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ABSTRACT Hybrid quantum-classical algorithms, such as variational quantum algorithms (VQA), are
suitable for implementation on NISQ computers. In this Article we expand an implicit step of VQAs: the
classical pre-computation subroutine which can non-trivially use classical algorithms to simplify, transform,
or specify problem instance-specific variational quantum circuits. In VQA there is a trade-off between
quality of solution and difficulty of circuit construction and optimization. In one extreme, we find VQA
for MAXCUT which are exact, but circuit design or variational optimization is NP-HARD. At the other
extreme are low depth VQA, such as QAOA, with tractable circuit construction and optimization but poor
approximation ratios. Combining these two we define the Spanning Tree QAOA (ST-QAOA) to solve
MAXCUT, which uses an ansatz whose structure is derived from an approximate classical solution and
achieves the same performance guarantee as the classical algorithm and hence can outperform QAOA at
low depth. In general, we propose integrating these classical pre-computation subroutines into VQA to
improve heuristic or guaranteed performance.

INDEX TERMS Hybrid algorithms, Noisy Intermediate Scale Quantum algorithms (NISQ), Quantum
Computing, Variational quantum algorithms

I. INTRODUCTION

Today’s noisy intermediate scale quantum computers (NISQ)
are bounded in power by size, noise and decoherence [Pre18].
Do there exist implementable hybrid quantum-classical al-
gorithms which outperform the best classical algorithms?
Such an algorithm would exhibit quantum advantage, per-
haps the most ambitious goal of the NISQ era. One class
of algorithms which shows promise are Variational Quan-
tum Algorithms (VQA) [PMS™ 14], [FGG14], [MRBAG16], (©)

[MBB*18], [CABT20], which variationally optimize an-
sdtze wavefunctions to extremize expectation values of ob- d
jective functions. VQA construct a parameterized quantum
circuit U (&) in a classical pre-computation step (Fig. 1B),
which is implemented on a NISQ device and optimized in an
outer classical loop (Fig. 1C-D). V

Classical no-free-lunch (NFL) theorems for optimization
: . : FIGURE 1. A pictorial representation of a variational quantum algorithm.
1mply that algonthmlc advantages rely on prObl?m struc- Given some problem instance (A), a classical subroutine (B) tailors a problem
ture [WM97]. Quantum NFL theorems for specific cases instance-specific circuit, by including problem structure, simplifying or
exist [PBO20], [SCH+20], and for VQAS suggest that the transforming the problem, or using results and structure of classical algorithms.
N The circuit is run by a near term quantum machine (C) and variational
ansatz should reflect problem structure, otherwise VQAs suf- parameters are optimized via repeated query of a classical optimizer (D).

fer from barren plateaus [MBS™18]. How can the structure
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of the problem, form of classical algorithms, or approximate
solutions, be used in the classical subroutines of VQA?

A problem might be simplified or reduced as in [BSS16],
or by exactly solving weakly connected parts of a MAXCUT
graph as in [GN84]. Alternatively, a problem might be
mapped or transformed to one with better heuristics
[PHOW20], [Har20]. Classical insight may motivate the
circuit structure as in the case of machine learning mod-
els [BLSF19], [SK19], or generate an analogous quantum
version of a classical algorithm [BS17].

The coupled-cluster ansatz used in VQE [PMST14],
[RLGI20] and the QAOA ansatz [FGG14] reflect structure
by including the terms of the objective function in the ansatz.
Additionally, VQAs can use approximate classical solutions
in their ansatz states using the concept of warm starts,
which initialize the variational parameters with values known
to mimic a good classical solution [Gon98], [FGGN17],
[EMW?20], [TFH*20]. If further variational optimization is
possible, the VQA will improve upon the performance of the
classical algorithm. In the worst case improvement may not
be possible due to complexity theoretic constraints [Has01al],
[BK99], [KKMOO07], [Kho02].

In this Article, the warm start concept is generalized to
construct problem instance-specific circuits instead of just
choosing initial variational parameters that reproduce ap-
proximate solutions in a fixed ansatz circuit structure. We use
the VQA pre-computation step (Fig. 1B) to generate problem
instance-specific circuits that use problem structure from the
form and solutions of classical algorithms as well as from the
objective function. Similar adaptive algorithms have recently
been proposed for iterative QAOA [ZTB*20] and quantum
chemistry [TMZET 18], [GEBM19] which also attempt to
better leverage classical resources.

While this pre-computation step is general, we focus on
solving the particular problem of MAXCUT inspired by a
particular classical algorithm, with the hope of inspiring other
VQA algorithms with non-trivial pre-computation subrou-
tines. We construct the Spanning Tree QAOA (ST-QAOA),
a particular VQA to solve MAXCUT [GJS76], [HasO1b].
This algorithm uses approximate solutions from a classi-
cal MAXCUT solver as a subroutine to construct a problem
instance-specific circuit with  rounds of gates. We show that
r = 1 is guaranteed to match the performance of the classical
solver, and » — oo approaches the exact result.

We introduce the ST-QAOA in a sequence of algorithms
that illustrate the trade-offs between quality of solution and
classical computational difficulty of the pre-computation
step. First, we introduce the Spanning Tree Algorithm, which
can produce exact solutions at the expense that circuit gener-
ation is NP-HARD. Next, we introduce the Variational Span-
ning Tree Algorithm, which can produce optimal answers
at the expense that variational optimization is NP-HARD.
Finally, we introduce the ST-QAOA and present numerical
evidence of its performance on random instances of 3-regular
MAXCUT, demonstrating that ST-QAOA can always repro-
duce the performance of the classical algorithm it uses to
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FIGURE 2. An example SIGNED MAXCUT graph instance and approximate
solutions. A signed graph (A) is constructed of edges with positive (dashed) or
negative (solid) signature. Dashed edges are satisfied if vertices are in the
same partition, and solid edges are satisfied if vertices are in the opposite
partition. An example approximate bipartition z (B) and equivalent spanning
tree T, (C) satisfy 9 out of 15 edges. The maximal number of cut edges is 12
out of 15 for this graph, leaving spanning tree QAOA room for improvement.

construct its ansatz.

II. MAXCUT AND SPANNING TREES
First, let us define the SIGNED MAXCUT problem and the
structure of spanning trees, which will be the algorithmic
insight for ST-QAOA. A signed graph " = (G, o) [Zas18a] is
constructed of graph G and signature for each edge 0 = +1.
The goal of SIGNED MAXCUT is to find a bipartition of
vertices {X, Y} (or binary string z labeling the bipartition)
such that the maximal number of edges of I are satisfied (or
“cut"). An edge with a negative signature is satisfied if its
vertices are in opposite partitions, and unsatisfied otherwise.
MAXCUT is the specific case where the signature of every
edge is negative. An example signed graph is shown in Fig. 2.

SIGNED MAXCUT is closely related to balance in signed
graphs [Zas82]. A signed graph is balanced (“bipartite") if
there exists a bipartition of vertices such that every edge
of T is satisfied [Har53]. SIGNED MAXCUT is equivalent
to the maximum balanced subgraph problem [PT93]: given
some signed graph I', what is the minimal number of edges e
which need be removed to make I'\ e balanced? Any solution
z induces some subset of edges e which remain unsatisfied,
so that I'\e is balanced. An optimal solution z will remove
the smallest number of unsatisfied edges e.

The bipartition z of a balanced graph can be found with
a directed spanning tree, as follows [HKS80]. Given some
balanced graph I'\e, construct any spanning tree 7 with a
unique path between each vertex. Starting with some arbi-
trary origin vertex, traverse the tree to assign each vertex to a
bipartition. If the signature of an edge is (—), assign the next
vertex in the path to the opposite partition as its parent, and
the same if (+). This satisfies every edge of the spanning tree
and, because the graph is balanced, every edge in the reduced
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balanced graph I"\ e. Any spanning tree over a balanced graph
generates the satisfying bipartition z, as z is unique [Zas18b].
Thus, the maximal bipartition z of graph I' is equivalent to
some choice of spanning tree 7. In this way, the search space
of SIGNED MAXCUT solutions can be reduced to searching
through the set of all possible spanning trees [PT86], as the
optimal bipartition z is given by some particular spanning
tree(s) 7, over the signed graph I

Given some signed graph I" = (G, o), the optimal biparti-
tion of vertices is encoded in the maximal eigenstate of the
objective function

C:%Z( + 6ij0.67), (1)
(i)

where each clause in the sum represents an edge of the graph,
with eigenvalue +1 if the edge is satisfied and eigenvalue 0
if the edge is not satisfied, and o;; the signature of the edge.
The goal of any VQA is to optimize the expectation value
of the objective function with an ansatz wavefunction. We

write an ansatz circuit of r rounds in the general form

|,l/}> — eiﬁlaleiﬁzaz(. .. )6i]:[,,.a1,

+) 2

where o, are classically optimized variational parameters.
Note that » may not correspond to circuit depth. The circuit
is constructed from a restricted set of generators H,; for
example, in QAOA, 6267 operators acting on all edges of
a graph (ij) € G, and &' operators acting on all vertices.
The classical computers’ challenge is specifying the circuit
structure in (2) via the pre-computation step (Fig. 1B) and
finding particular angles (Fig. 1D) which maximize the ob-
jective function. Optimal bitstring solutions may be read
out by observing (1|6 |+)) for each qubit and assigning the
bitstring according to the measurement +1.

We will now give exact VQA algorithms for MAXCUT. For
the restricted generators of QAOA, eigenstates are cat states
due to Zy symmetry and the ansatz wavefunction lies in the
+1 sector, so an optimal state must have the particular form
of a “cat state" [FGGN17]

1 _
) = ﬁ(lzﬁ +[2)), 3)

where z is the binary representation of the optimal MAXCUT
solution, and Z = —z. The ansatz of Eq. (2) can generate
such states, and so VQA can be exact [FGGN17]. Consider
the sequence of unitaries between two vertices

iTo 'ITFO' I 1 + l
) = o AT ) = S (j01) + [10)). (4)
This is the desired “cat state", up to a global phase. Chang-
ing the sign of 5.6, generates the state (|11) + [00))/v/2. In
general, a unitary U written as a directed arrow between
two vertices
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evolves an initially unentangled X product state into a maxi-
mally entangled Bell pair with either the same (+) or oppo-
site (—) correlation. It is simple to generalize that products of
these unitaries along a directed tree will generate Z cat states
[FGGN17]. For example,

-1
ﬁ(|01011>
(3

—rat® "

If these unitaries map to a directed spanning tree of G, they
may prepare any eigenstate z of Eq. (3), by choosing signs
U* of each directed edge depending if the vertices are in
the same (+) or opposite (—) partitions. These unitaries are
Clifford: Eq. (4) is equivalent to a Hadamard on register 1,
then a CNOT between registers 0 to 1.

This is a unitary version of the spanning tree algorithm
of [HKS80], if one chooses the sign of each unitary to be the
sign of the signature of its edge. Given some bipartition z and
associated spanning tree 7, one can construct the state as an
ordered product of these unitaries over directed edges (up to
a global phase)

|>\/> =T H UUzJ

(ij)eT-

Us U UstsUs [+) = +110100)).  (6)

(N

Here, 7 denotes inverse path ordering of unitaries along
the directed spanning tree 7, and o;; is the signature of edge
(17) in signed graph I". Note that not every bipartition z may
be constructed in this manner, as the spanning tree requires
the reduced balanced subgraph I"\e to be connected. We call
this algorithm “Spanning Tree".

This algorithm is exact in the following case. As part
of the pre-computation step, some classical algorithm finds
the optimal partition z and an associated spanning tree 7.
Then, implement the circuit of Eq. (7) to generate a maximal
eigenstate of the objective function. However, this exactness
comes at the cost that generating the sequence of gates is
classically hard. The classical algorithm which creates the
optimal circuit must first find the spanning tree(s) whose
bipartition provides the solution to the SIGNED MAXCUT
problem, which is known to be NP-HARD ' This demon-
strates a case in which their exist exact quantum circuits that
provide solutions to hard problems, generating the circuit
may itself be a hard problem classically.

ISIGNED MAXCUT can be reduced to MAXCUT by replacing every
positive edge with two negative edges and a connectivity 2 vertex.
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FIGURE 3. An example round of Spanning Tree QAOA. A classical algorithm computes some approximately optimal SIGNED MAXCUT solution by finding an
appropriate spanning tree (left). A QAOA round alternates between o . o, unitaries on edges (red) and o, unitaries on vertices (blue). First, the complement unitary
is applied, then the tree unitary, which mimics the directed tree graph via repeated application of 0.0, and o,.. This is repeated r times. For » = 1 this is
guaranteed to match the performance of the classical algorithm, and for » — oo the approximation ratio approaches 1.

The Spanning Tree algorithm can be made variational by
allowing the unitaries of the directed edges of any spanning
tree to be a function of angles

U (7, B) = P72 eT0ot0L, ®)

The variational algorithm is as follows. For a signed graph
I" of N vertices, a classical algorithm generates a random
spanning tree 7 and outputs a circuit which is a function of
2N — 2 angles

where ¢ indexes the edges of the tree, and 7 indicates the
path ordering of unitaries along the randomly chosen directed
spanning tree. We call this algorithm “Variational Spanning
Tree" (VST).

By Eq. (5), extremal values v, € +n/4 and 5, = /4
can construct any state (|z) + |z))/v/2. It is the job of a
classical optimizer to optimize the angles and find N —1 signs
of 7y, which construct the optimal state. However, this VST
algorithm is classical. In the Heisenberg picture, expectation
values of operators are

H= 11

g€ pathi <> j

sin(27,) sin(25,), (10)

where ¢ index all of the edges of the spanning tree on the
unique path between vertices ¢ and j. Thus, the expectation
value of the objective function for any graph may be com-
puted classically. Bitstrings can also be efficiently sampled
using tensor networks [FV12] by recursively contracting
leaves of the spanning tree. Hence VST is purely classical
and cannot exhibit any quantum advantage. Instead of gen-
erating the circuit being NP-HARD, the optimization itself
is NP-HARD [SSL19], [CSVT20], [BK21]. Ultimately, this
is because the optimization algorithm is a discrete search,
finding N — 1 signs v = +m/4 or analogously the optimal
bitstring z. VST demonstrates that while circuit generation
may be easy, optimizing parameters in and of itself may be a
hard problem classically.

lll. SPANNING TREE QAOA
It is reasonable to expect that if the number of variational
parameters is constant in problem size, the optimization is

4

more efficient. QAOA has this property [FGG14] due to hav-
ing a more constrained ansatz. Instead of choosing individual
terms 6,6, and 6, acting in serial, QAOA alternates between
acting with the objective function C and a sum of Pauli &,
terms B. The number of variational angles is 2p, independent
of problem size

Iy, B) = "B e=iCm (. )emiBAeiCN 1) (11

There has been much work on QAOA. The approximation
ratio uniformly increases in p, with the p — oo limit converg-
ing to the exact state with an adiabatic schedule [FGG14],
[Cro18], [WL21b]. For large p, it has been observed that
the optimal parameters exhibit concentration and become
independent of graph instance [BBF* 18], and optimal pa-
rameters for p can induce the parameters for p+1 [ZWC'20].
These facts suggest that the classical optimization may be
efficient. This comes at the cost that performance guarantees
are combinatorially difficult to compute [FGG14], [WL21a],
and to date QAOA has not outperformed the best classical
algorithms [FGG14], [WL21a]. QAOA can be contrasted
with the VQAs we define above, which can generate eigen-
states of the objective function, including the maximal state,
at expense of generating the gate set, or the optimization
procedure, being NP-HARD.

We now propose a combination of the Spanning Tree algo-
rithm and QAOA, which we call Spanning Tree QAOA (ST-
QAOA). To avoid the difficulty of parameter optimization,
the circuit optimizer will use a non-extensive number of
variational parameters, like QAOA. To avoid the difficulty of
circuit design, instead of finding the exact maximal spanning
tree, the circuit construction will use an approximate solution
from a classical MAXCUT solver to generate spanning trees.
Finally, to mimic QAOA, the ansatz will repeat p times, and
be able to reproduce QAOA as a special case. The ST-QAOA
is as follows.

Given some signed graph I', a classical MAXCUT solver
P outputs some bitstring P(I") = z and associated directed
spanning tree’> 7, with root vertex v . Next, partition the
edges of the graph G into those in the spanning tree and its
complement to define a ST-QAOA round

2 Any classical algorithm can find solutions where the reduced balanced
subgraph I"\e is connected and so will have an associated spanning tree by
adding the following subroutine: for all vertices within some disconnected
subgraph of I"\e, swap the bipartition X < Y. This will satisfy all of
the edges of the original graph between the two previously disconnected
subgraphs, increasing the number of satisfied edges and making the reduced
balanced graph connected.

VOLUME 4, 2016

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



IEEE Transactions on Quantum Engineering

Wurtz et al.: Classically optimal variational quantum algorithms

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TQE.2021.3122568,

@IEEE Transactions on,
uantumEngineering

U(fYCa YT, /B) =
<T I o (”YT,ﬁ))eiB&: ( 11 e”c"ijf’l’?fi).

12)

An example of this circuit is shown in Fig. 3. This applies
a unitary generated by the complement edges of the spanning
tree, then the spanning tree unitary with some global angle.
A ST-QAOA procedure repeats this unitary p times as a
function of 3p variational parameters

|y = UST—QAOAH’) = H U(W?W%ﬂqﬂﬂ- (13)
q=1

Like QAOA, this algorithm has a number of parameters
independent of the problem size. Unlike QAOA, the ansatz
depends on the approximate classical solution, and can gen-
erate extensive correlations even for » = 1. Such a circuit
includes all terms in the objective function and mixing term,
except reordered to include the structure of spanning trees,
which allows the algorithm to include QAOA as a special
case. Let us now inspect the performance of this algorithm.

For » = 1, ST-QAOA can return the bitstring z produced
by the classical subroutine P. By choosing the angles y. = 0,
vr = w/4, B = 7/4, the unitary is equivalent to Eq. (7)
for the particular choice of spanning tree generated by P,
and so ST-QAOA can give the same solution as the classical
subroutine. Therefore ST-QAOA has the same performance
guarantee as its classical subroutine.

For r = 2, it is possible to reproduce a round of QAOA.
Given QAOA angles v, and S, for the first round, choose
angles 7. = yr = 7, and 8 = 0. For the second round,
choose angles 7. = v = 0 and f = f,. The first round
of unitaries is equivalent to the unitary generated by the
objective function, as each o,0, term commutes. This is
the reason why the complement unitary, which includes all
edges not in the spanning tree, must be added to the ansatz.
The second round of unitaries is equivalent to the unitary
generated by the mixing function for the same reason. Thus,
the approximation ratio of level 2r ST-QAOA will always be
at least that of level p QAOA. As p increases for QAOA, the
approximation ratio increases, approaching 1 in the p — oo
limit [FGG14]. Because the ST-QAOA includes QAOA as a
special case, ST-QAOA will also approach the exact result as
r — 00.

ST-QAOA is a useful algorithm with which to interrogate
the possibility of various forms of quantum advantage. Can
ST-QAOA exceed the performance of the best classical al-
gorithms for worst case graphs? This would be the case if
further variational optimization is possible in ST-QAOA for
all graphs when the best classical algorithm is used as a sub-
routine, and would represent quantum advantage. Such a case
cannot be established numerically, and may not be possible
due to complexity-theoretic constraints [HasOla], [BK99],
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FIGURE 4. Comparing Spanning Tree QAOA (ST-QAOA), QAOA, Random
Spanning Tree (RST) and Goemans-Williamson (GW) Algorithms for an
ensemble of 250 random 3-regular graphs with 16 vertices. (A) plots the
performance ratio B(I"), comparing ST-QAOA (horizontal axis) and QAOA
(vertical axis) for each graph in the ensemble. It is clear that the ST-QAOA has
a performance guarantee B(I') > 1 for p > 1. (B) plots the average
performance ratio vs. the number of repetitions of the GW algorithm. As GW is
a randomized algorithm, repeated sampling uniformly increases its
performance, and the performance ratio appears to converge to 1 from above.
(C,D) plots the average performance ratio over the ensemble vs. the random
spanning tree (C) and Goemans Williamson (D) algorithms. QAOA has
advantage over the random algorithm (black dashed) with p > 3 and
advantage over ST-QAOA with the random algorithm for p > 5.

[KKMOO07], [KhoO2]. A simpler question is whether, above
some threshold value of r, there exist subsets of graphs for
which ST-QAOA has strictly better performance. This is not
quantum advantage, as it only shows improved performance
relative to a particular algorithm for a subset of graphs,
which imposes additional structure that could be exploited
by another specialized classical or quantum algorithm.

To make a quantitative comparison of algorithms we use
the performance ratio

B(T) = Co(T) / Ce (), (14)

where Cq(T") is the optimized expectation value of the ob-
jective function for a VQA applied to the signed graph T,
and C¢(T") is the number of satisfied edges given an output
from the competing classical algorithm P. A value B(T") > 1
indicates that the quantum algorithm can find better solutions
than the classical algorithm for particular problem instance
I. If (B) > 1 for graphs in some ensemble {I'}, then
the quantum algorithm has average case quantum advantage
over its classical competitor, as the quantum algorithm can
produce better solutions than the classical algorithm in at
least some of the graphs. For the ST-QAOA, the worst case
B(T') > 1 for all graphs relative to the classical algorithm
employed by ST-QAOA to generate the ansatz.

As a numerical demonstration, we implement ST-QAOA
on an ensemble of 3 regular graphs. We choose two clas-
sical algorithms to generate spanning trees. The first is that
of Goemans and Williamson (GW) [GW95], which uses
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semidefinite programming to achieve an approximation ra-
tio of at least 0.878 in general graphs, and 0.932 in 3-
regular graphs [HLZO04]. The second algorithm samples a
random spanning tree and achieves an approximation ratio of
2/3(1 — 1/n) for a 3-regular graph with n-vertices [PT86].
Numerical results for an ensemble of 250 3-regular graphs
with 16 vertices are shown in Fig. 4. Optimization used gra-
dient ascent initialized from 100 random points in parameter
space. From Fig. 4A, it is clear that B(T') > 1 for ST-QAOA
and that there exist graph instances for which the ST-QAOA
exhibits advantage over its competing classical algorithm
and performs better than QAOA. Figs. 4C-D show that the
average performance ratio (B(I")) > 1 for all p as expected,
indicating an average case advantage for the spanning tree
algorithm over its classical subroutine. Fig 4B shows that
care must be taken to ensure that the classical algorithm is
also performing optimally by illustrating the convergence of
average performance ratio to one with increased number of
rounds of GW. Each round of GW improves the classical
solution quality, reducing the room for improvement from
ST-QAOA. It may be the case that the improvement over GW
is only due to atypically poor individual solutions. Nonethe-
less, the performance advantage is typically extremely low,
suggesting that GW may a close to optimal algorithm; further
study is beyond the scope of this work. Fig. 4B illustrates that
careless use of classical algorithms can create the illusion of
quantum advantage.

IV. CONCLUSION

In this Article, we have expanded VQA with problem
instance-specific circuits pre-computed by a classical subrou-
tine. We also highlight the computational complexity pitfalls
which may arise from such constructions. One may design
an algorithm whose circuit yields exact answers to MAXCUT,
at the cost that the algorithm is NP-HARD, as exemplified by
the spanning tree algorithm. Similarly, an algorithm which
constructs the circuit may be simple at the cost that the vari-
ational optimization algorithm is NP-HARD, as exemplified
by the variational spanning tree algorithm. The intermediate
algorithm, the Spanning Tree QAOA, combines QAOA with
the concept of spanning trees to improve approximate classi-
cal solutions.

However, the ST-QAOA requires the use of its compe-
tition as a subroutine to generate the circuit. In practice,
any classical algorithm could integrate a similar scheme by
running multiple algorithms in parallel and choosing the
more optimal result, or use additional classical algorithms to
improve the output of one classical algorithm. This is clear in
Fig. 4B, when the optimal result among multiple GW queries
is used as a classical solution. Because GW is randomized,
the performance uniformly increases and removes any addi-
tional advantage from the ST-QAOA. Due to this subtlety,
we make no claims of quantum advantage, even though the
ST-QAOA can only increase the quality of solutions of its
classical subroutine.

While we focus on the problem MAXCUT using the concept

of spanning trees, the pre-computation step is more general.
Using these ideas, constructing VQAs which take advan-
tage of the pre-computation step to non-trivially generate
problem instance-specific circuits may improve heuristic and
guaranteed performance on the limited quantum resources of
today’s NISQ devices.
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