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Abstract 
Rett syndrome is a disease that involves acute cognitive impairment 
and, consequently, a complex and varied symptomatology. This 
study evaluates the EEG signals of twenty-nine patients in order to 
implement an effective classification method to find the optimal 
artifact reduction strategy in each case. The classification has been 
made based on the mean and standard deviation (SD), allowing to 
differentiate patients with stereotyped and constant movements 
from those with a greater number of spasm or sudden movements. 
Since the various signal patterns may require diverse treatments, 
two artifact reduction methods have been analyzed. The first one is 
based on the distribution, using again the mean and SD, and the 
second one is based on an energy function which, theoretically, 
should be more robust to outliers and more stable to signal to noise 
ratio. The results confirm the existence of three groups of signals 
differentiated by having: low mean and low SD, high mean and low 
SD and high mean and high SD. However, despite finding three 
different patterns, the energy-based method is the one that works 
best for all them, offering adequate adaptation to each type of signal 
without losing robustness and stability. In conclusion, its 
implementation improves the detection of outliers without 
compromising artifact-free data segments, which allows to 
maintain the quality and quantity of the records. 

1. Introduction 
Electroencephalogram (EEG) has been consolidated over the 
years as one of the main techniques to identify brain activity 
and behavior. Measurement of neurophysiological changes 
related to postsynaptic activity in the neocortex has proven 
to be a powerful tool for the study of complex 
neuropsychiatric disorders, since variations in EEG signals 
depict a definite type of brain abnormality [1]. Information 
must be extracted by designing and developing signal 
processing algorithms in order to use it for diagnosis, 
monitoring and treatment of the identified brain pathologies. 
It is fundamental to make sure that the signal that will be 
analyzed corresponds only to the brain activity, and 
therefore, results will be reliable. This is incompatible with 
the presence of artifacts, which lead to an obstacle to 
interpret EEG signals due to their high amplitudes [2]. 

The challenge comes when signals to be dealt with are from 
awake pediatrics patients with a severe neurodegenerative 
disease [2]. Literature covers all known artifact reduction 
methods but, mostly, under controlled circumstances. For 
example, during children's sleeping periods, where the 
sensitivity to artifacts is highly reduced because movement, 

 
 

eye blinks and muscle artifacts mostly disappear [3]. 
Constrained signals without uncontrolled big artifacts are 
well studied and numerous solutions are already presented 
[4]. But, what happens when patients present movement 
disorders, seizures or autistic behavior? Or even all at the 
same time? This is what occurs in the case of patients with 
Rett Syndrome. 

Rett Syndrome (RS) is a neurodevelopmental disorder 
caused by a mutation in the X-linked dominant MECP2 gene. 
The occurrence varies between 1/10.000 and 1/15.000 new-
born females that follow a normal development during the 
first 6 to 18 months of age. After this period, patients will lose 
the abilities acquired until that moment and will initiate a 
degenerative process that is divided in 4 stages. Principal 
symptoms that will appear are: microcephaly, intellectual 
disability, seizures, autistic behavior, hyperventilation, 
spasticity, hyperreflexia and stereotyped movements [5]. 
Despite the severity and variability of the symptoms, it is 
possible to evaluate the level of cognitive performance 
objectively [6]. Analyzing the power of the EEG signals at 
the different frequency bands before, during and after visual 
stimulation tasks, allows to know the awareness, learning 
and comprehension capacities of patients. The combination 
of cognitive training and EEG is a powerful tool to better 
understand the disease and to incorporate communication 
improvements in the patient’s day-to-day life. 

For the purpose of the study and given its relevance, ensure 
the quality of the data constitutes the first step of the analysis. 
Previous studies with children with similar pathologies have 
shown difficulties in obtaining an EEG without artifacts. 
Many patients must be discarded due to excess artifacts, 
studies are based on signals no longer than 1 minute due to 
the lack of artifact-free epochs or visual inspections to 
manually remove artifacts must be done, which is highly time 
consuming [7], [8]. The most common solution to remove 
artifacts is to reject the data segments that contain those to 
get an artifact-free signal to work with. Thus, the aim of the 
study is to optimize this procedure to find the appropriate 
method to detect outliers automatically and accurately. 
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2. Methods 
2.1. Participants, data acquisition and pre-processing 

The database is formed by 29 patients with Rett Syndrome 
recruited from the pediatric neuroscience unit at the Sant 
Joan de Déu Hospital, Barcelona. A twenty-channel EEG 
(according to 10/20 system) was recorded with a Starstim 20 
wireless device from Neuroelectrics, Barcelona, at a 
sampling frequency of 500 Hz. An accelerometer was placed 
at the back of the head to record the movement in x, y and z 
axes. During the session, the subject was using an eye- 
tracking device from Tobii Technology to record its visual 
response to a given stimulus on the screen. A total of 85 
records containing basal and activity periods were registered. 
All the obtained signals are filtered using an elliptic bandpass 
filter between 1 and 50 Hz.  

The study was approved by the local ethics committee 
following the Declaration of Helsinki. 

2.2. Influence of patient’s symptomatology in data 
variability 

The clinical characteristics of the subjects are important to 
understand the high variability of the data: there are subjects 
who remain fairly stable during the session with slight 
random movements, patients who have a constant and 
continuous repetitive movement and patients who produce 
very strong and sudden movements at times but who remain 
mostly stable throughout the session. This is due to the 
symptoms of each patient as well as the stage of the disease 
in which they are. The degree of attention, understanding, 
motor control, autism or epilepsy varies in each child and 
influences their behavior during the activities. 

In order to classify the data and group subjects according to 
their degree of movement, the mean and the standard 
deviation (SD) of the modulus of the derivative of the 
accelerometer signal in the 3 axes are analyzed. The 
derivative is used to maximize the slope changes of the 
accelerometer signal to better detect the head movements. 
Finding the relationship between the mean and the SD is the 
key point for ranking. It is expected to find a group with low 
mean and SD, due to the lack of sudden movements and high 
stability; another group with high mean but low SD, due to 
constant repetitive movements and, finally, a third group 
with high mean and SD due to sporadic strong movements. 
Figure 1 shows the mean-SD relationship found in the eighty-
five recordings from the twenty-nine patients. 

Two classification methods are used to analyze the mean and 
the SD: The Kernel Density Estimation (KDE), which 
represents the data using a continuous two-dimensional 
probability density curve that is analogous to a histogram, 
and the Gaussian Mixture Model (GMM), which depicts the 
density representation as the weighted sum of Gaussian 
distributions. The GMM algorithm is applied to the dataset 
for fitting three mixture-of-Gaussian models and to assign 
each record to the Gaussian it mostly belongs to [9]. As it is 
a probabilistic model, we can filter by probabilities to keep 
only those records with a probability (p) greater than 95% of 
belonging to its group and, therefore, obtain only those 
groups with clearly differentiated data. 

2.3. Artifact rejection methods 

In this study, two artifact rejection methods will be analyzed. 

 

 

The first one is based on the mean and the standard deviation 
and needs a k-factor to fit the data correctly. It is calculated as 
the mean + k-factor · SD of the filtered signal. In this study, 3 
k-factors are tested: 3, 4 and 5. The second one is based on an 
energy function that has entropy as its main component. The 
purpose of the algorithm is to determine the baseline of the 
signal without the influence that movement peaks may add. It 
has the advantage of not having a threshold that depends on 
some events such as artifacts, as the first artifact detection 
method does by using the data distribution. Therefore, and in 
theory, this method will be more robust to outliers and more 
stable to signal-to noise ratio [9]. The methodology consists 
of: the filtered signal is divided into 100-ms segments and the 
wavelet entropy of the autocorrelation of each segment is 
calculated. Then, the baseline is computed as the 95% 
percentile of the entropy value distribution and the threshold 
is determined as the k- value % of the obtained baseline. For 
this method, five k-values are tried. The five k-values are 
0.995, 0.996, 0.997, 0.998 and 0.999. As the threshold is 
determined by the k- value-quantile of the absolute value of 
the baseline, the higher the k-value is, the higher the threshold. 
In order to decide the k-value, the percentage of artifact 
epochs versus the k-value will be analyzed. 

3. Results 
3.1. Data classification 

Figure 1 shows the mean and SD distribution of the modulus 
of the accelerometer derivative in the three axes (x, y, z). 

 

Figure 1. A. Histogram showing the distribution of the means. B. 
Histogram showing the distribution of the standard deviations. C. 
Mean-SD ratio distribution using kernel density estimation (KDE). 
D. Density representation as the weighted sum of Gaussian 
distributions using the Gaussian Mixture Model (GMM). Three 
groups are differentiated: 1. LmLsd (blue): low mean and low SD. 
2. HmLsd (orange): high mean and low SD. 3. HmHsd (green): high 
mean and high SD. 

Figure 1a shows the histogram of the mean values of the 
accelerometer where three main peaks can be observed: the 
first, which is the second highest, has the lowest mean around 
30 m/s3, the second, that is the highest, represents the group 
with an intermediate mean around 45 m/s3, and finally, the 
smallest peak shows a more limited group of records that have 
the highest mean around 60 m/s3. Figure 1b shows the 
histogram of the standard deviation (SD). There is one main 
peak around the value of 8 m/s3 indicating that most records 
have a low SD, then, there is a lower concentration of records 
between 10 and 12 m/s3, and finally, the smallest part of the 
distribution between 14 and 18 m/s3 that represents the 
registers with the highest SD. 
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So far, and based on histograms, the presence of the three 
expected groups is observed. Figure 1c shows the mean-SD 
ratio distribution using KDE. Three groups are 
differentiated according to the density distribution: the area 
of highest density with low mean and low SD, the second 
highest density area with a higher mean and the same low 
SD and the smallest group with high mean and high SD.  

After recognizing those three distinct groups, Figure 1d 
shows the results from the application of the GMM 
algorithm: LmLsd (Low mean Low SD), low mean due to 
stable behavior during the session with a low SD due to the 
lack of strong sudden movements. HmLsd (High mean Low 
SD): high mean due to constant repetitive movement during 
the session but low SD due to the lack of strong sudden 
movements. HmHsd (High mean High SD): both the mean 
and the SD are high because subjects present very strong and 
sporadic movements, which means that they remain mainly 
calm during the session but the outliers caused by these 
movements have extremely high amplitude, which increases 
the global mean and the SD. 

By clustering with GMM, three groups could be obtained 
according to the behavior of the children during the sessions. 
The variability of the signals can cause each group to require 
a different solution when calculating the threshold to detect 
artifacts, for this reason, in this study two different methods 
of artifact rejection will be evaluated. 

3.2. Selection of the k-value for the energy threshold 

The energy threshold was obtained as the k-value% of the 
baseline. Five different values have been tested to find the 
optimum. Figure 2 shows the relationship between the k- 
values and the percentage of artifact epochs for the three 
groups classified in section 3.1. 

 

 
Figure 2. K-values (x axis) versus the percentage of epochs with 
artifacts (y axis) for the three groups LmLsd, HmLsd and HmHsd. 

Both LmLsd and HmHsd, show a linear decrease in the 
percentage of artifactual epochs as k-value increases, while 
in the case of HmLsd, the variation in the percentage of 
artifactual epochs is more abrupt and is quantized with 
notable changes in the slope between each k-value. The 
HmLsd is the one that presents a differentiated behavior and 
the response to each k-value implies a greater change in the 
final selection of data. Before taking a decision, the 
evaluation will continue in the next section 3.3, where the 
thresholds with k-values from 99.7 to 99.9% will be studied 
in depth, as they are the ones that present the most abrupt 
changes in the HmLsd slope. 

3.3. Threshold examination: mean-SD vs. energy 

Once all procedures are defined, it is time to see how the 
different thresholds fit the data and what percentage of 
artifacts are detected in each case. 

 

 

 

 
Figure 3. The figure shows the threshold values and the percentage 
of discarded data, both versus each type of threshold. The mean plus 
SD method is tested with three “k-factors” of 3, 4 and 5 and the 
energy-based threshold is tested for three of the five k-values shown 
in Figure 2, due to preliminary results. The k-values are: 0.997, 
0.998 and 0.999. 

The observation and analysis of Figure 3 in detail is crucial 
to understand how both methodologies are working and how 
they affect data. The first column contains the information 
regarding the LmLsd group. It can be seen how all three 
energy-based thresholds have higher median values (from 
220 to 380 µV) than the mean-SD thresholds, which increase 
more smoothly and linearly and go from 120 to 200 µV. 
Therefore, the mean plus SD method seems to have a lower 
variation of the median threshold values for the different k- 
factors, and it also shows less variability between records 
(the range of values between quartiles of 25 and 75% is 
smaller), however, its influence on the percentage of 
discarded data is the opposite. It ranges from 60% of the data 
discarded with 3SD to 20% in 5SD, showing in this case a 
greater variation of the median threshold values and a greater 
variability between records than the energy-based threshold. 
This second one has a greater disparity between k-values in 
the median threshold calculation, but it is more precise 
selecting outliers and shows less variability between records, 
going from 20% of the discarded data with k=0.997 to 10% 
with k=0.999. 

The second column, which describes the behavior of the 
HmLsd group, shows that the energy-based thresholds vary 
from 175 to 205 µV while for the mean-SD method go from 
142 to 203 µV. In this case, the energy threshold presents a 
smaller variation with respect to the calculation of the 
median thresholds, unlike the LmLsd group, but greater 
variability between registers, as in the previous group. 
Following the same line, the percentage of discarded data is 
again more consistent for the energy thresholds, which vary 
from 60% for the lowest k-value to 15% for the highest, while 
for the 3SD threshold the percentage of discarded data is 
almost the 100% and, for the 5SD, it is around 20%. 
Therefore, the mean plus SD method is less consistent when 
setting the thresholds and discarding the data. 

Finally, the third column shows the boxplots for the HmHsd 
group, whose behavior is very similar to LmLsd. All three 
energy-based thresholds are greater than the mean-SD ones 
with respect to the threshold’s median values (750 to 1450 
µV versus 500 to 750 µV, respectively), and again, this 
second method is more consistent calculating the median 
threshold values for the different k-factors.  
 
 

(µ
V)
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Likewise, the variability between registers when calculating 
the thresholds is greater for the energy-based threshold. On 
the contrary, and also coinciding with the first group, the 
variability between records in the percentage of discarded 
data is greater for the mean-SD method. Regarding the 
median values of the percentage of discarded data, both 
methods show a similar behavior, going from 26 to 18 µV 
for the mean-SD method and from 17 to 8 µV for the energy-
based method. 

In summary, the variability in the threshold calculation is 
greater for the energy-based method while it is also more 
consistent discarding data. For this reason, it would be the 
most suitable method for all three groups. The last decision 
to make is which k-value to use. Observing Figure 3 and 
analyzing Figure 2 again, the decision will be made based on 
the calculation of the slopes between the k-values of the 
HmLsd group (due to its differentiated behavior). It is 
observed that the steepest change in the slope occurs between 
99.8% and 99.9%, so the k-value that will be used to define 
the energy-based threshold is 0.998. 

Figure 4 translates these results to observe the effect of the 
threshold chosen as optimal (energy threshold with k-value 
of 0.998) against the three thresholds of mean plus SD, 
which are used as the reference classification because were 
already used in the previous study to obtain the preliminary 
results that lead to the actual one. 

For the purpose of the study, it is considered that at least 20% 
of the data must be free of artifacts. In Figure 4 all those 
records that conserve less than this 20% are shown in blue, 
while the ones that conserve enough data are shown in black. 
The difference is visible between the two main methods, 
energy and mean-SD. For the energy threshold, only 3 
records would be eliminated, while for the 3SD method more 
than 50% of the registers would be removed, specifically 56 
out of 85. In the case of the 4SD, a total of 47 registers would 
be eliminated (also over 50%) and finally, for the 5SD, 21 
records would be lost. So, for the less restrictive mean-SD 
method, the percentage of records deleted is 24.7% versus 
3.5% for the energy method. 
 

 

 

 

 

Figure 4. The figure presents a boxplot for each threshold method 
(x-axis) with the information regarding the percentage of free- 
artifact epochs (y-axis) for all records. 

4. Conclusions and limitations 
The complexity and variability of symptoms in patients with 
Rett Syndrome require an equally complex and diverse data 
analysis. The initial idea of the study about the existence of 
different groups of patients, due to their clinical stage and 
behavior, has been exhibited by using the mean and standard 
deviation. Three groups of registries have been identified, 
showing the importance of knowing the origin of movement, 
since it influences the performance of the different artifact 
detection methods. However, after evaluating both methods, 
if a single solution has to be offered for all types of data, the 
energy-based method is the optimal for all them.  

 

 

The greater consistency discarding data together with a 
greater variability in the calculation of the thresholds, implies 
a more precise adaptation to each signal, obtaining more 
robustness in the selection of artifacts. This helps to reduce the 
loss of artifact- free data by removing only outliers, leading to 
a reduction in the percentage of records deleted. 

The main limitations of the study lie in the signal recordings, 
since the artifacts must be annotated in real time to contrast 
automatically with the classification of the data and the 
detection of outliers. So far it has been done with video 
recordings, which is a manual method that can include more 
errors and involves a greater investment of time. 

5. Acknowledgements 
We would like to acknowledge specific funding support from 
the Spanish Patient Associations Mi Princesa Rett and 
Rettando al Síndrome de Rett. This project has received also 
funding from Torrons Vicens and the Ministry of Economy 
and Competitiveness (MINECO), Spain, under contract 
DPI2017-83989-R. CIBER-BBN is an initiative of the 
Instituto de Salud Carlos III, Spain. Alejandro Bachiller is a 
Serra Húnter Fellow. 

6. References 
[1] J. Wang, J. Barstein, L. E. Ethridge, M. W. Mosconi, Y. 

Takarae, and J. A. Sweeney, “Resting state EEG 
abnormalities in autism spectrum disorders,” Journal of 
Neurodevelopmental Disorders, vol. 5, no. 1, pp. 1–14, 
Dec. 2013, doi: 10.1186/1866-1955-5-24. 

[2] M. Dovgialo et al., “Assessment of Statistically Significant 
Command-Following in Pediatric Patients with Disorders 
of Consciousness, Based on Visual, Auditory and Tactile 
Event-Related Potentials,” International Journal of Neural 
Systems, vol. 8, no. 3, p. 1850048, 2019, doi: 
10.1142/S012906571850048X. 

[3] A. Kaminska, F. Cheliout-Heraut, M. Eisermann, A. 
Touzery de Villepin, and M. D. Lamblin, “EEG in children, 
in the laboratory or at the patient’s bedside,” 
Neurophysiologie Clinique, vol. 45, no. 1, pp. 65–74, Mar. 
2015, doi: 10.1016/j.neucli.2014.11.008. 

[4] D. W. Klass, “The continuing challenge of artifacts in the 
EEG,” American Journal of EEG Technology, vol. 35, no. 
4. pp. 239–269, Dec. 10, 1995, doi: 
10.1080/00029238.1995.11080524. 

[5] N. P. Verma, R. L. Chheda *’*, M. A. Nigro, and Z. H. Hart, 
“Electroencephalographic findings in Rett Syndrome” 
1986. 

[6] P. M. Baptista, P. M. Baptista, M. T. Mercadante, E. C. 
Macedo, and J. S. Schwartzman, “Correspondence: 
Cognitive performance in Rett syndrome girls: a pilot 
study using eyetracking technology,” Journal of 
Intellectual Disability Research, doi: 10.1111/j.1365- 
2788.2006.00818.x. 

[7] R. A. Fabio, L. Billeci, G. Crifaci, E. Troise, G. Tortorella, 
and G. Pioggia, “Cognitive training modifies frequency 
EEG bands and neuropsychological measures in Rett 
syndrome,” Research in Developmental Disabilities, vol. 
53–54, pp. 73–85, 2016, doi: 10.1016/j.ridd.2016.01.009. 

[8] K. J. Roche, J. J. Leblanc, A. R. Levin, H. M. O’Leary, L. 
M. Baczewski, and C. A. Nelson, 
“Electroencephalographic spectral power as a marker of 
cortical function and disease severity in girls with Rett 
syndrome,” Journal of Neurodevelopmental Disorders, 
vol. 11, no. 1, p. 15, Jul. 2019, doi: 10.1186/s11689-019- 
9275-z. 

[9] C. Migliorelli et al., “SGM: a novel time-frequency 
algorithm based on unsupervised learning improves high- 
frequency oscillation detection in epilepsy,” J. Neural Eng, 
vol. 17, p. 26032, 2020, doi: 10.1088/1741- 2552/ab8345.

251

XXXVIII Congreso Anual de la Sociedad Española de Ingeniería Biomédica. 25 – 27 Nov, 2020


