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Abstract
Objective. Stroke is one of the most common neural disorders, which causes physical disabilities
and motor impairments among its survivors. Several technologies have been developed for
providing stroke rehabilitation and to assist the survivors in performing their daily life activities.
Currently, the use of flexible technology (FT) for stroke rehabilitation systems is on a rise that
allows the development of more compact and lightweight wearable systems, which stroke survivors
can easily use for long-term activities. Approach. For stroke applications, FT mainly includes the
‘flexible/stretchable electronics’, ‘e-textile (electronic textile)’ and ‘soft robotics’. Thus, a thorough
literature review has been performed to report the practical implementation of FT for post-stroke
application.Main results. In this review, the highlights of the advancement of FT in stroke
rehabilitation systems are dealt with. Such systems mainly involve the ‘biosignal acquisition
unit’, ‘rehabilitation devices’ and ‘assistive systems’. In terms of biosignals acquisition,
electroencephalography and electromyography are comprehensively described. For
rehabilitation/assistive systems, the application of functional electrical stimulation and robotics
units (exoskeleton, orthosis, etc) have been explained. Significance. This is the first review article
that compiles the different studies regarding FT based post-stroke systems. Furthermore, the
technological advantages, limitations, and possible future implications are also discussed to help
improve and advance the flexible systems for the betterment of the stroke community.

1. Introduction

Stroke is a neurological disorder in which the brain is
unable to receive an adequate amount of oxygen due
to obstruction in blood flow to the brain cells. It is a
life-changing event that can affect the subject’s cog-
nitive and emotional state as much as their physical
functions. Studies show that individuals recovering
from a stroke often experience helplessness, frustra-
tion, and social isolation, which is linked to increased
depression and decreased ability tomanage their daily
activities [1, 2]. According to a study conducted in
2015, there are about 25.7 million stroke survivors
worldwide [3]. One recent study indicates that there
are approximately 116.4 million DALYs (disability-
adjusted life-years) and 5.5 million deaths due to
stroke [4].

Mainly there are five post-stroke phases that
comprise hyper-acute (0–24 h), acute (1–7 days),
early subacute (7 days to 3 months), late sub-
acute (3–6 months), and chronic (>6 months) [5, 6].
Among the stroke survivors, around 50% suffer from
upper limb paresis, i.e. weakness or inability to move
the upper limb [7]. Thus, the primary aim of post-
stroke care is to assist the patients in their every-
day life activities and rehabilitate them for effective
recovery of lost functions. This allows them to regain
their independence and reintegrate into the social
community. Currently, the most common stroke
rehabilitation methods for restoring motor func-
tions are occupational and physical therapies [8]. In
these approaches, task-specific and repetitive train-
ing is performed to induce motor recovery based
on motor learning and neuroplasticity mechanisms.

© 2021 The Author(s). Published by IOP Publishing Ltd
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Motor rehabilitation is supposed to support the brain
in reorganizing its neural networks and relearning the
skills that were lost due to stroke conditions [9, 10].

With the advancement in science and techno-
logy, new stroke rehabilitation methods have been
introduced, which include the use of functional elec-
trical stimulation (FES) and robotics assistance sys-
tem [11]. FES is used as a non-invasive rehabilitation
tool to restore the motor skills of stroke survivors
by stimulating the targeted nerves via applying elec-
trical impulses through the skin surface, thus, indu-
cing movements in paretic muscles [12–14]. This
methodwas first implemented onhemiplegia patients
by Moe et al [15], which was later improved by
Kralj et al [15] to treat subjects with neural dis-
orders. Several studies confirm the efficacy of FES in
recovering different muscle movements, for instance,
restoring hand grasp [16–18], walking [19, 20], arm
reaching [21, 22], standing [23, 24], and upper-limb
rehabilitation [25–27]. On the other hand, the main
objective of robotics-based rehabilitation systems in
stroke therapy is to provide assistance in restoring
impaired limb movements. These systems mainly
include orthoses, exoskeletons, and other robotics
units that allow the rehabilitation of upper and lower
limbs, depending on the stroke severity [28–39]. An
additional advantage of robotics systems includes
the ability to measure the dynamic and kinematic
parameters of the subject’s motion during the ther-
apy. This allows monitoring the subject’s perform-
ance while performing the rehabilitation exercises by
estimating their speed, range of motion, task execu-
tion accuracy, etc [40].

The ultimate objective of rehabilitation therapies
is to restore the brain connections for motor recov-
ery and thereby function. Therefore, along with the
therapist’s assistance, the subject’s active participation
can improve the outcomes. In this regard, the use of
motor imagery (MI) paradigm of the brain-computer
interface (BCI) system seems to be an innovative
approach to neurorehabilitation [41–44]. MI train-
ing consists of the representation of imaginary move-
ments of limbs without physically performing it. This
ability of the brain to imagine a movement is used
for restoring motor skills. MI activates some of the
neural circuits that are also involved in the real move-
ments, and thus, could induce functional redistribu-
tion of neuronal circuits [45, 46]. An MI-BCI is a
computer-based system that records the electroen-
cephalography (EEG) signals and translates the user’s
intention to perform the specific task based on MI
events, for example, activating the muscle stimulator
or controlling a robotic rehabilitation unit. Such MI-
BCI systems have widely been used in stroke rehab-
ilitation for motor and functional recovery [47–66].
Apart fromMI [67], steady-state visual evoked poten-
tial (SSVEP), another BCI paradigm, has also been
used for controlling assistive devices by the use of sub-
ject’s EEG activities. SSVEP is produced in response

to external visual stimulus and can be generated by
alternating graphical patterns, flashing lights, and
flickering images. Usually, their frequencies lie in the
range of low (1–3.5 Hz) to high (75–100 Hz) fre-
quency bands, and based on the frequency range, the
SSVEP-BCI system executes a required action [68].
Such systems have been largely used for wheelchair
applications in which the different directions of the
wheelchair aremaneuvered by a set of pre-defined fre-
quency values [69–72].

In addition to EEG, the use of surface elec-
tromyography (EMG) has also been proven as an effi-
cient approach to control rehabilitation and assistive
devices. The use of EMG as feedback allows to analyze
the real-time muscle activity and provides informa-
tion regarding the amount of rehabilitation required
[39]. For instance, in the case of FES device, the EMG
module will record the muscle potential and provide
feedback to the FES block for adjusting the electrical
stimulation according to the requirement [73–75].
Also, EMG is used for controlling assistive devices,
which comprises of controlling electric wheelchairs
[76, 77] and robotic orthoses/exoskeletons [78–80].

The above-mentioned biosignals acquisition and
rehabilitation approaches are delivering promising
results; however, the current systems/devices are
bulky, rigid, and need special expertise to operate
them. Hence, there is a need to improve them by
transforming these conventional systems into ‘Smart
Systems’ that would be wearable, flexible, compact,
lightweight, portable, and user-friendly (depend-
ing on their mode of application). Recent advances
in flexible technology (FT) have offered a variety
of innovative solutions to the given challenges. In
neurorehabilitation applications, the term ‘Flexible
Technology’ mainly includes the development of: (a)
Flexible/stretchable electronics based bio-sensing sys-
tems/electrodes, (b) e-textile (electronic textile) based
systems, and (c) Soft robotics-based flexible proto-
type, e.g. flexible exoskeleton/orthosis. Flexible elec-
tronics (FE) is an advanced technology that enables
the fabrication and incorporation of sensors and
electronic circuits on flexible, bendable, stretchable,
and twistable substrates [81]. The concept of FE
was introduced in the 1960s when Crabb and Treble
developed the first flexible solar cells [82]. From 1990
to 2000, flexible transistors and transducers have been
designed primarily by using flexible organic thin films
[83–85]. Later, as the field of FE advanced, its range
of biomedical applications increased, including arti-
ficial electronic skin (e-skin) [86–89], vital sign mon-
itoring [90–92], and neural interfaces [93]. Another
FT is the ‘e-textile’ application in which the elec-
tronics is embedded into the stretchable garments/-
textile to perform actuating and sensing functions
[94, 95]. In healthcare, e-textile advantages are sig-
nificant and have widely been adopted in monit-
oring physiological parameters [96–98], biosignals
acquisition [99, 100], gait and postural assessment
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[101, 102], and prosthesis control [103]. Addition-
ally, soft robotics is in high demand nowadays
due to newly added features, including the high
degree of freedom (DOF) and range of motion
along with attained flexibility and portability, which
has never been achieved with rigid-link robotics
[104]. Therefore, soft robots have contributed to the
various platforms; for instance, used in perform-
ing manipulation tasks (e.g. grasping) [105, 106],
mobility assistance (walking) [107], and other med-
ical applications [108–110]. The application of FT
in stroke rehabilitation and assistive systems will be
described comprehensively in later sections of this
manuscript.

To date, numerous review articles have been
published related to the healthcare applications of
FT, which comprises flexible textile electrodes for
biosignals monitoring [99], wearable electronics and
smart textiles [111], e-textiles in neurorehabilitation
[112], wearable sensors and systems with applica-
tion in rehabilitation [113], and FE for soft robot-
ics [114, 115]. However, none of them focuses on
providing a detailed overview of different flexible
methodologies for developing flexible stroke rehabil-
itation and assistive systems.Hence, this review article
has compiled the implementation of several FTs for
stroke application (FE, e-textile and soft robotics) and
has comprehensively described them in terms of the
development of biosignal acquisition unit and rehab-
ilitation/assistive systems. Moreover, current limita-
tions and future research directions are also discussed
for possible improvements of flexible stroke rehabil-
itation systems.

2. Searching criteria

Before the systematic search, inclusion criteria (IC)
and exclusion criteria were defined. Only papers that
met all the IC listed below were selected:

IC1: The article must be written in English.
IC2: The publication date should be on or

after the year 2010.
IC3: The study should be based on FT in

terms of flexible electronics OR
e-textiles OR soft robotics.

IC4: The study must report information
about any of the following: signal
acquisition approaches used for stroke
systems (EEG and EMG) OR stroke
rehabilitation systems (either
conventional or BCI based) OR assistive
systems (exoskeleton, orthosis, or
other robotic units).

IC5: Among the soft robotics systems, only
those studies are included that have
validated their rehabilitation effect on
stroke users.

EC1: The papers that involve FT but do
not address its application for stroke
systems.

EC2: The papers that contain the
development of stroke systems without
the use of FT.

To perform the systematic review, we searched for
articles in PubMed, ScienceDirect, IEEE, and Scopus
databases using the keywords: FE, stroke rehabilita-
tion, BCI, brain computer interface, brain-machine
interface, brain machine interface, neural-machine
interface, neural machine interface, biosignal acquis-
ition systems, e-textile, soft robotics, neurorehabil-
itation devices, FES, robotics systems, and assistive
stroke systems. Figure 1 illustrates the overall screen-
ing process for inclusion and exclusion of the research
articles. Initially, 1565 papers were found, and among
them, 237 duplicates were removed (level 1). Accord-
ing to the IC, the remaining 1328 papers were assessed
and based on their titles and abstract, 645 articles
were excluded (level 2). This resulted in a total of 657
manuscripts for full-text screening, out of which only
26 research articles fulfilled the IC and are included in
this review article (level 3).

3. FT in post-stroke systems

Post-stroke systems consist mainly of two build-
ing blocks: (a) biosignal acquisition systems to col-
lect physiological signals like EEG and EMG, and
(b) assistive and rehabilitation devices that are used
to perform/assist in rehabilitation exercises (for
instance, electrical stimulation devices and robot-
ics exoskeleton). The use of bioelectronics, sens-
ing technology, bioinstrumentation, telecommunic-
ation, and signal analysis techniques have played a
vital role in developing the aforementioned systems.
In the past, the system/device compactness and its
transformation into wearable form was always a big
question, restricting the adoption of such systems for
long-term neural applications. However, the recent
advancement in FT has allowed the development of
flexible, stretchable, and compact systems that entail
the features of signal acquisition, microcontroller
operations, sensing capability, and wireless transmis-
sion [113]. The overall schematic of FT applications
in stroke rehabilitation systems has been shown in
figure 2.

3.1. Biosignal acquisition systems and electrodes
3.1.1. Brain signals acquisition systems/electrodes
Based on the process of recording brain activities, the
brain acquisition techniques are of three types, i.e.
invasive, semi-invasive, and non-invasive [116]. The
invasive method is also called ‘Intracortical Acquisi-
tion Scheme’ in which the electrodes are implanted
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Figure 1. Literature search process and results.

Figure 2. Overview of FT application for stroke
rehabilitation systems.

into the brain’s cortex to record the action poten-
tial generated by neurons firing [117]. Secondly,
semi-invasive techniques are mostly used to record
signals from the brain’s cortical surface using elec-
trocorticogram (ECoG) [118, 119]. Lastly, the non-
invasive technique, which does not require electrode
implantation and records the signals from the brain
scalp via EEG. EEG possesses high temporal res-
olution; however, it depicts a much lower spatial
resolution and is more sensitive to external noises
as compared to invasive and semi-invasive methods
[120]. Non-invasive BCI systems are preferred for
acquiring brain signals due to their comfort, feasib-
ility, safety, portability, and low cost. Additionally,
according to studies [121, 122], subjects prefer non-
invasive systems for theirmedical diagnosis and treat-
ment despite having low-quality signals. Therefore,
the non-invasive EEG systems are the most com-
monly used in BCI-assisted stroke rehabilitation sys-
tems that are based on either gel [123–125] or dry
electrodes [126, 127]. However, the current EEG sys-
tems [128–131] are heavy, bulky, and contain rigid
hardware components, hence, not suitable for long-
term mobile EEG monitoring on a daily basis. Thus,
to fill this gap and to make EEG recording comfort-
able and feasible for day-to-day use, FE has stepped
into the field of developing ‘Flexible EEG Systems/
Electrodes’.

In recent research,Mahmood et al have developed
a flexible, portable, and wireless EEG acquisition
device (termed as ‘SKINTRONICS’) for BCI-assisted

Figure 3. Flexible MAE. Reproduced from [136]. CC BY 4.0.

neurorehabilitation system [132]. The overall sys-
tem includes an FE-based circuit, three flexible
elastomeric electrodes for the scalp, and a skin
electrode. It presents a remarkable reduction of
electromagnetic and noise interference compared to
standard EEG systems [131, 133–135]. The device
works on the SSVEP-BCI paradigm and has been
tested on six human subjects for real-time con-
trolling of a wireless wheelchair, slide changing of
presentation software, and wireless mini-vehicle. The
obtained results show higher control accuracy of
94.01± 3.6% and 96.24± 3.4% at intervals of 0.512 s
and 1.024 s, respectively. In another research, a flex-
ible microneedle array electrode (MAE) has been
developed by Ren et al [136], which is ideal for
biosignal monitoring, including the wearable EEG
measurement. For electrode fabrication, the flex-
ible polyethylene terephthalate substrate has been
used. On the substrate, the conductive patterns and
microneedle array are deposited by laser-direct writ-
ing and magneto-rheological drawing lithography
techniques, respectively (figure 3). The MAE are
tested for eyes blink, close and open features and
their performance is compared with the standard
Ag/AgCl electrode and flexible dry electrode (FDE).
The result shows that the EEG monitoring ability
of MAE is similar to that of Ag/AgCl electrodes,
which proves the feasibility and possible usage of
flexible MAE for biosignal measurement. Also, flex-
ible dry EEG electrodes have been developed by
Grozea et al [137] that are made of flexible metal
coated polymer bristles (figures 4(a)–(c)). The exper-
imental results show that the FDEs are able to record
alpha rhythms, P300 event-related potentials, MI BCI
paradigms and auditory evoked potential. Moreover,
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Figure 4. Silver-coated polymer bristles prototype: (a) prototype (b) through hair (c) flexing. Reproduced from [137]. © IOP
Publishing Ltd. All rights reserved.

Figure 5. BrainStatus consisting of ten electroencephalography (EEG) electrodes, two electrooculography (EOG) electrodes, two
ground electrodes and two reference electrodes. Reprinted from [138], Copyright (2014), with permission from Elsevier.

it is also found that the quality of EEG signals
acquired from flexible electrodes are closer to the
signals that are recorded using standard gel-based
electrodes (within the range of 7–44 Hz). Lepola
et al [138] developed a flexible screen-printed EEG
electrode set called ‘BrainStatus’ (figure 5), con-
sisting of 16 hydrogel-coated electrodes (ten EEG
recording electrodes, two electrooculography elec-
trodes, two ground electrodes, and two reference elec-
trodes). BrainStatus has been tested on two clinical
patients, and the quality of the acquired EEG sig-
nal was excellent and comparable to the conventional
EEG electrodes.Hence, this system can be feasible and
able to provide effective solution for long-term EEG
monitoring of subjects with stroke or other neural
disorders.

Apart from conventional EEG recording systems
in which the electrodes are placed on the scalp,
Norton et al introduced a new flexible EEG sys-
tem. The system is capable of providing long-term
(>14 days) EEG recordings with the electrodes posi-
tioned at the auricle (outer ear surface) and the adja-
cent regions (mastoid area) [139] (figure 6). This dry
electrode system consisted of a collection of gold elec-
trodeswith 300 nm thickness and coatedwith a spray-
on-bandage material that ensures reliable recordings
during normal daily activities. Finally, the device has
been tested on a group of volunteers using an SSVEP-
BCI text-speller and achieved an average accuracy of
93% with a spelling rate of 2.3–2.5 letters per minute,

Figure 6. (a) Epidermal electronics, composed of three
electrodes (REC, GND, and REF)), with magnified view
of the latter (Right). (b) Device laminated on the auricle
and mastoid (Left) and the magnified interconnect
(Right). Reproduced from [139]. CC BY 4.0.

two to three times slower than a conventional cap
EEG system on the hairy scalp.

Moreover, nowadays, the application of e-textiles
technology in a biopotential acquisition is growing
gradually, which allows the development of flexible
and stretchable textile-based EEG monitoring elec-
trodes [99]. However, the main limitation of apply-
ing textile electrodes in EEG recording is hair on
the scalp. Therefore, e-textile electrodes are placed
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on non-hairy regions, for instance, on the fore-
head and behind the ears [140]. Matiko et al [141]
have developed and tested a self-powered EEG head-
band containing integrated flexible solar panels and
screen-printed conductive electrodes. The device was
tested on 12 subjects, and different emotion responses
were identified via EEG classification. The system
performance was compared with the commercially
available passive electrodes, and the obtained out-
come showed a correlation result of 70.88%. Recently,
La et al [142] have also developed screen-printed
e-textile patches, which have been tested for EEG
assessment against eye-opening and closing activ-
ities, with an electrode placed behind the ear in
the mastoid region. The results were quite prom-
ising and showed that the e-textile electrode con-
tained smallermotion artifacts than commercial rigid
sensors.

3.1.2. EMG acquisition systems/electrodes
There are two main types of EMG measurements;
intramuscular EMG and surface EMG (sEMG) [143].
Intramuscular EMG is an invasive method that is
used to study the deep muscles [144, 145]. It is a
time-consuming process and requires special clin-
ical expertise to insert the electrodes deep into
the muscles; hence, rarely been used in practical
applications [146]. On the other hand, sEMG is
a non-invasive technique that acquires EMG sig-
nals from large surface areas and has widely been
used for recording the electrical potential of super-
ficial muscles [147]. sEMG has a low-signal resol-
ution, possesses a relatively narrow frequency band
(20–500 Hz), and is highly susceptible to movement
artifacts as compared to invasive EMG [148–150].
However, the sEMG signal quality can be improved
by selecting the appropriate electrode location [147],
and optimum electrode size [151]. Despite having
inherent limitations, sEMG is practically preferred
because of its non-invasiveness [152].

As the sEMG based research for neurorehabilita-
tion applications advances, the need of flexible and
stretchable EMG electrodes arises to provide novel
and advance solutions for monitoring muscle activ-
ities. The flexible EMG electrodes are more feasible
than conventional electrodes, as they can be easily
placed on curved body surfaces and are also comfort-
able for long-term myosignal recordings. Addition-
ally, they can be embedded into wearable devices of
different shapes and can minimize the overall com-
pactness of the system [153]. In [154], flexible sEMG
electrodes are used to control FES activation, which
plays a vital role in delivering stroke rehabilitation.
The system is tested on eight healthy subjects by posi-
tioning the flexible EMG electrodes on extensor carpi
radialis, extensor digitorum communis, and extensor
carpi ulnaris muscles of the forearm (figure 7). The
FES is adjusted based on the muscle activities and
provides sufficient stimulation for wrist extension,

Figure 7.Multi-contact set-up visualized for the left
arm: Electrode array for FES with a fixed configuration
of two blocks, i.e. a proximal and a distal (close to the
hand) block with 15 and 12 contacts respectively, and
three flexible electrodes for EMG recording. Reprinted
by permission from Springer Nature Customer
Service Centre GmbH: Springer Nature, Journal
of Neuroengineering and rehabilitation [154]
Multi-contact functional electrical stimulation for hand
opening: electrophysiologically driven identification of
the optimal stimulation site, De Marchis et al, © 2016.

Figure 8. Components of the planned electrode grid.
The EMS generator produces the stimulation signals,
which are directed to different electrode configurations
over the switching logic. A control and communication
unit synchronizes the components. It controls the
stimulation parameters and collects the measurements
from the EMG unit. Reproduced with permission from
[155].

hand opening, and ulnar deviation. In another related
research [155], on-skin technology has been used
to develop a flexible, stretchable, and power effi-
cient sEMG electrode grid for controlling FES stim-
ulation (figure 8). Xu et al [156] developed a flex-
ible skin-mounted sensing platform that canmonitor
sEMG via sensing, ground, and reference electrodes
(figure 9(a)). The designed sEMG sensing platform
is fabricated as a flexible electronic skin tattoo con-
taining thin gold and polyimide layers. The elec-
tronic tattoo is attached to the biceps and triceps
surface, and depending on the generated muscle sig-
nals, the extension and flexion of the robotic arm’s
elbow joint are controlled (figures 9(b) and (c)).
Thus, such a flexible sEMG controlled robotic control
system can be implemented to develop robotic assist-
ive devices for stroke rehabilitation. Fall et al [157]
developed a smart textile based sEMG electrodes,
made of metal polymer-glass hollow-core fiber. The
electrodes testing are performed by recording the
muscle activities of biceps and forearm flexormuscles.
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Figure 9. (a) Simple, multifunctional device with skin-like physical characteristics and capabilities in both sensing and
stimulation (b) devices on the bicep and triceps (inset) during control of the angle of the elbow of a robot arm [156]. John Wiley
& Sons. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Figure 10. Basic layouts and configurations of the
sensor patch system. (a) Enlarged photo of the sEMG
recording electrodes. Scale bar, 1 cm. (b) Schematic
illustration of the sensor patch connected with a
portable unit clipped on the wearer’s clothing for
remote data transmission and powering. From [158].
Reprinted with permission from AAAS.

The obtained results confirm that the smart sEMG
electrodes possess the performance similar to com-
mercial gold-plated electrodes. Hence, during stroke
rehabilitation, such sEMG units can be used as a bio-
feedback. It can provide real-time data of muscu-
lar activities and command the rehabilitative robots
to provide assistance based on the muscle require-
ment. Moreover, in [158], a skin-mountable flex-
ible sensor patch has been developed for the patients
suffering from dysphagia (difficulty swallowing dis-
order), which is caused by different neural disorders,
including the stroke [159]. The patch is designed for
the submental area (under the chin) to provide the
remote monitoring of muscle activity (sEMG) dur-
ing the swallowing tasks (figure 10). The monitoring
of swallowing events during the post-stroke rehabil-
itation of dysphagia is very important as it provides
information regarding the level of muscular improve-
ment and allows to adjust the rehabilitation exer-
cises accordingly. Preliminary testing on a patient

with dysphagia, and on a healthy control validates the
effectiveness and feasibility of this system.

3.1.3. Overview of biosignals acquisition systems
Table 1 shows an overview of different studies in
which FT has been used to develop electrodes and sys-
tems for measuring EEG and EMG signals.

3.2. Stroke rehabilitation and assistive devices
3.2.1. FES based rehabilitation
It has been shown that the upper limb stroke rehab-
ilitation performed via the FES technique results in
better performance as compared to the physical ther-
apy alone [171–174]. For an effective implementa-
tion of FES in stroke rehabilitation, the vital paramet-
ers of stimulation (onset therapy time [172, 175] and
dosage [176, 177]) should be chosen with great cau-
tion. Apart from having significant advantages, the
current FES devices possess the limitation of provid-
ing ‘Selective Stimulation’. For instance, when focus-
ing on the recovery of a particular hand function, it
is necessary to position the electrodes precisely over
the muscle motor point to produce specific muscu-
lar contraction [178]. The motor point is an ‘optim-
ized electrode area’ where the required stimulation
effect is attained with minimal electrical stimulation.
As current FES devices normally use a pair of large gel
electrodes, several current paths are produced under
the applied electrodes, stimulating different muscles.
This causes the compromising of selective activa-
tion of targeted muscles and also induces muscle
fatigue [179]. Hence, to overcome this shortcoming
and provide selective stimulation, the flexible mul-
tiple electrodes array has been developed to easily
be placed on curvy surfaces and cover multiple tar-
geted areas on a single location [154, 155, 180–183].
It allows the selective activation of individual elec-
trodes to deliver the selective stimulation to targeted
muscles. Additionally, studies showed the spatial dis-
tribution of stimulation across multiple electrodes
also delays the onset of muscle fatigue [184–186].

Yang et al [180] developed an e-textile based
flexible 24-electrode array called ‘e-sleeve’ for FES
rehabilitation device (figure 11). The e-sleeve has
been fabricated via screen printing technique and can
cover multiple muscle groups, eliminating the need
for precise positioning of electrodes on the targeted
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Figure 11. E-sleeve and FES training system. Reproduced
from [180]. CC BY 4.0.

muscle. The developed algorithm activates the optim-
ized combination of electrodes required to perform
specific movements. The e-sleeve performance was
tested on eight stroke survivors with upper limb dis-
ability by performing ‘hand opening and pointing’
actions. Result shows that the system selected the
right combination of electrode array to achieve the
targeted motion. In [154], an FE array has been used
that contains 27 electrodes to deliver the FES stim-
ulation (figure 7). The overall system comprises a
kinematic glove, EMG unit, and FES module. The
stimulation configuration of FES electrodes is auto-
matically selected based on the feedback received
from the kinematic glove (records finger and wrist
movements) and EMG (records forearms muscles
activity). The system has been tested on eight healthy
subjects to perform different finger and wrist move-
ments of left arm. Results show that the electrode
array successfully provides an accurate stimulation
to targeted muscles and could be feasible for stroke
rehabilitation applications. Also, in [155], a flexible
on-skin 80 electrode array has been developed for
controlling FES stimulation with EMG feedback. At a
single time, 20 electrodes can be activated via switch-
ing logic in order to provide the required stimula-
tion to lower arm muscles for fine movement control
(figure 8). For performance evaluation, the overall
device containing FES and EMG measurement unit
is under development phase. Yang et al [181] fabric-
ated the screen-printed fabric electrode arrays (FEA),
containing 24 electrodes for wearable FES device
(figure 12(a)). First, optimized stimulation sites on
the forearm are selected, and then FES stimulation
is delivered to the targeted location via FEA. Results
show the successful execution of desired movements,
including ‘open hand’, ‘pinch’ and ‘pointing’ gestures
(figure 12(b)). Hence, it can be used in stroke rehab-
ilitation systems to provide upper limb rehabilita-
tion therapies. Another multi-pad flexible electrode
array for FES stimulation was designed by Maleševíc
et al [182], which is named intelligent functional elec-
trical stimulation (INTFES). The array is made of a

flexible polyester substrate and contains 16 electrodes
that can be controlled individually. The system has
been tested on three stroke survivors where the elec-
trodes are placed on forearm muscles for producing
grasping movements. The selective activation of elec-
trodes is based on flex sensors feedback that measures
the muscle twitch response and automatically activ-
ates the electrodes accordingly (figure 13). The result
shows that the INTFES triggers the correct electrode
configuration and successfully accomplishes grasp-
ing action along with maintaining wrist stabilization.
Similarly, Loitz et al [183] also developed multi-pad
FEA for FES control in which the electrode activation
is controlled by flex sensors feedback (figures 14(a)
and (b)). The system has been designed specific-
ally for stroke rehabilitation purposes and has been
successfully tested on a stroke survivor to perform
hand opening.

3.2.2. Robotics based rehabilitation/assistive systems
The main advantage of robotics systems over other
methods in stroke rehabilitation is their possible
application to subjects with extremely low or even no
motor function.Many researches have shown that the
robotics rehabilitationmethods produce an improved
stroke recovery compared to the conventional rehab-
ilitation approaches [187]. Furthermore, the flexible
design introduces flexibility that allows the subject
to perform rehabilitative movements with a higher
range of motion and greater ease. Despite having sev-
eral advantages, robotics rehabilitation systems have
limitations in terms of their massive, rigid and com-
plex operating setup, making subjects uncomfortable
and less motivated towards performing rehabilitation
exercises [35, 63, 188–193]. Thus, to develop compact
and flexible robotics system, the use of FT via ‘Soft
Robotics’ comes into play. Using stretchable mater-
ials and flexible actuators, soft robotics has intro-
duced a new paradigm for human-machine applic-
ations and has successfully been demonstrated its
adaptability [194–196], agility [107, 197, 198], and
sensitivity [199, 200].

Currently, the application of soft robotics in
stroke robotics systems is at its rising curve and sev-
eral studies have reported their implementation in
assistive and rehabilitative robotics for regaining the
subject’s movement and motor recovery [201–203].
For post-stroke gait rehabilitation, a textile based
flexible wearable robotic system has been developed
[201, 202] that transmits the actuator’s generated
power to the paretic ankle and provides assistance
during walking (figure 15). The system has been
tested on nine stroke survivors (chronic phase), and
results show that the paretic limb achieved an increase
in ankle’s swing phase dorsiflexion and improved for-
ward propulsion. In [203], as a part of the European
project ‘XoSoft’, a soft exoskeleton (exosuits) has been
developed to assist people having mobility patholo-
gies (figure 16). This system assists in people walking
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Figure 12. (a) Flexible electrode array (b) stimulation patterns for pointing, pinching and open hand gestures. Reprinted from
[181], Copyright (2014), with permission from Elsevier.

Figure 13. Sensor system for the assessment of the
effects of stimulation. The flex sensors are affixed with
special rings, and the glove is applied using a zipper
interface. The electronics for processing are
integrated into the system. The outputs are finger
flexion/extension and wrist flexion/extension
movements. Reprinted by permission from Springer
Nature Customer Service Centre GmbH: Springer
Nature, Journal of neuroengineering and rehabilitation
[182] A multi-pad electrode based functional electrical
stimulation system for restoration of grasp, Maleševíc
et al, © 2012.

and provides mechanical assistance by reducing the
energy requirementswithin a range of 10%–20%.The
performance of the developed exosuit has been evalu-
ated on stroke survivors in a straightwalking scenario.
It has been found that the exoskeleton provides power
assistance of 9.3± 3.5% and 10.9± 2.2% for knee and
hip actuation, respectively. Additionally, improve-
ment in gait pattern and increased foot clearance has
also been observed at different phases of the gait cycle.
In another research, Bae et al [204] developed a light-
weight and efficient portable soft exosuit for paretic
ankle assistance during gait rehabilitation. A prelim-
inary testing has beenperformedon 03 stroke patients
and it demonstrates that the soft exosuit can improve
paretic limb ground clearance and forward propul-
sion, hence, decreasing the metabolic cost of walk-
ing. Awad et al [205] presented a soft robotic exo-
suit (figure 17) and evaluate its effects on the long
and short distance walking ability of stroke patients.
The soft rehabilitation exosuit has been tested on
six stroke patients who are in the chronic phase of
post-stroke recovery. The findings report that a port-
able soft exosuit facilitates the farther walking dis-
tances and faster walking speeds among the stroke

individuals. For post-stroke hand rehabilitation, Stilli
et al [206] designed a novel light-weight inflatable soft
exoskeleton device, called the AirExGlove. It delivers
adaptive, high-dosage and gradual rehabilitation to
the stroke patients affected by clenched fist deformity.
Preliminary testing of AirExGlove on clenched-fist
stroke patient validates a higher level of ergonomics of
the soft exoskeleton in comparison with conventional
robotic systems. Another soft robotic glove for upper
limb rehabilitation has been developed by Yap et al
[207] that provides grasping assistance via promot-
ing finger flexion (figure 18). Pilot testing has been
performed on two stroke patients that confirms the
improvement in patient’s grasping action. Recently,
Cheng et al [208] investigates the clinical application
of BCI based soft robotic glove (BCI-SRG). The ran-
domized controlled feasibility study is performed on
11 chronic stroke patients and it is found that BCI-
SRG group depicts the trends of prolonged improve-
ments in rehabilitation scores.’

3.2.3. Overview of stroke rehabilitation and assistive
devices
Table 2 shows an overview of different studies in
which FT has been used to develop FES rehabilitation
devices and soft robotics-based rehabilitation/assist-
ive systems.

4. Discussion

The word ‘Flexible Technology’ itself is a much diver-
sified term and possesses a wide variety of medical
applications. Currently, FT is quickly emerging in
research activities to provide novel healthcare solu-
tions for the stroke community (figure 19). FTmainly
includes the implementation of FE, E-textile, and
Soft Robotics to develop the systems for post-stroke
use. These systems are regarded as rehabilitation and
assistive systems, which fall under the two broad cat-
egories. The first one is entirely operated via alloc-
ated hardware units, whereas the second one is con-
trolled via voluntary intention of users (by using their
EEG or EMG signals). Thus, exhaustive research is
underway for developing biosignal acquisition elec-
trodes/systems, assistive devices, and rehabilitation
systems via flexible technology. FT is currently in
its early stages of development; however, preliminary

10



J. Neural Eng. 18 (2021) 061003 M A Khan et al

Figure 14. (a) Schematic illustration of multi-pad electrode FES with sensor feedback. (b) Left: multi-pad control hardware with
front panel to connect electrodes and sensors. Right: custom-made multi-pad electrode and sleeve. Reproduced with permission
from [183].

Figure 15. Illustration of experimental setup. Instrumented
treadmill with the exosuit worn either powered (delivering
forces generated by an off-board actuation unit) or
unpowered. From [201]. Reprinted with permission from
AAAS.

Figure 16. Participant wearing XoSoft: (a) front and
(b) back view. Reproduced with permission from [203].

results are quite promising and provide the path for
future innovation. In addition to the detailed explan-
ation of FT’s stroke application, we believe that some

Figure 17. Overview of the soft robotic exosuit used to
augment paretic ankle plantarflexion (PF) and
dorsiflexion (DF) function during post-stroke
hemiparetic walking. © [2020] IEEE. Reprinted, with
permission, from [205].

Figure 18. Overview of soft robotic glove. Reproduced from
[207]. CC BY 4.0.

key questions need to be addressed for concluding
the discussion. These queries can provide an over-
view regarding the advantages, limitations, and fur-
ther interpretation of FT in stroke systems.

4.1. What are the key advantages of FT in
post-stroke systems?
The key advantages of FT in developing medical sys-
tems for stroke patients vary based on their applica-
tion mode and are comprehensively described below.
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Table 2. Research studies and their outcomes for the development of stroke rehabilitation and assistive devices.

Study Designed Hardware Post-Stroke Rehab Applications Comments/Results Obtained

Yang et al [180] ‘e-sleeve’ (flexible 24-electrode
array) (Fabricated by Screen
printing [167])

Tested on eight stroke patients
for applying FES stimulation to
perform upper limb
rehabilitation.

System perfectly activated
the optimized electrodes for
carrying out ‘hand opening and
pointing’ gestures.

De Marchis et al
[154]

Flexible 27 electrode array Pilot testing is performed on
eight healthy subjects for
applying FES stimulation.
Hence, shows the potential for
post-stroke rehabilitation.

System perfectly activated
the optimized electrodes for
carrying out hand wrist move-
ments.

Duente et al [155] Flexible 80 electrode array Providing FES stimulation to
lower arm for post-stroke
rehabilitation.

20 electrodes can be activated
at a single time. FES and EMG
unit is under development for
future testing.

Yang et al [181] Fabric electrode arrays (FEA),
containing 24 electrodes
(Fabricated by Screen printing
[167])

Pilot testing is performed on
two healthy subjects for
applying FES stimulation.
Hence, shows the potential for
post-stroke rehabilitation.

Successfully executed ‘open
hand’, ‘pinch’, and ‘point-
ing’ gestures. FEA Perform-
ance is compared with plastic
electrode array. Result showed
the achievement of higher
angular joint movement and
greater repeatability by using
FEA.

Maleševíc et al [182] Multi-pad electrode based
system—INTFES (INTelligent
Functional Electrical
Stimulation)

Tested on three stroke patients
for delivering FES stimulation
to a forearm during upper limb
rehabilitation.

INTFES triggered the correct
electrode configuration and
successfully stimulates the
muscles required for grasping.

Loitz et al [183] Multi-pad electrode (Fabricated
by Flexible printed circuit
(FPC) technology

Tested on single stroke patient
for applying FES stimulation to
perform upper limb
rehabilitation.

Provided stimulation to
extensor digitorium muscle for
accomplishing hand opening

Awad et al [201] and
Bae et al [202]

Textile based flexible wearable
robotíc unit

Tested on nine stroke patients
for gait rehabilitation

Increase in ankle’s swing phase
dorsiflexion, and improved
forward propulsion has been
achieved.

Natali et al [203] Soft lower limb exoskeletons
(exosuits)

Performance evaluation is made
on one post-stroke patient for
gait assistance during
rehabilitation.

Improvement in gait pattern
and increased foot clearance has
been observed

Bae et al [204] Soft robotics exosuit Tested on 03 stroke patient for
paretic ankle assistance during
gait rehabilitation.

Analysis showed the improved
paretic limb ground clearance
and forward propulsion during
walking.

Award et al [205] Soft robotics exosuit Tested on 06 chronic stroke
patients for ankle assistance
during gait rehabilitation.

Facilitated the farther walk-
ing distances and faster walk-
ing speeds among the stroke
individuals.

Stilli et al [206] Soft pneumatic exoskeleton
glove ( AirExGlove)

Preliminary testing of
AirExGlove is performed on
clenched-fist stroke patient for
hand rehabilitation.

Showed higher level of
ergonomics in comparison with
conventional rehabilitation
robots.

Yap et al [207] Soft Robotic Glove Preliminary testing of glove is
performed on 02 stroke patients
for hand rehabilitation.

Pilot testing confirmed the
improvement in patient’s
grasping performance.

Cheng et al [208] Brain-Computer interface based
soft robotic glove (BCI-SRG)

Randomized controlled trials
are performed on 11 chronic
stroke patients to assess their
performance in comparison
with ‘without BCI’ soft robotic
glove.

BCI-SRG group showed more
improvements in rehabilitation
scores as compared to SRG
control group.
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Figure 19. Overview of types of flexible technology and
their modes of application.

4.1.1. FE based electrodes and systems
FE plays a vital role in developing biosignal acquis-
ition electrodes (e.g. EEG, EMG, etc and healthcare
systems (e.g. FES device, biosensors, etc). The use of
FE over the traditional approaches allows the system
to bemore compact and portable, enabling the user to
perform long-lasting rehabilitation exercises or other
similar activities with a high level of comfort and ease
[126]. Additionally, the FAEs eliminate the need for
complex wiring, reducing themovement artifacts and
recording the clean signals compared to lead-based
systems. Such adhesive electrodes are also very useful
for emergencymedical care in ambulancework due to
their ‘disposability’ nature. It also provides an oppor-
tunity to place the flexible module where the rigid
component is challenging to place. For instance, the
placement of flexible EEG sensors on the earlobe for
measuring brain signals [139].Moreover, it allows the
quick and easy installation of a flexible system in case
of an emergency that includes the usage of EEG head-
set in case of emergency for continuousmonitoring of
brain condition [138].

4.1.2. E-textile
The concept of e-textile (also termed as ‘Smart Tex-
tile’) is purely based on the concept of FT and is seen
as an innovative way to revolutionize healthcare prac-
tices. The most important advantage that brings the
smart textile in the high-demand list is the introduc-
tion of ‘Customized Wearability’. As different elec-
tronic modules can be embedded into any clothing,
a wearable system becomes more adaptable. The user
can personalize its appearance depending on indi-
vidual preferences and environmental changes. Fur-
thermore, instead of using physical electronic com-
ponents, some of the e-textile contain the printed
modules that are printed on the stretchable textiles
via conductive inks. This reduces the weight and
improves its wearability, which converts the normal
textile into an intelligent textile that can compute,
sense, actuate and communicate (depending on the
application).Within the post-stroke systems, e-textile
contains a wide variety of applications, which mainly

comprises fabrication of EEG electrodes [141, 142],
FES stimulation electrodes [180–182], and gait rehab-
ilitation systems [201, 202].

4.1.3. Flexible prototype for soft robotics based
assistive/rehabilitation unit
In such systems, FT comes into action via ‘Soft Robot-
ics’ that provides a high DOF and more flexibility
while performing mobility action. Moreover, flex-
ible exoskeletons and orthosis show promising res-
ults especially because of the reduced weight that
is crucial when performing rehabilitation therapy.
Two major limitations of the rigid exoskeleton that
prevent it from home/community use are high cost
and the requirement of expertise to operate. One of
the advantages of flexible sensors and e-textile sys-
tem application in soft wearable robotics is that it
could potentially bring down the cost and requires
less expertise to operate, which therefore makes it
possible for long-term home use.

4.2. What are the limitations of FT for the
development of post-stroke systems?
The limitation of FT varies depending on its mode of
application.

4.2.1. FE
The primary constraint in FE-based systems/elec-
trodes is ‘Mechanical Robustness,’ i.e. the flexible com-
ponents started to lose their stability and behave
differently after few cycles of twisting, stretching,
and bending [209]. Among flexible adhesive sensor-
s/electrodes, the key limitation is their ‘Re-usability,’
i.e. depending on the adhesion quality, the adhes-
ive sensor needs to be replaced with a new one after
few trials [210]. Another disadvantage of FE-based
skin sensors is ‘Unstable Output due to Motion Arti-
facts.’ The skin stretching causes variations in the
skin potential, which can affect the sensor output
and lead to generation of false readings [211]. Some
people consider ‘Hair Removal’ as a weakness of FE.
To obtain high-quality biosignals via flexible sensors,
the targeted area must be properly shaved to avoid
interference caused by hair [132]. Another drawback
includes the ‘Difficulty of Repairing or Modifying’ the
FE components in the system. Hence, great care must
be taken while designing and fabricating the flexible
modules.

4.2.2. E-textile
‘Washability’ is the main obstacle that limits the prac-
tical implementation of e-textile in healthcare. Cur-
rently, there are no standardized washing protocols
available for e-textiles, and every e-textile manu-
facturer provides its own reliability statements for
repeated washing [212]. The washing process might
produce any or all of the following effects in the
respective e-textile:
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• Changes in the electrical properties of the conductive
path: For instance, increase in the resistance or the
loss of electrical conductivity, etc [213–215].

• Changes in integrity: For instance, loosening of
components/wires, delamination, etc [216, 217].

• Changes in the textile characteristics: For instance,
decreased sensing capabilities, reduced data trans-
mission ranges, etc [218, 219].

• Mechanical deformation: For instance, the appear-
ance of wrinkles in the fabrics that introduce arti-
facts in the sensing measurements, etc [220].

• Functional changes: Partial or complete functional
loss of the e-textile system [221, 222].

4.2.3. Soft robotics based assistive/rehabilitation unit
Among soft robotics based rehabilitation systems,
the hydraulic and pneumatic control mechanism are
widely used. Such control strategies require high pres-
sure pumps for their actuation that causes difficulties
in retaining the required gripping force and therefore,
result in slow actuation rates [223]. Moreover, soft
robotics in rehabilitation robots often offers a lower
number of DOFs as compared to classical rigid robot-
ics systems [224]. Hence, in future design, these lim-
itations should be taken into consideration to further
increase the adaption of soft robotics in stroke rehab-
ilitation.

4.3. Is FT used in any post-stroke system regarding
the invasive and semi-invasive application?
Invasive/semi-invasive application is the best suitable
ones for biosignals acquisition modules within the
rehab and assistive systems. Hence, it is expected that
FE-based invasive/semi-invasive biosignal acquisition
systems will be developed in the future. The in-vivo
experiments have already been performed on feline
animal (cat) models to acquire their brain signals via
a semi-invasive flexible ECoG sensing unit [225, 226].
The preliminary results show that flexible semi-
invasive electrodes have great potential for measur-
ing high-quality brain activities. However, it possesses
several limitations, including [227]: (a) These elec-
trodes need the surgical procedure for implantation.
(b) There are chances that the body will not respond
to the new external object as expected, thus, caus-
ing medical problems. (c) Complications related to
the implant stability and possible neural infection can
also arise. Therefore, their feasibility for human trials
is still questionable, and thus, the current usage of FE
in an invasive recording is restricted for post-stroke
applications.

4.4. In addition to the biosignal measurement and
rehabilitation/assistive systems, is there any other
possible implementation of FT in stroke
application?
For most patients with stroke, the amount of rehab-
ilitation provided starts decreasing once they leave

the hospital. Hence, despite being a great techno-
logy for neurorehabilitation acquisition systems and
devices, FT can also be used in developing sensors to
provide accurate and long-termmeasurements of sev-
eral vital parameters that healthcare professionals can
remotely analyze. Recent work from Lee et al [228]
presents the development of a flexible skin-mounted
sensing device. It incorporates high-bandwidth tri-
axial accelerometers and is placed at the supras-
ternal notch (a visible dip in between the neck). The
device can provide real-time recordings of respira-
tion rate, swallowing count, talking time, body ori-
entation, heart rate, and sleep quality. In [229], Kim
et al developed an e-skin (electronic skin) integrated
electronic system that can perform wireless sensing
of voice, breathing, pulse wave, chewing/swallow-
ing, temperature, and kneemovements. The acquired
data is transmitted via Bluetooth unit to the smart-
phone for real-time display. Also, Murphy et al [230]
designed an upper-body flexible garment with integ-
rated sensors that are able to monitor heart rate and
movement-related parameters to evaluate the pro-
gression in post-stroke recovery. Hence, such kinds of
intermodal sensing systems could be of great import-
ance in post-stroke applications. They can send an
overview of the patient’s physiological state to the
clinician’s phones and computers. Consequently, the
clinician can take the necessary steps at the right time,
which could lead to faster and better recoveries for
stroke patients [209].

5. Conclusion

The analysis of post-stroke function is a long pro-
cess, starting from impairment assessment, rehabil-
itative training, monitoring recovery, and providing
required assistance to perform everyday life activities.
With every passing day, the modern era of technolo-
gical advancement allows to develop new and innov-
ative post-stroke systems with an aim to support the
stroke community. Among them, FT is on the rising
curve that provides novel solutions to develop com-
pact, portable, user-friendly, lightweight, and wear-
able healthcare systems for stroke patients. Hence, in
this review, different types of FT for developing stroke
systems have been presented, including FE, e-textile,
and flexible prototype. It has been shown that every
FT has its specific application in developing different
modules involved in post-stroke systems. FE is widely
used in biosignal acquisition electrodes/units. Simil-
arly, e-textile is adopted for developing various elec-
trodes (EEG, EMG, and FES) and assistive devices.
On the other hand, a flexible prototype is mainly
used to develop soft robotics systems for advanced
rehabilitation and assistive purposes. Every techno-
logy has its own advantages and limitations that have
been described in detail in the manuscript. Finally,
the other possible stroke application of FT and its
future perspective has also been discussed that can
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further revolutionize the development of upcoming
post-stroke medical systems.
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