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ABSTRACT

Hyperspectral unmixing is an important tool to learn the
material constitution and distribution of a scene. Model-
based unmixing methods depend on well-designed iterative
optimization algorithms, which is usually time consuming.
Learning-based methods perform unmixing in a data-driven
manner but heavily rely on the quality and quantity of the
training samples due to the lack of physical interpretability.
In this paper, we combine the advantages of both model-
based and learning-based methods and propose a nonnega-
tive matrix factorization (NMF) inspired sparse autoencoder
(NMF-SAE) for hyperspectral unmixing. NMF-SAE consists
of an encoder and a decoder, both of which are constructed
by unrolling the iterative optimization rules of L1 sparsity-
constrained NMF for the linear spectral mixture model. All
parameters in our method are obtained by end-to-end training
in a data-driven manner. Our network is not only physically
interpretable and flexible but also has higher learning ca-
pacity with fewer parameters. Experimental results on both
synthetic and real-world data demonstrate that our method
is capable of producing desirable unmixing results when
compared against several alternative approaches.

Index Terms— Hyperspectral unmixing, model-based
neural network, autoencoder, sparse coding

1. INTRODUCTION

Hyperspectral imagery (HSI) not only captures two-dimensional
spatial information but also one-dimensional spectrum in-
dexed by a large number of narrow spectral bands. These
spectral bands enable HSI material identification ability, mak-
ing HSI widely used in many remote sensing and computer
vision applications [1, 2]. Because of limited spatial resolu-
tion of HSI sensors, a pixel possibly covers several materials,
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i.e., “mixed” pixels. The presence of these pixels dramatically
hinders the practical utility of HSIs. Hyperspectral unmixing
decomposes a pixel into the combination of a number of con-
stituent materials, i.e., endmembers, and their corresponding
fractions, i.e., abundances, offering an attractive way to tackle
this problem.

Model-based methods make explicit assumptions on the
physical interaction between materials for unmixing. Under
the framework of linear mixture model (LMM), many model-
based methods have been developed, ranging from geomet-
rical to statistical ones [3]. Nonnegative matrix factorization
(NMF) and its extensions [4–6] are widely used thanks to bet-
ter interpretability, i.e., the factor matrices can be respectively
linked with endmembers and abundances. In order to tackle
the information loss when converting the three-dimensional
HSI into a two-dimensional matrix, nonnegative tensor factor-
ization (NTF) was also adopted for unmixing task [7]. Unfor-
tunately, these model based approaches rely on well-designed
optimization algorithms, which usually require high number
of numerical iterations and tedious hyperparameter tuning [8].

Driven by the powerful learning ability of deep neural
networks (DNNs), some attempts have been made on un-
supervised deep learning for hyperspectral unmixing, i.e.,
learning-based unmixing [9–13]. Autoencoders are com-
monly adopted methods, in which the encoder module trans-
forms the input data to hidden concepts, i.e., abundances, and
decoder module uses their bases, i.e., endmembers, to recon-
struct the data. Su et.al [14] proposed a deep autoencoder
network (DAEN), in which variational autoencoder (VAE)
is employed to simultaneously obtain endmember signatures
and abundance fractions. Instead of tied weights structure
between encoder and decoder, Qu et.al [15] developed an
untied sparse denoising autoencoder (uDAS) to make them
independent, producing more favorable endmembers and less
reconstruction error. Additionally, deep convolutional au-
toencoders are also employed for this task [16, 17], where a
series of convolutional layers act as the encoder module.

A problem of the above learning-based methods is that
they ignore an important prior knowledge on the unmixing
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Fig. 1. Network architecture of NMF-SAE which consists
of encoder and decoder modules respectively inspired by the
optimization of endmember (A) and abundances (S).

problem, i.e., spectral mixture model. Instead, they perform
unmixing in a “black box” manner and lack physical inter-
pretability. Their complex topological network structure also
hinders the theoretical analysis of their unmixing mecha-
nism [18]. Recently, Qian et.al [19] blended the model-based
approaches with learning-based approaches and introduced
a spectral mixture model inspired neural network for blind
unmixing (MNN-BU) by unrolling the optimization of abun-
dances. Though better results were obtained, the decoder
module is interpreted as an additional endmember matrix di-
rectly connected with the encoder (abundances), which fails
to consider unrolling the optimization of endmembers.

In this paper, we propose a nonnegative matrix factoriza-
tion inspired sparse autoencoder (NMF-SAE) for hyperspec-
tral unmixing, which combines the learnable DNN together
with prior knowledge formulated by L1-norm regularized
NMF (L1-NMF). Fig. 1 presents the framework of NMF-
SAE. Specifically, an L1-NMF unmixing model is first con-
structed under the framework of LMM. Second, the iterative
update rules are induced for solving endmembers and abun-
dances. Third, by introducing some learnable weights and
uniting them across the layers as parameters, the update rules
are unrolled to yield two DNNs, respectively for endmem-
bers and abundances, i.e., the decoder and encoder in Fig. 1.
Finally, all the desired parameters including hyperparameters
and introduced parameters are learned by discriminatively
training NMF-SAE. NMF-SAE inherits strong representation
learning ability of learning-based methods while simulta-
neously maintaining the physical interpretability of model-
based methods. Compared with MNN-BU, NMF-SAE not
only better considers the optimization of endmembers but
also has more residual connections with less parameters, sig-
nificantly enhancing the learning ability and accelerating the
training process. Experimental results on synthetic dataset
and real-world datasets confirm its effectiveness in unmixing.

2. PROPOSED NMF-SAE METHOD

2.1. L1-NMF Unmixing Model

LMM considers the acquired spectrum as a linear combina-
tion of R endmembers. Letting X be HSI with N pixels and

L bands, LMM can be mathematically formulated as

X = AS + E (1)

where A ∈ RL×R is the endmember matrix, S ∈ RR×N
denotes abundances, and E accounts for measurement errors.

Abundance nonnegative constraint (ANC) and abundance
sum-to-one constraint (ASC) are two constraints usually
added to Eq. (1) to satisfy the physical interpretation. ANC
means the fractions of each endmembers should never be
negative and ASC requires the total contributions of all the
endmembers should equal one. Besides ANC and ASC, spar-
sity constraint is also widely applied based on the fact that
most pixels only consist of a subset of endmembers. Adding
these three constraints into Eq. (1), the sparse unmixing prob-
lem can be modeled as the following optimization problem

min
A,S

1

2
‖X−AS‖2F +λ‖S‖1 s.t. 1T

RS = 1T
N ,A, S � 0 (2)

Here, L1 norm of S is used to achieve sparse solutions and
1 is a vector of all ones. The L1-NMF can be interpreted as
one-layer sparse autoencoder, in which S denotes the hidden
layer representation in the encoder component and A acts as a
decoder component mapping the representation to the original
feature space.

2.2. NMF-SAE

The optimization problem in Eq. (2) can be decomposed into
two subproblems, respectively for estimating A and S, i.e.,

min
S

1

2
‖X−A0S‖2F + λ‖S‖1 s.t. 1T

RS = 1T
N ,S � 0 (3)

min
A

1

2
‖X−AS0‖2F s.t. A � 0 (4)

where A0 and S0 are the initial values of A and S, respec-
tively. Proximal gradient descent (PGD) algorithm is a com-
mon practice to solve above two problems. Taking S for ex-
ample, under the framework of PGD, S can be obtained by re-
cursively executing the following equation until convergence:

Sk = proxθ
(
Sk−1 − tsAT

0 (A0Sk−1 −X)
)

(5)

where ts > 0 is the step size usually set as 1
‖AT

0 A0‖2
. proxθ

is the proximal operator guarantying the sparsity and nonneg-
ativity of S. It is defined as an element-wise vector one-sided
shrinkage function with a vector of thresholds θ = λts, i.e.,
proxθ(s) = max(s− θ, 0). Afterwards, each column of S is
normalized to satisfy ASC by the following equation:

Srn =
Srn∑R
r=1 Srn

(6)

The iteration of S collectively resembles a typical local
block of DNN, consisting of a linear operation, a proximal



operation and a normalization operation. The proximal opera-
tion mimics a nonlinear activation function, e.g., proxθ(s) =
Relu(s − θ). By introducing a learnable parameter W1 =
tsA

T
0 , Eq. (5) can be unrolled into a network structure with

a fixed number of layers (K), whose consecutive layers are
connected by

Sk+1 = ζ
(
η(θ) (Sk −W1 (A0Sk −X))

)
(7)

where ζ(·) is a normalization layer satisfying ASC in Eq. (6).
Parameterized by a vector of thresholds θ, η(θ)(·) acts as
proxθ(·) in Eq. (5). Likewise, we can obtain the subnetwork
for A whose consecutive layers are given by

Ak+1 = σ (Ak − (AkS0 −X)W2) (8)

where σ(·) indicates the ReLu activate function ensuring the
nonnegativity of A and W2 = taS

T
0 with ta = 1

‖S0ST
0 ‖2

In summary, we unroll the iterative optimization of L1-
NMF to formulate two subnetworks corresponding to the de-
coder and encoder respectively. Gathering their output as in
Fig. (1) yields an end-to-end sparse autoencoder (NMF-SAE)
with parameter set of Θ = {W1,W2, θ}. All the parame-
ters can be learned by the training data through backpropa-
gation. Forward feeding the network resembles executing the
traditional L1-NMF for a finite number of times, dramatically
boosting computational efficiency. Unlike traditional deep
unmixing network, the network architecture is induced un-
der the framework of LMM and the optimization of L1-NMF,
therefore the physical interpretation is naturally preserved.
Thanks to such interpretation, the domain prior knowledge
and sophisticated learned knowledge about the HSI data can
be more flexibly transferred into the network, e.g., the param-
eters can be easily initialized by existing unmixing method.

2.3. Training and Inference

In general, the ground truth A and S are both unknown in
blind unmixing. Instead of discriminatively learning A and
S, we take reconstruction error of X as the loss function, i.e.,

LΘ =
1

2
‖AKSK −X‖2F (9)

where K indexes the last layer. For simplicity, the numbers
of layers in encoder and decoder are set to the same. Once
the network is trained, A can be obtained by the decoder sub-
network. For new samples, their abundance S can be obtained
by the forward process of encoder sub-network.

3. EXPERIMENTAL RESULTS

We have conducted a range of experiments to demonstrate
the superiority of the proposed method. We selected two
model-based methods TV-RSNMF [20], MV-NTF [7], two
learning-based methods, uDAS [15] and DAEN [14] and one
model-based neural network method, MNN-BU [19] as alter-
native methods to be compared with our method. All relevant

parameters are set as suggested in the original implementa-
tion. The spectral angle distance (SAD) and root square error
(RMSE) defined in [21] are used to measure the unmixing
performance.

3.1. Network Setup

We first run vertex component analysis (VCA) [22] and fully
constrained least squares (FCLS) [23] algorithm to respec-
tively yield A0 and S0. Afterwards, the network is initialized
by setting W1 = tsA

T
0 , W2 = taS

T
0 . All the values in θ

are set as 0.01ts. The network is implemented on the Py-
Torch platform and trained using Adam optimizer. We use
full batch for training. For synthetic data, the learning rate of
encoder and decoder respectively are set as 1e−4 and 5e−4.
In terms of real-world data, their learning rates are both set as
1e− 6. The number of training iterations and layers are set as
1000 and 2, respectively.

3.2. Experimental Results on Synthetic Data

The synthetic data was produced following the method
in [21]. Six pure signatures, i.e., Carnallite, Ammonio-
jarosite, Almandine, Brucite, Axinite and Chlonte were se-
lected from USGS library to construct the endmembers. The
abundances were produced by following procedures: 1) Di-
vide a synthetic image size of z2×z2 into z2 non-overlapping
regions containing z × z pixels; 2) Fill each region with two
randomly selected endmembers respectively of fraction β and
1 − β; 3) Blur the image using a Gaussian filter with kernel
size set as (z + 1) × (z + 1); 4) Rescale the fractions of all
endmembers in a pixel to satisfy the ASC constraint. In our
setting, the clean HSI was generated under the configuration
of z = 8, β = 0.8, yielding HSI with 4096 pixels.
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Fig. 2. SAD and RMSE with respect to the number of training
samples.

Influence of the number of training samples: Setting
SNR=25dB, Fig. 2 shows the impact of the number of train-
ing samples on SAD and RMSE. Even with only 256 pixels
(6.25% of all the pixels), NMF-SAE is able to produce very
comparable SAD and RMSE, which clearly demonstrates the
strong learning ability of NMF-SAE. The more training sam-
ples there are, the better the data distribution can usually be
described, and therefore the better unmixing performance ac-
cordingly is provided. On the other hand, with the increasing



Table 1. Means and standard deviations of the SAD on Jasper Ridge dataset.
Algorithm TV-RSNMF [20] MV-NTF [7] DAEN [14] uDAS [15] MNN-BU [19] NMF-SAE

Tree 0.0776±4.91% 0.2209±2.17% 0.1774±0.82% 0.1511±1.37% 0.0468±0.32% 0.0494±1.90%
Water 0.1337±1.31% 0.2352±1.65% 0.3237±1.42% 0.1742±11.39% 0.1179±0.23% 0.0729±0.50%
Soil 0.1047±10.11% 0.1752±4.67% 0.1123±2.03% 0.1639±6.09% 0.0357±0.43% 0.0527±4.17%
Road 0.6515±27.46% 0.1741±4.35% 0.0588±1.59% 0.0597±0.27% 0.0901±0.37% 0.0932±0.57%
Mean 0.2419±3.06% 0.2015±1.77% 0.1680± 0.43% 0.1373±3.27% 0.0726±0.11% 0.0671±1.47%

of training samples, the more training time is required. Con-
sidering the balance between training time and unmixing ac-
curacy, we set the number of training samples as 1000 in the
rest experiments.
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Fig. 3. Performance of all six unmixing methods with respect
to different noise levels in terms of (a) SAD and (b) RMSE.

Comparison with the state-of-the-arts: Here, we show
the unmixing performance of all the competing methods with
respect to different SNRs of Gaussian noise. Except our
method, all other learning-based methods use all the pixels
for training. Fig. 3 presents the experimental results. Gen-
erally, learning-based methods outperform TV-RSNMF and
MV-NTF in most cases, which implies that learning-based
methods take more advantages of available training data to
enhance representation ability. Compared with DAEN, uDAS
and MNN-BU, NMF-SAE achieves even better in terms of
both SAD and RMSE by using approximately 25% of the
pixels for training. The main reason is that our method in-
corporates the linear spectral mixture model into deep neural
network, combining the benefits of model-based methods
in good interpretability and the learning-based methods in
strong learning ability. Moreover, the number of parameters
of NMF-SAE is R + RN + RL, much smaller than that of
MNN-BU (KR + KRN + KRL + KR2). Fewer param-
eters, additional consideration of unrolling the optimization
of endmembers and more residual connections contribute to
improved performance over MNN-BU. In summary, exper-
imental results in this study illustrates the effectiveness in
unmixing task and learning ability of NMF-SAE.

3.3. Experimental Results on Real-world Data

In order to test the unmixing ability on real-world dataset, we
ran all the methods on the widely-used Jasper Ridge dataset.
The dataset was collected by AVIRIS sensor and originally
contains 512 × 614 pixels with 224 electromagnetic bands
whose the electromagnetic spectrum ranges from 380 nm to

2, 500 nm. We removed bands corrupted by water vapor ab-
sorption and noises and cropped a sub-scene from the image,
leaving 198 bands with 100 × 100 pixels for evaluation. In
this experiment, we set four types of endmembers, i.e., tree,
water, soil, and road.

Table 1 compares the unmixing accuracy in terms of SAD.
Similar to the observation on the synthetic data, learning-
based methods outperform TV-RSNMF and MV-NTF. In
contrast to other three learning-based methods, NMF-SAE
achieves comparatively more accurate endmembers by pro-
viding an average SAD of 0.0671. Fig. 4 gives a qualitative
comparison between abundance produced by NMF-SAE and
corresponding references. It can be seen that the abundance
matches the references both perceptually and visually. Over-
all, the promising unmixing performance in real-world dataset
evidently confirms the unmixing ability of NMF-SAE again.
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Fig. 4. Abundance maps comparison. Estimated abundance
map of each endmember: (a)Tree; (b) Water; (c) Soil; (d)
Road. (e)-(h) are associated reference abundance maps.

4. CONCLUSION

In this paper, an L1-NMF inspired sparse autoencoder, NMF-
SAE, is proposed for hyperspectral unmixing. NMF-SAE un-
rolls the iterative update scheme of L1-NMF driven by LMM
into a sparse autoencoder whose encoder and decoder respec-
tively account for abundances and endmembers. In contrast to
alternative autoencoder networks, the favorable interpretabil-
ity makes it flexible to incorporate the prior knowledge into
the network. The strong learning ability facilitating improv-
ing unmixing performance. Experimental results on synthetic
data and real-world dataset demonstrate its advantage over al-
ternatives. In our future research, we will incorporate spatial
structure into the network to enhance unmixing performance.
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