clay
sculptures

Gian Lorenzo Bernini
(1598–1680)

N.A. 2-D camera Outlier removal, image
sharpness/color adjustment,
gray-scale conversion

Králík, Novotný [34] 2003 Three groups
(I, II, III) of
terracotta
samples

(I) 56 children; (II) 20
adult professional
ceramists;
(III) 30 non-professional
ceramists

c. 2003 2-D camera Contrast enhancement,
calibration

Stinson [74] 2004 Ancient
ceramic
Hohokam
figurines

Southwestern Native
American and Filipino
communities

c. 300 B.C.–
A.D. 700 and
A.D. 700–900.

2-D camera,
microscope

Calibration prior
measurements

Labati et al. [38] 2012 Terracotta
sketch of
“Ninfa
dormiente”

Antonio Canova
(1757–1822)

N.A. Two 2-D
cameras

3-D model reconstruction
with triangulation;
surface/texture maps
generation

Sanders [72] 2015 101 ceramic
vessels

Tell Leilan community,
northern Mesopotamia
(Syria)

c. 3400–1700
B.C.

2-D camera Image contrast enhancement,
calibration

Lichtenberger & Moran [44] 2018 Oil lamps, clay
figurines

Beit Nattif workshop
(Israel)

c. 300 A.D. 2-D camera Contrast adjustment,
calibration, 2-D-based
manual minutiae detection

Bennison-Chapman &
Hager [4]

2018 88 clay
objects.

Neolithic village
communities

c. 8500–7500
B.C.

Reflectance
transforma-
tion
imaging

Polynomial texture maps

Fowler et al. [17] 2019 18 clay vessels Tell es.-S. afi/Gath
community (Israel)

c. 2850–2500
B.C.

2-D
camera,
flatbed
scanner,
smartphone
camera

Contrast/exposure
adjustment, calibration

Kantner et al. [32] 2019 985 ceramic
sherds

Ancestral Puebloan
community in the U.S.
Southwest

c. 900–1100
A.D.

2-D
camera,
stereo
microscope

Contrast enhancement,
calibration

Coban et al. [11] 2020 One terracotta
sculpture from
the
Rijksmuseum
(BK-2016-44-4)

Johan Gregor van der
Schardt (1530–1591)

c. 1560–1570 CT scanner 3-D tomographic
reconstruction

Fowler et al. [16] 2020 47 clay vessels Tell es.-S. afi/Gath
community (Israel)

c. 2850–2500
B.C.

2-D
camera,
flatbed
scanner,
smartphone
camera

Contrast/exposure
adjustment, calibration

Authors: authors of the study; Year: year of publication; Producer: the object artisan or the community of artisans (if known); Period: the
historical period of the item/s; Device: the acquisition method/s; Image Processing: any data postprocessing method to enhance the image;
N.A.: information not reported or not investigated.

and restoration procedure. An example refers to the terracotta sculpture “Madonna and Child” attributed to the
School of Verrocchio [69]. More recently, Coban et al. [11] showed how the CT scanner at the FleX-ray Laboratory
facility at CWI (Amsterdam) allows the detection of a 3-D fingerprint hidden in a hollow of a terracotta sculpture
from the Rijksmuseum and attributed to Johan Gregor van der Schardt (1530–1591). The fingerprint pattern is
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clearly distinct from an aliasing effect that may arise during the reconstruction process. Interestingly, the hidden
position of the fingerprint makes CT highly desirable to uncover the impressions of unknown and hard-to-reach
locations, even to the museum restorer/curator.

3.3 The Study of Partial Fingerprints in Cultural Heritage

The study of fingerprints in cultural heritage is essentially focused on two distinct assignments. First, given an
estimate of sex/age from ridge breadth/density measurements, experts are able to compose the demographic
structure of the making groups and draw wider conclusions on the organization of the society they lived in.
Second, researchers investigated partial/degraded fingerprints in an attempt to find a single signature or confirm
the identity of who they acknowledged to be the author. Usually, the first case requires a conspicuous amount of
data (e.g., almost 1,000 sherds in the work of Kantner et al. [32]), whereas the second is based on one/few objects.
In the next paragraphs, we treat the key aspects of ancient fingerprints (partial/degraded) in relationship to their
usage.

3.3.1 Demographic Data Estimation from Ridge Breadth/Density Measurements. Several research studies in-
vestigate the organizational structure of ancient populations by analyzing the partial fingerprints observed on
the surface of potteries [16, 17, 30, 32, 72, 74]. Experimental data have shown that even when prints are partial,
and neither the finger nor the portion that they represent can be identified, the high correlation between ridge
breadth and age, and similarly the correlation between the ridge density and sex, allows for the estimation of
age/sex of the producer sufficient for separating the prints of adults and those of children, and fingerprints of
men from those of women. In the literature, the ridge breadth is most commonly defined as the beginning of one
ridge to the initiation of the next, across the ridge and valley [30]. Since using a caliper for direct measurements
can pose challenges for accurate data acquisition, the mean ridge breadth (i.e., the average ridge-valley pairs in
the investigated area) is often used in the regression model to estimate age [16, 17, 30, 34]. To determine sex, the
ridge density is calculated as the number of ridges counted in a predefined area and compared to a threshold for
sex attribution [4, 16, 17, 32, 72, 74].

3.3.2 Did Michelangelo Model the Sculpture? In cultural heritage, an interesting case scenario is the authen-
tication of a sculpture based on the fingerprints lying on the surface. Artworks made with clay often show
the imprints left by the maker’s hands during the modeling process. During the technical investigation of ce-
ramic/fired clay sculptures, conservators record every single mark left during the production process. Among
these remains, fingerprints are probably the most personal clues left by the maker and are typically found on less
conspicuous parts of sculptures, such as the base or reverse side, but can also be hidden from view in the internal
voids, as the surface of the object may be smoothed leaving no traces of the maker’s hands. Despite the good
condition of an artwork, the majority of fingerprint patterns are only partial. This may originate, for example,
from scratching the surface against some other material, and/or it may be the only part of the finger used during
the modeling of the clay. Here, we use the assignment of a terracotta sculpture attributed to Michelangelo as an
example and ask the following questions:

• Do all of these fingerprints belong to Michelangelo? To prove a match between two impressions on a
sculpture, the two impressions have to exhibit matching minutiae—that is, their locations and orientation
angles have to be equal within certain bounds. It is important to highlight that in forensics, experts discuss
results in probability terms and a fingerprint evidence is never treated as sufficient proof to convict. In the
best case scenario, these fragmented fingerprints may contain enough details to be matched against each
other. The easiest case is when the sculpture exhibits only one pair of fingerprints: if these are matching,
and the name of Michelangelo is known from the records, then we can attribute the impressions with a
reasonable degree of certainty to him. In case of multiple matching fingerprints, the challenge is to assign
a single signature. For example, if two distinct impressions of an index finger match, and two impressions
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from the middle finger match as well, it remains to declare if one pair belongs to the right hand of
Michelangelo, or if one belongs to the right hand and the other one to the left hand, or if they come from
distinct makers. Empirical approaches to determine the handedness of the author exists [69]. In particular,
the matching is challenging due to fragmentary and overlapping fingerprints, and their degradation level.
Nevertheless, evidence shows that fingerprints impressions can be preserved extraordinarily well and a
peculiar ridge pattern is visible at naked eye [44], thus leading the authors to identify a single producer.
• Who was the producer? It is rather hard to provide the identity of the sculptor given that there is no data-

base of fingerprints from known artists, unless this information is recorded; even if a common fingerprint
across sculptures is detected, the name of the author may not be declared. If multiple sculptures attributed
to Michelangelo display matching fingerprints, and the dates of the commissioned works match, then we
could have an argument in favor of Michelangelo.
• What does a matched pair of fingerprints suggest about the role of Michelangelo in the work’s production?

Interestingly, depending on the location and amount of the matching fingerprints, we can draw some
conclusions on the role of the artist. For example, Lloyd [52] observes two matching fingerprints at
different locations in two separate bozzetti from Bernini, thus suggesting that the artist was involved in
the realization of the whole shape.
• How can we claim a non-match? Two impressions are not matching if the amount of similarity between

the two sets of minutiae is insufficient to make a corresponding match. Unfortunately, a non-match could
also be declared erroneously when two impressions are from the same finger but represent two distinct
areas of it. This process is further complicated by the condition of the impression.

The authentication of a ceramic/fired clay sculpture is an assignment that has been little addressed in the
literature. Novel 3-D imaging technologies and computational imaging methods could introduce unprecedented
analysis on ancient fingerprints, and stimulate the scientific discussion and interdisciplinary collaborations in
the field.

3.4 Simulation Study: 2-D Fingerprint Feature Extraction and Verification

In this section, we describe a simulation study that was carried out to assess how well fingerprints can be detected
in various scenarios related to cultural heritage research. Specifically, we focus on partial fingerprints, where the
size of the fingerprint regions that can be extracted is varied. The goal is to assess—in a controlled setting—the
potential for extracting useful information from partial fingerprints with different degradation characteristics.
Here, the enhancement strategy is based on the the enhance-thinning-extract trilogy, followed by the matching
of minutiae points and matching evaluation on the FVC 2002 1A database [55].

Let us assume that we have a certain amount of fired clay sculptures with fingerprints at our disposal. Suppose
we are allowed to use forensic tools to “lift” each fingerprint and capture each impression with a 2-D camera with
500-dpi resolution. The database consists of 100 different fingers with eight distinct impressions for each, for a to-
tal of 800 impressions. Each fingerprint is complete, and the ridge/valley patterns are not clear enough to extract
features of interest directly from the acquired images. The minutiae x, y-location, type, and orientation are consid-
ered to be the most distinctive characteristics for conventional 2-D fingerprint recognition. Here, the method of
minutiae extraction requires the gray-scale image to be enhanced and then converted to a skeletonized/thinned
binary image. We use the filter-based enhancement scheme described in Figure 4. Briefly, we first generate the
orientation map that indicates the dominant ridge direction in each squared window/block of size 16 × 16 pixels
of the input image. Next, we separate the background from foreground image according to block-wise standard
deviation. Given the mean orientation within a block in the foreground image, the spatial frequency map is deter-
mined by counting the number of peaks in each block. Finally, the filters corresponding to the distinct frequencies
and orientations are computed, and this results in an enhanced image containing clear ridge/valleys patterns.
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Fig. 5. Minutiae matching from two thinned impressions. Each 2-D image is thinned after a filter-based enhancement

scheme. Given the thinned image, the bifurcation points and split ends (colored boxes), with corresponding orientations

(colored lines), are extracted by using the information of neighboring pixels in the thinned image. The two sets of minutiae

are then rigidly aligned until the highest matching score (i.e., the ratio between the total count of paired minutiae and the

product of the minutiae counts per image) is found. The paired minutiae are connected with a continuous black line. Each

image (500 dpi) belongs to the FVC2002 1A dataset.

We then transform the enhanced image to a binary image, which we process further using a morphological
thinning operation, where ridge structures are reduced to one pixel width, referred to also as the skeleton. We
highlight this is only one possible approach for data enhancement from a gray-scale image; for instance, some
prefer using an enhanced image without thinning, as the minutiae found on a thinned image may be challenging
to overlap to the original image. Minutiae detection is achieved on the thinned image by counting the neighbor-
ing pixels of a central one within each block. Once the minutiae are extracted from each image, they are then
matched against each other by means of registration (Figure 5). The registration concerns the alignment and
overlay of the template and test fingerprints so that corresponding regions of the fingerprints have minimal geo-
metric distance to each other. Registration can be achieved by applying an affine transformation, which takes
into account minutiae locations, angles, and type. Following the registration process, we can produce geometric
constraints for the discovery of minutiae matching pairs, including geometric distance, and minutiae angle dif-
ference. Once true minutiae pairs are produced, a metric of similarity can then be calculated, taking into account
how similar each pair is in terms of location, angle, and type. Once the minutiae are extracted from each image
of the 800 data of the pool, a recognition pipeline is implemented. Since the verification setup is preferred to
compare results across multiple studies [65], we evaluate the recognition performance by a receiving operating
characteristic analysis (Table 3, see Figure 7). The verification evaluation consists in the following steps: each
sample in the database is matched against the remaining samples of the same finger to compute the genuine
rate; the total number of genuine tests is ((8 × 7)/2) × 100 = 2,800. The first sample of each finger in the subset is
matched against the first sample of the remaining fingers in the database to compute the imposter rate; the total
number of imposter tests is ((100*99)/2) = 4,950. Using the intact images, we are able to correctly authenticate
2,632 out of 2,800 genuine matches and 4,653 out of 4,950 true imposters.

It is important to highlight that the quality of the input data heavily influences the recognition performance,
leading to an increase in false-positive rates. For example, let us assume that the same producers worked on
other six datasets of fired clay sculptures that, due to distinct refinement processes, can be divided into two
big groups (Figure 6), each dataset containing again 100 different fingers with eight distinct impressions. One
group is characterized by images cropped in height of increasing width, and the other one contains images
where random blocks are removed. The former has fingerprint images of “predefined deletions” and contains
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Fig. 6. Left: Original image from the FVC 2002 1A dataset. Top row, left to right: Image deletions corresponding to 13%, 26%,

and 40% of the whole image. Bottom row, left to right: Image deletions corresponding to 10%, 30%, and 50% of the whole

image.

Fig. 7. Verification results for the database FVC2002 1A under different levels of degradation. An image undergoes a pre-

defined deletion when horizontal slabs of increasing widths are removed from the top to the bottom of the image; instead,

random deletions refer to the cancellation of squared areas randomly located throughout the image. The deletion is ex-

pressed as the total amount of pixels deleted from the image. Using the intact image, 2,632 out of 2,800 genuine matches

(true-positives) and 4,653 out of 4,950 imposters (true-negatives) were correctly identified. Different runs for the intact image

and the percentages of horizontal and random deletions are plotted as solid, dotted, and dash-dotted lines, respectively.

three datasets where the fingerprint area has been removed by 13%, 36%, and 40%; the second group of “random
deletions” contains the remaining three groups where blocks of 16 × 16 pixels have been deleted, thus removing
10%, 30%, and 50% of the fingerprint area. For each dataset, the same pipeline as for the intact images was
followed (i.e., data enhancement, minutiae extraction, and matching). From Figure 7 and Table 3, we observe
that the verification power decreases as more sections of the fingerprint image are gradually removed.

4 DISCUSSION AND FUTURE RESEARCH AVENUES

Fingerprints play a central role in any sector where person authentication is required; in fingerprint-based bio-
metrics, enormous advances have been accomplished from imaging acquisition technologies to feature extraction
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Table 3. Verification Values for the Database FVC2002 1A Under

Different Levels of Degradation

Image Characterization EER AUC
Intact image 6.18 97.55

13% predefined deletion 10.18 94.79
26% predefined deletion 14.43 91.50
40% predefined deletion 19.64 87.18

10% random deletion 13.32 93.50
30% random deletion 23.36 84.07
50% random deletion 32.47 73.27

Note: All values are given in percentage. Random performance is given as
EER = 0.5, AUC = 0.5. EER: Verification equal error rate; AUC: verification
area under the curve.

methods. In cultural heritage, the interest to identify the makers of artifacts based on left fingerprints is tangi-
ble [16, 17, 32, 44]. However, given that fingerprint-based research in the cultural heritage community has not
been explored to its full potential, we believe that it can further expand and use some materials and methods
investigated in other related fields. In particular, we would like to highlight the following future case studies:

• 3-D-based imaging of ancient fingerprints in cultural heritage: The 3-D surface imaging could explore the
full potential of capturing 3-D ancient impressions; similarly, 3-D volumetric imaging (e.g., CT, magnetic
resonance imaging) could investigate the 3-D fingerprints in full depth, with the added advantage to cap-
ture also those traces hidden to the external investigation. In the cultural heritage literature, there is al-
ready evidence of the transition to 3-D scanning systems (e.g., photogrammetry, laser scanning, structured
light) used during various in situ excavations [66, 73], obtaining simultaneously a reduction of excavation
time without loss of information. The standard patterns (i.e., ridge breadth and ridge density) used to dis-
criminate the sex/age of ancient fingerprints are simple measurements taken from 2-D images, inherently
narrowing down the information richness. By using 3-D touchless devices, the analysis could be trans-
lated to the 3-D space and enriched by the pool of additional biometric patterns known to be distinctive
as the 2-D counterpart. Moreover, the possibility to handle the 3-D model of partial fingerprints of an ob-
ject could open new investigation lines, like a virtual fingerprint restoration given multiple and matching
fragmentary fingerprint pieces.
• Fingerprint-based artist identification from fired clay sculptures in museum collections: Fingerprint-based

artist identification may represent a revolutionary research avenue for museums with large collections of
fired clay sculptures. For example, the Rijksmuseum holds collections of fired clay objects, crafted some
centuries ago that survived unchanged to the present day and show fingerprints imprinted in the clay
surface. Examples of these collections are the Rijksmuseum’s terracotta putti (Figure 8). Based on stylistic
grounds, the models are attributed to the Belgian sculptor Jan Baptist Xavery (1697–1742). During the pre-
vious restoration of two broken figures, some fingerprints left by the maker were observed at the internal
joint between the arm and the shoulders (Figure 8(e)). A recent collaboration between a conservator and
a data scientist using CT scanners and computer vision tools [11] has resulted in new research to answer
some relevant questions on the authenticity of such objects and their provenance. Conservators from the
Rijksmuseum and researchers at the Centrum Wiskunde & Informatica, the CWI, in Amsterdam, have
joined their expertise to investigate such partial fingerprints, especially those hidden even to the most ex-
perienced observer and only detectable by using a CT scanner, as used in the FleX-ray Laboratory (CWI).
We aim to explore the fingerprints of the terracotta works at the FleX-ray Laboratory to compare them
with existing pictures and possibly discover some new ones, hidden in the terracotta folds. Furthermore, it
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Fig. 8. Four sketches of putti, attributed to Jan Baptist Xavery, terracotta, c. 1725–c. 1750. Parts (a) through (d) correspond to

BK-NM-9350, 9351, 9352, and 9353, respectively (Rijksmuseum, Amsterdam, The Netherlands). (e) Fingerprints photographed

during restoration on the shoulder of putto BK-NM-9353. (f) Fingerprints photographed during restoration at the internal

joint by the shoulder of putto BK-NM-9353.

would allow a comparison with possible fingerprints present on other terracotta works signed and dated
by J. B. Xavery and strengthen the attribution of the putti to the artist.
• Development and maintenance of a digital library of 3-D scanned ancient fingerprints: The establishment

of a 3-D-based archive of ancient fingerprints would allow the original impression information to be pre-
served with high accuracy, and pose the basis for ancient fingerprint acquisition, digitization, and analy-
sis. Moreover, the development and sustainable maintenance of a digital library for the collection of 3-D
scanned ceramic/fired clay sculptures with fingerprints from different museums and private collections
could represent a preliminary effort to join forces toward a local, national, and eventually global platform
of 3-D fingerprints serving the cultural heritage community. The current health crisis generated by the
Covid-19 pandemic sheds light on the necessity and urgency to create such a shared platform for present
and future generations of researchers and public. In the Netherlands, PAN (Portable Antiquities of the
Netherlands [61]) is the first and only digital open online collection for identifying and categorizing metal
objects, designed for and used by professionals for research and detector amateurs. Similar efforts for dig-
ital repositories are also witnessed in the dendrochronology world to ensure the long-term preservation
and sharing of data [14].
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