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Abstract
All imaging modalities such as computed tomography, emission tomography 
and magnetic resonance imaging require a reconstruction approach to 
produce an image. A common image processing task for applications that 
utilise those modalities is image segmentation, typically performed posterior 
to the reconstruction. Recently, the idea of tackling both problems jointly 
has been proposed. We explore a new approach that combines reconstruction 
and segmentation in a unified framework. We derive a variational model that 
consists of a total variation regularised reconstruction from undersampled 
measurements and a Chan–Vese-based segmentation. We extend the variational 
regularisation scheme to a Bregman iteration framework to improve the 
reconstruction and therefore the segmentation. We develop a novel alternating 
minimisation scheme that solves the non-convex optimisation problem with 
provable convergence guarantees. Our results for synthetic and real data show 
that both reconstruction and segmentation are improved compared to the 
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classical sequential approach.

Keywords: image reconstruction, image segmentation, Bregman iteration, 
non-convex optimisation, magnetic resonance imaging, total variation, 
iterative regularisation

(Some figures may appear in colour only in the online journal)

1. Introduction

Image reconstruction plays a central role in many imaging modalities for medical and non-
medical applications. The majority of imaging techniques deal with incomplete data and 
noise, making the inverse problem of reconstruction severely ill-posed. Based on compressed 
sensing (CS) it is possible to tackle this problem by exploiting prior knowledge of the signal 
[1–3]. Nevertheless, reconstructions from very noisy and undersampled data will present some 
errors that will be propagated into further analysis, e.g. image segmentation. Segmentation is 
an image processing task used to partition the image into meaningful regions. Its goal is to 
identify objects of interest, based on contours or similarities in the interior. Typically segmen-
tation is performed after reconstruction, hence its result strongly depends on the quality of the 
reconstruction. Recently the idea of combining reconstruction and segmentation has become 
more popular. The main motivation is to avoid error propagations that occur in the sequential 
approach by estimating edges simultaneously from the data, ultimately improving the recon-
struction. In this paper, we propose a new model for joint reconstruction and segmentation 
from undersampled magnetic resonance imaging (MRI) data. The underlying idea is to incor-
porate prior knowledge about the objects that we want to segment in the reconstruction step, 
thus introducing additional regularity in our solution. In this unified framework, we expect 
that the segmentation will also benefit from sharper reconstructions. We demonstrate that our 
joint approach improves the reconstruction quality and yields better segmentations compared 
to sequential approaches. In figure 1, we consider a brain phantom from which we simulated 
the undersampled k-space data and added Gaussian noise. Figures 1(b) and (e) present recon-
structions and segmentations obtained with the sequential approaches, while figures 1(c) and 
(f) show the results for our joint approach. The reconstruction using our method shows clearly 
more details and it is able to detect finer structures that are not recovered with the classical 
separate approach. As a consequence, the joint segmentation is also improved. In the follow-
ing section we present the mathematical models that we used in our comparison. We inves-
tigated the performance of our model for two different applications: bubbly flow and cancer 
imaging. We show that both reconstruction and segmentation benefit from this method, com-
pared to the traditional sequential approaches, suggesting that error propagation is reduced.

Our contribution. In our proposed joint method, we obtain an image reconstruction that 
preserves its intrinsic structures and edges, possibly enhancing them, thanks to the joint seg-
mentation, and simultaneously we achieve an accurate segmentation. We consider the edge-
preserving total variation regularisation for both the reconstruction and segmentation term 
using Bregman distances. In this unified Bregman iteration framework, we have the advantage 
of improving the reconstruction by reducing the contrast bias in the TV formulation, which 
leads to more accurate segmentation. In addition, the segmentation constitutes another prior 
for the reconstruction by enhancing edges of the regions of interest. Furthermore, we propose 
a non-convex alternating direction algorithm in a Bregman iteration scheme for which we 
prove global convergence.

V Corona et alInverse Problems 35 (2019) 055001
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The paper is organised as follows. In section 2 we describe the problems of MRI recon-
struction and region-based segmentation. We then introduce our joint reconstruction and seg-
mentation approach in a Bregman iteration framework. This section also contains a detailed 
comparison of other joint models in the literature. In section 3 we study the non-convex optim-
isation problem and present the convergence analysis for this class of problems. Finally in 
section 4 we present numerical results for MRI data for different applications. Here we inves-
tigate the robustness of our model by testing the undersampling rate up to its limit and by 
considering different noise levels.

2. MRI reconstruction and segmentation

In the following section we introduce the mathematical tools to perform image reconstruction 
and image segmentation. In this work, we focus on the specific MRI application; however, our 
proposed joint method can be applied to other imaging problems in which the measured data 
is connected to the image via a linear and bounded forward operator, see section 2.1. Finally 
we present our model that combines the two tasks of reconstruction and segmentation in a 
unified framework.

(a) (b) (c)

(d) (e) (f)

Figure 1. Sequential approach (left) versus unified approach (right). Combining 
reconstruction and segmentation in a single unified approach improves both the 
reconstructed image and its segmentation. See figure 2 for more details. (a) Groundtruth. 
(b) Sequential reconstruction. (c) Joint reconstruction. (d) Sampling matrix. (e) 
Sequential segmentation. (f) Joint segmentation.

V Corona et alInverse Problems 35 (2019) 055001
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2.1. Reconstruction

In image reconstruction problems, we have the general setting

f = Au + η, (1)

where A : X → Y is a bounded and linear operator mapping between two vector-spaces. The 
measured data f ∈ Y is usually corrupted by some noise η and often only observed partially. 
In this formulation we are interested in recovering the image u given the data f .

In this work, we focus on the application of MRI and we refer to the measurements f  as 
the k-space data. In standard MRI acquisitions, the Fourier coefficients are collected in the 
k-space by radio-frequency (RF) coils. Because the k-space data is acquired sequentially, the 
scanning time is constrained by physical limitations of the imaging system. One of the most 
common ways to perform fast imaging consists of undersampling the k-space; this, how-
ever, only yields satisfactory results if the dimension of the parameter space can implicitly 
be reduced, for example by exploiting sparsity in certain domains. In the reconstruction, this 
assumption is incorporated in the regularisation term. Let Ω := {1, . . . , n1} × {1, . . . , n2} 
with n1, n2 ∈ N be a discrete image domain. Let f = ( fi)m

i=1 ∈ Cm with m � n = n1n2 be 
our given undersampled k-space data, where fi ∈ C are the measured Fourier coefficients that 
fulfil the relationship (1) with A  =  SF. The operator A is now composed by S : Cn → Cm, 
which is a sampling operator that selects m measurements from the Fu data according to the 
locations provided by a binary sampling matrix (see e.g. figure 1(d)), where F is the discrete 
Fourier transform. In MRI, the noise η is drawn from a complex-valued Gaussian distribution 
with zero mean and standard deviation σ [4].

In problem (1) for MRI, the aim is to recover the image u ∈ Cn from the data. However, 
in this work we follow the standard assumption that in many applications we have negligible 
phase, i.e. we are working with real valued, non-negative images. Therefore, we are only 
interested in u ∈ Rn; hence we consider the MRI forward operator as A : Rn → Cm and its 
adjoint A∗ : Cm → Rn as modelled in [5]. Problem (1) is ill-posed due to noise and incomplete 
measurements. The easiest approach to approximate (1) is to compute the solution, for which 
the missing entries are replaced with zero:

uz = A∗f .

However, images reconstructed with this approach will suffer from aliasing artifacts because 
undersampling the k-space violates the Nyquist–Shannon sampling theorem. Therefore, we 
consider a mathematical model that incorporates prior knowledge by using a variational regu-
larisation approach. A popular model is to find an approximate solution for u as a minimiser 
of the Tikhonov-type regularisation approach:

u∗ ∈ arg min
u

{1
2
‖Au − f‖2

2 + αJ(u)
}

, (2)

where the first term is the data fidelity that forces the reconstruction to be close to the mea-
surements and the second term is the regularisation, which imposes some regularity on the 
solution. The parameter α > 0 is a regularisation parameter that balances the two terms in the 
variational scheme. In this setting, different regularisation functionals J can be chosen (see [6] 
for a survey of variational regularisation approaches).

Although problems of the form (2) are very effective, they also lead to a systematic loss 
of contrast [7–9]. This is typically observed for common choices of the regulariser J, i.e. con-
vex functional. To overcome this problem, [10] proposed an iterative regularisation method 
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based on the generalised Bregman distance [11, 12]. The Bregman distance with respect to J 
is defined as

D pk

J (u, uk) = J(u)− J(uk)− 〈 pk, u − uk〉, (3)

with pk ∈ ∂J(uk), where ∂J(uk) is called sub-differential and it is a generalisation of the clas-
sical differential for convex functions. We replace problem (2) with a sequence of minimisa-
tion problems:

uk+1 ∈ arg min
u

{1
2
‖Au − f‖2

2 + αD pk

J (u, uk)
}

. (4)

The update on the subgradient can be conveniently computed by the optimality condition of 
(4):

pk+1 = pk − 1
α

A∗(Auk+1 − f ). (5)

In this work, we will focus on one particular choice for J, namely the total variation. 
The total variation (TV) regularisation is a well-known edge-preserving approach, first intro-
duced by Rudin et al in [13] for image denoising. The TV regularisation, i.e. the 1-norm pen-
alty on a discrete finite difference approximation of the 2D gradient ∇ : Rn → (R2)n, that is 
∇u(i, j) = (∇1u(i, j),∇2u(i, j))T , is in the discrete setting

J(u) = TV(u) = ‖∇u‖2,1 =
∑

(i,j)∈Ω

√
|∇1u(i, j)|2 + |∇2u(i, j)|2, (6)

for the isotropic case.
We then consider the Bregman iteration scheme in (4) for J(u) = TV(u). This approach is 

usually carried on by initialising the regularisation parameter α with a large value, producing 
overregularised initial solutions. At every step k, finer details are added. A suitable criterion to 
stop iterations (4) and (5) (see [6]), is the Morozov’s discrepancy principle [14]. The discrep-
ancy principle suggests to choose the smallest k ∈ N such that uk+1 satisfies

‖f − Auk+1‖2 � σ
√

m, (7)

where m is the number of samples and σ is the standard deviation of the noise in the data. 
Note that using Bregman iterations, the contrast is improved and in some cases even recovered 
exactly, compared to the variational regularisation model. In addition, it makes the regulari-
sation parameter choice less challenging. Note that for different choices of J in (2), e.g. the 
Mumford–Shah/Potts model [15–19], we do not have loss of contrast, but we deal with a non-
convex NP hard problem, algorithmically more challenging.

2.2. Segmentation

Image segmentation refers to the process of automatically dividing the image into meaningful 
regions. Mathematically, one is interested in finding a partition {Ωi}l

i=1 of the image domain 
Ω subject to ∪l

i=1Ωi = Ω and ∩l
i=1Ωi = ∅. One way to do this is to use region-based segmen-

tation models, which identify regions based on similarities of their pixels. The segmenta-
tion model we are considering was originally proposed by Chan and Vese in [20] and it is a 
particular case of the piecewise-constant Mumford–Shah model [15]. Given an image func-
tion u : Ω → R, the goal is to divide the image domain Ω in two separated regions Ω1 and 
Ω2 = Ω \ Ω1 by minimising the following energy function

V Corona et alInverse Problems 35 (2019) 055001
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∫

Ω1

(u(x)− c1)
2 dx +

∫

Ω2

(u(x)− c2)
2 dx + β · Length(C) → min

c1,c2,C
,

where C is the desired contour separating Ω1 and Ω2, and the constants c1 and c2 represents the 
average intensity value of u inside C and outside C, respectively. The parameter β penalises 
the length of the contour C, controlling the scale of the objects in the segmentation. From this 
formulation we can make two observations: first, the regions Ω1 and Ω \ Ω1 can be represented 
by the characteristic function

v(x) =
{

0, if x ∈ Ω1 ∪ C
1, if x ∈ Ω2.

Second, the perimeter of the contour identified by the the characteristic function corresponds 
to its total variation, as shown by the Coarea formula [21]. This leads to the new formulation

∫

Ω

v(x)(u(x)− c1)
2dx + (1 − v(x))(u(x)− c2)

2 dx + βTV(v) → min
c1,c2,v∈{0,1}

.

Even assuming fixed constants c1, c2 the problem is non-convex due to the binary constraint. 
In [22] the authors proposed to relax the constraint, allowing v(x) to assume values in the 
interval [0, 1]. They showed that for fixed constants c1, c2, global minimisers can be obtained 
by minimising the following energy:

∫

Ω

v(x)(u(x)− c1)
2dx + (1 − v(x))(u(x)− c2)

2 dx + βTV(v) → min
v∈[0,1]

, (8)

followed by thresholding, setting Σ = {x : v(x) � µ} for a.e. µ ∈ [0, 1]. As the problem is 
convex but not strictly convex, the global minimiser may not be unique. In practice we obtain 
solutions which are almost binary, hence the choice of µ is not crucial.

Setting

s(x) = (u(x)− c1)
2 − (u(x)− c2)

2

the energy (8) can be written in a more general form as
∫

Ω

v(x)s(x) dx + βTV(v) → min
v∈[0,1]

.

In this paper, we are interested in the extension of the two-class problem to the multi-class 
formulation [23]. Following the simplex-constrained vector function representation for mul-
tiple regions and its convex relaxation proposed in [24], we obtain as a special case a convex 
relaxation of the Chan–Vese model for arbitrary number of regions, which reads

∫

Ω

�∑
i=1

vi(x)(ci − u(x))2 dx + βTV(v) → min
v∈C

, (9)

where C := {v : Ω → R�
∣∣ v(x) � 0,

∑�
i=1 vi(x) = 1} is a convex set which restricts v(x) to lie 

in the standard probability simplex. As in the binary case, the constants ci describe the average 
intensity value inside region i. In this case we consider the vector-valued formulation of TV:

TV(v) =
∫

Ω

√
‖∇v1‖2 + · · ·+ ‖∇v�‖2 dx.

V Corona et alInverse Problems 35 (2019) 055001
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2.3. Joint reconstruction and segmentation

MRI reconstructions from highly undersampled data are subject to errors, even when prior 
knowledge about the underlying object is incorporated in the mathematical model. It is often 
required to find a trade-off between filtering out the noise and retrieving the intrinsic structures 
while preserving the intensity configuration and small details. As a consequence, segmenta-
tions in the presence of artifacts are likely to fail.

In this paper, we propose to solve the two image processing tasks of reconstruction and 
segmentation in a unified framework. The underlying idea is to inform the reconstruction with 
prior knowledge of the regions of interest, and simultaneously update this belief according to 
the actual measurements. Mathematically, given the under-sampled and noisy k-space data f , 
we want to recover the image u : Ω → R and compute its segmentation v in � disjoint regions, 
by solving the following problem:

(u, v) = arg min
u,v

1
2
‖Au − f‖2

2 + αTV(u)
︸ ︷︷ ︸

reconstruction

+ δ

n∑
i=1

�∑
j=1

vij(cj − ui)
2 + βTV(v) + ıC(v)

︸ ︷︷ ︸
segmentation

,
 

(10)

where ıC(v) is the characteristic function over  C := {v : Rn → R�
∣∣ vij � 0,

∑�
j=1 vij = 1,∀   

i ∈ {1, . . . , n}}, and α, β, δ > 0 are some regularisation parameters. However, instead of 

solving (10), we consider the iterative regularisation procedure using Bregman distances. The 
main motivation is to exploit the contrast enhancement aspect for the reconstruction thanks to 
the Bregman iterative scheme. By improving the reconstruction, the segmentation is in turn 
refined. Therefore, we replace (10) with the following sequence of minimisation problems for 
k = 0, 1, 2, . . .

uk+1 = arg min
u

1
2
‖Au − f‖2

2 + αD pk

TV(u, uk) + δ

n∑
i=1

�∑
j=1

vij(cj − ui)
2 (11a)

pk+1 = pk − 1
α


A∗(Auk+1 − f )− 2δ

�∑
j=1

vk
j (u

k+1 − cj)


 (11b)

vk+1 ∈ arg min
v

δ

n∑
i=1

�∑
j=1

vij(cj − uk+1
i )2 + χC(v) + βDqk

TV(v, vk) (11c)

qk+1 = qk − δ

β
(cj − uk+1)2. (11d)

Note that (11) solves a problem different from (10). Assuming that a minimiser exists, the 
model (11) converges to a minimiser of

1
2
‖Au − f‖2

2 + δ
n∑

i=1

�∑
j=1

vij(cj − uk+1
i )2 ,

V Corona et alInverse Problems 35 (2019) 055001
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as we will show in section 3.1. In case of noisy data f  this is not desirable, so that we combine 
the iteration with a stopping criterion in order to form a regularisation method.

This model combines the reconstruction approach described in (4) and the discretised multi-
class segmentation in (9) with a variation in the regularisation term, which is now embedded 
in the Bregman iteration scheme. In [25] the authors used Bregman distances for the Chan–
Vese formulation (8), combined with spectral analysis, to produce multiscale segmentations.

As described in the previous subsection, the parameters α and β describe the scale of the 
details in u and the scale of the segmented objects in v. By integrating the two regularisations 
into the same Bregman iteration framework, we obtain that these scales are now determined 
by the iteration k  +  1. At the first Bregman iteration k  =  0, when α is very large, we obtain an 
over-smoothed u1, and the value of β is not very important. Intuitively, u1 is almost piecewise 
constant with small total variation and a broad range of values of β may lead to very similar 
segmentations v1. However, at every iteration k  +  1, finer scales are added to the solution with 
the update p k+1. Accordingly, with the update qk+1, which is independent of vk+1, the segmen-
tation keeps up with the scale in the reconstructed image uk+1.

The novelty of this approach is also represented by the role of the parameter δ > 0. This 
parameter weighs the effect of the segmentation in the reconstruction, imposing regularity in 
u in terms of sharp edges in the regions of interest. In section 4 we show how different ranges 
of δ affects the reconstruction (see figure 12). Intuitively, large values of δ force the solution u 
to be close to the piecewise constant solution described by the constants ci. This is beneficial 
in applications where MRI is a means to extract shapes and sizes of underlying objects (e.g. 
bubbly flow in section 4.1). On the other hand, with very small δ, the segmentation has little 
impact and the solutions for u are close to the ones obtained by solving the individual problem 
(4). Instead, intermediate values of δ impose sharper boundaries in the reconstruction while 
preserving the texture.

Obviously, we need to stop the iteration before the residual brings back noise from the data 
f . As we cannot use Morozov discrepancy principle in this case (due to the fact that ‖Auk − f‖2 
will rather increase due to the effect of the coupling term controlled by the parameter δ), we 
stop when two consecutive iterates in v are smaller than a certain tolerance, ‖vk+1 − vk‖ < tol, 
following the observation that the rate at which uk+1 changes close to the optimal solution is 
low, in contrary to more abrupt changes at the beginning of the Bregman iteration and later on 
when it starts to add noise.

Clearly, problem (11) is non-convex in the joint argument (u, v) due to the coupling term. 
However, it is convex in each individual variable. We propose to solve the joint problem by 
iteratively alternating the minimisation with respect to u and to v (see section 3 for numerical 
optimisation and convergence analysis).

2.4. Comparison to other joint reconstruction and segmentation approaches

In this section we will provide an overview of some existing simultaneous reconstruction and 
segmentation (SRS) approaches with respect to different imaging applications.

2.4.1. CT/SPECT. Ramlau and Ring [26] first proposed a simultaneous reconstruction and 
segmentation model for CT, that was later extended to SPECT in [27] and to limited data 
tomography [28]. In these work, the authors aim to simultaneously reconstruct and seg-
ment the data acquired from SPECT and CT. CT measures the mass density distribution µ, 
that represents the attenuation of x-rays through the material; SPECT measures the activity 
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distribution f as the concentration of the radio tracer injected in the material. Given the two 
measurements zδ and yδ, from CT and SPECT, they consider the following energy functional

E( f ,µ,Γ f ,Γµ) = ‖A( f ,µ)− yδ‖2 + β‖Rµ− zδ‖2 + α(Length(Γ f ) + Length(Γµ)).

They propose a joint model based on a Mumford–Shah-like functional, in which the recon-
structions of µ and f  and the given data are embedded in the data term in a least squares sense. 
The operators A and R are the attenuated Radon transform (SPECT operator) and the Radon 
transform (CT operator), respectively. The penalty term is considered to be a multiple of the 
lengths of the contours of µ, Γµ and the contours of f , Γ f . These boundaries are modelled 
using level set functions. In these segmented partitions of the domain, µ and f  are assumed to 
be piecewise constant. The optimisation problem is then solved alternatively with respect to 
the functional variables f  and µ with fixed geometric variables Γµ and Γ f  and the other way 
around.

In [29] the simultaneous reconstruction and segmentation is applied to dynamic SPECT 
imaging, which solves a variational framework consisting of a Kullback–Leibler (KL) data 
fidelity and different regulariser terms to enforce sharp edges and sparsity for the segmenta-
tion and smoothness for the reconstruction. The cost function is

E(u, c) = KL
(
R(u · c), g

)
+ α

K∑
k=1

‖∇uk‖+
δ

2

K∑
k=1

‖ ∂

∂t
ck‖2

2.

Given the data g, they want to retreive the concentration curves ck(t) in time for K disjoint 
regions and their indication functions uk(x) in space. The optimisation is carried out alternat-
ing the minimisation over u having c fixed and then over c having u fixed.

In [30] they propose a variational approach for reconstruction and segmentation of CT 
images, with limited field of view and occluded geometry. The cost function

E(u, c, v) =
1
2
‖Ax − y‖2 + α‖∇u‖+ β

2

(
λ

n∑
i

K∑
k=1

vik(ui − ck)
2 +

1
2
‖Dv‖2

2

)

s.t. a box constraint on the image values x and the simplex constraint on the labelling function 
v. The operator A is the undersampled Radon transform modelling the occluded geometry and 
y  is the given data. The second term is the edge-preserving regularisation term for u, the third 
term is the segmentation term which aims at finding regions in u that are close to the value 
ck in region k. The operator D is the finite difference approximation of the gradient. The non-
convex problem is solved by alternating minimisation between updates of u, v, c.

2.4.2. PET and transmission tomography. In [31], the authors propose a maximum likelihood 
reconstruction and doubly stochastic segmentation for emission and transmission tomogra-
phy. In their model they use a hidden Markov measure field model (HMMFM) to estimate the 
different classes of objects from the given data r. They want to maximise the following cost 
function:

E(u, p, θ) = logP(r|u) + logP(u|p, θ) + logP( p).

The first term is the data likelihood which will be modelled differently for emission and trans-
mission tomography. The second term is the conditional probability or class fitting term, for 
which they use HMMFM. The third term is the regularisation on the HMMFM. The optim-
isation is carried out in three steps, where first they solve for u (image update) fixing p, θ, then 
for p , holding u, θ (measure field update) and finally for θ (parameter update) having u, p fixed.
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A variant of this method has been presented in [32], in which they incorporate prior infor-
mation about the segmentation classes through a HMMFM. Here, the reconstruction is the 
minimisation over a constrained Bayesian formulation that involves a data fidelity term as a 
classical least squares fitting term, a class fitting term as a Gaussian mixture for each pixel 
given K classes and dependent of the class probabilities defined by the HMMFM, and a regu-
lariser also dependent of the class probabilities. The model to minimise is

E(u, δ) =λnoise‖Au − b‖2
2 −

N∑
j=1

log

(
K∑

k=1

δjk√
2πσk

exp

(
−
(uj − µk)

2

2σ2
k

))
+ λclass

K∑
k=1

R(δk)

s.t.
K∑

k=1

δjk = 1, δjk � 0, j = 1, . . . , N, k = 1, . . . , K.

The operator A will be modelled as the Radon transform in case of CT and b represents the 
measured data; N is the number of pixel in the image; λnoise and λclass are the regularisation 
parameters; µk,σk are the class parameters. The cost function is non convex and they solve 
the problem in an alternating scheme where they either update the pixel values or the class 
probabilities for each pixel.

Storath and others [33] model the joint reconstruction and segmentation using the Potts 
Model with application to PET imaging and CT. They consider the variational formulation of 
the Potts model for the reconstruction. Since the solution is piecewise constant, this directly 
induces a partition of the image domain, thus a segmentation. Given the data f  and an operator 
A (e.g. Radon transform), the energy functional is in the following form:

E(u) = λ‖∇u‖0 + ‖Au − f‖2
2,

where the first term is the jump penalty enforcing piecewise constant solutions and the second 
term is the data fidelity. As the Potts model is NP hard, they propose a discretisation scheme 
that allows to split the Potts problem into subproblems that can be solved efficiently and 
exactly.

2.4.3. MRI. In [34], the authors proposed a joint model with application to MRI. Their 
reconstruction-segmentation model consists of a fitting term and a patch-based dictionary to 
sparsely represent the image, and a term that models the segmentation as a mixture of Gauss-
ian distributions with mean, standard deviation and mixture weights µ, σ, π. Their model is

E(u,Γ,µ,σ,π) = ‖Au − y‖2 + λ
N∑

n=1

‖Rnu − Dγn‖2 − βlnP(u|µ,σ,π) s.t. ‖γn‖0 � T ∀n,

where A is the undersampled Fourier transform, y  is the given data, Rn is a patch extraction 
operator, λ is a weighting parameter, T is the sparsity threshold, and γn is the sparse represen-
tation of patch Rnu organised as column n of the matrix Γ. The problem is highly non-convex 
and it is solved iteratively using conjugate gradient on u, orthogonal matching pursuit on Γ 
and expectation–maximisation algorithm on (µ,σ,π).

2.4.4. Summary. Recently, the idea to solve the problems of reconstruction and segmenta-
tion simultaneously has become more popular. The majority of these joint methods have been 
proposed for CT, SPECT and PET data. Mainly they differ in the way they encode prior 
information in terms of regularisers and how they link the reconstruction and segmentation 
in the coupling term. Some imposes smoothness in the reconstruction [29], others sparsity in 
the gradient [26, 30, 33], other consider a patch-dictionary sparsifying approach [34]. In [33] 
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they do not explicitly obtain a segmentation, but they force the reconstruction to be piecewise 
constant. Depending on the application, the coupling term is the data fitting term itself (e.g. 
SPECT), or the segmentation term. In [31, 32, 34] the authors model the segmentation as 
a mixture of Gaussian distribution, while [30] has a a region-based segmentation approach 
similar to what we propose. However, [30] penalises the squared 2-norm of segmentation, 
imposing spatial smoothness.

In our proposed joint approach, we perform reconstruction and segmentation in a unified 
Bregman iteration scheme, exploiting the advantage of improving the reconstruction, which 
results in a more accurate segmentation. Furthermore, the segmentation constitutes another 
prior imposing regularity in the reconstruction in terms of sharp edges in the regions of inter-
est. We propose a novel numerical optimisation problem in a non-convex Bregman iteration 
framework for which we present a rigorous convergence result in the following section.

3. Optimisation

The cost function (11) is non-convex in the joint argument (u, v), but it is convex in each indi-
vidual variable. To solve this problem we derive a splitting approach where we solve the two 
minimisation problems in an alternating fashion with respect to u and v. We present the general 
algorithm and its convergence analysis in the next subsection. First, we describe the solution 
of each subproblem.

Problem in u. The problem in u reads

uk+1 = arg min
u

1
2
‖Au − f‖2

2 + α(TV(u)− 〈 pk, u〉) + δ

n∑
i=1

�∑
j=1

vk
ij(cj − ui)

2.

We solve the optimisation for u, fixing v, using the primal-dual algorithm proposed 

in [35–38]. We write F(u) = ‖u‖1, K(u) = ∇u and G(u) = 1
2‖Au − f‖2

2 − α〈 pk, u〉+
δ
∑n

i=1
∑�

j=1 vk
ij(cj − ui)

2 and obtain the following iterates for θ = 1 and step sizes 

σ = τ = 0.99/‖∇‖

yn+1 =
yn + σ∇ūn

max(1, ‖yn + σ∇ūn‖)

un+1 =
un + τ∇ · yn+1 + 2τδ

∑�
j=1 vk

j cj + ταpk + τA∗f

1 + 2τδ + τA∗A
ūn+1 = 2un+1 − un.

After sufficiently many iterations we set uk+1 = un+1 and compute the update p k+1 from the 
optimality condition of (3) as (11b).

Problem in v. The problem in v reads

vk+1 = arg min
v∈C

〈v, δg − βqk〉+ βTV(v)

with g =
(
(c1 − uk+1)2, . . . , (c� − uk+1)2

)
T . We now solve a variant of the primal-dual 

method [35] as suggested in [38, 39]. They consider the general problem including pointwise 
linear terms of the form

min
x∈C

max
y∈B

〈Kx, y〉+ 〈g, x〉 − 〈h, y〉,

where C ⊆ X, B ⊆ Y  are closed, convex sets.
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Setting K = ∇ and h  =  0, θ = 1 and step sizes σ = τ = 0.99/‖∇‖, the updates are

wn+1 = ΠB
(
wn + σ(∇v̄n − h)

)

vn+1 = ΠC
(
vn + τ∇ · (vn+1 − δg + βqk)

)

v̄n+1 = 2vn+1 − vn.
At the end, we set vk+1 = vn+1 and obtain the update qk+1 as (11d).

3.1. Convergence analysis

The proposed joint approach (11) is an optimisation problem of the form

min
u,v

E(u, v) + D pk

J1
(u, uk) + Dqk

J2
(v, vk) (12)

in the general Bregman distance framework for (nonconvex) functions  E : Rn × Rm →  
R ∪ {∞}, for k ∈ {0, . . . , N} and some positive parameters α and β. The functions 
J1 : Rn → R ∪ {∞} and J2 : Rm → R ∪ {∞} impose some regularity in the solution. In 
this work we consider a finite dimensional setting and we refer to the next section  for the 
required definitons. To prove global convergence of (12), we consider functions that satisfy 
the Kurdika–Łojasiewicz property, defined below, and we make the following assumptions.

Definition 1 (Kurdyka–Łojasiewicz (KL) property). Let F : Rd → R be a proper and 
lower semicontinuous function.

 •  Then the function F is said to have the KL property at ̄u ∈ dom(∂F) := {u ∈ Rd|∂F �= ∅} 
if there exists a constant η ∈ (0,∞], a neighbourhood N of ū and a concave function 
ϕ : [0, η) → R>0 that is continuous at 0 and satisfies ϕ(0) = 0, ϕ ∈ C1(]0, η[), and 
ϕ′(s) > 0 for all s ∈]0, η[, such that for all u ∈ N ∩ {u ∈ Rd|F(ū) < F(u) < F(ū) + η} 
the inequality

ϕ′(F(u)− F(ū))dist(0, ∂F(u)) � 1 (KL)

  holds.
 •  If F satisfies the KL property at each point of dom(∂F), F is called a KL function.

Lemma 1. The function E(u, v) = 1
2‖Au − f‖2

2 + δ
∑n

i=1
∑�

j=1 vij(cj − ui)
2 in our joint 

problem (11) satisfies the KL property over Rn × Rm.

Proof. It has been proved in [40] that real-analytic functions satisfy the KL property. The 
function E(u, v) is polynomial and therefore it is a real-analytic function. ■ 

Assumption 1. 

 (i)  E is a C1 function
 (ii)  E > −∞
 (iii)  E is a KL function
 (iv)  Ji : Rn → R, i = 1, 2, are proper, lower semi-continuous (l.s.c.) and strongly convex
 (v)  Ji, i = 1, 2, are KL function
 (vi)  for any fixed v, the function u → E(u, v) is convex. Likewise for any fixed u, the function 

v → E(u, v) is convex.
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 (vii)  for any fixed v, the function u → E(u, v) is C1
L1(v), hence the partial gradient is L1(v)-Lip-

schitz continuous

‖∇uE(u1, v)−∇uE(u2, v)‖ � L1(v)‖u1 − u2‖ ∀u1, u2 ∈ Rn.

  Likewise for any fixed u, the function v → E(u, v) is C1
L2(u).

We want to study the convergence properties of the alternating scheme

uk+1 = arg min
u

{
E(u, vk) + D pk

J1
(u, uk)

}
 (13a)

pk+1 = pk −∇uE(uk+1, vk) (13b)

vk+1 = arg min
v

{
E(uk+1, v) + Dqk

J2
(v, vk)

}
 (13c)

qk+1 = qk −∇vE(uk+1, vk+1) (13d)

for initial values (u0, v0), p0 ∈ ∂J1(u0) and q0 ∈ ∂J2(v0).
We want to show that the whole sequence generated by (13) converges to a critical point 

of E.

Algorithm 1. Alternating splitting method with Bregman iterations for two blocks.

   Initialization: (u0, v0), p0 ∈ ∂J1(u0), q0 ∈ ∂J2(v0), N ∈ N
   for k = 0, 1, . . . , N do

     uk+1 = arg min
u

{
E(u, vk) + D pk

J1
(u, uk)

}
     pk+1 = pk −∇uE(uk+1, vk)

     vk+1 = arg min
v

{
E(uk+1, v) + Dqk

J2
(v, vk)

}
     qk+1 = qk −∇vE(uk+1, vk+1)

   end for

In order for the updates (13a) and (13c) to exist, we want J to be of the form J = R + εG 
(e.g. R = ‖∇u‖1 and G = ‖u‖2

2, see [41]) where R and G fulfil the following assumptions. In 
practice, we verify that G does not significantly change the reconstruction and segmentation 
performance for the examples we consider in the next section, for sufficiently small parameter 
(e.g. ε = 10−3). Therefore, in our model (11) and in the numerical results we omit it.

Assumption 2. 

 (i)  The functions G1 : Rn → R and G2 : Rm → R are strongly convex with constants γ1 and 
γ2, respectively. They have Lipschitz continuous gradient ∇G1 and ∇G2 with Lipschitz 
constant δ1 and δ2, respectively.

 (ii)  The functions R1 : Rn → R and R2 : Rm → R are proper, l.s.c. and convex.

For Ji = αiRi + εiGi, i ∈ {1, 2}, we can write (13) as

uk+1 = arg min
u

{
E(u, vk) + α1D pk

R1
(u, uk) + ε1DG1(u, uk)

}
 (14a)
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pk+1 = pk − 1
α1

(
∇uE(uk+1, vk) + ε1

(
∇G1(uk+1)−∇G1(uk)

))
 (14b)

vk+1 = arg min
v

{
E(uk+1, v) + α2Dqk

R2
(v, vk) + ε2DG2(v, vk)

}
 (14c)

qk+1 = qk − 1
α2

(
∇vE(uk+1, vk+1) + ε2

(
∇G2(vk+1)−∇G2(vk)

))
. (14d)

Theorem 1 (Global convergence). Suppose E is a KL function for any 
zk = (uk, vk) ∈ Rn × Rm and rk = ( pk, qk) with pk ∈ ∂R1(uk), qk ∈ ∂R2(vk). Assume as-
sumptions 1 and 2 hold. Let {zk}k∈N  and {rk}k∈N be sequences generated by (14), which are  
assumed to be bounded. Then

 (i)  The sequence {zk}k∈N  has finite length, that is
∞∑

k=0

‖zk+1 − zk‖ < ∞. (15)

 (ii)  The sequence {zk}k∈N  converges to a critical point z̄ of E.

3.2. Proof of theorem 1

In the following we are going to show global convergence of this algorithm. The first step in 
our convergence analysis is to show a sufficient decrease property of a surrogate of the energy 
function (12) and a subgradient bound of the norm of the iterates gap. We first recall the fol-
lowing definitions.

Definition 2 (Convex conjugate). Let G be a proper, l.s.c. and convex function. Then its 
convex conjugate G∗ : Rn → R ∪ {∞} is defined as

G∗( p) := sup
u∈Rn

{〈u, p〉 − G(u)},

for all p ∈ Rn.

Lemma 2. Let G be a proper, l.s.c. and convex function and G* its convex conjugate. Then 
for all arguments u ∈ Rn with corresponding subgradients p ∈ ∂G(u) we know

 •  〈u, p〉 = G(u) + G∗( p),
 •  p ∈ ∂G(u) is equivalent to u ∈ ∂G∗( p).

From lemma 2 we can rewrite the Bregman distance in (3) as follows:

D pk

J (u, uk) = J(u) + J∗( pk)− 〈u, pk〉, (16)

where we can see that now it does not depend on uk anymore, but it can be defined as a  
function of u and p k only, DJ(u, pk).

Definition 3 (Strong convexity). Let G be a proper, l.s.c. and convex function. Then G 
is said to be γ-strongly convex if there exists a constant γ  such that
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D p
G(u, v) �

γ

2
‖u − v‖2

holds true for all u, v ∈ dom(G) and q ∈ ∂G(v).

Definition 4 (Symmetric Bregman distance). Let G be a proper, l.s.c. and convex 
function. Then the symmetric generalised Bregman distance Dsymm

G (u, v) is defined as

Dsymm
G (u, v) := D p

G(u, v) + Dq
G(v, u) = 〈 p − q, u − v〉

for u, v ∈ dom(G) with p ∈ ∂G(u) and q ∈ ∂G(v). We also observe that in case G is γ-strong-
ly convex we have

Dsymm
G (u, v) � γ‖u − v‖2.

Definition 5 (Lipschitz continuity). A function G : Rn → R is (globally) Lipschitz-
continuous if there exists a constant L  >  0 such that

‖G(u)− G(v)‖ � L‖u − v‖

is satisfied for all u, v ∈ Rn.

Before we show global convergence, we first define the surrogate functions.

Definition 6 (Surrogate objective). Let E, Ri, Gi, i ∈ {1, 2} satisfy assumptions 1 and 
2, respectively. For any (uk, vk) ∈ Rn × Rm and subgradients pk ∈ ∂R1(uk) and qk ∈ ∂R2(vk), 
we define the following surrogate objectives F, F1 and F2

F(uk+1, vk+1, pk, qk) = E(uk+1, vk+1) + α1
(
R1(uk+1) + R∗

1( pk)− 〈uk+1, pk〉
)

︸ ︷︷ ︸
=D pk

R1
(uk+1,uk)

+ α2
(
R2(vk+1) + R∗

2(q
k)− 〈vk+1, qk〉

)
︸ ︷︷ ︸

=Dqk
R2
(vk+1,vk)

,

 (17)

F1(uk+1, pk) = E(uk+1, vk+1) + α1
(
R1(uk+1) + R∗

1( pk)− 〈uk+1, pk〉
)
, (18)

F2(vk+1, qk) = E(uk+1, vk+1) + α2
(
R2(vk+1) + R∗

2(q
k)− 〈vk+1, qk〉

)
. (19)

For convenience we will use the following notations: 

zk :=(uk, vk) ∀k � 0

rk :=( pk, qk) pk ∈ ∂R1(uk), qk ∈ ∂R2(vk).

The surrogate function F will then read

F(zk+1, rk) = F(uk+1, vk+1, pk, qk).

We can now show the sufficient decrease property of (17) for subsequent iterates.
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Lemma 3 (Sufficient decrease property). The iterates generated by (14) satisfy the 
descent estimate

F(zk+1, rk) + ρ2‖zk+1 − zk‖2 � F(zk, rk−1). (20)

In addition we observe

lim
k→∞

Dsymm
R1

(uk+1, uk) = 0 lim
k→∞

Dsymm
R2

(vk+1, vk) = 0

lim
k→∞

Dsymm
G1

(uk+1, uk) = 0 lim
k→∞

Dsymm
G2

(vk+1, vk) = 0.

Proof. From (12) we consider the following step for J1 = α1R1 + ε1G1: 

uk+1 = arg min
u

{
E(u, vk) + α1D pk

R1
(u, uk) + ε1DG1(u, uk)

}

= arg min
u

{
E(u, vk) + α1R(u) + ε1G(u)− 〈α1pk + ε1∇G(uk), u − uk〉

}
.

Computing the optimality condition we obtain

α1( pk+1 − pk) +∇uE(uk+1, vk) + ε1(∇G(uk+1)−∇G(uk)) = 0.

Taking the dual product with uk+1 − uk yields

α1 〈 pk+1 − pk, uk+1 − uk〉︸ ︷︷ ︸
=Dsymm

R1
(uk+1,uk)

+ 〈∇uE(uk+1, vk), uk+1 − uk〉︸ ︷︷ ︸
�E(uk+1,vk)−E(uk ,vk)

+ε1 〈∇G1(uk+1)−∇G1(uk), uk+1 − uk〉︸ ︷︷ ︸
=Dsymm

G1
(uk+1,uk)

= 0.

Using the convexity estimate E(uk+1, vk)− E(uk, vk) � −〈∇uE(uk+1, vk), uk+1 − uk〉 we ob-
tain the inequality

α1Dsymm
R1

(uk+1, uk) + ε1Dsymm
G1

(uk+1, uk) + E(uk+1, vk)− E(uk, vk) � 0

α1
(
D pk

R1
(uk+1, uk) + D pk+1

R1
(uk, uk+1)

)
+ ε1Dsymm

G1
(uk+1, uk) + E(uk+1, vk)

� E(uk, vk).

Adding α1D pk−1

R1
(uk, uk−1) to both sides, using the strong convexity of G1 and the surrogate 

function notation, we get

F1(uk+1, pk) + α1
(
D pk+1

R1
(uk, uk+1) + D pk−1

R1
(uk, uk−1)

)
+ ε1γ1‖uk+1 − uk‖2 � F1(uk, pk−1).

Using the trivial estimate for the Bregman distances, we get the decrease property

F1(uk+1, pk) + ε1γ1‖uk+1 − uk‖2 � F1(uk, pk−1).

Similarly for v, we obtain

F2(vk+1, qk) + ε2γ2‖vk+1 − vk‖2 � F2(vk, qk−1).
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Summing up these estimates, we verify the sufficient decrease property (20), with positive 
ρ2 = max{ε1γ1, ε2γ2}. We also observe

0 � ∆k � E(zk)− E(zk+1)

with

∆k := α1Dsymm
R1

(uk+1, uk) + α2Dsymm
R2

(vk+1, vk) + ε1Dsymm
G1

(uk+1, uk) + ε2Dsymm
G2

(vk+1, vk).

Summing over k = 0, . . . , N :

N∑
k=0

∆k �
N∑

k=0

E(zk)− E(zk+1) = E(z0)− E(zN+1) � E(z0)− inf
z

E(z) < ∞.

Taking the limit N → ∞ implies
∞∑

k=0

∆k < ∞

thus limk→∞ Dsymm
R1

(uk+1, uk) = 0 , limk→∞ Dsymm
G1

= 0, limk→∞ Dsymm
R2

(vk+1, vk) = 0,

limk→∞ Dsymm
G2

(vk+1, vk) = 0, due to α1, α2, ε1, ε2 > 0. ■ 

In order to show that the sequences generated by (14) approach the set of critical point we 
first estimate a bound for the subgradients of the surrogate functions and verify some proper-
ties of the limit point set. We first write the subdifferential of the surrogate function as

wk+1 :=




∇uE(uk+1, vk+1) + α1( pk+1 − pk)

∇vE(uk+1, vk+1) + α2(qk+1 − qk)

uk − uk+1

vk − vk+1


 ∈ ∂F(zk+1, rk), (21)

with pk ∈ ∂R1(uk) and qk ∈ ∂R2(vk) being equivalent to uk ∈ ∂R∗
1( pk) and vk ∈ ∂R∗

2(q
k), 

respectively.

Lemma 4 (A subgradient lower bound for the iterates gap). Suppose assumptions 
1 and 2 hold. Then the iterates (14) satisfy

‖wk+1‖ � ρ1‖zk+1 − zk‖ (22)

wk+1 ∈ ∂F(zk+1, rk) as defined in (21) and ρ1 = max{1 + ε1δ1, 1 + ε2δ2 + L2}.

Proof. From (21) we know

‖wk+1‖ � ‖∇uE(uk+1, vk+1) + α1( pk+1 − pk)‖+ ‖∇vE(uk+1, vk+1) + α2(qk+1 − qk)‖
+ ‖uk − uk+1‖+ ‖vk − vk+1‖.

From the optimality conditons of (14b) and (14d), we compute
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‖wk+1‖ � ‖∇uE(uk+1, vk+1) + α1( pk+1 − pk)‖+ ‖∇vE(uk+1, vk+1) + α2(qk+1 − qk)‖
+ ‖uk − uk+1‖+ ‖vk − vk+1‖
= ε1 ‖∇G1(uk+1)−∇G1(uk)‖︸ ︷︷ ︸

�δ1‖uk+1−uk‖

+ ‖∇uE(uk+1, vk+1)−∇uE(uk+1, vk)‖︸ ︷︷ ︸
�L2‖vk+1−vk‖

+ ε2 ‖∇G2(vk+1)−∇G2(vk)‖︸ ︷︷ ︸
�δ2‖vk+1−vk‖

+‖uk+1 − uk‖+ ‖vk+1 − vk‖

� (1 + ε1δ1)‖uk+1 − uk‖+ (1 + ε2δ2 + L2)‖vk+1 − vk‖
� ρ1‖zk+1 − zk‖,

with ρ1 = max{1 + ε1δ1, 1 + ε2δ2 + L2}. Here we used the Lipschitz-continuity of ∇Gi and 
∇E. ■ 

Following [41, 42], we verify some properties of the limit point set. Let {zk}k∈N  and 
{rk}k∈N be sequences generated by (14). The set of limit points is defined as

ω(z0, r0) :=
{
(z̄, r̄) ∈ Rn × Rn : ∃ an increasing sequence of integers {kj}j∈N

such that lim
j→∞

zkj = z̄ and lim
j→∞

rkj = r̄
}

.

As in [41, definition 5.4, proposition 5.5], we are going to assume that Ri, i = 1, 2 has locally 
bounded subgradients.

Lemma 5. Suppose assumptions 1 and 2 hold. Let {zk}k∈N  be a sequence generated by (14) 
which is assumed to be bounded. Let (z̄, r̄) ∈ ω(z0, r0). Then the following assertion holds:

lim
k→∞

F(zk+1, rk) = F(z̄, r̄) = E(z̄). (23)

Proof. Since (z̄, r̄) is a limit point of {(zk, rk)}k∈N, {(zk, rk)}k∈N, there exist subsequences 
{zkj}j∈N and {rkj}j∈N such that limj→∞ zkj = z̄ and limj→∞ rkj = r̄, respectively. We immedi-
ately obtain

lim
j→∞

F(zkj , rkj−1) = lim
j→∞

{
E(zkj) + α1D pkj−1

R1
(ukj , ukj−1) + α2Dqkj−1

R2
(vkj , vkj−1)

}

= E(z̄)

due to the continuity of E and limj→∞ D pkj−1

R1
(ukj , ukj−1) = 0 and limj→∞ Dqkj−1

R2
(vkj , vkj−1) = 0. 

From the sufficient decrease property we conclude (23). ■ 

Lemma 6 (Properties of limit point set). The limit point set w(z0) is a non emp-
ty, compact and connected set, the objective function E is constant on w(z0) and we have 
limk→∞ dist(zk, w(z0)) = 0.

Proof. This follows steps as in [42, lemma 5]. ■ 

To finally prove global convergence of (14), we will use the following Kurdyka–Łojasiewicz 
property defined and the result from [42]. Before recalling the definition, we introduce the 
notion of distance between any subset S ⊂ Rd  and any point x ∈ Rd defined as
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dist(x, S) :=
{
inf{‖y − x‖ : y ∈ S} S �= ∅
∞ S = ∅ ,

where ‖ · ‖ denotes the Euclidean norm.

Lemma 7 (Uniformised KL property). Let Ω be a compact set and let 
E : Rn × Rm → R ∪ {∞} be a proper and l.s.c. function. Assume that E is constant on Ω and 
satisfy the KL property at each point in Ω. Then there exists ε > 0, η > 0 and ϕ ∈ C1((0, η)) 
that satisfies the same conditions as in Definition KL, such that for all ū ∈ Ω and all u in

{u ∈ Rn
∣∣ dist(u,Ω) < ε} ∩ {u ∈ Rn

∣∣E(z̄) < E(z) < E(z) + η} (24)

condition KL is satisfied.

Proof. Follows from [42]. ■ 

With these results we can now show global convergence of (14).

Proof of theorem 1. By the boundedness assumption on {(zk, rk)}k∈N, there exist converg-
ing subsequences {zkj}j∈N and {rkj}j∈N such that limj→∞ zkj = z̄ and limj→∞ rkj = r̄, respec-
tively. We know from lemma 5 that (23) is satisfied.

 (i)  KL property holds for E and therefore for Ek and we write

ϕ′(F(zk, rk−1)− E(z̄)
)
dist

(
0, ∂F(zk, rk−1)

)
� 1.

  From lemma 4 we obtain

ϕ′(F(zk, rk−1)− E(z̄)
)
� ρ−1

1 ‖zk − zk−1‖−1,

  and from the concavity of ϕ we know that

ϕ
(
F(zk, rk−1)− E(z̄)

)
− ϕ

(
F(zk+1, rk)− E(z̄)

)

� ϕ′(F(zk, rk−1)− E(z̄)
)(

F(zk, rk−1)− F(zk+1, rk)
)
.

  Thus, we obtain

ϕ
(
F(zk, rk−1)− E(z̄)

)
− ϕ

(
F(zk, rk−1)− E(z̄)

)
F(zk, rk−1)− F(zk, rk−1)

� ρ−1
1 ‖zk − zk−1‖−1.

  From (20) with lemma 3 and using the abbreviation

ϕk := ϕ(F(zk, rk−1)− E(z̄)),

  it follows

‖zk+1 − zk‖2

‖zk − zk−1‖
�

ρ1

ρ2
(ϕk − ϕk+1).

  Multiplying by ‖zk − zk−1‖ and using Young’s inequality (2
√

ab � a + b):

2‖zk+1 − zk‖ �
ρ1

ρ2
(ϕk − ϕk+1) + ‖zk − zk−1‖.
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  Summing up from k = 1, . . . , N  we get

N∑
k=1

‖zk+1 − zk‖ �
ρ1

ρ2
(ϕ1 − ϕN+1) + ‖z1 − z0‖+ ‖zN+1 − zN‖

�
ρ1

ρ2
ϕ1 + ‖z1 − z0‖ < ∞.

  In addition we observe that the finite length property implies that the sequence {zk}k∈N  is 
a Cauchy sequence and hence is a convergent sequence. For each zr and zs with s  >  r  >  l 
we have

‖zr − zs‖ = ‖
s−1∑
k=r

zk+1 − zk‖ �
s−1∑
k=r

‖zk+1 − zk‖.

 (ii)  The proof follows in a similar fashion as in [41, lemma 5.9]. ■ 

Remark 2 (Extension to d blocks). The analysis described above holds for the general 
setting of d blocks

min
{u1,...,ud}

E(u1, . . . , ud) +

n∑
i=1

αk
i D pk

i
Ji
(ui, uk

i ). (25)

The update for each of the d blocks then reads

uk+1
i = arg min

ui

{
E(uk+1

1 , uk+1
2 , . . . , uk+1

i−1 , uk
i , uk

i+1, . . . , uk
d) + αiD

pk
i

Ji
(ui, uk

i )
}

pk+1
i = pk

i −
1
αi

(
∇ui E(u

k+1
1 , uk+1

2 , . . . , uk+1
i−1 , uk+1

i , uk
i+1, . . . , uk

d)
)

.

4. Numerical results

In this section  we present numerical results for our joint reconstruction and segmentation 
model described in (11). We demonstrate its advantages and limitations, as well as a discus-
sion on the parameter choice. In the first part, we focus on bubbly flow segmentation for simu-
lated data. In the second part, we show results for real data acquired at the Cancer Research 
UK, Cambridge Institute, for tumour segmentation.

Quality measure. To assess the performance of the reconstruction we will compare our solu-
tions u with respect to the groundtruth ugt. As quality measure we use the relative reconstuc-
tion error (RRE) and the peak signal to noise ratio (PSNR) defined as

 •  RRE(u, ugt) = ‖ugt − u‖2/‖ugt‖2

 •  PSNR(u, ugt) = 10 log10

(
max(u)

‖ugt−u‖2/N

)

For the segmentation quality, we will use the relative segmentation error (RSE) to compare 
our segmentations v with respect to the true segmentations vgt

 •  RSE(v, vgt) = 1
N

∑N
i=1 δvgt

i ,vi

V Corona et alInverse Problems 35 (2019) 055001



21

where N is the number of pixels in the image, δ is the Kronecker delta function that will count 
the number of mis-classified pixels.

Before we present our two applications, we show a more detailed result of the phan-
tom brain in figure 1. In this example, we show the TV reconstruction figure  2(b), where 
the parameter α has been optimised with respect to PSNR and its sequential segmentation  
figure 2(f) with optimal β with respect to RSE. In figures 2(c) and (g) we present Bregman 
reconstruction and sequential segmentation where the Bregman iteration has been stopped 
according to the discrepancy principle equation (7) and β has been optimised with respect to 
RSE. These parameter choices for the sequential approaches will be used in the whole paper.

In this first result, we clearly see that the joint approach performs much better compared 
to the separate steps in figures 2(b), (f) and (c), (g). Both reconstruction and segmentation are 
improved and more details are recovered. We refer to Appendix A for more simulated exam-
ples (see figures A1–A3).

4.1. Bubbly flow

The first application considered is the characterisation of bubbly flows using MRI. Bubbly 
flows are two-phase flow systems of liquid and gas trapped in bubbles, which are common in 
industrial applications such as bioreactors [43] and hydrocarbon processing units [44]. MRI 
has been successfully used to characterise the bubble size distribution [45, 46] and the liquid 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. We consider 15% of the simulated k-space for the brain phantom, where 
Gaussian noise (σ = 0.25) was added. We compare results for the total variation 
reconstruction and total-variation-based Bregman iterative reconstruction and 
their segmentation in a sequential approach with our joint model. We show that 
both reconstruction and segmentation are improved. (a) Groundtruth. (b) TV 
reconstruction, α = 0.2, RRE  =  0.046, PSNR  =  24.87. (c) Bregman reconstruction, 
α = 1, RRE  =  0.044, PSNR  =  24.98. (d) Joint reconstruction, α = 0.8, RRE  =  0.036, 
PSNR  =  26.04. (e) Sampling matrix, 15%. (f) Segmentation, β = 0.001 RSE  =  0.061. 
(g) Bregman segmentation, β = 0.001, RSE  =  0.065. (h) Joint segmentation, β = 0.001, 
δ = 0.01 RSE  =  0.057.
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velocity field of bubbly flows [47, 48]; these properties govern the heat and mass transfer 
between the bubbles and the liquid which ultimately determine the efficiency of these indus-
trial systems. However, when studying fast flowing systems, the acquisition time for fully 
sample k-space is too long to resolve the temporal changes; the most common method of 
breaking the temporal resolution barrier is through under-sampling. It is therefore critical 
to develop reconstruction techniques for highly under-sampled k-space data for the accurate 
reconstruction of the MRI images which would be subsequently used in calculating the bubble 
size distribution or in studying the hydrodynamics of the system.

We apply our joint reconstruction and segmentation approach to simulated bubbly flow 
imaging. In figure 3 we present some results for synthetic data, where figure 3(a) represents 
the groundtruth magnitude image, from which we simulate its k-space following the forward 
model described in (1). From the full k-space we collect 8% of the samples using the sam-
pling matrix in figure 3(e) and we corrupt the data with Gaussian noise of standard deviation 
σ = 0.35. In figures 3(b) and (f) we show the results for the total variation regularised recon-
struction and its segmentation performed sequentially. In the same sequential way, we show 
the results for the Bregman iterative regularization in figures 3(c) and (g). In the last column 
in figures 3(d) and (h), we finally show the results for our joint approach. Although the TV 
and the Bregman approaches are already quite good, we can see that both RRE and PSNR are 
improved using our model in the reconstruction and the segmentation. Smaller details, such as 
the top right bubble contour, are better detected when solving the joint problem. As the goal 

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Results of the TV reconstruction and Bregman iterative reconstruction and 
their segmentation in the sequential approach are compared with our joint model. Both 
MSE and SSIM are improved in the joint approach. The data was corrupted with Gaussian 
noise with σ = 0.35. (a) Groundtruth. (b) TV reconstruction, α = 0.1, RRE  =  0.081, 
PSNR  =  18.42. (c) Bregman reconstruction, α = 2, RRE  =  0.069, PSNR  =  18.83. 
(d) Joint reconstruction, α = 0.8, RRE  =  0.058, PSNR  =  20.7105. (e) Sampling 
matrix, 8%. (f) Segmentation, β = 0.001, RSE  =  0.0093. (g) Bregman segmentation, 
β = 0.001, RSE  =  0.017. (h) Joint segmentation, β = 0.001, δ = 1, RSE  =  0.0102.
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of the bubbly flow application is to detect bubble size distribution, this improvement is really 
advantageous.

We tested the robustness of our approach by corrupting the data with different signal to 
noise ratio (SNR) and by considering different amount of sampling. In figure 5 we show in 
the top row the reconstructions obtained with the joint model for different SNR (which corre-
sponds to different standard deviation σ) and in the bottom row the corresponding segmenta-
tion obtained by the joint approach. To complement this information, we show in figure 6 how 
the PSNR, RRE and RSE are affected, for the joint approach (blue lines) and for the separate 
approaches, TV (red dotted lines) and Bregman TV (green dotted lines). As expected, with 
the SNR increasing the error decreases. We can see that the joint approach performs better 
than the sequential approach for any SNR. The improvement is even more significant for very 
noisy data. As in practice we often observe high levels of noise, the joint approach is able to 
takle this problem better than the traditional sequential approaches.

It is also interesting to investigate how the joint approach performs with very low under-
sampling rates. In figure  3(e) we show joint reconstructions (top row) and corresponding 
segmentations (bottom row) for decreasing sampling rates. We can see that up to 5% results 
are still very good. Using 3 and 2% of the samples the results are less clean but it is possible to 
identify the main structures. In contrast, 1% sampling is not enough to retrieve a good image 
reconstruction and consequently its segmentation. In figure 7, we plot PSNR, RRE and RSE 
for different sampling rates. The blue lines represent the error for our joint approach, while the 
red and green dotted lines are for the sequential TV and sequential Bregman TV approaches. 
We can see that up to 5% sampling the error measures do not change significantly. However, 
for lower rates, the improvement is more significant. This is highly beneficial for the bubbly 
flow application as increasing the temporal resolution is really important to keep track of the 
gas flowing in the pipe.

(a) (b) (c) (d)

Figure 4. Top row: Reconstructions obtained by the joint model with different 
SNR. Bottom row: Corresponding segmentations. (a) SNR  =  10.56, σ = 0.70. (b) 
SNR  =  12.69, σ = 0.56. (c) SNR  =  16.68, σ = 0.35. (d) SNR  =  32.83, σ = 0.06.
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4.2. Cancer imaging

In this subsection, we illustrate the performance of the joint model for real cancer data. At the 
Cancer Research UK, Cambridge Institute, researchers acquire every day a huge amount of 
MRI scans to assess tumour progression and response to therapy [49]. For this reason, it is 
very convenient to have fast sampling through compressed sensing, and automatic segmenta-
tion methods. Furthermore, reconstructions with enhanced edges are advantageous to facili-
tate clinical analysis.

Here we show our results for MRI data of a rat bearing a glioblastoma. The MR image 
represents the rat head where the brain is the gray area in the top half of the image. Inside 
this gray region, a tumour is clearly visible appearing as a brighter area. For this experiment, 
we acquired the full k-space and present the zero-filling reconstruction in figure  8(a) and 

Figure 5. Top row: Reconstructions obtained by the joint model with different 
sampling rates. Bottom row: Corresponding segmentations. The joint reconstruction 
and segmentation is able to detect the main structures down to 5% of the samples. Up 
to 2% the results are less clean but still acceptable. Using only 1% of the data is not 
enough to produce the image and segmentation. (a) 25%. (b) 12.5%. (c) 8%. (d) 5%. 
(e) 3%. (f) 2%. (g) 1%.

(a) (b) (c)

Figure 6. Error plots for different SNR. From left to right, we show the PSNR, RRE 
and RSE, respectively, for different levels of noise in the measurements. The blue lines 
represent the error for our joint approach, while the red and green dotted lines are for the 
sequential TV and sequential Bregman TV approaches. For each SNR, the joint model 
performs better than the separate methods. This improvement is even more significant 
for noisier data, which is highly advantageous as in practice we often observe lower 
SNR. (a) PSNR. (b) RRE. (c) RSE.
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(a) (b) (c)

Figure 7. Error plots varying sampling rate. From left to right, we show the PSNR, 
RRE and RSE, respectively, for different levels of noise in the measurements. The blue 
lines represent the error for our joint approach, while the red and green dotted lines 
are for the sequential TV and sequential Bregman TV approaches. The joint appraoch 
performs better than the sequential cases. The gain is not very significant for higher 
sampling rates, but it becomes more important for lower rates, starting from 3%. (a) 
PSNR. (b) RRE. (c) RSE.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Reconstructions and segmentation for real MRI data. We select 15% of the 
samples using a spiral mask. The image show a rat brain bearing a tumour (brighter 
region). The zero-filled reconstruction (a) and the TV regularised reconstruction (b) 
are shown together with their sequential segmentation (e) and (f) respectively. In the 
last column (d) and (h) we show the results for our model. The parameter α for the TV 
reconstruction and for the joint reconstruction has been chosen such that it achieves 
visually optimal in the sense that it resolve all the details (e.g. the darker line cutting the 
tumour transversally). (a) Zero-filled reconstruction. (b) TV reconstruction α = 0.01. 
(c) Bregman reconstruction α = 1. (d) Joint reconstruction α = 0.5. (e) Segmentation. 
(f) Segmentation β = 0.07. (g) Bregman segmentation β = 0.07. (h) Joint segmentation 
β = 0.01, δ = 0.01.
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the sequential segmentation in figure 8(e). As discussed already in the previous section, the 
zero-filled reconstruction presents noise and artefact which may complicate the segmenta-
tion. We want to show that the compressed sensing approach and in particular the joint model 
can improve this reconstruction. Given the full k-space, we select 15% of the samples using 
a spiral mask. In figures 8(b), (f) and figures 8(c), (g) we show the results for the sequential 
approaches. In figures 8(d) and (h) we show the joint reconstruction and the joint segmenta-
tion obtained for the same data. The regularised approaches perform better that the zero-filled 
reconstruction, producing less noisy results. However, our joint model is able to produce a 
cleaner reconstruction where the edges that defines the tumour and the brain are very well 
detected. In figure 9, we show a zoomed section where it is easy to assess that the joint model 
tackle the noise and detect the region of interest. We can see that we are able to improve the 
reconstruction and automatically identify the tumour in the brain. The degree of enhancement 
of the edges in the reconstruction is controllable by the parameter δ in the model (11). In the 
next subsection we present a discussion on how to tune this parameter.

4.3. Parameter choice rule

In the model proposed in (11), the parameters that we need to choose are α, β and δ. In this 
section we discuss a rule to choose them depending on the desired results. Some examples will 
clarify these empirical choices.

 •  α balances the total variation regularization term in the reconstruction for the magnitude. 
The higher the α, the more piecewise constant the reconstruction will be. See figure 10.

 •  β defines the scale of the objects that will be detected in the segmentation. Smaller values 
of β will allow for smaller objects. See figure 11.

 •  δ is the parameter linking the reconstruction and the segmentation. To better illustrate its 
role, let us consider a zero-filling like reconstruction and segmentation:

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. Zoomed section  on the tumor for the different approaches. (a) Zero-
filled reconstruction. (b) TV reconstruction. (c) Bregman reconstruction. (d) Joint 
reconstruction. (e) Segmentation. (f) Segmentation. (g) Bregman segmentation. (h) 
Joint segmentation.
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(a) (b) (c)

Figure 10. The parameter α balances the data fidelity term and the total variation 
regularisation for the reconstruction. Smaller values of α produce a reconstruction 
closer to the data fitting term, hence less smooth as in (a). As α increases in (b) the 
solution gets smoother and less noisy. Finally for large values it tends to become more 
piecewise constant as in (c). (a) α = 0.001. (b) α = 0.01. (c) α = 0.1.

(a) (b) (c)

Figure 11. The parameter β determines the scale of the objects that we are segmenting. 
Smaller values of β can detect smaller objects (a), which are lost for intermediate values 
(b). Finally very large values only detect main structures (c). (a) β = 0.1. (b) β = 1. (c) 
β = 3.

(a) (b) (c) (d)

Figure 12. We show the reconstructions obtained solving (26) for different values of 
δ. For δ = 0 we get the zero-filling solution. For small δ we expect the solution to be 
similar to the zero-filling reconstruction. For δ = 1 we see the effect of the joint term on 
the reconstruction. The solution presents the same noise artefacts but having in addition 
very sharp boundaries. Finally, for very large δ we still have enhanced boundaries but 
we also amplify the noise. (a) δ = 0. (b) δ = 0.1. (c) δ = 1. (d) δ = 2.5.
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ıSF·=f (u) + δ
∑

i

∈ Ω

�∑
j=1

vij(cj − ui)
2dx + β‖∇v‖ → min

u,v
, (26)

  where ı(u) =
{
+∞, if SFu �= f
0, if SFu = f

. This problem is solving the zero-filled reconstruc-

tion and segmentation jointly. For δ = 0, the reconstruction is the zero-filling solution. 
In figure 12 we can see the impact of the segmentation term on the reconstruction for 
increasing values of δ. We can see that for very smallδ the result is close to the zero-filling 

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13. Comparison of our joint approach with the Potts model. Noise level and 
undersampling rate are described in figures 2, 3 and 8. The results are presented for 
three different examples and for two different choices of the regularisation parameter γ . 
We can see that the Potts model tends to overestimate the number of regions to segment. 
(a) Groundtruth. (b) Joint segmentation. (c) Potts model, γ = 0.01. (d) Potts model, 
γ = 0.05. (e) Groundtruth. (f) Joint segmentation. (g) Potts model, γ = 0.75. (h) Potts 
model, γ = 0.5. (i) Segmentation from zero-filled reconstruction. (j) Joint segmentation. 
(k) Potts model, γ = 0.05. (l) Potts model, γ = 0.1.
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solution. For δ = 1 the noise from the model is present as expected but in addition the 
boundaries are enhanced. For large δ the boundaries are still very pronounced and the 
noise is also amplified.

4.4. Comparison with another joint approach

We present a comparison of our joint model with another non-convex method, namely the 
Potts model approach by [33], described in section 2.4. The major advantage of the joint 
reconstruction and segmentation using the Potts model is that it does not require to select 
explicitely the number of regions to segment, although this depends on the choice of the 
regularisation parameter. However, by definition, it only produces a piecewise constant 
image, therefore a segmentation, and not a reconstruction. This is useful in some applica-
tions where one is only interested in the segmentation. In contrast, our model produces both 
reconstruction and segmentation. In figure 13, we show the results for some examples. Note 
that because the results of the Potts model are in the range of the groundtruth image, while 
our segmentation are in label space, we can not directly use the RSE as before, or common 
metrics that compare actual intensities such as PSNR and structure similarity index mea-
sure (SSIM), for compariso n. For example, for some tissue in class 1, to label it class 2 is 
as wrong as to label it class 3. However in this case, the SSIM and PSNR will favour the 
label class 2.

We therefore focus on a visual assessment and show the results of the Potts model for two 
different choices of the regularisation parameter γ . We recall that the proposed model requires 
to determine the number of classes in advance, while the model for comparison estimates the 
number of regions but this depends on the choice of the regularisation parameter. In the top 
row, we can see that the Potts model, although it retrieves the shape of the main structures 
for the brain phantom example, it overestimates the number of classes. By increasing the 
parameter γ , this issue is not resolved as it assigns different intensities to objects of the same 
category. In contrast, our approach is able to identify the desired classes as in the groundtruth. 
For the bubble case (middle row), we can see that our method works better and our segmenta-
tion is more accurate, while the Potts model fails to capture shape details (e.g. outer circle is 
distorted) and again overestimates the number of regions. We can also see that, when slightly 
decreasing γ , the Potts model is very sensitive to artefacts. For the real MR data (bottom row), 
we see that both methods identify the tumour quite well. Because we were only interested in 
identifying three classes as tumour, brain and background, we do not segment the outer region 
(rat’s head), captured insted by the Potts model. However, the Potts model only produces the 
segmentation, while our method, as shown in figure 8, also produces an enhanced reconstruc-
tion with sharp edges.

5. Conclusion

In this paper, we have investigated a novel mathametical approach to perform simultaneously 
reconstruction and segmentation from undersampled MRI data. Our motivation was to include 
in the reconstruction prior knowledge of the objects we are interested in. By interconnecting 
the reconstruction and the segmentation terms, we can achieve sharper reconstructions and 
more accurate segmentations. We derived a variational model based on Bregman iteration and 
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we have verified its convergence properties. With our approach we show that by solving the 
more complicated joint model, we are able to improve both reconstruction and segmentation 
compared to the traditional sequential approach. This suggests that with the joint model it is 
possible to reduce error propagations that occur in sequential analysis, when the segmentation 
is separate and posterior to the reconstruction.

We have tested our method for two different application, which are bubbly flow and can-
cer imaging. In both cases, the reconstructions are sharper and finer structures are detected. 
Additionally, the segmentations also benefit from the improvement in the reconstructions. 
We have found that the joint model outperforms the sequential approach by exploiting prior 
information on the objects that we want to segment. In addition, we also show that our method 
performs better than the well-known Potts model. We also presented a discussion on the 
parameter choice rule that offer some insight on how to tune the parameters according to the 
desired result. It is interesting to notice that, with our model, we are able to control the seg-
mentation effect on the reconstruction. Furthermore, when the final analysis of the MR image 
is indeed the segmentation, it is possible to bias the reconstruction towards the piecewise 
constant solution, yet preserving finer details in the structure.

In our set-up, we have specified the intensity constants characteristic of the region of inter-
ests, which were known a priori for our applications. However, it is possible to also include 
the optimisation with respect to cj  in our joint model, where the same convergence guarantees 
hold (see remark 2). Nevertheless, one limitation of the model is the need to specify the num-
ber of regions to be segmented.

In our future research, we would like to study the extension of this model for the bubbly 
flow to the reconstruction of the magnitude image as well as the phase image. The goal is not 
only to extract the structure of the bubble, but also to estimate velocity information, which is 
encoded in the phase image. As the problem is non-convex in the joint argument but also non-
convex with respect to the phase, we need to derive a different convergence analysis.
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Appendix. Numerical results on phantoms

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A1. This example shows clearly the effect of the parameter δ in the joint model. 
The segmentation is easy to achieve and we do not see a significant improvement in joint 
segmentation compared to the TV sequential segmentation, but there is a small gain 
compared to the sequential Bregman segmantation. However, the joint reconstruction 
results improved thanks to the parameter δ which biases the reconstruction to be closer 
to the segmentation. (a) Groundtruth. (b) TV reconstruction, α = 0.15, RRE  =  0.0305, 
PSNR  =  27.44. (c) Bregman reconstruction, α = 1.1, RRE  =  0.0427, PSNR  =  27.21. 
(d) Joint reconstruction, α = 0.8, RRE  =  0.0262, PSNR  =  28.27. (e) Sampling 
matrix, 15%. (f) Segmentation, β = 0.001 RSE  =  0.0219. (g) Bregman segmentation, 
β = 0.001 RSE  =  0.0399. (h) Joint segmentation, β = 0.001, δ = 2, RSE  =  0.0219.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A2. In this example, we can see that the reconstructions are quite similar. 
However in the joint reconstruction, the outer yellow circle, which is completely 
ignored by the sequential reconstructions, is partially detected. This is also the case for 
the joint segmenation. (a) Groundtruth. (b) TV reconstruction, α = 0.3, RRE  =  0.0578, 
PSNR  =  21.43. (c) Bregman reconstruction, α = 1.5, RRE  =  0.1307, PSNR  =  21.49. 
(d) Joint reconstruction, α = 1.5 RRE  =  0.0713, PSNR  =  21.87. (e) Sampling 
matrix, 15%. (f) Segmentation, β = 0.001, RSE  =  0.096. (g) Bregman segmentation, 
β = 0.001, RSE  =  0.121. (h) Joint segmentation, β = 0.001, δ = 0.1, RSE  =  0.091.
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