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ABSTRACT An accurate SO2 prediction model of circulating fluidized bed (CFB) units can help operators 
make appropriate adjustments to unit operation. The SO2 prediction accuracy of the mathematical model is 
limited due to the complexity of the combustion reaction in the circulating fluidized bed boiler. In order to 
obtain accurate predictions of SO2, a prediction model, which consists of the long short-term memory neural 
network (LSTM) using wide and deep structures, is proposed in this paper. Such structure improves the ability 
to extract linear relationships in the prediction model. The parameters of the wide structure are fixed using 
pre-training, which improves the prediction accuracy of the model. A differential prediction method is used 
for SO2 prediction, which reduces the impact caused by the autocorrelation of the data. An improved mean 
impact value (MIV) algorithm is used to choose the best input variables combination scheme. Based on the 
original mean impact value algorithm (MIV), the temporal information is integrated, and repeated 
experiments are carried out to reduce the impact of model parameters initialization on the results. The 
improved MIV algorithm achieved higher prediction accuracy. The prediction model takes good prediction 
accuracy on the actual operating data of the 330MW CFB unit. The effectiveness of these changes is verified 
through comparative experiments. Compared to other existing prediction algorithms, the prediction model in 
this paper achieves the best prediction performance for several data sets. 

INDEX TERMS SO2 prediction; improved mean impact value method; wide and deep LSTM; deep 
learning 

I. INTRODUCTION 
With the development of renewable energy units, thermal 
power units have become subject to strict restrictions in 
terms of flexibility and pollutant emissions. Circulating 
fluidized bed (CFB) combustion technology has made 
significant progress in the last 50 years due to advantages in 
fuel adaptability, pollutant control and load regulation [1]. 
There were more than 4000 CFB boiler units in China with 
a total capacity of more than 100 GW by 2017 [2]. CFB 
combustion technology is moving toward higher parameters 
and larger capacity. There are already 46 units of 
supercritical CFB boilers in service, with a total capacity of 
nearly 17000 MW as of 2020 [3]. 

Coal is used as fuel in most CFB boilers because it is 
relatively cheap and readily available. However, coal will 
produce a large amount of sulfur oxides and nitrogen oxides 
(NOx) during combustion. Among them, SO2 is the main 
sulfur oxide. In most countries, these dangerous emissions 
have led to stringent environmental regulations that force 
industries with coal-fired facilities to work within limits [4]. 
The CFB boiler can remove part of the SO2 by injecting 
limestone into the furnace during operation. Due to the 

characteristics of large inertia and large hysteresis in CFB 
boilers [5], limestone will not produce a desulfurization 
effect immediately after entering the CFB boilers but will 
play a role in desulfurization slowly over some time. This 
characteristic poses challenges to the ultralow emission 
operation of CFB units. Accurate SO2 prediction results can 
provide guidance for CFB boiler operation, including 
parameter optimization, early warning, and control 
optimization. Therefore, SO2 prediction based on the 
existing input data is essential for controlling the SO2 
emissions of CFB boiler desulfurization. Mathematical 
models of pollutant emissions from thermal power units have 
been the focus of many researchers. NOx and N2O emissions 
from an ultrasupercritical CFB boiler were predicted using a 
two-dimensional comprehensive computational fluid 
dynamics (CFD) combustion model by Ji et al. [6]. A 
combustion model of a 600 MW supercritical CO2 coal-fired 
circulating fluidized bed boiler system was built by Liu et al. 
[7], and the combustion simulation also effectively predicted 
that SO2, NO, and CO emissions would decrease with 
increasing excess air. Ke et al. [8] studied the desulfurization 
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performance of the world's first 550 MWe ultrasupercritical 
CFB boiler and proposed a quasi-steady-state one-
dimensional circulating fluidized bed model. The current 
mathematical models of pollutant emissions are all for 
steady-state models, and idealized assumptions influence the 
mathematical models. The accuracy of the mathematical 
model will decrease rapidly when the units are in a dynamic 
process. Therefore, it is challenging to predict SO2 
accurately by using mathematical models. Reference [9] 
summarized industrial soft sensing technologies in recent 
years. It is mentioned in the reference that for the chemical 
industry, due to the complex reaction process and unknown 
side reactions, it is not feasible to solve the chemical 
equilibrium in real-time. Similarly, for CFB units, a 
complete mechanism model has not been developed due to 
the complex combustion process and the desulfurization and 
denitrification reactions in the furnace. At present, the 
investigation only focuses on mechanism modeling and 
mechanism analysis under specific working conditions. 

The present research is limited to mechanical analysis, 
mainly due to the complicated mechanism inside the 
circulating fluidized bed. Therefore, the mechanism model 
for the whole operation condition of the circulating fluidized 
bed units has not been proposed. The current research is 
limited to experimental measurements or experimental 
analyses. The operation schemes and control means of the 
units are determined through the operation experiment of the 
units. With the advancement of industrial intelligence, it is 
difficult to apply such analysis results to the scene of 
industrial intelligence unless an accurate and reliable 
mechanism model is proposed. The prediction model based 
on machine learning can compensate for this gap to a certain 
extent. Machine learning models, as a new construction 
method of soft sensing models [9], have been investigated 
and developed by many researchers. Machine learning 
models are rapidly becoming a key instrument in various 
areas of the power generation industry, including anomaly 
detection [10], power prediction [11], strategy optimization 
[12], wind speed prediction [13], and parameter prediction 
[14]. Recently, researchers have shown increased interest in 
pollutant prediction models based on machine learning. The 
long-short term memory neural network model (LSTM) [15] 
and convolutional neural network (CNN) model [16] were 
also used to predict the NOx emission values of coal-fired 
power units. The prediction effects of these two models were 
proven to be better than those of the traditional machine 
learning model. A multi-input Gaussian process model was 
proposed by Wang et al. [17] to predict NOx emissions. The 
experimental results showed that the number of input 
variables affects the prediction accuracy of the model. 
Adams et al. [18] used the deep neural network (DNN) 
model to model the SO2 emissions of a CFB boiler, and the 
experiment proved that reasonable model input could 
effectively improve the prediction ability of the model. 
These prediction models are all used to predict pollutant 

emissions at the current time, which can be obtained through 
on-site measurements. Such forecast results are challenging 
to use to guide and optimize future operations. Therefore, 
this paper focuses on forecasting pollutant emission values 
in the future using current data. 

The results of reference [17] and reference [18] also 
proved the importance of variable selection. In the current 
research, many variable selection methods have been used 
for prediction models, such as the mutual information 
algorithm [19], Pearson correlation coefficient [20], and 
distance correlation [21]. Hong et al. [22] used the improved 
dynamic time warping method to select the model input 
variables in the bed pressure prediction model of a CFB 
boiler. Wang et al. [23] proposed a variable selection method 
based on principal component analysis with multiple 
selection criteria to select a set of variables to target fault 
signals while still preserving the variation of data in the 
original dataset. In addition, some simple machine learning 
models are also used for variable selection, such as clustering 
models [24], regression models [25], and random forests [26]. 
However, these selection methods are mainly based on the 
correlation between the data, without considering the 
characteristics of the prediction model itself. The mean 
impact value (MIV) method was first proposed by Dombi 
[27] in 1995. The MIV method evaluates the correlation 
between the input and the output by analyzing the weight 
sensitivity of the neural network model. However, due to the 
random nature of neural networks, the results of the MIV 
algorithm appear to be unstable. Inspired by this method, an 
improved MIV method is proposed in this paper, which 
evaluates the correlation between time series based on the 
prediction model. 

The prediction model structure has also attracted 
researchers' attention in addition to variable selection 
methods and prediction algorithms. A model based on a wide 
and deep structure was proposed by Google in 2016 [28] and 
was applied to Google Play application recommendations. 
Researchers have also studied the application of various 
hybrid structures in the industrial field. A NOx emission 
prediction method based on the stacked-generalization 
ensemble method (SGEM) was proposed by Yuan et al. [29], 
which combines four simple machine learning models. Fan 
et al. [30] proposed a hybrid prediction model of the 
autoregressive integrated moving average model (ARIMA) 
and LSTM model to predict oil well production, and the 
comparative experiment proved that the hybrid model had a 
better prediction effect than the single model. In addition to 
this parallel hybrid structure, there is also a deep hybrid 
structure. Shipman et al. [31] proposed a deep CNN-LSTM 
time series forecasting model to predict the available 
capacity from a fleet of 48 vehicles for the next 24 h. Hence, 
we are inspired by the success of these prediction models. A 
wide and deep structure LSTM (WD-LSTM) model is 
proposed in this paper. The wide structure and the deep 
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structure are used to extract the linear and nonlinear mapping 
of the data, respectively. 

In this paper, an SO2 prediction method that uses the 
existing input data to predict the SO2 emission value after 
120 s is proposed. The prediction performance of SO2 can be 
used to support research on the control strategy of pollutants 
in CFB units. The main contributions of this study include 
the following: 

1. An LSTM model with a wide and deep structure is 
proposed, which combines the differential prediction method 
to accurately predict the SO2 emissions of CFB boilers. The 
parameters of the wide structure of the prediction model are 
determined using pre-training. 

2. An improved MIV method is proposed to select the 
input variables of the prediction model, which improves the 
prediction performance of the prediction model. 

3. The selection results of variables, the structure of the 
prediction model, pre-trained data segments and the 
differential prediction method are discussed and analyzed by 
means of comparative experiments. 

The rest of the paper is organized as follows. Section Ⅱ 
presents a description of the proposed methodology and 
performance metrics. Section Ⅲ  describes the SO2 
generation process in CFB boilers and constructs an SO2 
prediction model using actual operational data. Section Ⅳ 
compares and analyses the forecasting methods and 
innovations used in this paper. Finally, Section Ⅴ 
summarizes the conclusions obtained from the study and 
highlights the major findings. 

II. METHODOLOGY 

A. FIRST-ORDER DIFFERENTIAL PREDICTION 
The first-order differential prediction method (DP) is widely 
used in economics to reduce the influence of autocorrelation 
of prediction data on prediction results. Industrial data have 
apparent autocorrelation because of the inertial process in 
actual industrial production. Moreover, after the input data of 
the model are normalized, the neural network model pays 
more attention to data changes than the data values. The 
prediction method of the first-order differential is more 
suitable for this characteristic. In this paper, first-order 
differential prediction is used to improve the prediction 
accuracy of the model. The equation is as follows: 

 ( ) ( )y y t k y t∆ = + −  (1) 

where ( )y t k+  is the value of the predicted target at time t+k; 
( )y t  is the value of the predicted target at time t; and y∆  is 

the difference between two moments. The prediction model 
obtains the value of ( )y t k+  by predicting y∆ . 

B. LONG SHORT-TERM MEMORY 
A long short-term memory network (LSTM) was proposed by 
Schmidhuber and Hochreiter in 1997 [32], which greatly 
eased the training problem of recurrent neural networks 
(RNNs). As a variant of RNN, LSTM greatly alleviates the 

problems of vanishing gradients and exploding gradients 
during RNN training by adding gating units and memory 
mechanisms. It can also be effectively used in predicting long 
temporal information. 

 
FIGURE 1. LSTM cell Structure. 

The structure of the LSTM cell in the hidden layer is shown 
in Fig. 1. For the input tx , the LSTM model combines the 
previous hidden state 1th −  to build three gate vectors: input 
gate ti , forgetting gate tf  and output gate to . These three 
gate vectors are mapped to the interval from 0 to 1 by the 
sigmoid activation function, which is used to select candidate 
cell state tc , previous cell state 1tc −  and candidate output 
tanh( )tc . The equations of the gate vector are as follows: 

 1( )t i t i t ii sigmoid W x U h b−= × + × +  (2) 

 1( )t f t f t ff sigmoid W x U h b−= × + × +  (3) 

 1( )t o t o t oo sigmoid W x U h b−= × + × +  (4) 

where W  and U  are the weights of tx  and, 1th − , 

respectively, and b  represents the bias value. The cell 
candidate state is generated by the following formula: 

 1ct c t c t ctanh W x U h b−= ( × + × + )  (5) 

The cell candidate state is mapped to the interval from -1 to 
1 through the transformation of the tanh function. The cell 
state at the previous time 1tc −  and the candidate cell state tc  
form the new cell state tc  through the forgetting gate tf  and 
the input gate ti , respectively. The new hidden state th  is 
generated by the cell state tc . The equations are as follows: 

 1t t t t tc f c i c−= × + ×   (6) 

 ( )t t th o tanh c= ×  (7) 

The ( )sigmoid x  and tanh x( )  mentioned in the previous 
equations are as follows: 

 
1( )

1 xsigmoid x
e−=

+
 (8) 

 
x x

x x

e etanh x
e e

−

−

−
( ) =

+
 (9) 
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C. WIDE AND DEEP LONG SHORT-TERM MEMORY 
MODEL 
Google proposed a model based on a wide and deep structure 
in 2016 [28]. The linear model and deep neural network are 
combined by the wide and deep model, which improves the 
generalization ability of the model while considering the 
model's memory. Hence, we are inspired by the success of this 
wide and deep structure. A wide and deep structure LSTM 
(WD-LSTM) model was proposed in this paper. The model in 
reference [28] is aimed at natural language processing, 
whereas the model in this paper is aimed at parameter 
prediction. In reference [28], the deep part is mainly 
constructed by embedding layers and fully connected layers. 
In this model, the deep part is constructed by LSTM layers and 
fully connected layers. The model in this paper and the model 
in reference [28] are calculated by linear mapping in the wide 
structure. The difference is that the wide structure of this 
model is calculated for all input variables, whereas the model 
in reference [28] is calculated for two unique characteristic 
variables. 

The characteristics of large inertia and large delay of CFB 
units are mainly reflected in the time series information of data. 
Large inertia and delay in the prediction results can be reduced 
by extracting reasonable time series information. Many 
researchers have considered the LSTM model to be the best 
time series information extraction model. In the deep and wide 
model, the LSTM model is adopted in the deep part, which can 
filter the time series information. The model of the wide 
structure adopts the form of full connection in time series data, 
which can give more weight to time series related data to 
obtain higher model accuracy. 

The SO2 emissions of CFB boilers are affected by many 
factors and variables, including superficial linear relationships 
and complex nonlinear relationships. The traditional deep 
neural network structure often focuses on the nonlinear 
mapping of prediction models, ignoring the linear relationship. 
Therefore, this paper proposed the WD-LSTM model. The 
structure of WD-LSTM model is shown in Fig. 2. 

In the WD-LSTM model, the wide structure uses two fully 
connected layer structures, the generalized linear model 

( )f x WX b= + . The first fully connected layer weights and 
sums the data of each characteristic variable in the timestep. 
The second fully connected layer weights and sums all 
characteristic variables; the deep structure is built by using the 
deep LSTM model, which mines the nonlinear mapping 
relationship between variable time series. 

Overfitting is a common problem in a training process 
wherein the predictive performance on the training dataset is 
good, but the predictive performance is poor on the newly 
predicted data. L1 regularization [33], L2 regularization [34], 
and dropout [35] are adopted in the prediction model to 
prevent overfitting. Dropout is used before the output layer. 
Moreover, L2 regularization is applied to the core weights of 
the last LSTM layer in the deep structure. L2 regularization 
makes the core weight matrix of LSTM approach the dense 
matrix and maintains a complete nonlinear mapping 

relationship between output and input. In the first layer of the 
wide structure, L1 regularization is used for weight training. 
The weight matrix of the layer approaches the sparse matrix, 
and the interference of redundant weights on linear fitting is 
reduced. 

 
FIGURE 2. Structure of the proposed WD-LSTM model. 

D. AN IMPROVED MEAN IMPACT VALUE METHOD 
The mean impact value (MIV) method was first proposed by 
Dombi [27] in 1995. This method can measure the importance 
of input variables on output in the neural network model. 
Therefore, the input variables are selected to improve the 
prediction accuracy of the neural network model according to 
the impact value of each feature. 

However, the original MIV method cannot fully consider 
the correlation between time series. Moreover, the original 
MIV algorithm does not fully consider the application of MIV 
results in the prediction model. This paper proposed an 
improved MIV method. The improved MIV method is 
improved based on three parts. First, the WD-LSTM network 
model is used to explore the time series relationship between 
input variables and predict target variables. Second, the impact 
value of a single variable is obtained by calculating and 
averaging the impact values in each training sample and 
timestep. Third, the improved MIV method avoids the 
influence of random initialization on the results by repeated 
training. The final analysis results are the average value of 
repeated training results. 

The steps of the improved MIV method are as follows. The 
nomenclature table of this section is shown in Table 1. 

Step 1: The training set is adaptively trained with the WD-
LSTM model. 
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Step 2: Take a training sample m I JX x ×{ }  and a 
corresponding output mY  in the training set. Each input 
variable i , jx  with a timestep in m I JX x ×{ }  is increased or 

decreased by 10% to obtain I J×  new sets. The new sets are 
used for simulation according to the fitted model. 

Step 3: The impact value m,n,i , ju  is obtained by calculating 
the difference between the simulation results of the new 
dataset and. mY . 

Step 4: Repeat steps 2 to 3 until all training samples are 

traversed. The impact value m,n,i , ju  on the i-th timesteps of M 

training samples is averaged to obtain n, ju , which is the 
impact value of the j-th input variable in the n-th repeated 
experiment. 

Step 5: Repeat step 1 to step 4 N times. The impact value 

n, ju  of N times is averaged to obtain jU , which is the impact 
value of the j-th input variable. 

Step 6: The J input variables are sorted according to jU . 
The impact value jU  of the j-th input variable is calculated 

as follows: 

 
1

1 N

j n, j
n

U u
N =

= ∑  (10) 

 
1 1

1 I M

n, j m,n,i , j
i m

u u
IM = =

= ∑∑  (11) 

where u  is the impact value of input variable. 
TABLE Ⅰ 

NOMENCLATURE 
Nomenclature 
m The m-th sample 
n The n-th repeated experiment 
i The i-th timestep 
j The j-th input variable 
M The size of training set 
N The number of repeated experiments 
I The length of timesteps 
J The number of input variables 

E. THE PREDICTION MODEL 
In this paper, the first-order differential prediction method is 
combined with a wide and deep model structure. The 
differential prediction wide and deep LSTM (DP-WD-LSTM) 
model is proposed. An improved MIV method combined with 
the DP-WD-LSTM model is used to screen the model input 
variables. Fig. 3 shows the prediction flowchart of the DP-
WD-LSTM model. 

The prediction process is mainly divided into the following 
steps: 

1. Differential processing is carried out on the target data. 
The treatment is described in detail in Section III-B. 

2. The WD-LSTM model parameters are learned by the 
training set. The hyperparameters of the model are selected 
according to the forecast accuracy of the validation set. 

3. The variables are screened by using the model with 
determined hyperparameters. The improved MIV algorithm is 
used to sort the correlation of each input variable. According 
to the result of variable ordering, the variable with the lowest 
correlation is removed in sequence to form different input 
variable combination schemes. Each scheme uses the training 
set for model training. The best input variable combination 
scheme is selected according to the prediction accuracy of the 
validation set. 

4. The prediction model is trained by using the selected 
model input combination scheme. 

5. The constructed model is used for prediction. The output 
of that model is the differential value of the target variable. 
The differential value is added to the current value of the target 
variable to form the predicted value. 

In the DP-WD-LSTM prediction model, the model 
improves the accuracy of the prediction model from the 
following three parts. 

1. The differential prediction method reduces the influence 
of the autocorrelation of the data on the prediction accuracy. 

2. The wide and deep model structure ensures that the 
model not only retains the learning ability of nonlinear 
mapping but also retains the learning ability of linear mapping. 
The parameters in the wide structure of the model are fixed 
using pre-training. 

3. The improved MIV method realizes the selection of input 
variables based on the network model structure, which realizes 
the screening of redundant input variables based on the impact 
values of input variables. 

 
FIGURE 3. Flowchart of the proposed prediction model. 

F. PERFORMANCE METRICS 
To assess the prediction performance under different 
experimental scenarios, a variety of scientific performance 
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metrics are selected for time series prediction. This paper 
chooses accuracy (ACC), mean absolute error (MAE), mean 
absolute percentage error (MAPE), and R-square (R2) as 
performance metrics, which are used for evaluating the 
performance of different models in prediction results and can 
be expressed as follows: 

1. Accuracy (ACC): 

 
1

1 ( ) 100%
n

i
i

ACC exact
n =

= ×∑  (12) 

 

'

1, 0.05

0,

i i

i i

y y
exact y

others

 −
≤= 




 (13) 

2. Mean absolute error (MAE): 

 '

1

1 n

i i
i

MAE y y
n =

= −∑  (14) 

3. Mean absolute percentage error (MAPE): 

 
'

1

1 n
i i

i i

y yMAPE
n y=

−
= ∑  (15) 

4. R-Square (R2): 

 

' 2

1

2

1

( )
2 1

( )

n

i i
i
n

i i
i

y y
R

y y

=

=

−
= −

−

∑

∑
 (16) 

where iexact  denotes the sample whose absolute percentage 
error is less than or equal to 5% (noting that the threshold value 

of 0.05 is set according to the experience of field experts); iy  

is the actual emission of SO2; 
'
iy  is the emission of SO2 

predicted by different models; n is the number of prediction 

data; and iy  is the average value of the actual emission of 
SO2. Generally, lower values of MAE and MAPE lead to 
better performance of the prediction task. Furthermore, the R2 
value and ACC value are in the interval [0, 1], and higher R2 
and ACC values indicate better prediction results. 

III. SULFUR DIOXIDE PREDICTION RESULTS 
The experiment in this paper used the operation data of the 
subcritical 330 MW CFB boiler in the Ningxia Guohua 
Ningdong Power Plant. A total of 28800 data samples are 
selected from the raw data from 0:00:00 on August 28, 2018, 
to 0:00:00 on August 30, 2018. The sampling interval is 6 s. 
The coal quality analysis parameters and Ca/s molar ratio of 
the unit do not change significantly in one day, two days or 
even more during operation. Therefore, to avoid the 
interference of coal quality and Ca/S molar ratio changes on 
the prediction results, the coal quality analysis parameters and 
Ca/S molar ratio are consistent throughout the sampling 
process. The results of coal quality analysis are shown in Table 
2, and the Ca/S molar ratio is 1.1. The first 26800 data samples 
were used for the training set, and the last 1000 data samples 
were used as the test set. The remaining 1000 data samples 
were used as validation set samples to test the generalization 
ability of the prediction model. The dataset is divided as 
shown in Fig. 4. As shown in Fig. 4, the training set contains 
both dynamic and steady-state processes. The test set and the 
validation set are all dynamic processes. 

The program was compiled using Python, and the algorithm 
model used TensorFlow 2.0 and the Scikit-learn framework. 
All experiments were carried out in the Python compiling 
environment using an Intel Core i9–10900K CPU and 
RTX2080Ti GPU machine. The algorithm model is 
accelerated by CUDA and cuDNN.  

 
FIGURE 4. Dataset partition diagram: The first 26800 data samples were 
used for the training set, and the last 1000 data samples were used as 
the test set. The remaining 1000 data samples were used as validation 
set samples to test the generalization ability of the prediction model.

 
TABLE Ⅱ 

COAL QUALITY ANALYSIS TABLE 
Elemental Analysis/%  Industrial Analysis/% 

1(kJ g )
netQ /

−⋅
 

arC  arH  arO  arN  arS   
arA  arM  adM  dafV  

48.65 2.92 8.25 0.57 0.82  13.62 23.80 18.67 41.11 17.16 

A. GENERATION OF SULFUR DIOXIDE IN 
CIRCULATING FLUIDIZED BED BOILER AND DATA 
PREPARATION
The SO2 generated by the CFB boiler is derived from sulfur 
compounds in coal. Sulfur compounds exist in coal in the form 
of organic sulfur and inorganic sulfur. Inorganic sulfur 
includes pyrite, sulfate, and a small amount of elemental sulfur, 

mostly pyrite [36]. The pyrite content in high-sulfur coal 
accounts for more than 50% of the total sulfur. Furthermore, 
organic sulfur is complex and mainly exists in thiophene, 
organic sulfide, sulfoxide, and sulfone. The evolution of sulfur 
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forms in coal is a complicated process. H2S and COS, formed 
from a portion of the sulfur in coal by pyrolysis, react with O2 
to form SO2. The other part of sulfur is retained in the solid 
phase and released with combustion. The reaction equation is 
as follows: 

 2 2 2 2

    
2H S +3O 2SO +2H O↑ ↑ ↑ ↑  (17) 

 2 2 2

    
2COS +3O 2SO +2CO↑ ↑ ↑ ↑  (18) 

Due to the fuel compatibility of the CFB boiler, the CFB 
boiler usually realizes desulfurization in the boiler by mixing 
coal with limestone. Compared with desulfurization outside 
the furnace, the operation of desulfurization inside the furnace 
is simple, and the cost is low. After limestone enters the 
furnace, it is burnt and calcined to form porous CaO. The 
reaction equation is as follows: 

 3 2

 Δ 
CaCO CaO+CO ↑  (19) 

When SO2 and H2S diffuse to the outer surface and inner 
hole of CaO, they are adsorbed by CaO to form CaSO4 and 
CaS. When a particular concentration of CaSO4 and CaS is 
reached, the CaO surface is completely covered, which will 
prevent the reaction from continuing. The reaction equation is 
as follows: 

 2 2 4

    
2CaO+2SO +O 2CaSO↑ ↑  (20) 

 2 2

    
CaO+H S CaS+H O↑ ↑  (21) 

Increasing the amount of limestone can reduce the 
generation of SO2 in the furnace, but excessive limestone will 
also threaten the combustion stability. Therefore, appropriate 
limestone addition requires consideration of both the 
desulfurization effect and combustion stability. 

The SO2 model in this paper takes the amount of SO2 
discharged from the furnace after 120 seconds as the 
prediction target and the measured point data at the current 
time as the model input. The SO2 emissions in the CFB boiler 
are mainly affected by the bed temperature, primary air, 
secondary air, O2 quantity, fuel quantity and limestone flow 
rate. As the 330 MW CFB unit adopts the method of mixing 
coal with limestone, the limestone flow rate is directly 
proportional to the fuel quantity to keep the Ca/S molar ratio. 
To avoid redundancy of input variables, the fuel quantity is 
selected as the model input, and the limestone flow rate 
variable is deleted. Simultaneously, the unit load, which 
represents the operating state of the boiler, is also taken as the 
model input. 

In summary, the SO2 prediction model in this paper selects 
fuel quantity, primary air volume, secondary air volume, unit 
load, bed temperature and average oxygen content in the 

furnace as model inputs. The emission of SO2 after 120 
seconds is taken as the prediction target of the model. 

B. DATA PREPARATION 
This section describes the process of data preparation. The 
data preparation process is divided into the following steps: 

1. The bad values in raw data are processed. The bad value 
points in the original data are replaced, which include missing 
values, zero values, and mutation points. The bad value points 
are replaced by averaging the data from both sides. 

2. The data after the processing in Step 1 are normalized. 
The SO2 emission differential values are calculated. 

3. The data after Step 1 and Step 2 are divided into datasets 
in chronological order. The dataset is divided into a training 
set, a validation set, and a test set. 

In the process of training the neural network model, the 
model often gives more weight to the input variables with 
large dimensions, thus ignoring the input variables with small 
dimensions. Data normalization can effectively avoid such 
problems. In this paper, the min-max scaling method is used 
to normalize the data linearly. The Min-Max scaling formula 
is as follows: 

 min

max min

i
i

x xy
x x

−
=

−
 (22) 

where minx  and maxx  represent the minimum and maximum 
values in the data x, iy  represents the data after min-max 
standardization, and ix  represents the data before processing. 
Mapping the data to the range of 0 to 1 by min-max scaling is 
more beneficial to the training of network model parameters. 

In this paper, first-order differential prediction is used to 
predict the SO2 emission value after 120 seconds, and first-
order differential treatment is used to treat the SO2 emission 
value. The formula is as follows: 

 ( 20) ( )y y t y t∆ = + −  (23) 

where ( 20)y t +  is the SO2 emission value after 120 seconds, 
20 refers to the 20 sampling moments, ( )y t  is the SO2 
emission value at the current time, and y∆  represents the 
difference between ( 20)y t +  and ( )y t . Through first-order 
differential processing, the output target of the prediction 
model is changed from ( 20)y t +  to y∆ . After the model fits 

y∆ , it is added with ( )y t  to obtain ( 20)y t + , which reduces 
the prediction lag caused by the autocorrelation of the data. 

The processed dataset is partitioned into datasets in the 
manner of Fig. 4. In this paper, we divide the datasets in 
chronological order. Such a division method is more in line 
with the actual situation in engineering applications. 

C. THE PREDICTION RESULTS 
The prediction model structure adopts a wide and deep 
structure, which is shown in Fig. 2. The model optimizer 
adopts Adam [37], and the loss function adopts MAE. To 
prevent overfitting of training, the training process adopts the 
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early stopping strategy. Once the training loss of the model 
converges, the training is stopped. The prediction model 
proposed in this paper uses fuel quantity, primary air volume, 
secondary air volume, unit load, bed temperature and average 
oxygen content in the furnace as model inputs x. The first-
order differential value y∆  of the SO2 emission value is fitted 
and predicted by this model. The SO2 emission value 

( 20)y t +  after 120 seconds is obtained by referring to (23). 
The SO2 prediction model adjusts the model 

hyperparameters by monitoring the loss value of the validation 

set during the training process. The hyperparameters of the 
model are divided into time step, number of LSTM neurons, 
batch size, learning rate, L2 regularization coefficient, dropout 
coefficient, and L1 regularization coefficient. The grid search 
method is used to select the hyperparameters. In model 
training, the training process adopts the early stopping strategy. 
The algorithm selects the hyperparameters according to the 
performance of the validation set. Through the grid search 
method, the hyperparameter selection results of the SO2 
prediction model are shown in Table 3. 

TABLE Ⅲ 
HYPERPARAMETER SELECTION RESULTS OF THE SO2 PREDICTION MODEL 

Hyperparameters Value 
Timestep 200 
Number of LSTM neurons in the first layer 8 
Number of LSTM neurons in the second layer 32 
Number of LSTM neurons in the third layer 16 
Dropout coefficient 0.05 
Batch size 100 
Learning rate 0.0005 
L2 regularization coefficient 0.01 
L1 regularization coefficient 0.01 

The initial selection of model input variables was conducted 
based on the SO2 generation process and related literature 
investigation in Section Ⅲ-A. However, this selection method 
does not consider the influence of correlation and redundancy 
between input variables on the fitting ability and 
generalization ability of the prediction model. Therefore, more 
detailed selection of the input variables is required. The second 
selection for input variables uses the improved MIV method 
proposed in Section Ⅱ-D. In this method, the impact values 
of variables are sorted. Different input variable schemes are 
constructed according to the sorting of variables for 
experiments. The best combination scheme of input variables 
is selected according to the experimental results. 

The first 5000 samples in the training set were used to fit 
the training samples to reduce the calculation amount. In the 
improved MIV method, the number N of repeated trainings 
ranges from 1 to 200, and the change in the ranking value of 
each variable is shown in Fig. 5. It can be seen from Fig. 5 that 
the smaller the value of N is, the greater the influence of 
randomness of the model on the results. Furthermore, the 
results gradually converge with an increasing value of N. 

Table 4 shows the ranking results for all input variables. 
Among them, the higher the ranking value of a variable, the 
less the impact value it has. The variables with the smallest 
impact values are deleted in turn to construct six model input 
combination schemes. The six combination schemes of model 
inputs are shown in Table 5. Y represents that this variable is 
selected as the model input, and N means not selecting this 
variable as the model input. 

 
FIGURE 5. Variables’ ranking values.  

The loss of six model input combination schemes on the 
training set and the validation set is shown in Table 6. In this 
paper, the best combination scheme is selected according to 
the loss of the validation set. Group-2 is chosen as the input 
combination of the prediction model. 

The prediction model proposed in this paper predicts SO2 
emissions after 120 s based on historical data. The dataset is 
divided into a training set, a validation set, and a test set, in 
chronological order. These three datasets are used to train the 
model parameters, adjust the model hyperparameters, and test 
the prediction performance of the model. The Adam optimizer 
and MAE loss function were used in the model training. The 
model was trained on 26,800 training samples.  

TABLE Ⅳ 
VARIABLE IMPACT VALUE RANKING RESULTS 

Load Fuel Quantity Secondary Air Primary Air Oxygen Content Bed Temperature 
5 2 4 6 1 3 
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TABLE Ⅴ 
INPUT COMBINATION SCHEMES 

Group 1 2 3 4 5 6 
Oxygen Content Y Y Y Y Y Y 
Fuel Quantity Y Y Y Y Y N 
Bed Temperature Y Y Y Y N N 
Secondary Air Y Y Y N N N 
Load Y Y N N N N 
Primary Air Y N N N N N 

TABLE Ⅵ 
COMPARISON LOSS RESULTS OF DIFFERENT GROUPS 

 Training Set Loss Validation Set Loss 

Group-1 0.0194 0.0232 
Group-2 0.0196 0.0216 
Group-3 0.0213 0.0298 
Group-4 0.0223 0.0278 
Group-5 0.0235 0.0246 
Group-6 0.0254 0.0271 

To improve the prediction accuracy of the model, the 
prediction model in this paper borrows the training method of 
transfer learning in the training process. The parameters in the 
wide structure are fixed through pre-training. Once the 
parameters in the wide structure have been fixed through pre-
training, they will not be changed during subsequent training. 
The data segment for the pre-training was selected from the 
dynamic data of the units in the training set. The model input 
is the combination of Group-2 inputs, and the output is the 
differential value of SO2.  

 
FIGURE 6. Prediction results of the proposed DP-WD-LSTM on the 
testing data; the target value is the measurement value after 120 s. The 
measured value is the measurement value at the current. The predicted 
value is the current prediction value. 

TABLE Ⅶ 
PERFORMANCE METRICS OF THE PROPOSED DP- WD-LSTM 

Performance Metrics DP- WD-LSTM 
ACC/% 60.2 
MAE 83.5 
MAPE/% 5.6 
R2 0.9714 
The training time of the model was 924 s, and the training 

stop period was 132. Fig. 6 and Table 7 show the predicted 
results of the DP-WD-LSTM model on the test set. The target 
value is the measurement value after 120 s. The results show 
that the model proposed in this paper obtains a good prediction 
performance. 

IV. COMPARISONS AND DISCUSSION 

A. COMPARISON OF DIFFERENT INPUT COMBINATIONS 
In Section Ⅲ-C, the improved MIV algorithm is used to select 
the combination of input variables. In Section Ⅳ -A, the 
selection results of the improved MIV algorithm are analyzed 
and discussed.  

To better reflect the generalization ability of the model in 
the model building process, we define the generalization 
ability index L∆  of the prediction model, whose expression is 
as follows: 

 v tL= loss loss∆ −  (24) 

where vloss  represents the loss of the model on the validation 
set and tloss  represents the loss of the model on the training 

set. A smaller L∆  indicates a stronger generalization ability of 
the model. 

The loss of six model input combination schemes on the 
training set and the validation set is shown in Table 8. All 
models in Section Ⅳ-A were pre-trained to demonstrate the 
results of variable selection. 

TABLE Ⅷ 
COMPARISON LOSS RESULTS OF DIFFERENT GROUPS 

 Training Set 
Loss 

Validation Set 
Loss L∆  

Group-1 0.0184 0.0221 0.0037 
Group-2 0.0188 0.0212 0.0024 
Group-3 0.0205 0.0276 0.0071 
Group-4 0.0215 0.0263 0.0048 
Group-5 0.0226 0.0241 0.0015 
Group-6 0.0250 0.0268 0.0018 
The results reveal that there has been a gradual rise in the 

loss of the training set with the decrease in input variables. A 
possible explanation for this is that decreasing the input 
variables can give rise to a decrease in the model fitting ability. 

L∆  first decreases, then increases, and then decreases. There 
are two possible explanations for this result. On the one hand, 
with the decrease in input variables, redundant variables are 
screened out, which enhances the fitting ability and 
generalization ability of the model. On the other hand, the 
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decrease in input variables simplifies the parameters of the 
model. It enhances the generalization ability of the model, but 
the fitting ability of the model itself is gradually declining. It 
is worth noting that the Group-2 model (training set loss and 

L∆  are 0.0188 and 0.0024, respectively) has better 
generalization ability than the model of Group-1 (training set 
loss and L∆  are 0.0184 and 0.0037, respectively) while 
ensuring similar fitting ability. 

On the test set, the results of these six different 
combinations are presented in Fig. 7 and Table 9. The ACC, 
MAE, MAPE, and R2 are used to evaluate the prediction 
results of different combinations. From the results, the Model 
of Group 2 performs well, with ACC, MAE, MAPE and R2 
values of 60.2%, 83.5, 5.6% and 0.9714, respectively. It is 
obviously better than the other groups. 

It should be noted that the models in Group-1 (ACC, MAE, 
MAPE and R2 are 52.1%, 100.2, 6.9% and 0.9619, 
respectively), Group-2 and Group-5 (ACC, MAE, MAPE and 
R2 are 51.4%, 105.1, 7.5% and 0.9576, respectively) have an 
excellent prediction performance on the target values. The 
models in Group-1 (training set loss is 0.0184) and Group-2 
(training set loss is 0.0188) have better fitting ability in the 
training set, which surpass that of the model in Group-5 
(training set loss is 0.0226). However, the L∆  values of 
Group-1 and Group-2 are larger than the L∆  value of Group-
5. A possible explanation for this is that the fitting ability of 

model affects the prediction performance of Group-1 and 
Group-2. In contrast, the prediction performance of Group-5 
is affected by the generalization ability improvement brought 
by the model simplification. 

The prediction performance is discussed from the following 
four stages. 

1. From Group-1 to Group-2, redundant input variables are 
removed, and the prediction performance of the model is 
improved. 

2. From Group-2 to Group-3, the reduction of input 
variables reduces the fitting ability of the model, but the model 
parameters are not sufficiently simplified. Therefore, the 
effect of the model parameter simplification is less than that of 
the fitting ability of the model on the prediction performance. 
Therefore, the prediction performance of the model will 
decrease. 

3. From Group-3 to Group-5, as the number of variables 
decreases, the model parameters are simplified. Although the 
fitting ability of the model is also declining, the effect of the 
model parameter simplification exceeds the effect of the fitting 
ability on the prediction performance. The prediction 
performance of the model is improved. 

4. From Group-5 to Group-6, the effect of the model 
parameter simplification is weakened, the effect of the model 
fitting ability is enhanced. The model prediction performance 
is reduced.

 

 
FIGURE 7. Comparison of different input combinations on the test set. 

TABLE Ⅸ 
COMPARISON OF PERFORMANCE METRICS OF DIFFERENT INPUT COMBINATION ON TEST SET 

 ACC/% MAE MAPE/% R2 
Group-1 52.1 100.2 6.9 0.9619 
Group-2 60.2 83.5 5.6 0.9714 
Group-3 38.7 151.1 10.9 0.9039 
Group-4 42.5 139.9 9.9 0.9162 
Group-5 51.4 105.1 7.5 0.9576 
Group-6 47.5 125.3 8.4 0.9288 
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B. COMPARISON OF THE ORIGINAL MIV ALGORITHM 
In reference [27], the MIV algorithm used several different BP 
neural networks to screen the model variables. In the 
comparative experiment of this section, a neural network 
model with 4 hidden layers was used in the comparative 
experiment. The neural network model used 16 neurons per 
layer, and the activation function used the sigmoid function. 
The experiment was repeated to avoid the influence of model 
initialization parameters on the results. The experiment was 
repeated 50 times, and the impact value of each variable was 
the average of the absolute values of these 50 impact values. 
The ranking is based on the impact value of each variable. 
Table 10 shows the results of the ranking of variables. The 
variables were screened using the method in Ⅳ -A. The 
selected variables are fuel quantity, primary air, oxygen 
content, and bed temperature. The forecast results are shown 
in Fig. 8 and Table 11. Both prediction models in the 
comparison were pre-trained using the same dynamic data 
segment. 

TABLE Ⅹ 
VARIABLE IMPACT VALUE RANKING RESULTS 
Variable Rank value 

Load 5 
Fuel Quantity 4 
Secondary Air 6 
Primary Air 3 

Oxygen Content 1 
Bed Temperature 2 
 

 
FIGURE 8. Comparison of the original MIV algorithm and the improved 
MIV algorithm. 

TABLE XI 
COMPARISON OF PERFORMANCE METRICS OF THE ORIGINAL MIV 

ALGORITHM AND THE IMPROVED MIV ALGORITHM 
 ACC/% MAE MAPE/% R2 

Improved MIV 60.2 83.5 5.6 0.9714 
MIV 55.6 89.3 6.1 0.9634 

The results after screening by the original MIV algorithm 
are worse than the results in this paper. There are two main 
reasons. First, for time series data, time series information is 
critical. The original MIV algorithm did not consider the effect 
of time series data. The time series information in the data 
cannot be captured by the BP neural network alone, which 
easily causes analysis error. Second, in terms of the network 

model, the original MIV algorithm uses a BP neural network 
to screen the variables without considering the data mapping 
capability of the prediction model. In this paper, the DP-WD-
LSTM model is used for MIV analysis, and the mapping 
capability is used for variable screening, which is more 
targeted. 

C. COMPARISON OF PRE-TRAINING DATA SELECTION 
In Section IV-C, the pre-training of the wide structure of the 
model takes place separately for dynamic and steady-state data. 
The differences in prediction performance of models which 
were pre-trained with different data were also compared. The 
dynamic data segments are taken from the 5001st to the 
6000th sample point in the training set. In contrast, the steady-
state data segment is taken from the 1st to the 1000th sample 
point in the training set. Fig. 9 and Table 12 show the model 
prediction results for the two pre-training approaches. 

 
FIGURE 9. Comparison of pre-training prediction performance for 
different data segments 

TABLE XII 
COMPARISON OF DIFFERENT PRE-TRAINING DATA. 
 ACC/% MAE MAPE/% R2 

Without pre-training. 50.9 101.9 6.5 0.9585 
Dynamic data 

segment 60.2 83.5 5.6 0.9714 

Steady state data 
segment 46.4 117.5 8.2 0.9444 

From the results, the pre-training with dynamic data 
improves the prediction accuracy of the model compared to 
not taking pre-training. In contrast, the prediction accuracy of 
pre-training with steady-state data decreased. The main reason 
for this is that the variation in the parameters of the unit during 
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the steady-state process is small, and this insignificant 
variation is not conducive to the extraction of linear mapping 
relationships in the wide part of the model. 
D. COMPARISON OF THE FORECAST ALGORITHMS 
In this section, the different forecast models and forecast 
methods are compared with the DP-WD-LSTM model. Other 
existing forecasting methods as the baseline for comparison. 
The comparative prediction models adopt the deep structure 
LSTM model (D-LSTM) [15] and support vector regression 
(SVR). Moreover, the differential prediction method (DP) and 
traditional prediction method are used for these prediction 
models. The hyperparameters of the comparison algorithm are 
selected according to the validation set results. The 
hyperparameter settings of D-LSTM and SVR are shown in 
Table 13. 

The comparison of prediction performance between 
different algorithm models and different prediction modes is 
given in Fig. 10 and Table 14. For the prediction method, the 
differential prediction method improves the prediction 
accuracy of the prediction models except for the SVR model. 
What is surprising is that the SVR using the differential 
prediction method is weaker than the SVR using the traditional 
method in the performance metrics. However, from the 
prediction chart, the differential prediction method has a more 

vital trend-fitting ability. This inconsistency may be due to the 
neglect of trend-fitting ability by performance metrics. For the 
prediction model, the prediction performance of the D-LSTM 
model is lower than that of the WD-LSTM model, whether it 
is the traditional prediction method or the differential 
prediction mode. A possible explanation for this is that the D-
LSTM model improves the learning of nonlinear mapping and 
weakens the learning of linear mapping. The WD-LSTM 
model adds a wide structure, enabling the network model to 
retain the original nonlinear feature mapping ability while 
strengthening the learning of linear mapping. 

TABLE XIII 
HYPERPARAMETERS SETTING OF THE D-LSTM AND SVR 

Method Hyperparameters Values 

SVR C 1.00 
 Gamma 0.17 
 Epsilon 0.10 
 Degree 3 
 Tolerance 0.001 
 Kernel rbf 
LSTM Layers 5 
 No. of neurons {8,32,64,64,16} 
 Learning rate 0.0005 
 No. of batch size 100 
 Timesteps 200 
 Optimizer Adam 
.

 

 
FIGURE 10. Prediction results of different models and modes. The serial numbers here have been mixed to yield a better view of the data. 

TABLE XIV 
COMPARISON OF THE PERFORMANCE METRICS OF DIFFERENT MODELS AND MODES. 

 ACC/% MAE MAPE/% R2 
(a) DP- WD-LSTM 60.2 83.5 5.6 0.9714 

(b) WD-LSTM 16.6 308.7 18.8 0.6915 
(c) DP-D-LSTM 38.9 151.5 9.9 0.9015 

(d) D-LSTM 10.0 379.3 26.5 0.5305 
(e) DP-SVR 11.2 489.5 31.4 0.0750 

(f) SVR 14.7 439.3 28.9 0.3305 
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FIGURE 11. Predicted results DP-WD-LSTM with other techniques. 

TABLE XV 
COMPARISON OF PERFORMANCE METRICS OF DP-WD-LSTM WITH OTHER 

TECHNIQUES 
 ACC/% MAE MAPE/% R2 

DP- WD-LSTM 60.2 83.5 5.6 0.9714 
DP-CNN-LSTM 41.4 135.2 9.0 0.9269 

CNN-LSTM 28.8 345.7 29.4 0.2887 
ARIMA-LSTM 32.0 186.3 12.4 0.8592 
To demonstrate the performance of the DP-WD-LSTM in 

SO2 emission prediction of CFB boilers, the proposed 
methodology is evaluated based on comparison with two 
reported techniques. The existing techniques include the 
combination of ARIMA and LSTM [30] and the CNN-LSTM 
model [31]. A differential prediction CNN-LSTM model (DP-
CNN-LSTM) is added to the model comparison to verify the 
superiority of the DP-WD-LSTM. Fig. 11 and Table 15 
summarize the performances of the four different models. 

From the results in Table 14 and Table 15, the performance 
metrics of CNN-LSTM are worse than those of WD-LSTM 
except for the ACC indicator. The model structure adopted by 
CNN-LSTM is similar to that of D-LSTM. Therefore, the 
reason why the prediction accuracy of the CNN-LSTM model 

is lower than that of the DP-WD-LSTM model may be the 
same as that of the D-LSTM model. 

The model structure adopted by ARIMA-LSTM is similar 
to that of the WD-LSTM model. The ARIMA-LSTM model 
does not use the differential prediction method as the ARIMA 
algorithm already performs higher order differencing of the 
target values. The results show that the prediction accuracy of 
the ARIMA-LSTM model is still lower than that of the model 
proposed in this paper. There are two possible explanations for 
this result. First, the ARIMA model produces significant error 
in predicting nonstationary series, which significantly 
weakens the prediction accuracy of the ARIMA-LSTM model 
on the new dataset. Second, the difference between the 
ARIMA model parameter training method and that of the 
neural network model limits the feature extraction of the 
ARIMA-LSTM model. 

It can clearly be seen from Table 15 and Fig. 11 that the 
performance metrics of the DP-WD-LSTM model are superior 
to those of the other three models. The differential prediction 
method and the wide and deep structure can effectively 
improve the prediction ability of the network model based on 
the comparison results. Therefore, we can demonstrate that the 
proposed DP-WD-LSTM model can be adapted well to 
predict the SO2 emission production time series, which 
provides a reliable and effective methodology for engineers to 
make decisions for improving economic efficiency. 

E. PREDICTION RESULTS FOR OTHER DATA SETS 
Two additional datasets were used in this paper to validate the 
predictive performance to demonstrate the predictive power of 
the model more fully. Dataset 1 is from the same unit at 
different times. The data were sampled from 19 July 2018 to 
20 July 2018 with the sampling interval of 6 s. Dataset 2 was 
derived from operational data from other circulating fluidized 
bed units of the same type. The data were sampled from 19 
October 2018 to 20 October 2018 with the sampling interval 
of 6s. Both datasets were of the same size and divided in the 
same way as in this paper. It is worth mentioning that the test 
set of dataset 1 is the dynamic process, and the test set of 
dataset 2 is the steady-state process. The predicted results are 
shown in Fig. 12, Fig. 13 and Table 16. 

As can be seen from the results, the prediction model in this 
paper also achieves good prediction performance on the other 
datasets. The highest prediction performance was performed 
on both datasets. 
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FIGURE 12. Comparison of prediction performance of different models 
for dataset 1. 

 

FIGURE 13. Comparison of prediction performance of different models 
for dataset 2 

TABLE XVI 
COMPARISON OF DP-WD-LSTM AND OTHER TECHNICAL PERFORMANCE INDEXES ON DIFFERENT DATASETS 

 Dataset 1  Dataset 2 
 ACC/% MAE MAPE/% R2  ACC/% MAE MAPE/% R2 

DP- WD-LSTM 59.6 82.7 5.4 0.9491  71.8 59.1 3.7 0.8010 
DP-CNN-LSTM 52.6 102.6 6.5 0.9251  57.9 74.7 4.8 0.5719 

DP-D-LSTM 55.6 109.1 7.1 0.8993  64.1 68.9 4.2 0.7091 
ARIMA-LSTM 40.6 122.4 8.5 0.9096  49.5 94.6 5.5 0.5119 

V.  CONCLUSION 
This work has developed a DP-WD-LSTM time series 
forecasting model to predict SO2 emissions after 120 s. Such 
forecasting is important to support research on reducing 
pollutants in CFB units. The outcome of this paper enables 
field personnel to adjust current operating operations, thereby 
improving the operational stability of the unit. This work can 
also lay the foundation for future digital power plant 
technology and intelligent power generation technology. The 
DP-WD-LSTM model is applied to predict the SO2 emissions 
using actual operation data from a 330 MW CFB boiler. The 
ACC, MAE, MAPE, and R2 of the DP-WD-LSTM model 
reached 60.2%, 83.5 KNm3/h, 5.6% and 0.9714, respectively, 
which are better than those of the other models. The results of 
this paper have certain reference significance for the 
application of in-depth learning in the industrial field. The 
major conclusions are as follows: 

1. In this paper, a DP-WD-LSTM model is proposed to 
predict the SO2 emissions from CFB boilers. The 
hyperparameters of the prediction model are determined by 
using the grid search algorithm, and satisfactory prediction 
results are obtained. 

2. The improved MIV method is used to screen the model 
input variables, which effectively improves the prediction 
accuracy of the model. Experiments and results show that 
reasonable variable selection can improve the prediction 
ability of the model. However, too many variables are 
screened out, which will lead to a decline in the prediction 
ability of the model. 

3. In the training method of the model, the prediction 
accuracy of the model is further improved by pre-training the 
parameters in the wide structure. 

4. In the model structure, the prediction accuracy of the 
wide and deep LSTM is higher than that of the traditional deep 
LSTM, mainly because the wide and deep structure improves 
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the learning ability of the linear mapping relationship, thus 
improving the prediction accuracy of the model. In the 
prediction mode, compared with the traditional prediction 
mode, the differential prediction method generally improves 
the prediction accuracy of the model. 

5. Compared with the SVR model, CNN-LSTM model, and 
ARIMA-LSTM model, DP-WD-LSTM can achieve higher 
prediction accuracy. 

The DP-WD-LSTM model proposed in this paper has 
achieved an excellent prediction performance on actual 
operation data, which effectively proves the reliability of the 
prediction model. However, a limitation of this study is that 
the work does not discuss the effect of the Ca/S molar ratio of 
the CFB boiler and the coal quality analysis parameters on the 
prediction accuracy of the prediction model. Subsequent 
research will study and analyze the characteristic 
representation method of these two variables and its impact on 
the prediction accuracy. 
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