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Abstract

Multisensor systems are a key enabling technology in, e.g., radar, sonar, medical ultrasound, and
wireless communications. Using multiple sensors provides spatial selectivity, improves the signal-
to-noise ratio, and enables rejecting unwanted interference.

Conventional multisensor systems employ a simple array of uniformly spaced sensors with a
linear or rectangular geometry. However, a uniform array spanning a large electrical aperture may
become prohibitively expensive, as many sensors and costly RF-IF front ends are needed. In
contrast, sparse sensor arrays require drastically fewer resources to achieve comparable
performance in terms of spatial resolution and the number of identifiable scatterers or sources.
This is facilitated by the co-array: a virtual array structure consisting of the pairwise differences
or sums of physical sensor positions.

Most recent works on co-array-based sparse array design focus exclusively on passive sensing.
Active sensing, where sensors transmit signals and observe their backscattered component, have
been investigated less, despite their importance in ubiquitous applications such as radar and
ultrasound imaging. The sum co-array naturally arises from the active sensing signal model,
whereas the difference co-array is often more relevant in passive sensing.

This dissertation proposes novel sparse array designs and signal processing methods for active
sensing and imaging. We introduce linear and planar sparse array configurations that achieve a
large contiguous sum co-array for diverse aspect ratios using significantly fewer sensors than
conventional arrays. These low-cost arrays resolve vastly more scatterers than sensors in both
azimuth and elevation, and synthesize beampatterns that are normally achieved by uniform arrays
only. Several of the proposed configurations are symmetric, which implies that their sum and
difference co-arrays are equivalent, and that they are suitable for both active and passive sensing.

We also develop methods for coherent linear imaging, where image quality is improved by
summing multiple component images, possibly corresponding to separate transmissions and
receptions. We formulate a new optimization problem for achieving any feasible transmit-receive
beampattern to a desired accuracy using as few component images as possible. We derive
algorithms and closed-form expressions approximately solving this problem, and establish bounds
on the number of component images of the optimal solution. We consider fully digital, hybrid, and
fully analog beamforming architectures, as well as various waveform diversity cases, including
phased array and orthogonal MIMO. Hybrid and analog beamforming further reduce the number
of RF-IF front ends and related hardware costs, whereas waveform diversity governs the number
of component images acquired per transmission. Numerical experiments verify the analytical
results and characterize the trade-offs between the various system parameters. The contributions
are of practical value in the design of sensor arrays for active sensing.
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Tiivistelma

Monianturijarjestelmit ovat avainasemassa monessa sovelluksessa, kuten tutkassa,
kaikuluotauksessa, ladketieteellisessi ultraddnessi ja langattomassa viestinnéssi. Usean anturin
kdyttdminen tarjoaa erindisia hyotyjé, kuten suunnatun lahetyksen ja vastaanoton, paremman
signaali-kohinasuhteen ja mahdollisuuden torjua hairioita.

Perinteisissd monianturijarjestelmissa anturit on sijoitettu tasavilein janalle tai suorakulmion
muotoon. Téllainen anturiryvhma voi kuitenkin tulla kalliiksi, kun sen koko ja antureiden
lukumaira kasvaa suureksi. Sita vastoin harvat anturiryhmit, joiden anturit on sijoitettu
epdjaksollisesti, vaativat huomattavasti vihemman resursseja vertailukelpoisen suorituskyvyn
saavuttamiseksi esimerkiksi sirottajien tai signaalildhteiden paikantamisessa. Tamén mahdollistaa
virtuaalinen anturiryhmi, joka tyypillisesti koostuu fyysisten antureiden sijaintien parittaisista
erotuksista tai summista, eli niin sanotusta erotus- tai summajoukosta.

Virtuaaliseen anturiryhmiin perustuvassa harvojen anturiryhmien suunnittelussa on ennen
keskitytty 1ahes yksinomaan passiiviseen aistimiseen. Aktiivista aistimista, jossa anturit seka
lahettavat etta vastaanottavat, on tutkittu huomattavasti vihemman. Aktiivisella aistimisella on
kuitenkin tirkeita ja laajalle levinneitd sovelluksia esimerkiksi tutka- ja ultraddnikuvantamisessa.
Summajoukko ilmenee luonnollisesti aktiivisen aistimisen signaalimallissa, kun taas erotusjokko
on tairkeimmassd asemassa passiivisessa aistimisessa.

Tassd vaitoskirjassa ehdotetaan uusia harvoja anturigeometrioita ja signaalinkasittelymenetelmia
aktiiviseen aistimiseen ja kuvantamiseen. TyOssé kehitetddn seké lineaarisia ettd tasomaisia
geometrioita, jotka saavuttavat suuren yhtendisen summajoukon edullisesti kiyttamalla
merkittavasti vihemman antureita kuin perinteiset geometriat. Ndmé harvat anturigeometriat
pystyvat sekd havaitsemaan huomattavasti antureiden lukuméairaa enemman siroittajia, etta
tuottamaan sateilykuvioita, jotka ovat perinteisesti vain tasavilisen geometrian saavutettavissa.
Useat ehdotetuista anturigeometrioista ovat symmetrisid, mista seuraa, ettd niiden summa- ja
erotusjoukot ovat samat ja ettd ne soveltuvat seka aktiiviseen ettéd passiiviseen aistimiseen.

Viitoskirjassa kehitetddn my6s menetelmia lineaariseen kuvantamiseen, jossa kuvanlaatua
parannetaan yhdistimalla useita komponenttikuvia, jotka mahdollisesti vastaavat erillisid
lahetyksia ja vastaanottoja. Tyossa muotoillaan my6s optimointitehtdva, jonka ratkaisulla
saavutetaan haluttu siteilykuvio ennalta maarattyyn tarkkuuteen kayttamalla mahdollisimman
vahan komponenttikuvia. Ongelman ratkaisemiseksi johdetaan algoritmeja ja maaritelldan rajoja
optimaaliselle komponenttikuvien méaarélle tyypillisimmit monianturijarjestelmaarkkitehtuurit
huomioon ottaen. Numeeriset simulaatiot vahvistavat johdetut teoreettiset tulokset ja
havainnollistavat kompromisseja eri jarjestelmiparametrien vililld. Kontribuutioilla on kidytdnnon
arvoa anturiryhmien suunnittelussa aktiivista aistimista varten.
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Sammandrag

Flersensorsystem ar visentliga inom t.ex. radar, ekolod, medicinsk ultraljud och tradlos
kommunikation. Anvindning av flera sensorer medfér diverse fordelar, som riktad sindning och
mottagning, forbattrat signal-brusférhallande och mojligheten att ddmpa oonskade storningar.

Konventionella flersensorsystem bestér typiskt av likformigt placerade sensorer i en linjar eller
rektangular geometri. En sddan sensoruppsattning kan dock bli dyr da dess dimensioner och
sensorantal 6kar. Daremot kraver glesa sensoruppséattningar drastiskt farre resurser for att uppna
jamforbar prestation, exempelvis géllande rumslig upplosningsforméga, eller antalet identifierbara
spridare eller signalkéllor. Detta majliggors av en virtuell sensoruppsittning som bestér av de
parvisa skillnaderna eller summorna av de fysiska sensorpositionerna, d.v.s. skillnad- eller
summamaéngden.

Den senaste forskningen i glesa sensorgeometrier och den virtuella sensoruppsittningen
fokuserar exklusivt pa passiv avkdnning. Aktiv avkdnning, dir sensorer bade sander och observerar
signaler, har undersokts mindre trots dess betydelse i vidspridda applikationer som radar och
ultraljudsavbildning. Summamangden uppstar naturligt i signalmodellen for aktiv avkidnning,
medan skillnadsméangden ar mer relevant i passiv avkanning.

Denna avhandling foreslar nya glesa sensorgeometrier och signalbehandlingsmetoder for aktiv
avkidnning och avbildning. Vi introducerar bade linjdra och plana geometrier som uppnér en stor
sammanhingande summamangd kostnadseffektivt genom att anvinda betydligt farre sensorer dn
konventionella geometrier. Dessa glesa sensorgeometrier upploser mérkbart fler spridare dn
sensorer, och syntetiserar stralningsférdelningar som traditionellt uppnés endast av likformiga
geometrier. Flera av de foreslagna sensorkonfigurationerna ar symmetriska, vilket innebar att
deras summa- och differensméngder &r ekvivalenta, och att de &r lampliga for bade aktiv och passiv
avkidnning.

Vi utvecklar ocksa metoder for linjar avbildning, dar bildkvaliteten forbattras genom att summera
flera komponentbilder, som méjligen motsvarar separata sindningar och mottagningar. Vi
formulerar ett nytt optimeringsproblem, vars 16sning ger en 6nskad stralningsférdelning med en
godtycklig noggrannhet med sa fa komponentbilder som mgjligt. Vi hérleder algoritmer som
approximativt 16ser detta problem, samt stiller granser for antalet komponentbilder som den
optimala 16sningen kréver i fallet av de vanligaste flersensorsystemarkitekturerna. Numeriska
experiment verifierar de analytiska resultaten och karakteriserar kompromisser mellan olika
systemparametrar. Bidragen &r av praktiskt viarde for design av sensoruppsattningar for aktiv
avkanning.

Nyckelord Glesa sensoruppstéllningar, aktiv avkanning, virtuell uppstéllning, summamaéngd

ISBN (tryckt) 978-952-64-0473-8 ISBN (pdf) 978-952-64-0474-5
ISSN (tryckt) 1799-4934 ISSN (pdf) 1799-4942
Utgivningsort Helsingfors Tryckort Helsingfors Ar 2021

Sidantal 252 urn http://urn.fi/URN:ISBN:978-952-64-0474-5







Preface

This research was carried out under the supervision of Prof. Visa Koivunen at the
Department of Signal Processing and Acoustics, School of Electrical Engineering,
Aalto University, Finland. Firstly, I would like to express my deepest gratitude
to Prof. Koivunen for his guidance, mentorship, encouragement and trust, as
well as for providing countless opportunities for international collaboration,
networking and professional development during these past years.

Secondly, I would like to sincerely thank my pre-examiners Prof. Fauzia
Ahmad and Prof. Chun-Lin Liu, as well as my opponent Prof. Geert Leus, for
taking the time to carefully read my thesis and provide constructive feedback.

Thirdly, I am indebted to the many outstanding scholars who I have been
fortunate to learn from and work with. Thanks to Prof. Sergiy Vorbyov and
Prof. Esa Ollila for their teaching and expertise. Many thanks to co-authors Dr.
Jukka Kohonen and Prof. Sundeep Chepuri for fruitful research collaborations.
Thanks also to collaborators Mikko Laakso, Prof. Risto Wichman and Ossi
Lehtonen. Furthermore, I am exceedingly grateful to Prof. Saleem Kassam, Prof.
Yonina Eldar and Prof. Piya Pal for kindly hosting me during research visits
to their world-class research groups. Thanks to Prof. Kassam, Prof. Ahmad
and Prof. Yimin Zhang helping me get started with this research back in 2016.
Prof. Kassam and his many excellent graduate students over the years deserve
a special acknowledgment for laying the foundation for much of the work that
this thesis builds upon.

This dissertation would not have been possible without the generous financial
support of entities that either directly or indirectly deemed this research worthy
of their resources. In truth, I never had to worry about funding thanks to
the tireless efforts of Prof. Koivunen. I would nevertheless like to thank the
Aalto ELEC Doctoral School, the Foundation for Aalto University Science and
Technology, Nokia Bell Labs (especially Dr. Veli-Matti Kolmonen), the Nokia
Foundation, the Walter Alhstrom Foundation, the HPY Research Foundation,
the Finnish Foundation for Technology Promotion, the Finnish Defense Research
Agency, and the Academy of Finland.

I would also like to thank the many colleagues whom I have had the pleasure of
knowing during these past years. Thanks to Dr. Shahab Basiri, Dr. Marian Bica,



Preface

Dr. Karthik Upadhya, Henri Hentil4d, Emadaldin Mozafari, and Markus Yli-
Niemi for the pleasant travel company on various trips to conference and courses
around the world. Thanks to past and present co-workers including Dr. Tuomas
Aittoméki, Dr. Adriana Chis, Dr. Mario Costa, Dr. Gyuyeol Kong, Dr. Yongzhe
Li, Dr. Maarit Melvasalo, Dr. Jari Miettinen, Dr. Hassan Naseri, Dr. Eyal
Nitzan, Dr. Jan Oksanen, Dr. Nora Ouzir, Dr. Keijo P6lonen, Dr. Muhammad
Tabassum, Endrit Dosti, Majdoddin Esfandiari, Farshad Ghorbani, Martin Golz,
Atchutaram Kocharlakota, Petteri Pulkkinen, Elias Raninen, Vesa Saarinen
and Salil Sharma. It has also been a great pleasure to meet several exceptional
people abroad, including Prof. Nir Shlezinger, Dr. Tanya Chernyakova, Dr.
Regev Cohen, Dr. Satish Mulleti, Dr. Oren Solomon, Or Dicker, Shahar Stein
Ioushua and Shahar Tsiper in Haifa, as well as Dr. Ali Koochakzadeh, Dr.
Heng Qiao, Jiawen Chen, Mehmet Can Hiiciimenoglu, Pulak Sarangi and Sina
Shahsavari in San Diego. Thank you for your kind hospitality.

Last but not least, I would like to thank my friends and family for providing
refreshing (and likely much-needed) distractions from academic life. Many
thanks to my parents for always supporting and encouraging me. Thanks to
my grandparents, to whom I am indebted for the privilege of pursuing higher
education wholeheartedly and carefreely.

Helsinki, August 20, 2021,

Robin Rajamaki



Contents

Preface

Contents

List of Publications

Author’s Contribution

Abbreviations

Symbols

1. Introduction
1.1 Scope . . . . o i i
1.2 Research objectives and problems . ... ..............
1.3 Contributions . . . . . ... ... ... ... .. ...
1.4 Organization . ... ... ... ... ... ...,
1.5 Notation and basic identities . ... ... ... ...........

Review of sparse arrays

2.1

2.2

2.3

24

Canonical passive linear arraymodel . . ... ...........
2.1.1  Received signal and covariance . . . ... .........
2.1.2  Differenceco-array . .....................
Sparse arraydesign . . . ... .. . ... ...
2.2.1 Nonuniformarrays ......................
2.2.2  Co-array-baseddesign . ...................
Direction-of-arrival estimation using the co-array . . . . ... ..
2.3.1 Beamforming. ... ......................
2.3.2 Compressive sensing . . . . . ... ... ... ...
2.3.3 Subspacemethods. .. ....................
Sparse active arrays and the sum co-array ... ..........
2.4.1 Designs and architectures . . ... .............
2.4.2  Active sensing and imaging . . ... ............

11

13

17
18
20
21
23
24



Contents

3. Active sensing sensor array model 39
3.1 Assumptions . ..... ... ... ... ... 39
3.2 Signalmodel ... ........ ... . . ... .. ... ... . 41
3.3 System design parameters and trade-offs . . . ... ... ... .. 42

3.3.1 Beamforming architecture . . . . ... ... ........ 43
3.3.2 Waveformdiversity . ... .................. 44
3.4 Sumco-array . . . ... e e e e e e e 46
3.4.1  Effective steering matrix and sum co-array ... .. .. 46
3.4.2  Degrees of freedom and aspectratio . . . . ........ 47
3.4.3  Co-array selection and steering matrices . . .. ... .. 48
3.5 Extensions . .. .. ... ... ... e 49
4. Design of sparse arrays with a contiguous sum co-array 51
4.1 General design considerations and criteria . . ... ... ... .. 51
4.1.1 Overlap between Tx and Rxarrays . ........... 52
412 Redundancy ............... . ... ... ..., 52
4.1.3  d-spacing multiplicity . ................... 54
4.2 Minimum-Redundancy Array . . ................... 56
4.2.1 Definitionof MRA . . . . . . ... ... ... .. .. 57
4.2.2  Non-overlapping Tx and Rxarrays. . ... ... ..... 58
4.2.3  Partially overlapping Tx and Rx arrays . . . ... .. .. 60
424  Fully overlapping Tx and Rx arrays . . .. ... ... .. 60
4.3  Scalable sparse configurations in fully overlapping case . . . . . 64
4.3.1 Square arrays inspired bythe MRA . . . ... ... ... 64
4.3.2  Rectangular arrays insensitive to aspect ratio . . . . . . 66
4.3.3  Linear arrays with mirror symmetry ... ........ 68
44 Discussion. . . .. .. ... e e 71
5. Active linear imaging using low-complexity architectures 73
5.1 Overview of active imaging using beamforming . ... ... ... 74
5.1.1  Joint transmit-receive beamforming . . . . ... ... .. 74
5.1.2  Linear imaging and image addition ... ......... 75
5.1.3 Point spread function . . . . ... ... ........... 78
5.2  Noise and interference suppression capability . .. ... .. ... 79
5.2.1 Interference-limited regime . . .. ... .......... 80
5.2.2  Noise-limitedregime . ... ................. 80
5.3 Low-complexity imaging using few component images . . .. .. 83
5.3.1  Fully digital beamforming . . . . ... ........... 84
5.3.2  Hybrid beamforming . ... ................. 87
5.3.3  Fully analog beamforming . . . ... ............ 90
5.3.4 Numericalexamples ... .................. 91
5.4  DiscusSion . . . . ... .. i e e e 96

6. Conclusions 99

6.1 Sparse arrays with a contiguous sum co-array . . ...... ... 100



6.2 Image addition using few component images . . . . ... ..
6.3 Open problems and futurework . . . . ... ..........

A. Appendix

A.1 Derivation of received signal model . . . . . . ... ... ...
A.2 Relaxations to signal model assumptions . ... .......
A21 Wideband transmit waveforms . . ... ... . ...
A.2.2 Incoherent scatterers . .. ...............
A.2.3 Near field scatterers . .................
A.2.4 Nonidealsensors ....................
A.2.5 Non-Gaussian noise and interference . .. ... ..
A.3 Expression for redundancy of active array . . ........
A.4 General Minimum-Redundancy Array . . . ..........
A.5 Variance of beamformer output after image addition . . . .
A.6 Lower bound on number of component images of URA . . .

A.7 Image addition: a general framework for linear imaging

A.7.1  Origins and related concepts in imaging . ... ..
A.7.2 Connections beyond imaging . ............

References

Errata

Publications

Contents






List of Publications

This thesis consists of an overview and of the following publications which are

referred to in the text by their Roman numerals.

I

II

III

Robin Rajaméki and Visa Koivunen. Sparse linear nested array for active
sensing. In proceedings of the 25th European Signal Processing Conference
(EUSIPCO), pp. 1976-1980, Kos, Greece, 28 August—2 September 2017.

Robin Rajaméiki and Visa Koivunen. Sparse array imaging using low-rank
matrix recovery. In proceedings of the IEEE 7th International Workshop on
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
pp. 1-5, Curacgao, 10-13 December 2017.

Robin Rajaméki and Visa Koivunen. Symmetric Sparse Linear Array
for Active Imaging. In proceedings of the IEEE 10th Sensor Array and
Multichannel Signal Processing Workshop (SAM), pp. 46-50, Sheffield,
UK, 8-11 July 2018.

IV Robin Rajaméiki and Visa Koivunen. Sparse Active Rectangular Array

VIII

With Few Closely Spaced Elements. IEEE Signal Processing Letters,
Volume 25, issue 12, pp. 1820-1824, December 2018.

Jukka Kohonen, Visa Koivunen, and Robin Rajamé&ki. Planar Additive
Bases for Rectangles. Journal of Integer Sequences, Volume 21, Article
18.9.8, pp. 1-25, December 2018.

Robin Rajamiki, Sundeep Prabhakar Chepuri, and Visa Koivunen. Analog
Beamforming for Active Imaging Using Sparse Arrays. In proceedings
of the 563nd Asilomar Conference on Signals, Systems, and Computers,
pp. 1202-1206. Pacific Grove, CA, USA, 3—6 November 2019.

Robin Rajamiki and Visa Koivunen. Sparse Low-Redundancy Linear
Array with Uniform Sum Co-array. In proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 4592-4596, Barcelona, Spain, 4-8 May 2020.

Robin Rajaméki, Sundeep Prabhakar Chepuri, and Visa Koivunen. Hybrid
Beamforming for Active Sensing using Sparse Arrays. IEEE Transactions



List of Publications

on Signal Processing, Volume 68, pp. 6402—-6417, October 2020.

IX Robin Rajamiki and Visa Koivunen. Sparse Symmetric Linear Arrays
with Low Redundancy and a Contiguous Sum Co-Array. IEEE Transac-
tions on Signal Processing, Volume 69, pp. 1697-1712, February 2021.



Author’s Contribution

Publication I: “Sparse linear nested array for active sensing”
The author proposed the idea, and performed the analysis and simulations with

input from the co-authors.

Publication Il: “Sparse array imaging using low-rank matrix
recovery”

The author proposed the idea, and performed the analysis and simulations with
input from the co-authors.

Publication Ill: “Symmetric Sparse Linear Array for Active Imaging”

The author proposed the idea, and performed the analysis and simulations with
input from the co-authors.

Publication IV: “Sparse Active Rectangular Array With Few Closely
Spaced Elements”

The author proposed the idea, and performed the analysis and simulations with
input from the co-authors.

Publication V: “Planar Additive Bases for Rectangles”

The author proposed searching for extremal restricted additive planar bases,
and was responsible for the two-dimensional meet-in-the-middle algorithm in



Author’s Contribution

Section 4 and the numerical results related to restricted bases in Section 5. The
first author was responsible for the branch and bound algorithm in Section 3, the
related numerical results in Section 5, and the upper/lower bounds in Section 6.

Publication VI: “Analog Beamforming for Active Imaging Using
Sparse Arrays”

The author proposed applying image addition to the analog beamforming prob-
lem, and performed the analysis as well as the simulations with input from the
co-authors.

Publication VII: “Sparse Low-Redundancy Linear Array with Uniform
Sum Co-array”

The author proposed the idea, and performed the analysis and simulations with
input from the co-authors.

Publication VIII: “Hybrid Beamforming for Active Sensing using
Sparse Arrays”

The author proposed applying image addition to the hybrid beamforming prob-

lem, and performed the analysis as well as the simulations with input from the
co-authors.

Publication IX: “Sparse Symmetric Linear Arrays with Low
Redundancy and a Contiguous Sum Co-Array”

The author proposed the idea, and performed the analysis and simulations with
input from the co-authors.

10



Abbreviations

5G Fifth generation (wireless communications standard)
6G Sixth generation (wireless communications standard)
ADC Analog-to-digital converter

BA Boundary array

CNA Concatenated nested array

CPA Co-prime array

CRA Concentric rectangular array

CRLB Cramér-Rao lower bound

DAC Digital-to-analog converter
DoA Direction-of-arrival

DoF Degree of freedom

EVD Eigenvalue decomposition

ESPRIT Estimation of signal parameters via rotational invariance techniques

ii.d. Identically and independently distributed
IWA Interleaved Wichmann array

KA Klgve Array

KMA Klgve-Mossige Array

LS Least squares

mmWave millimeter wave

MIMO Multiple-input multiple-output

MRA Minimum-redundancy array
MSE Mean squared error

MUSIC Multiple signal classification
NA Nested array

PSF Point spread function

11



Abbreviations

R-SBA Restricted short bars array

RF-IF  Radio frequency and intermediate frequency
Rx Receiver

S-¢ Symmetric array with generator ¢4

SAR Synthetic aperture radar

SBA Short bars array

SNR Signal-to-noise ratio

SINR  Signal-to-interference-plus-noise ratio

Sol Signal of interest

SVD Singular value decomposition
Tx Transmitter

ULA Uniform linear array

URA Uniform rectangular array
w.l.o.g. Without loss of generality
WA Wichmann array

12



Symbols

A; e CNeXK
Ay € CNoxK
az eCNe
BeN

C

C: e CMex@
C, e CMxN;
(:(gE(I:Mé

P 7

Qs <72

d; €9

ds €9y
diag(-)

E(-)

e; €{0,1}"
exp(-)

F; e %:(B)
F:(B)

fe € F¢(B)
H

Hs eN
heN

I

I c11,2,...,Q}
J

KeN
LeN

Steering matrix of Tx or Rx array

Steering matrix of sum co-array

Steering vector of Tx or Rx array

# of phase shift bits

Set of complex numbers

Digital beamforming weight matrix of Tx or Rx array
Digital Tx waveform mixing matrix

Digital beamforming weight vector of Tx or Rx array

Set of (normalized) Tx or Rx sensor positions

Set of (normalized) sum co-array element positions
Position of Tx or Rx sensor (in units of §, and J,)

Position of sum co-array element (in units of 6, and 4,)
Diagonalization (vector to diagonal matrix)

Expected value

Standard unit vector of dimension n with unit entry at index i
Natural exponential function

Analog phase shift matrix of Tx or Rx array

Set of Tx or Rx phase shift matrices quantized by B bits
Analog phase shift vector of Tx or Rx array

Set of Hermitian matrices

# of contiguous DoF's (product of 2, and A ,)

Dimension of largest contiguous subarray of sum co-array
Idenitity matrix

Index set of component images corresponding to pth pulse
Imaginary number v/—1

Number of scatterers

Aperture (in units of )

13



Symbols

M;: eN
max(-)
min(-)

N

N e CNexT
N:eN
N;eN

Ny eN
neC™
o)

PeN;
peRk,
QeN,

R
Re[1,00)
Ry €[1,00)
R, eHE
R; €|]-[|Z+Vi
R, EI]-I]%NS
S € CNexT
S(d)eN
We e CNVex@
W e cNexN
wsy € CN=
wg e CNe
TeN
ucR?
veR?
vec(-)

yeC

x € CMNs

Z

14
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Maximum (coordinate-wise)
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Set of natural numbers 0,1,2,3...

Matrix of circularly symmetric complex Gaussian noise
# of Tx or Rx sensors (cardinality of ;)

# of linearly independent Tx waveforms

# of sum co-array elements (cardinality of 2s)

Vector of circularly symmetric complex Gaussian noise
Big O notation (order of function)

# of transmission-receptions (pulses)

Source/scatterer power vector

# of component images or snapshots

Set of real numbers

Redundancy

Asymptotic redundancy

Source/scatterer covariance matrix (positive semidefinite)
Waveform cross-correlation matrix (positive definite)
Measurement covariance matrix (positive semidefinite)
Tx waveform matrix

d-spacing multiplicity (# of sensor pairs displaced by d)
Beamforming weight matrix of Tx or Rx array
Co-array weight matrix

Beamforming weight vector of sum co-array
Beamforming weight vector of Tx or Rx array

# of temporal snapshots

Focusing direction (projected to sensor plane)

Scatterer direction (projected to sensor plane)
Vectorization (matrix to vector)

Beamformer output

Received signal (measurement) vector

Set of integers
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Symbols

Scattering coefficient matrix (diagonal)
Scattering coefficient vector

Unit inter-sensor spacing (typically 1/2)

{9 approximation error

Ratio of transceivers to all transmitters and/or receivers
Elevation angle

Wavelength

Shorthand for either Tx (¢, =t) or Rx (§, =r)
Aspect ratio of sum co-array, i.e., hy/hy

Noise variance

Weighted sum of d-spacing multiplicities

Sum co-array element selection matrix
Multiplicity function of sum co-array

Set of phase shifts uniformly quantized by B bits
Azimuth angle

Point spread function

Empty set

Vector of zeros

Vector of ones

Indicator function (1 if argument is true, 0 otherwise)
Kronecker product

Khatri-Rao product (columnwise Kronecker product)
Hadamard product (elementwise product)

Cartesian product (set of all element pairs of two sets)
Convolution

Proportional to

Non-negative subset

Positive subset

Complex conjugate

Moore-Penrose pseudoinverse

Hermitian (complex conjugate) transpose

Transpose

Matrix square-root

Absolute value (scalar) or cardinality (set)

¢ norm of matrix or vector

For all
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1. Introduction

Array signal processing extracts information from measurements acquired by
multiple sensors in distinct locations [207, 123, 278]. Antennas, piezoelectric
transducers, and microphones are typical examples of sensors. Key benefits of
multisensor systems include spatial selectivity, the capability to resolve mul-
tiple targets or signal sources occupying the same spectrum, improved signal
quality, noise and interference suppression, as well as increased data rate and
reliability of communication links. The physical phenomenon underlying many
of these properties is wave interference, i.e., the enhancement (when signals
add constructively) or cancellation (when signals add destructively) of superim-
posed waves resulting from appropriately delaying, or phase shifting, the sensor
outputs/inputs. Sensor arrays leveraging wave interference are therefore also
commonly known as phased arrays.

Arrays are regularly used in, for instance, communications, radar, sonar,
medical ultrasound, and radio astronomy [278, pp. 6—11], where they have
played an increasingly important role since the early 1900s. In particular,
pioneering work at Bell Labs in the 1930s paved the way for the use of arrays
in communications [84] and radio astronomy [119]. Later, the Second World
War accelerated the development of radar, sonar, and medical ultrasound—
culminating in the emergence of precursors to modern electronically steered
phased arrays in the 1950s [248, pp. 278-279], [298], [261, pp. 3—4 and 14].
Sensor arrays have ever since been a fundamental technology of modern society,
enabling applications ranging from 5G and beyond wireless communications and
autonomous vehicles, to hearing aids and ultrasonography for fetal monitoring.

The properties of sensor arrays, such as spatial resolution, typically improve
with increasing array aperture. Especially important is the physical dimensions
of the array with respect to the wavelength of radiation in the surrounding
propagation medium. For example, the direct observation of the black hole
MS87 by the Event Horizon Telescope in 2019 required an effectively earth-sized
aperture spanned by multiple observatories functioning in unison around the
globe [15, 16]. While area for placing telescopes is often readily available, plat-
forms such as aircrafts, cellular basestations, and mobile devices impose more
stringent constraints on the physical size of the array. For instance, in wireless
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communications, spectrum congestion and the increasing need for higher data
rates has led to the utilization of millimeter wave (mmWave) frequencies and the
exploration of unused spectrum in the multi-hundred GHz to THz regimes [227].
The higher frequencies offer unprecedented bandwidths, which are necessary
for connecting devices on a massive scale, streaming high-resolution multimedia
content, or mapping the environment accurately, as envisioned in the Internet of
Things [23] and joint communications/sensing systems for 6G [296]. Increasingly
shorter wavelengths enable packing hundreds to thousands of sensors in a small
physical area. This improves spatial selectivity and array gain, which offset the
increased attenuation and signal blocking at higher frequencies. However, a
high sensor count also entails increased hardware and computational costs.

The demand for cost-efficiency, low power consumption, and miniaturization
has simultaneously been driven by the diffusion of radar technologies to con-
sumer applications. Notable examples include automotive radar [204] and
radars for mobile devices or wearable electronics such as Google Soli [159],
which uses gesture detection based on radar measurements. In ultrasonography,
a data processing bottleneck has to be overcome in order to achieve practical
high-resolution volumetric imaging and portable scanners—a problem exacer-
bated by the real-time requirements of medical ultrasound systems, and the
large sensor count of the necessary arrays [71].

Sparse sensor arrays provide a promising solution to many of the aforemen-
tioned issues. In contrast to conventional array geometries with uniformly
spaced elements, the number of sensors in a sparse array only weakly depends
on the array aperture. Specifically, compared to a uniform array with N sensors,
a sparse array of equivalent aperture may require only & (\/ZV ) sensors. Hence,
sparse arrays can attain the advantages of an electrically large aperture, such
as improved resolution and the capability to identify many targets, at a low cost.
This implies significant monetary and computational savings, reduced power
consumption, as well as potential robustness to non-idealities, such as mutual
coupling.

1.1 Scope

This thesis focuses on sparse array signal processing and array configuration
design. Array processing is rooted in multichannel statistical signal process-
ing, whose typical tasks include detection, estimation, and time-series analysis
[238, 127]. This work is concerned with spatial domain signal processing using
sparse arrays. In particular, we consider active sensing tasks such as beamform-
ing and imaging, where a spatial distribution of scatterers is illuminated by a
sparse transmitting array, and the backscattered radiation is measured by a
sparse receiving array. The spatial distribution and reflectivity of the scatterers
is inferred from an image, which is formed by linearly combining these measure-
ments. Any degradation in the image quality caused by the non-uniform (sparse)
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spatial sampling or other hardware constraints is compensated for by summing
together several component images corresponding to different transmit and
receive sensor weightings. The adopted linear processing has the advantage of
requiring minimal signal model assumptions and being computationally inex-
pensive. A virtual array model called the sum co-array ensures that judiciously
designed sparse array configurations are, in a sense, equivalent to uniform
arrays in such active sensing tasks.

Array geometry design, i.e., appropriately placing the transmitting and re-
ceiving sensors, is a necessary prerequisite for effective array processing. In
this thesis, we consider environment-independent, or nonadaptive, array design
based on the concept of the co-array. As our focus is on active sensing, we limit
our study to the sum co-array, which is a virtual array arising from additive
structure in the signal model. The co-array quantifies the inherent redundancy
of the array measurements. This facilitates the design of non-uniform sen-
sor configurations with low redundancy. We specifically study the restricted
Minimum-Redundancy Array (MRA) and related sparse array configurations
that have a contiguous sum co-array. Such arrays achieve the maximum num-
ber of co-array elements for a given physical aperture, while employing as few
physical sensors as possible. The uniform structure of the co-array shares many
of the advantages of a uniform physical array, such as amenability to theoreti-
cal analysis, convenient matrix structures in the signal model, and simplified
algorithm design. The large number of virtual co-array elements of a sparse
array allows resolving significantly more scatterers or emitters compared to a
uniform array with the same number of physical sensors. In particular, a sparse
array with N physical sensors can identify up to @ (N 2) sources, whereas for a
uniform array the limit is N —1, due to the smaller array aperture. Alternatively,
for the same aperture, sparse arrays require only & (\/N ) physical sensors to
distinguish an equal number of sources, which reduces hardware and compu-
tational costs at the expense of array gain. Savings can also be achieved by
employing low-complexity beamforming architectures, where part of the digital
processing load is outsourced to an analog pre-processing network consisting of
inexpensive phase shifters. This is of particular interest in mmWave sensing
and communications, where front end electronics are expensive and consume a
lot of power. We investigate using such hybrid architectures in conjunction with
sparse arrays in active sensing tasks.

The scope of this thesis is in active sensing. Hence, array configurations for
purely passive sensing and related signal processing algorithms are only briefly
reviewed. In passive sensing, the transmitter is absent, and the receiver observes
a superposition of source signals originating from a collection of emitters, which
are typically assumed uncorrelated. Our recent works on sparse passive arrays
[222, 224, 146] are excluded from the thesis for brevity. We note that most of
the array configurations developed in this work are nevertheless suitable for
passive sensing, since they have a uniform difference co-array.

We also omit our preliminary work on near field imaging using sparse arrays
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[223] from the thesis and limit ourselves to a far field point scatterer model—
although, for completeness, Appendix A.2 outlines some relevant extensions
to this model. Despite assuming discrete scatterers, we do not restrict their
number, nor do we require that the unknown model parameters are identifiable.
This effectively enables modeling continuous scatterers, which are typically
encountered in, e.g., ultrasonography.

Moreover, it is beyond the scope of this work to examine the statistical per-
formance and identifiability conditions of the considered algorithms and signal
model in detail, because our focus is on beamforming and imaging in active
sensing rather than parameter estimation. Due to the linearity of the studied
imaging method, performance is characterized by the achievable point spread
function, which defines the response of a linear imaging system to a point source.

A detailed study of the general MRA is left for future work. The general
MRA maximizes the largest contiguous subarray contained in the sum co-array
for a given number of physical sensors, but may require an exceedingly large
physical aperture. In contrast, the aperture of the considered restricted MRA,
or any sparse array configurations with a contiguous sum co-array, is directly
determined by the number of co-array elements and aspect ratio.

1.2 Research objectives and problems

This work aims to advance the understanding and state-of-the-art of active
sensing using sparse arrays. Specifically, the research objectives are

* Characterizing the active sum co-array-based MRA
* Designing scalable low-redundancy sparse array configurations

¢ Developing linear imaging and beamforming for active sensing using
sparse arrays and hybrid architectures.

We now briefly motivate the relevance of each of these objectives, and give
examples of related research problems addressed in the thesis.

The sum co-array based active MRA has received surprisingly limited attention
in the past. Apart from work by Hoctor and Kassam in the 1990s [113], even
active array redundancy seems to be lacking a precise definition that both holds
for different degrees of overlap between the transmitting and receiving arrays,
and is consistent with Moffet’s original definition of passive array redundancy
[187]. Solutions to the MRA problem are also largely unknown, especially in
the two-dimensional (planar array) case. Moreover, the MRA is not unique in
general. Consequently, solutions may be ranked based on additional design
criteria. For example, minimizing the number of closely spaced sensors can
reduce mutual coupling, as sensors placed further apart interact more weakly
with each other.
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Similar to the active MRA, there is little work on low-redundancy sparse array
configurations with closed-form sensor positions and a contiguous sum co-array.
Developing such scalable array geometries is important, since the MRA requires
solving a combinatorial optimization problem, which is impractical when the
desired aperture or number of sensors is large. For instance, linear MRAs
with shared transmitters and receivers are unknown for more than 48 sensors.
Furthermore, generating sparse array configurations for any array aspect ratio
is crucial, as certain applications, such as radar, may require different resolution
in azimuth and elevation. The symmetry of the physical array configuration
is also known to play a role in active array design. However, the utility of
symmetry and how it can be leveraged needs clarification.

A final research topic is understanding the effect of various system parameters
on the performance of linear imaging. Principle examples of such parameters
are the beamforming architecture, waveform diversity, and sparsity of the array
configuration. Previous works have established that any sum co-array equivalent
array configurations can achieve comparable image quality by summing multiple
component images corresponding to different transmit and receive beamforming
weight pairs [111]. However, several transmissions or linearly independent
transmit waveforms may be required to achieve a desired image quality, which
inevitably leads to a trade-off between reconstruction fidelity and acquisition
time or hardware complexity. A quantitative understanding of this trade-off is
crucial for optimizing the imaging system.

1.3 Contributions

This thesis presents novel contributions in sparse array design and processing
for active sensing. The key results have been published in Publications I-IX.
Table 1.1 shows a thematic overview of the articles. The thesis also contains
some unpublished supplementary results, which are listed in Table 1.2. In
summary, the main contributions of this work are:

1) Novel linear and planar sparse array configurations for active sensing

a) Defined a general expression for the redundancy of active arrays
that takes into account the desired overlap between the transmit and
receive arrays (included in the thesis only).

b) Formulated the active MRA problem using the proposed definition of
redundancy for both a fixed number of physical sensors and a fixed
sum co-array size (Publication V, IX, and new results in the thesis).

¢) Computed new planar MRAs using a novel two-dimensional exten-
sion of a state-of-the-art global search algorithm (Publication V)

d) Proposed novel sparse planar array configuration with closed-form
sensor positions. These arrays are minimally redundant in some
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Table 1.1. Overview of publications. The two major themes of the thesis are sparse array design
and signal processing for active sensing. We consider both linear and planar sparse
array configurations, as well as imaging using sparse arrays with fully digital, hybrid,

or fully analog beamforming architectures.

Sparse array design Active linear imaging
Publication | Linear Planar Digital Hybrid Analog | Section

I v 4.3.3
II v 5.3.1
III1 v 4.3.3
v v 4.3.1
A% v 4.2.4
VI v 5.3.3
VII v 4.3.3

VIII v v v 5.3
X v 4.3.3

Table 1.2. Unpublished results included in the thesis only. These auxiliary results bridge the
gaps between Publications I-IX and cohere the dissertation.

# Description Result Section
. Extension of Publications II, VI and VIII to Egs. (3.5), (5.5) 39
i .
the general MIMO signal model and (5.6)
.. | Definition of redundancy for diverse overlap
ii Eq. (4.2) 4.1.2
between Tx and Rx arrays
MRA with non-overlapping Tx and Rx "
iii . . Proposition 4.1 422
sensors (or single overlapping sensor)
Aspect ratio independent array with a
iv P 1o maep v Eq. (4.8) 432
contiguous sum co-array
Analysis of noise and interference
v . . . . Eqgs. (5.14) to (5.17) 5.2
suppression capability of image addition
- .IIan‘OV.ed upper bOundS.OTI # of componej'nt Eq. (5.21) 531
images in case of fully digital beamforming
.. | Improved upper bound on # of component L
vii Proposition 5.1 5.3.2
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cases, and achieve a low redundancy for any aspect ratio (Publication
IV, V, and new results included in the thesis).

e) Presented a unifying framework for symmetric sparse linear arrays.
This allows constructing configurations with a contiguous sum and
difference co-array. Such arrays are suitable for both active and
passive sensing (Publication I, ITI, VII, and IX).

2) Active linear imaging using sparse arrays and hybrid beamforming

a) Analyzed the noise and interference suppression capability of active
linear imaging using multiple transmissions and receptions (included
in the thesis only).

b) Formulated an optimization problem for synthesizing any point
spread function supported on the co-array using a minimum number
of component images (Publication II, VI, and VIII).

¢) Derived lower and upper bounds on the number of transmission-
receptions required by a fully digital, hybrid, or fully analog beam-
forming architecture to achieve a desired point spread function (Pub-
lication VIII and new results included in the thesis).

d) Proposed algorithms for numerically finding the beamforming weights
in the case of the fully digital, hybrid, or fully analog beamforming
architectures (Publication VI and VIII)

A list of publications and the author’s contributions can be found starting on
page 10. The author is the primary author of all publications except Publication
V, where the author was mainly responsible for computing restricted additive
bases (corresponding to restricted MRAs). Otherwise, the author proposed the
main technical ideas, and performed the analyses and simulations with input
from the co-authors. The co-authors have contributed by steering and planning
the research, as well as writing and revising the publications.

1.4 Organization

The thesis is organized as follows. Chapter 2 briefly reviews the sparse array
literature, including sparse array design and processing. For simplicity, we start
with the canonical passive linear array, which is the most widely considered
model in the literature. Chapter 3 introduces the active planar array model,
which is the main focus of this work. Chapter 4 formulates the sum co-array
based sparse array design problem, and presents novel linear and planar array
configurations. Chapter 5 proposes an active imaging framework that facilitates
the use of both sparse arrays and hybrid beamforming architectures. Chapter 6
concludes the thesis by summarizing the main results and open problems.
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1.5 Notation and basic identities

The most frequently used symbols and notation of this thesis are listed in a
symbol table starting from page 13. We generally denote matrices by boldface
uppercase, e.g, A, vectors by boldface lowercase, a, and scalars by unbolded
letters, A,a. The (n,m)th element of matrix A is denoted as A,,,,. If the matrix
is distinguished by a subscript, say A;, the (n,m)th element is denoted [A;],;,.

Calligraphic letters, e.g., o/, denote nonstandard sets, i.e., sets other than
R,C,N etc. The two exceptions to this rule are &(-) and E(-), which denote the
order of a function and the expectation operator, respectively. The set of integers
from a to c in steps of b is denoted by {a : b : ¢}, where shorthand {a : ¢} is used
when b = 1. The Cartesian product between two sets «f and 2 is denoted by
o x B2{(a,b) | acal;be B). We interpret the elements of the product set as
two-dimensional vectors when <« and & are scalar sets. The coordinate-wise
minimum of a real-valued set is defined as a vector whose entries are the minima
of the respective coordinate of any vector in the set, that is,

mine/ £ (b | b; =mine;ra; acd}.

Here e; is the standard unit vector of appropriate dimensions consisting of zeros
except for the ith entry, which is unity. Note that min</ is not necessarily a
member of </ in the non-scalar case. The coordinate-wise maximum is defined
in a similar manner as

maxe/ 2{b | b; =maxe?a; ac A}

In the case o is a scalar set, the coordinate-wise minimum (maximum) reduces
to the conventional minimum (maximum).

For matrices A,B, and C of appropriate dimensions, the following identity
relates the vectorization operation and the Kronecker product:

vec(ABC) = (CT ® A)vec(B).

If B is diagonal, i.e., B = diag(b), then this simplifies to the Khatri-Rao (column-
wise Kronecker) identity

vec(ABC)=(CT 0 A)b.
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2. Review of sparse arrays

This chapter reviews key concepts in sparse array design and processing. We
consider a passive linear array model, which serves as a simple starting point
to describing basic sparse array configurations and methods. The main body of
literature on sparse arrays studies passive sensing. Chapter 3 focuses on the
more general planar array model for active sensing. The scope and contributions
of this work are in active sensing using sparse arrays.

The chapter is organized as follows. Section 2.1 introduces the canonical
passive array model. Section 2.2 shortly discusses common approaches to sparse
array design. Section 2.3 presents established methods for leveraging the
degrees of freedom provided by sparse arrays in the classical array processing
application of direction-of-arrival estimation. Section 2.4 concludes the chapter
by briefly reviewing prior work on sparse arrays in active sensing and imaging.

2.1 Canonical passive linear array model

The ubiquitous passive array model is featured in most of the literature on
array processing due to its simplicity and wide applicability [143, 207, 123, 278].
Passive sensing is regularly employed in, for example, wireless localization
[78], radar [145], sonar [131], radio astronomy [65], seismic monitoring [234],
as well as optical fluorescence microscopy [108]. As illustrated in Fig. 2.1,
a passive array consists of a collection of spatially distributed receivers that
observe a superposition of waves emitted by a number of emitters or signal
sources. Typically, the sources are assumed uncorrelated. Partially correlated
and coherent signal models are also regularly considered, since, e.g., multipath
propagation can give rise to correlation between the perceived sources [143, 285].

2.1.1 Received signal and covariance

Consider an array of N sensors observing a superposition of signals from K far
field narrowband point sources. The received signal of this passive array at time
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i source— @

—n" sensor g

Figure 2.1. Passive linear array. Each sensor receives a superposition of narrowband source
waveforms from a set of far field point emitters.

t is described by the continuous time model [143]
x() = Ay(t) + n(t), (2.1)

where A € CV*K is the array steering matrix, y(¢) € CX is the source signal vector,
and n(t) € CY is a receiver noise vector. The kth column of the steering matrix—
or the steering vector a(ypy) € CV—characterizes the response of the array to
a the kth source at angle ¢}, € [-71/2,7/2]. The source signals are commonly
assumed to be uncorrelated and follow a complex circularly symmetric normal
distribution. Similarly, the noise is assumed Gaussian, uncorrelated with the
signals, and spatio-temporally white. The received signal covariance matrix
therefore becomes

R, 2 E(xx™)= AR, A" + oI, (2.2)

where R, £ E(yy™) = diag(p) is a diagonal matrix containing the source signal
powers p € IRIf ., and o2 € R, is the noise variance. In practice, (2.2) may have to

be estimated from a finite sample using, e.g., the sample covariance matrix
1 T
R.2 ?Z;x(ti)xH(ti). (2.3)
1=

Here ¢; corresponds to the ith discrete time sample, and T € N, denotes the
number of snapshots, where T = N is necessary for R, to have full rank.
Note that since Ry is diagonal, the vectorized covariance becomes

ry2vec(Ry)=(A* 0 A)p + o2 vecl). (2.4)

Eq. (2.4) resembles the received signal model in (2.1). However, there are three
important differences. Firstly, the K-dimensional signal vector p now consists
of the (positive) source powers, rather than the complex-valued source waveform
vector y. Secondly, the perturbation vector o?vec(I) is deterministic—assuming

2

the noise variance g“ is constant—contrary to the stochastic noise vector n in

(2.1). Thirdly, and most importantly, the effective steering matrix A* © A in (2.4)
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(a) Physical array (b) Difference co-array

Figure 2.2. Example of physical array and difference co-array.

can have substantially more unique rows than the physical steering matrix A in
(2.1). This implies that significantly more sources than sensors can be identified,
if the source directions or powers are of primary interest, rather than recovering
the source signals themselves.

2.1.2 Difference co-array

To gain insight into (2.4), assume that the array consists of ideal omnidirectional
sensors that are perfectly isolated from each other. Additionally, assume that the
sensors are located on the real line at integer multiples of half a wavelength to
avoid spatial aliasing. The entries of the steering matrix may then be written as
A, =exp(jndysingy), which implies that the entries of the effective steering
matrix in (2.4) are

[A* QA](m—l)N+n,k =exp (jn(dn —dm)sin(pk).

Here d,, € Z is the normalized position of the nth sensor in units of half a wave-
length. The sensor locations may thus be conveniently expressed as integers,
bearing in mind that the true positions are integer multiples of the underlying
inter-sensor displacement, which is typically half a wavelength as assumed here.

In any case, the number of unique equations in (2.4) is determined by the num-
ber of unique pairwise sensor position differences. The virtual array consisting
of these differences, i.e., the difference co-array, is defined as

DNED-D={dp—dm | dn,dm €D},

where 2 = {dn}fl\’:1 c Z is the set of normalized sensor positions. A simple count-
ing argument shows that the number of elements in the difference co-array
satisfies |27 < N(N — 1) + 1, which implies that a sparse array may identify up
to G(N?) sources from (2.4). This is substantially more than the convention-
ally considered upper bound N — 1 [256], which is also the number of sources

identifiable by a uniform array with N sensors.

2.2 Sparse array design

Realizing the full potential of the co-array requires that the physical array
configuration is sparse. That is, the array should have nonuniformly spaced
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sensors in order to generate as many unique pairwise sensor position differences
as possible. This is trivial to achieve if sensors can be placed arbitrarily, but
less so if they are constrained to a uniform grid. In this work, we define a
sparse array as a set of nonuniform sensor positions on a uniform lattice (cf.
Fig. 2.2). This definition of a sparse array naturally suggests the concept of a
uniform co-array, which can greatly simplify both array processing algorithms
and the underlying theory. An especially useful property of a uniform array,
be it physical or virtual, is the Vandermonde structure of the resulting array
steering matrix [255, p. 161], [200]. Constraining the sensors to lie on a regular
lattice is also a practical way to guarantee a sufficient spacing between sensors.
Prominent examples of sparse array configurations falling into this category are
the Minimum-Redundancy Array [187], Wichmann Array [294], Nested Array
[200], and Co-Prime Array [276]. Section 2.2.2 discusses this approach to sparse
array design in more detail. For completeness, however, we first briefly review
other common definitions of sparse arrays.

2.2.1 Nonuniform arrays

The vast literature on sparse array design dates back to at least the work of
Schelkunoff in the 1940s [239]. Early works on nonuniform or aperiodic arrays
mainly considered spatial density tapering, where a desired beampattern is
synthesized by continuously varying the positions of the sensors. In contrast,
the discrete sensor selection problem has been more actively studied in recent
times.

Spatial tapering

In spatial tapering, the desired beamforming weight function or taper, is inter-
preted as a density of sensors or a probability density. Deterministic designs
approximate the desired taper by appropriately modulating the inter-sensor
spacing [273, 128, 237, 101, 116, 274, 297, 265, 93, 64, 151, 281, 42], whereas
stochastic designs generate sensor positions randomly from the spatial probabil-
ity density defined by the taper [172, 173, 7, 251]. Typically, the beamforming
weights of an array are assumed to be of constant magnitude (phase-only or
isophoric weights). This reduces the possible loss in array gain compared to a
uniform array with the desired amplitude tapering. The sensors of a spatially ta-
pered array are usually placed continuously within the given domain of interest,
i.e., a segment of the real line or an area in the real plane. A drawback of con-
tinuous spatial tapering is that changing the beampattern may require moving
the sensors and recalibrating the array. Array calibration is a time-consuming
operation requiring calibration measurements. Hence, this is impractical if the
array should adapt rapidly to a dynamical propagation environment.
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Sensor selection

When the sensors are constrained to a lattice, sparse array design becomes
a sensor selection or array thinning problem. Here, the task is to select the
best subset of sensors, based on a optimization criterion of choice. Common
optimization goals are, for example, matching a desired beampattern [249,
66, 120, 148, 176, 24, 85, 125, 105], a high signal-to-interference-plus-noise
ratio (SINR) [290, 291, 99], or a low mean squared error (MSE) in parameter
estimation [50, 90, 267].

Depending on the optimization goal, the array configuration may be static
or adaptive [98]. Dynamically changing array configurations typically use pro-
grammable switches to select a subset of sensors from the complete set of sensors.
Regardless of the objective function, the resulting optimization problem is combi-
natorial, which implies that no polynomial-time algorithm is known for finding
the global optimum. Even if solutions to moderately sized instances can be found
using, e.g., branch and bound methods with judicious pruning [66], the problem
becomes exceedingly (in fact, exponentially) more difficult to solve as the prob-
lem size grows. Consequently, a variety of approaches have been proposed to
approximately solve the sensor selection problem, including convex relaxation
techniques [125, 52, 53, 290, 267], greedy methods [290, 267], and heuristics
inspired by biology or physics, such as genetic algorithms [104, 90] or simulated
annealing [271]. Approaches combining aspects of discrete and continuous sen-
sor spacing also exist [53]. For a detailed review of sensor selection in array
processing see [182, Ch. 19], [231, 21] and references therein.

2.2.2 Co-array-based design

This work views sparse array design as a sensor selection problem with co-array-
based optimization criteria and constraints. Specifically, Chapter 4 considers
optimization problems where the goal is to maximize the size of the contigu-
ous sum co-array, subject to constraints on the number of physical sensors or
aperture. A large contiguous co-array increases the number of unambiguously
resolvable sources for a given physical aperture.

Minimum-Redundancy Array

The optimal array configuration avoiding unnecessary multiplicity of the co-
array elements is known as the Minimum-Redundancy Array (MRA) [187, 115,
31, 113, 183, 242]. In particular, the general MRA solves [187]

maximize o subjectto |2|=N and 2-22{0:h-1}.
PcN; heN,

The restricted MRA instead constrains the aperture of the physical array to
L =h -1 by requiring that 2 — 2 = {-L : L}. The origins of the MRA and other
co-array-based array designs can be traced back to mid 20th century works in
number theory [40, 68, 228, 150] and radio astronomy [185, 39, 22, 103, 38],
which considered difference bases and difference co-arrays, respectively. The
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MRA and other optimal configurations, such as the Minimum-Hole (Golomb)
Array [33, 280, 183], suffer from the prohibitive complexity of the combinatorial
array design problem. For example, restricted (difference co-array-based) MRAs
are currently only known for N < 26 [242].

Scalable sparse array configurations
Due to the difficulty of finding optimal arrays for a large number of sensors,
several scalable linear [206, 200, 276, 163], planar [94, 43, 166], as well as
volumetric [212] array designs have been proposed in the past. Some of these
configurations extend known instances of the MRA or other sparse arrays to
larger apertures, such as recursive or fractal arrays [115, 59] and reduced
redundancy arrays [115, 113]. Other configurations have parametric closed-
form sensor positions, which enable optimizing the array geometry at a low
computational cost. Two popular examples that have received a great deal of
attention due to their simplicity are the previously mentioned Co-prime Array
(CPA) [276] and Nested Array (NA) [200].

The CPA is parameterized by two co-prime numbers N1, Ny € N, which define
the inter-sensor spacings of two subsampled Uniform Linear Arrays (ULAs). In
particular, the set of sensor positions of the CPA is given by

Depa 2{0:N1: N1(N2 - D}u{0: Ny : N1(Na— 1)}

The number of physical sensors of the CPA is N7 + N2, whereas the difference
co-array has G(N1Ng) virtual elements [276]. Consequently, the CPA can resolve
vastly more sources than sensors. The main drawback of the CPA is that its
difference co-array contains holes. This limits the range of algorithms that can
be applied without additional pre-processing, such as interpolation or matrix
completion [4, 272, 170, 216].

In contrast to the CPA, the NA achieves a contiguous difference co-array. The
set of sensor positions of the NA is defined as

@NAé{O:Nl—l}U{Nl:N1+1:N2(N1+1)—1}.

Similarly to the CPA, the NA consists of two ULAs parameterized by non-
negative integers N1, Ny € N, which yield a difference co-array of size G(IN1N2)
using Nj + Ng — 1 physical sensors [200]. Note that N1, N2 need not be co-prime
in case of the NA. The contiguous co-array of the NA considerably simplifies
array processing and allows algorithms, such as co-array MUSIC [200, 162], to
be directly applied to the whole co-array.

One disadvantage of the NA is that it contains several closely spaced sensors.
This can lead to undesired mutual coupling effects, as sensors in close proximity
to each other typically interact more strongly than sensors placed farther apart
[163]. Consequently, several array configurations have been developed reduce
the number of small sensor displacements. Notable examples include the Super
Nested Array [163, 164] and MISC Array [307]. Other parametric configurations
achieve a larger contiguous difference co-array than the NA. The foremost of
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these is the Wichmann Array (WA) [294, 206, 160]. The WA has a contiguous
difference co-array and approximately 1—1/3/2 = 13% fewer sensors than the
NA of equivalent (maximal) aperture [222]. In fact, for N = 14, this minimum-
redundancy WA coincides the MRA, which is currently known for N < 26 [242].

Fig. 2.3 shows the ULA, (restricted) MRA, WA, NA and CPA with maximum
aperture for N = 6 sensors. The difference co-array is uniform for all configura-
tions except the CPA, which nevertheless has more co-array elements than the
ULA. For further comparisons of these and other sparse array configurations,
see, e.g., [3, 287, 135, 165, 222].

Physical array Difference co-array
T T T
ULA "= = = =@ ULA ® o o 0 0 0 0 0 0 o o
MRA = = L] L] L] MRA[e © ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ©¢ © o6 o6 6 06 6 6 06 06 06 06 0 0 o
WAls = . . . . WAL o o o ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ 06 06 06 06 06 06 06 06 06 0 0 0.0
NA NA
CPA CPA

0 2 4 6 8 10 12 -10 -5 0 5 10

Figure 2.3. Examples of linear array configurations and the respective difference co-arrays. The
sparse arrays considered in this work are thinned uniform arrays, i.e., their sensors
lie on a regular grid. The normalized sensor positions can thus be conveniently
represented by integers.

Alternative co-array-based design criteria
Redundancy is only one possible array design criterion, and many alternatives
exist. For example, maximizing the number of total (rather than contiguous)
co-array elements can provide more virtual sensors per physical sensor than
an array with a contiguous co-array. However, gaps in the co-array can lead to
unwanted grating lobes in the beampattern and ambiguities in the virtual array
manifold (due to loss of the Vandermonde structure), which can affect imaging
and parameter estimation performance. Furthermore, the virtues of uniform
spatial sampling, such as simplified algorithm design, efficient processing, and
predictable theoretical performance, are either irrecoverably lost or require
interpolation or matrix completion techniques to be recovered [4, 272, 216].
Altogether different criteria may also be employed, such as the robustness of
the array to sensor failures. For example, the k-fragility [168, 169] quantifies
the probability of a change in the co-array if £ physical sensors are removed
uniformly at random. The MRA is maximally fragile, since all of it sensors are
essential, i.e., the co-array changes if any sensor is removed. In contrast, the
ULA is minimally fragile, as only its first and last sensor are essential. Hence,
fragility may be decreased at the expense of an increase in redundancy. This
suggests novel sparse array designs robust to sensor failures, such as the MRA
with constrained fragility [167].

2.3 Direction-of-arrival estimation using the co-array

In the past decades, direction-of-arrival (DoA) estimation using sparse arrays
has attracted substantial attention, due to the possibility of resolving more
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sources than sensors. For example, several works have studied fundamental
performance bounds, such as the Cramér-Rao Lower Bound (CRLB) in the
underdetermined regime, where K = N [2, 135, 165, 287]. The CRLB provides a
lower bound for the variance of any unbiased estimator [127, Ch. 3]. The main
difference between the underdetermined regime, K = N, and the conventional
regime, K < N, is that in the former, the CRLB of the DoAs experiences an error
floor. Specifically, the CRLB saturates for a fixed number of snapshots regardless
of the signal-to-noise ratio (SNR) [165, Theorem 4]. This finite sample effect
does not occur in the conventional regime, where the CRLB converges to zero as
the SNR increases without bound for any number of snapshots [165, Theorem 3].

Optimal DoA estimation methods attaining the CRLB, such as deterministic
and stochastic maximum-likelihood, usually require a multidimensional search
over different combinations of potential DoA, which is computationally impracti-
cal for more than a few sources [41, 259, 215]. Consequently, computationally
cheaper, but suboptimal algorithms are often employed instead. The classical
Fourier approach to spatial spectrum estimation, also known as beamforming,
makes minimal assumptions about the emitters, and is therefore straightforward
and computationally inexpensive to employ. However, improved resolution and
statistical performance may be achieved by leveraging a priori information about
the signal sources and array geometry [256]. For example, subspace techniques
such as MUSIC [240] and ESPRIT [236] decompose the measurement vector
space into a signal and noise subspace similarly to maximum-likelihood meth-
ods. Both MUSIC and ESPRIT avoid the expensive multidimensional search
of maximum-likelihood methods by decoupling the individual DoA estimation
problems from each other.

This section reviews three widely used approaches to leveraging the difference
co-array in DoA estimation. Section 2.3.1 discusses beamforming, which is the
focus of this work. Sections 2.3.2 and 2.3.3 consider two alternative approaches
based on compressive sensing and subspace decomposition, respectively.

2.3.1 Beamforming

Beamforming is a non-parametric form of spatial filtering, where the sensor
signals are linearly combined to improve SNR. Specifically, signals impinging on
the array from desired directions add constructively, creating a spatial interfer-
ence pattern called a beam [279]. The advantages of beamforming include a low
computational cost and a minimal requirement for assumptions.

In the case of the passive array model in (2.1), the output of the beamformer
with beamforming weight vector w € CV is defined as

H

y2w x:wH(Ay+n).

Vector w is typically a function of the array steering vector a(¢) in a direction
of interest ¢, as in case of the spatial matched filter w = a/ ||a||§, or the mini-
mum variance distortionless response (MVDR) w = R;la/IIR;I/zallg [47, 143].
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Figure 2.4. Beamformed spatial power spectrum. Co-array-based beamforming resolves all
sources successfully. Simulation parameters: N = 6 sensor MRA and K = 7 uncor-
related equal power sources with DoAs {—52.4°,-1.4°,2.1°,13.4°,31.9°,44.5°,50.2°}.
The noise variance is 02 = 71073 and the number of snapshots is T' = 2000.

The data-dependent MVDR improves SINR compared to the data-independent
matched filter, but requires inversion of the covariance matrix R,. This matrix,
or its finite sample realization R,, may be rank-deficient or ill-conditioned in
practice. Hence, diagonal loading is often employed, i.e., a heuristically chosen
diagonal matrix is added to R, prior to inversion. Diagonal loading and other ro-
bust beamforming techniques [283, 282] decrease sensitivity to model mismatch
and provide numerical stability at the cost of added bias.
Assuming w is data-independent, the power of the beamformed signal is

E(y1?) = @* e w)lr, = w* ew) (A* 0 A)p + a2 vec()),

which is itself the output of a beamformer with weight vector w* ® w operat-
ing on the vectorized covariance matrix [200]. In general, the output of this
beamformer is wslffrx, where wegr is an N2-dimensional complex-valued effective
beamforming weight vector. Vector wes shapes the beamforming weights of
the difference co-array, similarly to how vector w determines the beamforming
weights of the physical array. The extra DoF's provided by the co-array can be
leveraged in DoA estimation or imaging, as Fig. 2.4 illustrates in case of the MRA
of Fig. 2.3. The beamforming weights are computed both using the conventional
MVDR to obtain w, and the difference co-array-based MVDR (see [200, Eq. (22)]
for details) to solve for wegr. The beamformer utilizing the co-array successfully
resolves all sources, unlike the conventional beamformer. Note that the number
of sources is K = 7, which is larger than the number of sensors N = 6.

The covariance matrix inevitably loses some information contained in the
received signal, such as the temporal structure of the source signal waveforms
v (¢). Consequently, in contrast to the DoAs, estimating the impinging source
waveforms, which is also known as the signal copy problem [199], does not
directly benefit from the co-array model.

An alternative approach to beamforming is also suggested by the structure
of certain array configurations. In particular, sparse arrays that decompose
into appropriate subarrays, such as the CPA and NA, can use the nulls in the
beampattern of one subarray to cancel the grating lobes of the other. This is
achieved by multiplying the beamformed outputs of the subarrays, or by using
one subarray as a transmitter and the other as a receiver [276, 5, 6].
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The main drawback of beamforming is its diffraction limited resolution. Al-
though advanced beamforming techniques, such as monopulse (simultaneous
lobe comparison) [29], can improve accuracy in the single target case, beam-
forming cannot generally resolve sources spaced closer than approximately half
a beamwidth. The beamwidth is primarily determined by the array aperture.
High-resolution methods may overcome this limitation by leveraging additional
information about the signal model, such as the point source property, num-
ber of emitters, possible low-rank structure of the covariance matrix, or the
orthogonality of signal and noise subspaces.

2.3.2 Compressive sensing

The estimation of the DoAs from (2.4) can be formulated as an optimization
problem using the compressive sensing framework [74]. For example, the on-
grid sparse support recovery problem performs simultaneous variable selection
and estimation to recover the source DoAs and powers, respectively [305, 203].
This is achieved by evaluating the array response on a grid of source directions
and enforcing a sparsity constraint on the unknown source power vector. The
convex /1 norm is commonly employed instead of a non-convex constraint on
the number of nonzero entries of the unknown vector [305, 203, 246]. The
sparsity of the model can also be learned directly from the data as in sparse
Bayesian learning [299, 196]. Alternatively, the original problem may be solved
approximately using greedy methods, such as orthogonal matching pursuit [270].
Ultimately, the maximum number of non-zero entries in the unknown source
power vector is determined by the Kruskal rank’ of the dictionary matrix, which
is upper bounded by the number of difference co-array elements [203, Lemma 3].
A sparse array with N sensors can hence resolve G(N?) sources by solving a
convex compressive sensing problem—with high probability even for a finite
number of snapshots [138, 217].

In practice, the true source directions may not lie on the grid of candidate
directions, which may lead to biased DoA estimates. This issue may be alleviated
by increasing the number of grid points, allowing for off-grid sources [264], or
adopting a completely gridless (continuous) approach [263, 301]. These modifica-
tions typically come at the expense of an increase in computational complexity.
For example, the continuous approach, also known as super-resolution [45, 46],
requires solving a semidefinite (rather than linear) program.

2.3.3 Subspace methods

Subspace methods are a prominent family of high-resolution DoA estimation
techniques. This category includes algorithms such as MUSIC [240] and ES-
PRIT [236], as well as their co-array-based extensions [200, 253]. Maximum-
likelihood methods also rely on projections to subspaces. Particularly MUSIC is

IThe largest i € N, such that every subset of i columns are linearly independent.
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widely-studied and applied in practice due to its ability to achieve comparable
performance to the optimal maximum-likelihood estimator at a significantly
lower computational cost. The estimation error of MUSIC can also be shown
to approach the CRLB as the sample size or SNR goes to infinity, assuming
uncorrelated sources [256].

The core idea of subspace methods is to decompose the vector space spanned
by the measurement vectors in (2.1) into a signal and noise subspace. The
signal subspace is spanned by the eigenvectors associated with the K largest
eigenvalues of the covariance matrix R,, whereas the noise subspace is spanned
by the remaining N — K eigenvectors. The number of sources K may need to be
estimated using model order selection techniques [258]. MUSIC exploits the
orthogonality of the noise subspace and array steering matrix to identify the
source DoAs by searching for the K largest peaks in the MUSIC pseudospectrum
[240] or by polynomial rooting [28]. ESPRIT leverages the rotational invariance
of the signal subspace when the physical array or co-array has translational
invariance.

Subspace methods can resolve at most NV — 1 sources when applied to the
covariance matrix of the physical array, since the rank of R, is at most N.
However, up to @(N?) sources can be resolved by mapping the entries of R, to
a higher dimensional virtual measurement space supported on the difference
co-array. There are several approaches to accomplishing this, including spatial
smoothing [200] and covariance matrix augmentation techniques [208, 209, 2,
4, 162, 48]. Recovering the virtual (co-array) covariance from the sparse array
measurements is also know as compressive covariance sensing [233, 214].

Spatial smoothing [69, Section II-B-2] was originally developed for building
the rank of the covariance matrix to decorrelate coherent sources, which can
severely degrade DoA estimation performance [262, 210]. The method is directly
applicable to the vectorized covariance r, in (2.4), since the source power vector
p is deterministic and therefore coherent [200]. Spatial smoothing builds the
rank of the virtual covariance matrix by averaging the measurements of identi-
cal, but spatially translated, subarrays of the difference co-array. The difference
co-array is typically designed to be uniform in order to simplify the selection of
the subarrays. A uniform co-array also guarantees that the DoAs are uniquely
identified by MUSIC as the number of snapshots approaches infinity. This is due
to the Vandermonde structure of the virtual array steering matrix. For details,
see [255, Eq. (4.5.13)].

A drawback of co-array MUSIC and ESPRIT is that they do not generally
attain the CRLB in the underdetermined regime, K = N. This limitation may be
overcome by using weighted least squares to refine the estimates provided by
the methods [243].
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2.4 Sparse active arrays and the sum co-array

Despite the great deal of attention afforded to sparse arrays in the context
of passive sensing and the difference co-array, considerably less research has
been conducted on the sum co-array and active sensing. The sum co-array
consists of the pairwise sensor position sums, rather than differences, and is
particularly relevant in active sensing. The sum co-array also emerges in passive
sensing applications with conjugate cyclostationary signaling [89]. Next, we
briefly review prior works on sum co-array-based sparse array design and signal
processing, as our focus is henceforth on active sensing.

2.4.1 Designs and architectures

Array configurations designed for the sum co-array are typically dissimilar to
their difference co-array counterparts, due to the distinct algebraic structure of
the two co-arrays. In particular, “sum MRAs” tend to have more physical sensors
than “difference MRAs” with the same number of virtual co-array sensors. This
is due to the commutativity of the sum, i.e.,a+b =b+a,buta—b # b—a for a #b.
Specifically: N numbers produce at most N+(N—-1)+(N—-2)+...+1 =N +1)/2
unique sums, but N+ (N —-1)+...+(N—-1) = N(N — 1) + 1 unique differences.
Covering the same set of numbers therefore requires approximately v/2 =~ 1.414
more sums than differences. Indeed, this seems to empirically hold for MRAs as
well. For example, the sum MRA with aperture 213 (unit inter-element spacings)
requires 35 sensors [132], whereas the difference MRA for the same aperture
requires 25 sensors [242]. This results in a ratio of 35/25 = 1.4 = v/2.

Surprisingly few works have considered sum MRAs since the 1990s [110, 113].
Especially the MRA with shared transmitting (Tx) and receiving (Rx) sensors
(i.e., all sensors are transceivers) has received little attention in the array pro-
cessing literature. Nevertheless, the mathematical structure underlying MRAs
has been studied in number theory since the 1930s [232]. In the field of additive
combinatorics, the linear MRA problem is informally known as the postage
stamp problem [177, 191], and the respective solutions as extremal additive
2-bases (restricted or otherwise) [49, 230, 132]. However, higher dimensional
extensions to the postage stamp problem remain unexplored. In particular,
little is known about two-dimensional extremal additive 2-bases, which are rele-
vant in the design of planar MRAs. Planar arrays are relevant in applications,
such as volumetric imaging, where beam steering or resolution in two angular
dimensions is essential.

In contrast, many works consider array configurations with independently
placeable Tx and Rx sensors, which means that the two arrays can, but need
not, overlap. In this case, the MRA has at least one simple closed-form solution
[174, 56]. Alternative sparse array designs have also been proposed in both
the linear [174, 186, 181] and planar cases [176, 24, 25]. The reason is that
a low-redundancy array may not be able to synthesize the desired beampat-
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tern in a single transmission when the Tx array operates in a phased array
manner, i.e., all Tx sensors simultaneously transmit delayed copies of a single
waveform. Non-overlapping sparse array configurations are also encountered
in systems employing multiple linearly independent transmit waveforms or
synthetic aperture techniques. Prime examples include MIMO (multiple-input
multiple-output) radar [155, 204] and medical ultrasonography [71].

Synthetic aperture methods typically exploit either array motion [175, 225]
or subarray switching [124, 126, 181] to synthesize a large virtual aperture
using a reduced number of expensive front ends. Array motion provides the
spatial diversity of the synthetic aperture by temporal multiplexing, and is
regularly employed in, for instance, synthetic aperture radar for remote sensing
[190]. Subarray switching uses a dynamically changing subset of the sensors
during each transmission to a similar effect. For example, ULA subarrays on the
boundary of a sparse rectangular array can be used to synthesize a desired sum
co-array in a controlled manner [122, 139, 142]. Synthetic aperture and MIMO
techniques can ultimately be interpreted as different physical implementations
of synthesizing a desired sum co-array. That is, space or time multiplexing
is used to trade off among hardware complexity, computational cost, power
consumption, image acquisition time, and SNR.

A reduction in hardware costs may also be achieved without necessarily sac-
rificing array gain by connecting each front end and sensor via an inexpensive
phase shifter. Such hybrid beamforming architectures have been extensively
studied in the context of mmWave communications, where a fully digital imple-
mentation of the envisioned array configurations with many sensors and small
form factors can be impractical [26, 17, 188]. Hybrid beamforming may, for simi-
lar reasons, provide useful in future sensing or imaging systems operating at up
to THz frequencies [227]. However, the use of hybrid beamforming in these appli-
cations, specifically in conjunction with sparse arrays, has not been extensively
investigated. Especially the active sensing case remains largely unexplored,
despite some recent works on the passive case [292, 114, 96, 137]. Combining
sparse arrays with hybrid beamforming has the potential to drastically reduce
hardware complexity for a given aperture, or provide increased aperture and
DoF's at a low cost for a given number of physical sensors. Chapter 5 explores
this prospect further.

Finally, we note that if the scatterers are uncorrelated, then the difference co-
array of the sum co-array is actually a more appropriate virtual array model than
the sum co-array. Accordingly designed sparse array configurations can provide
an increased number of DoF's [51, 293]. The sum co-array remains relevant if
some of the scatterers are coherent, or estimating the required second-order
statistics is prohibitive, due to a lack of computational resources or limited
acquisition time.
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2.4.2 Active sensing and imaging

A significant fraction of the literature on sparse active arrays focuses on linear
imaging. This is partly because of the natural connection between the sum co-
array and the two-way beampattern of the imaging system. Indeed, the effective
beampattern is the product of the Tx and Rx beampatterns, which is the Fourier
transform of the convolution of the Tx and Rx beamforming weights [250]. The
output of the convolution can in turn be interpreted as a virtual beamforming
weight function supported on the sum co-array [111]. Hence, a desired two-way
beampattern can be synthesized by appropriately choosing the Tx and Rx array
configurations and beamforming weights.

Since the tasks of designing the Tx/Rx arrays and the effective beampattern
are fundamentally coupled, many works tackle the two problems jointly. Typical
approaches using heuristic designs [176, 24, 25] or polynomial factorization
[186, 56] consider the effective beampatterns achievable using a single set of
transmit and receive beamforming weights. However, by allowing for multiple
transmissions, or by using synthetic aperture or waveform diversity techniques,
it is possible to synthesize any set of virtual beamforming weights supported
on the sum co-array, thereby extending the range of beampatterns achievable
by a given array configuration [111, 9, 181]. This decouples the array and
beampattern design problems to a certain degree, which considerably simplifies
both tasks.

Active sensing and imaging leveraging the sum co-array is obviously not lim-
ited to linear processing. For example, convolutional beamforming [57, 60, 180]
synthesizes the sum co-array in receive-only beamforming by multiplying chan-
nel outputs with each other, similarly to the other multiplicative beamforming
methods [276, 5, 6] mentioned in Section 2.3.1. Non-linear beamforming has the
advantage of avoiding the multiple transmissions that may be required by linear
methods to achieve a desired co-array weighting. Compressive sensing tech-
niques [35, 213] or subspace methods [112, 193] can also improve the resolution
and statistical performance similarly to the passive sensing case.

In this thesis, we focus on linear processing with multiple component images,
which may correspond to separate transmissions depending on the employed
system architecture. We separately consider the tasks of designing minimally
redundant array configurations achieving a large uniform sum co-array in
Chapter 4, and optimizing the beamforming weights to achieve a desired co-
array weighting using a minimum number of component images in Chapter 5.
In the next chapter, however, we present the active array signal model and
establish some necessary definitions.
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3. Active sensing sensor array model

A sensor array for active sensing consists of a transmitting and a receiving
array. As illustrated in Fig. 3.1a, the transmitter (Tx) actively probes the
environment by radiating a waveform from each sensor. The waveforms can be
either fully correlated, partially correlated, or uncorrelated depending on the
architecture of the transmitter. The propagating wavefield is backscattered from
objects, generally referred to as scatterers, with a differing impedance from the
propagation medium, before being observed at the receiving (Rx) array. Typical
active sensing applications include radar [248], microwave imaging [13], sonar
[131], and diagnostic ultrasound [179, 261].

This chapter introduces the sensor array model for active sensing in detail.
Section 3.1 outlines the main assumptions underlying the the received signal
model, which is presented in Section 3.2. Section 3.3 discusses various array
architectures emerging from typical system design choices. Section 3.4 examines
the sum co-array model arising from the received signal model, and describes
its role in active sensing. Section 3.5 concludes the chapter by discussing some
extensions and connections to the presented signal model.

3.1 Assumptions

Before deriving the signal model in Section 3.2, we introduce a few simplifying
and commonly used assumption in active sensing. The purpose of these standard
assumptions is to strike a balance between the generality of the model and the
accessibility of the presentation—bearing in mind that our aim is to ultimately
present the sum co-array concept in Section 3.4. Most importantly, we omit
delay (range) and Doppler shift that are typical parameters of interest in radar,
and focus on the angular domain (azimuth and elevation) instead. We also
restrict our exposition to scalar wavefields, such as pressure fields or fields
of polarized electromagnetic radiation. We do not consider path loss, fading,
higher-order reflections (Born approximation), or signal dependent noise, such
as clutter or interference. Extensions and relaxations to the signal model are
briefly considered in Section 3.5 and Appendix A.2.
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The main assumptions of this work are (see also Fig. 3.1):
(A1) Narrowband transmitted waveforms
(A2) K coherent far field point scatterers with reflectivities {y;, }le cC
(A3) Co-located planar Tx and Rx arrays with sensors on a regular grid
(A4) Ideal omnidirectional sensors that do not interact with each other

(A5) Spatio-temporally white Rx noise, following a circularly symmetric com-
plex normal distribution with zero mean and covariance o21I.

Assumption (A1) follows from the fact that the carrier frequency is typically
much larger than the bandwidth of transmitted pulse, which implies that signals
do not decohere across the array. A common rule of thumb is that the bandwidth
is less than a few percent of the carrier frequency'. Under the narrowband
assumption, the true frequency dependent array response may be approximated
by the narrowband response at the carrier wavelength, which considerably
simplifies the signal model.

By (A2), the scattering coefficients stay fixed during the coherent processing
interval, or coherence time of the scene. This is similar, although not identical,
to the Swerling I fluctuation model, which assumes constant power radar target
returns between pulses in the same coherent processing interval [260]. The
coherence time may consist of one or several pulses, depending on how rapidly
the scattering environment changes. The scatterers are also assumed to be
located in the far field of the transmitter and receiver, such that the plane wave
approximation holds.

By (A3), the Tx and Rx arrays are located spatially close to each other, such
that both arrays observe the same scatterer directions/scattering coefficients,
and phase coherence at the receivers is possible. This is akin to monostatic or co-
located MIMO radar [155], and contrary to (statistical) MIMO radar with widely
separated transmitters and receivers [32, 152, 73, 97]. The Tx and Rx arrays
do not necessarily overlap, but may have distinct sensors and front ends (see
Section 4.1.1). Both the Tx and Rx sensors lie on a planar regular grid or lattice,
such that the sensor positions in R? can be conveniently written as the product
of a 2 x 2 real-valued matrix A and a 2-dimensional integer-valued vector d;. In
particular, d; , € 95 denotes the normalized position of the nth Tx or Rx sensor,
where 2; is the set of Tx or Rx sensors. Subscript “£” is shorthand for both “t”
(Tx) and “r” (Rx), henceforth used to avoid repetition. Matrix A € R?*2 defines

the lattice, which is assumed rectangular. This yields the diagonal matrix

o, O

0 6,

1A more rigorous definition of narrowband involves comparing the noise variance and
the second largest eigenvalue of the single-source Rx covariance matrix [303].

A:
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Figure 3.1. Active array model. (a) Each Tx sensor transmits a narrowband waveform, which
is then backscattered from a set of far field point scatterers before being measured
at the Rx sensors. (b) The Tx and Rx arrays are planar, with sensors located on a
rectangular grid in the xy-plane, where 6, and §, are the unit inter-sensor spacings.

where, 0,6, € R, are the unit spacings of the grid in the x and y dimensions.
Typically, aliasing due to spatially sampling the observed wavefields is avoided
by setting 6, < A1/2 and §, < A/2.

By (A4), the Tx or Rx array steering vector, which characterizes the array’s
(narrowband) response at the carrier wavelength A, simplifies to

a;(v;) =exp (j2n//1ngdg,n). 3.1)

Here, vj, € R? is the direction of the kth scatterer projected to the sensor plane,

T
vk=[sin<pksin6k cosGk} )

parameterized by an azimuth angle ¢, € [-7/2,7/2] and an elevation angle 0}, €
[0, 7] as illustrated in Fig. 3.1b. Collecting the steering vectors corresponding
to the K scatterers yields the Tx/Rx steering matrix Ag = [ag(v1),...,as(vg)],
whose (n,k)th entry (n is the sensor and % the scatterer index) is given by

[Ag], , = exp (j21/ v Ad ). (3.2)

Finally, (A5) accounts for thermal receiver noise, which is commonly assumed
to be white and Gaussian. As a consequence, the noise statistics remain unaf-
fected by matched filtering of the received signal.

3.2 Signal model

We consider a generic MIMO array with digital, hybrid or analog Tx and Rx
beamforming architectures. The array consists of Ny transmitters, N, receivers,
and M; < N; Tx/Rx front ends. Let N; < My denote the number of transmit-
ted waveforms represented by the waveform matrix S € CV+*T where T is the
waveform length in samples. Assuming w.l.o.g. that the waveforms are lin-
early independent, we define the Hermitian positive definite (full rank) N x N
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waveform cross-correlation matrix
R, 2 SSH. (3.3)
Hence, the received data after matched filtering becomes (see Appendix A.1)
X =F(A,TATF,C,R, + NS"), (3.4)

where F; € CNexMe jg an analog Tx/Rx preprocessing matrix® determined by
the architecture of the transmitter and receiver (see Section 3.3 for details).

Furthermore, C € CNv*Ns

is a digital waveform mixing matrix. Matrices R, F¢
and C; have full column rank and are fixed for the duration of the pulse. We
distinguish between these three matrices because F; is typically a constrained
matrix (cf. Section 3.3.2), and the N; x N effective Tx sensor cross-correlation
matrix FiC;R SCEIFP is rank deficient when N < M;.

The spatio-temporally white receiver noise is modeled by Gaussian matrix N €
CN*T with identically and independently distributed (i.i.d.) entries. Scattering
coefficient matrix I' = diag(y) with diagonal y € CK contains the K scattering
coefficients. The received data after prewhitening can then be expressed as the

M, N;-dimensional vector
x= (F.C;R o F.(FIF) ) (4,0 A,y +n. (3.5)

In particular, (3.5) follows from applying the Kronecker and Khatri-Rao iden-
tities in Section 1.5, and premultiplying the vectorized data matrix vec(X) by
the prewhitening matrix (R N 12 ®(F}{Fr)’1/ 2)T. Here R g/ 2 denotes the unique
positive definite square-root matrix satisfying Rg/ 2Rsl/2 =R §/2R§/ 2=R,. By
(A5), vector n ~ €. (0,02I) is white and normally distributed. We refer to (3.5)
as the general MIMO model. Section 3.3 considers special cases of this general
model—specifically, choices affecting matrices Ft,Fy, and R;.

3.3 System design parameters and trade-offs

The overall complexity and performance of both the transmitter and receiver
is influenced by a handful of design parameters. In particular, the choice of
the Tx/Rx beamforming architecture and the degree of waveform diversity have
a major impact on the received signal model in (3.5). The beamforming archi-
tecture broadly refers to the pre-processing network of radio and intermediate
frequency (RF-IF) components connecting the Tx or Rx sensors to digital channel
inputs or outputs. Beamforming can be interpreted as spatial filtering operation
that focuses energy at transmission in, or observes signals at reception from
desired directions. In terms of (3.5), the beamforming architecture determines
the structure and dimensions of the analog Tx and Rx preprocessing matrices F

2We use the unconjugated transpose (somewhat against convention) to simplify notation
by avoiding conjugation when applying Kronecker and Khatri-Rao product identities.
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and F,. Waveform diversity refers to the number of waveforms and their relative
correlations, which determine the dimensions and properties of the correlation
matrix R;. We now briefly discuss both of these design aspects in more detail,
and review typical array architectures considered in the literature.

3.3.1 Beamforming architecture

The beamforming architecture is largely dictated by the manufacturing and
operational costs of the array. The costs in turn mainly depend on the number of
Tx and Rx front ends, which determines the required number of RF-IF compo-
nents and analog-to-digital or digital-to-analog converters (ADCs and DACs).
Since these components are typically expensive and power-hungry—especially
at higher frequencies [226, p. 128]—it may be impractical to have a dedicated
digital channel that requires a separate front end for each sensor in the ar-
ray. Many modern applications in radar, communications, and imaging require
a large number of sensors and front ends because of high spatial resolution
requirements.

A completely digital beamforming architecture has the advantage of simple
and flexible signal processing, whereas a completely analog architecture is in-
expensive and energy efficient. Hybrid beamforming trades off between the
flexibility provided by digital processing and the cost efficiency of analog pro-
cessing [188, 12]. Hybrid beamforming architectures reduce the number of front
ends, and offset the resulting performance loss using an analog preprocessing
network of phase shifters.

Fig. 3.2 illustrates the general beamforming architecture. The N;-dimensional
hybrid beamforming weight vector can be written as

wQZFECg, (3.6)

where F; is an N; x M; analog beamforming matrix, ¢; is an M;-dimensional
digital beamforming vector, and M; is the number of Tx or Rx front ends.
Depending on the value of M, the beamforming architecture is called

* fully digital, if My = N¢
* hybrid,if 1 <M£ <N£
* fully analog,if Mz =1

In the fully digital case, the analog beamforming network is absent, and matrix
F; equals the identity matrix. In the hybrid case, F; is a matrix of complex
exponentials. In the fully analog case, this analog beamforming matrix reduces
to an N;-dimensional vector fz.

The phase shifters in the analog beamforming network typically have finite
phase quantization in order conserve power and reduce costs. Consequently,
the entries of F; belong to a finite alphabet. Specifically, F; € % (B) c CNexMe |
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Figure 3.2. General beamforming architecture. The cost of the array may be lowered by reducing
the number of front ends and employing an analog preprocessing network of phase
shifters. Adapted from Publication VIII, Fig. 1 © 2020 IEEE.

where the set of feasible Tx/Rx phase shift matrices is defined as
Fe(B) 2 {exp(j®@) | ® e RV M @, € D(B)}. (8.7)

Here B denotes the number of bits used to uniformly quantize the phase between
0 and 27. This results in the set of discrete phases

o(B) £ {0,271/25,... (28 - 1)27/2B}. (3.8)

Section 5.3 considers the fully digital, hybrid, and fully analog beamforming
architectures in further detail.

3.3.2 Waveform diversity

In the context of this work, waveform diversity refers to the number of transmit
waveforms and their mutual correlations (see [34] for a broader definition, in-
cluding, e.g., the ability to change or optimize the waveforms between pulses).
In particular, waveform diversity manifests itself in the general MIMO signal
model (3.5) in the form of the full rank N, x N; matrix R;. Waveform diversity
also indirectly influences the Tx and Rx architectures, by constraining the mini-
mum number of Tx/Rx front ends and matched filters. In this work, we consider
the extreme cases of coherent (fully correlated) and uncorrelated transmission.
These correspond to the canonical phased array and orthogonal MIMO array
models, which have the following received signal models.

1. Phased array (PA), i.e., coherent transmission:
x = (w o F,(FIF,) ) (A 0A)y +n. (3.9)

The PA transmits a scaled and phase shifted copy of a single (N; = 1)
waveform from each Tx element. Consequently, the waveform correlation
matrix reduces to a scalar. For convenience, let the transmitted waveform
have unit power, R; = 1. Similarly, the transmit beamforming matrix
simplifies to a vector w; € CVt following (3.6).
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2. Orthogonal MIMO (O-MIMO), i.e., uncorrelated transmission:
x=(A{0A)y +n. (3.10)

The O-MIMO array launches mutually orthogonal waveforms from each
Tx element, which implies that Ny = N; and Fy = C; = R; = I. Typically,
the receiver is also assumed to be fully digital, such that F, =1.

The intermediate form of the PA and O-MIMO schemes corresponds to partially
correlated transmit waveforms that may be used to design arbitrary Tx beam-
patterns. The PA is predominantly considered in radar and medical ultrasound
applications [248, Chapter 8], [261, Chapter 7], whereas the O-MIMO model
has been extensively studied in the context of MIMO radar [155]. For example,
see [1, 77, 63, 80] for a comparison of the advantages and disadvantages of PA
and O-MIMO in radar. In general, the relevant model is application dependent
and primarily determined by the (i) required SNR or Tx combining gain, (ii)
dynamics of the scattering scene or tolerated scan time, and (iii) constraints
on the Tx/Rx architecture or cost of the array. Another important factor is the
available DoF's [32, 158], which determines the number of identifiable scatterers
or sources—an aspect Section 3.4 discusses in more detail. We briefly elaborate
Items (i) to (iii) below. The main points are summarized in Table 3.1.

(i) SNR: The PA applies Tx beamforming to spatially focus the radiated
wavefield and enhance the SNR of the received signal [157]. In contrast,
the O-MIMO transmitters operate in a space-multiplexed manner.? As a
result, the full N.N;-dimensional virtual measurement vector is accessed
in a single pulse-echo cycle. This is achieved at the expense of reduced
SNR (for a fixed Tx power), due to lack of Tx combining gain. The Rx
combining gain, which also affects the SNR, is equal for both the PA and
O-MIMO models.

(i1) Scan time: On one hand, the PA experiences an SNR gain when the Tx
beam is focused on a scatterer of interest. This is the case, e.g., for a target
tracking radar. However, if the beam is directed in a direction absent of
scatterers, or multiple beams are formed, the potential combining gain of
Tx beamforming is lost. This may occur when a radar is searching for and
resolving targets, instead of tracking or imaging them. On the other hand,
O-MIMO illuminates the whole scattering scene in a single pulse, which
results in a more evenly distributed spatial power density. This may be an
attractive feature in environments with rapidly varying dynamics, strong
scatterers, or a large number of targets of interest.

(iii) Architecture: The hardware requirements of O-MIMO are more stringent
than those of the PA, due to the need for multiple matched filters at the

3Time-mul‘ciplexing is also possible by transmitting the same waveform sequentially
from each transmitter within the coherence time of the scene [112, 77, 8, 35].
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Table 3.1. Comparison of canonical active array models. The phased array offers improved Tx
combining gain and flexibility in the choice of beamforming architecture, whereas the
orthogonal MIMO array fully utilizes waveform diversity.

Model SNR Scan time Architecture Eq.
PA x N; o Beamwidth™! No constraints (3.9)
O-MIMO 1 1 Fully digital Tx (and Rx) (3.10)

receiver and a fully digital transmit beamforming architecture. O-MIMO
implicitly assumes that the transmitter has Ny RF-IF front ends, since
an independent waveform is launched from each Tx element. This is in
stark contrast to the PA, which can have a fully analog beamforming

architecture, since only one waveform is transmitted.

The various advantages and disadvantages of the PA and O-MIMO schemes may
also be traded off by allowing for correlated waveforms [155, 86, 154, 102, 14].
The number of linearly independent waveforms should nevertheless be less than
or equal to the number of Tx front ends M, if the transmitting array has a
hybrid beamforming architecture.

3.4 Sum co-array

The co-array is a virtual array model arising from the structure of the array
manifold. It controls key aspects of the array performance, such as the effective
point spread function, and the number of identifiable scatterers or sources. We
focus on the sum co-array, which is of particular interest in active sensing.

3.4.1 Effective steering matrix and sum co-array

The received signal of the O-MIMO model in (3.10) may be interpreted as the
received signal of a virtual array with the effective steering matrix Ay © A,. This
matrix has many more rows (IN¢N;) than either the Tx or Rx steering matrix (V¢
and N,). Clearly, the number of unique (noiseless) equations is upper bounded
by the product N¢N,, rather than the sum N; + N,, which is the maximum
number of unique physical sensors. This is also the case in the general MIMO
model (3.5), where we observe linear combinations of the outputs of this virtual
array, due to the possibly hybrid or analog Tx/Rx architecture and lack of full
waveform diversity. Specifically, if M, < Ny or Ng < Ni, then multiple pulses may
be required to obtain the full virtual array output. In any case, by (3.2), the
entries of the effective steering matrix are

[Ay0A,] = exp (j21/ vy Aldym +dy.p)), (3.11)

(m—1)N,+n,k
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where the set of pairwise sums of the element positions is called the sum co-
array* [111]. The sum co-array is defined as the set

Ds, = D+ Dy = {dt,m + dr,n | dt,m € D; dr,n € @r}, (3.12)

which by (A3) is supported on the lattice Z2 (or conversely N2, if Dz < N2). As
more than one sensor pair may contribute to the same co-array element, the
number of repetitions of sum co-array element ds € 95 may be expressed as

vsds)2 Y 1(dym+drn=ds). (3.13)
dgﬂﬁ@g

This is known as the multiplicity function or the (co-array) weight function [200].

Example 3.1 (Sum co-array). Consider a linear array with two sensors acting as
both transmitters and receivers (transceivers): Dy = 2, ={0,1}. The sum co-array
consists of four pairwise sums of which |9s| = 3 are unique. The elements of the
sum co-array, and their respective multiplicities, are 95 = {0+0,0+1,1+0,1+1} =
{0,1,2}, vs(0) =vx(2) =1, and vs(1) = 2.

Two distinct array configurations are sum co-array equivalent if they have the
same sum co-array Ps. Their multiplicity functions vs need not be equal. A sum
co-array equivalent array can always be constructed by simply swapping the
positions of the Tx and Rx sensors. In this case, the modified and original array
will also have the same multiplicity functions.

3.4.2 Degrees of freedom and aspect ratio

The total number of DoF's in the defined array model is given by the number of
unique sum co-array elements Ny = |25 |. Moreover, the number of contiguous
DoFs, Hy, equals the number of virtual elements in the largest rectangle of
contiguous lattice points embedded in the sum co-array. Denoting the dimensions
of this rectangle as h, and h,, and the respective offset vector as 1 € N2, we have

Hy2 max (hehy [{0:he—1}x{0:hy-1}+1<P5). (3.14)
hy,hy€eN; leZ?
The sum co-array is contiguous if Hs = Nxy. A contiguous co-array is also called
uniform, gapless, or hole-free. In the one-dimensional (linear array) case, Hy
equals the position of the first gap in the sum co-array, provided that the first
virtual element of the co-array is located at the origin.

The main advantage of a contiguous co-array is that it maximizes the num-
ber of total DoF's for a given physical aperture. It also facilitates the use of
many array processing algorithms designed for uniform arrays. For example,
co-array MUSIC [200, 162] leverages the Vandermonde structure of the virtual

4In the nomenclature of MIMO radar, this is typically called the virtual array [156,
p. 240]. However, we use the terms virtual array and sum co-array interchangeably,
since they are mathematically equivalent.
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Figure 3.3. Physical array and its sum co-array. The sum co-array becomes contiguous by adding
a Tx or Rx sensor at position 3 of the physical array in (a). The transmitters and
receivers are interchangeable in terms of achieving the same sum co-array in (b).

array steering matrix to identify more sources than sensors unambigously in
the asymptotic (infinite snapshot) regime, as discussed in Section 2.3.3. Conse-
quently, a large Hy is desirable even when the sum co-array is non-contiguous.

Example 3.2. (Degrees of freedom) Fig. 3.3 shows a linear array, whose sum
co-array has a gap at position 1. The total DoF's is Ny = 8, whereas the contiguous
DoFs is Hs =7. The sum co-array becomes contiguous by adding a transmitter
or receiver at position 3 of the physical array.

Also the dimensions of the co-array are relevant, as they determine the achiev-
able resolution in azimuth and elevation. For example, air-surveillance radars
typically require higher resolution in azimuth than in elevation [248, pp. 536—
541]. Along with Hs, the size of the largest contiguous subarray contained in
the sum co-array is most conveniently described by its aspect ratio, defined as

a by

p= e (3.15)
Assuming w.l.o.g. that 2, < h,, yields p € (0,1], where p = 1/h, corresponds to
a linear co-array and p =1 to a square co-array. Generally, the aspect ratio of
the co-array, or the largest contiguous subarray thereof, is of primary interest,
since a multitude of Tx or Rx arrays with wildly differing physical aspect ratios
can be co-array equivalent. Only when the Tx and Rx arrays are identical and
the sum co-array is contiguous, is (3.15) guaranteed to equal the aspect ratio
of the physical array—approximately for finite A,,k, and exactly as A, — co.
Specifically, if the side lengths of the physical array are L, and L,, then the
aspect ratio of the co-array is p = (2L, + 1)/(2L + 1), whereas the aspect ratio of
the physical array is (L, + 1)/(L, + 1).

3.4.3 Co-array selection and steering matrices

The effective array steering matrix can be conveniently expressed as®
A0A, =Y"As, (3.16)

where Y is the Ny x N.N; binary sum co-array selection matrix, defined as

(3.17)

,m

Y {1, if dsp = dyg /N, +dr14(m-1) mod N,
m =

0, otherwise,

5The assumption of omnidirectional sensors (A4) is sufficient for (3.16) to hold.
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and Ay is the Ny x K sum co-array steering matrix with entries
[Az], , = exp (j2n/Avi Ads ). (3.18)

The Ny elements of the sum co-array {dz,l}ﬁ\f1 = s are sorted in ascending order,
such that, [[ds 1ll2 < ldszll2 <... < |ds n, 2. If the sum co-array is linear and
contiguous, then Ay is a Vandermonde matrix. Moreover, if the sum co-array is
non-redundant, then Y reduces to the identity matrix. In general, Y satisfies
the identity

YY" = diag(vy), (3.19)

where vy £ [vs(ds1),...,vs(dx N,)] is a vector containing the multiplicities of
the sum co-array elements, per (3.13).

Example 3.3 (Selection matrix). Recall the two element array of Example 3.1.
In this case, matrix Y, which maps each pairwise sum to a (unique) co-array
element assumes the form

1
Y=1|0
0

(= =)
S = O
= o O

It follows that YYT = diag([1,2, 11), where the diagonal contains the multiplicities
of the sum co-array elements.

3.5 Extensions

We conclude the chapter by discussing an extension of the presented signal
model to range-Doppler processing. We also shortly consider the connection
between the active and passive array models. Appendix A.2 examines the effects
of relaxing the signal model assumptions in Section 3.1.

Extension to range-Doppler processing

The co-array mainly affects the resolution of the array in the azimuth-elevation
domain. In contrast, properties of the transmitted waveforms are key in de-
termining the range-Doppler resolution, which is characterized by the matrix-
valued delay-Doppler ambiguity function [79]

TP .
R, (AT,Aw) 2 / s(t — AT)sT(t)e 720 dt.
0

This can be interpreted as a generalization of the waveform cross-correlation
matrix in (3.3), where s(t) € CV+ is the waveform vector, T, € Ry the pulse

length, and A7,Aw € R the delay and Doppler differences, respectively. Delay
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and Doppler enable discriminating between close/far and stationary/moving
scatterers within the same spatial resolution cell. Ambiguities in these two
domains are also influenced by the pulse repetition rate, see [248, p. 139].
The ideal ambiguity function is a two-dimensional Dirac delta (“thumbtack”)
function.

The signal model (3.5) can be easily extended to account for the range-Doppler
ambiguity function. For example, the matched filter output of the O-MIMO
array (R4(0,0) =I) at delay 7 and Doppler frequency w is [79]

K
x(1,0) = Z (RS(T —Tp, 0 — W) ®I)H (at(vk)®ar(vk))}fk +n, (3.20)
k=1

where n ~ €.4(0,0%I) is a circularly symmetric complex Gaussian noise vector,
and 71p,w;, are the delay and Doppler of the kth scatterer. Eq. (3.20) can be
interpreted as a direction-dependent weighted sum of effective steering vectors
supported on the sum co-array. Note that sparse array techniques can also be
applied to pulse sequence design to, e.g., reduce power consumption [58, 267].

Connection to passive sensing

The passive sensing model in (2.4) can be viewed as a special case of the active
sensing model (3.5) with a single transmitter, Ny = 1, and a time-varying scatter-
ing coefficient (source waveform) vector y. Extending (2.4) to planar arrays and
possibly non-digital beamforming networks similar to (3.5) is straightforward.

The main conceptual difference between the active and passive model is that
the latter does not assume any knowledge of the transmitter. The superimposed
signals observed at the receiver may therefore just as well be generated by
a collection of uncorrelated emitters, as opposed to some unknown and possi-
bly time-varying scattering coefficients modulating the unknown transmitted
waveforms. The passive array model is also relevant for active sensing, since
the sensing environment may contain emitters that do not interact with active
illumination. A typical example is an active radar in the presence of both targets
and interference. As the same array may be used for a variety of tasks, including
passive and active sensing or communications, versatile multi-function sparse
array configurations are of high practical interest.

Finally, we note that the sum co-array related concepts introduced in Sec-
tion 3.4, such as the multiplicity function, number of contiguous DoF's, and
the co-array steering or selection matrix can equivalently be defined for the
difference co-array (e.g., see [165, Appendix B]). The definitions are usually
simplified by the fact that the difference co-array is symmetric.
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4. Design of sparse arrays with a
contiguous sum co-array

As discussed in Section 2.2, sparse array designs can be either adaptive or static,
depending on how the array configuration changes in response to the sensing
environment. Designs may also be classified based on if the set of feasible
sensor positions is continuous or discrete. This chapter takes a non-adaptive
approach, where the sensors are confined to a finite number of positions on a
uniform grid, per assumption (A3) in Section 3.1. In particular, we consider
sparse array configurations of the minimum-redundancy type, which have a
contiguous sum co-array covering as large a set of lattice points as possible.
The adopted design methodology has two main advantages. Firstly, the array
design problem needs to be solved only once, and in an offline fashion. Secondly,
the array architecture is simplified, as no switching network is needed. The
uniformity of the sum co-array also simplifies computational and theoretical
aspects of array processing.

The chapter is organized as follows. Section 4.1 reviews the preliminaries of
active array design. Section 4.2 formulates the sum co-array based Minimum-
Redundancy Array (MRA) problem and presents some solutions. Section 4.3
introduces scalable parametric configurations, which allow generating low-
redundancy arrays of arbitrary size. Section 4.4 concludes the chapter by
discussing extensions and alternative array design criteria.

4.1 General design considerations and criteria

We shortly discuss a categorization of active arrays that will provide useful later
when considering different solutions to the MRA problem. This categorization is
based on the fraction of sensors shared by the transmitting and receiving arrays,
with the three main categories being non-overlapping, partially overlapping and
fully overlapping Tx and Rx arrays. We then review two figures of merit that
play a key role in array design: the redundancy and the d-spacing multiplicity.
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4.1.1 Overlap between Tx and Rx arrays

The spatially co-located Tx and Rx arrays may or may not share sensors. As we
will see in Section 4.1.2, it is important to take into account the freedom one has
in choosing the sensor positions when evaluating the redundancy of the combined
Tx-Rx array. The number of distinct sensors (either transmitting, receiving or
transceiving), |9 U 2|, may be less than the total number of transmitters and
receivers, |Z| + |Z;|. In fact, these two quantities and the number of shared
sensors (transceivers) satisfy the following relation:

Dl +Dr| = 1Dy U Dy | + 1D N Dy (4.1)

Depending on the overlap between the Tx and Rx arrays, it is natural to divide
active array configurations into the following three categories (see Fig. 4.1):

a) Non-overlapping Tx and Rx arrays, 2yN9, = ¢.
b) Partially overlapping Tx and Rx arrays, € 2N 9D, € D, U D,
¢) Fully overlapping Tx and Rx arrays, 9y = 2, = 2.

The number of sensors thus satisfies |2; U9D,| € {max(|%,|D:]) : 1Dt +12:|}, which
in the non-overlapping and fully overlapping cases simplifies to

D +19Dl, IfND,=¢
|@tU@r|= | tl | r| . t T
2], it =92,=9.

Non-overlapping transmitters and receivers are often found in MIMO radar
applications, such as automotive radar [204]. The fully overlapping case is
common in phased array radar [248, p. 5] and medical ultrasound [179], which
also occasionally consider the partially overlapping case [176, 24].

4.1.2 Redundancy

Redundancy quantifies the degree of virtual element repetition in the co-array.
Originally defined by Moffet for passive arrays and the difference co-array [187],
the definition of redundancy was later extended by Hoctor and Kassam to active
arrays and the sum co-array [113]. We exclusively consider the redundancy
of the sum co-array in this work. In contrast to [113] that only considered
fully overlapping and non-overlapping linear Tx and Rx arrays, we propose the
following general definition of redundancy, which is also applicable to partially
overlapping and planar arrays:

2 124121 - 51200 Dl (1200 2| - 1)

R
Hs

(4.2)

The numerator in (4.2) is the maximum number of total DoF's, i.e., the maximum
number of unique elements in the sum co-array. This expression follows from
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Figure 4.1. Diversely overlapping Tx and Rx arrays with the respective sum co-array: a) non-
overlapping, b) partially overlapping, and c) fully overlapping.

decomposing the Tx and Rx arrays, as well as the sum co-array, into subsets of
overlapping and non-overlapping elements, as shown in Appendix A.3.

The denominator in (4.2) is the number of contiguous DoF's, defined in (3.14).
This is consistent with Moffet’s definition of redundancy® [187], but differs from
Hoctor and Kassam’s definition in [113, Eq. (7)]. Their definition replaces Hy
in (4.2) by the total number of DoF's |25|, which allows any array with strictly
unique sum co-array elements to achieve R = 1. In contrast, (4.2) requires that
the unique sum co-array elements are also contiguous, which is in agreement
with the conventional understanding of redundancy in the context of sparse
arrays, and particularly, the MRA.

In the extreme cases of fully overlapping non-overlapping Tx and Rx arrays,
the redundancy reduces to (cf. [113, Eq. (7) and (8)])

R | 12012V H, f2 N2 =0
121121+ 1V/Hs, if 2y=2,=9.

In either case, a non-redundant array achieves R = 1, whereas R > 1 holds for a
redundant array. This is also true in the partially overlapping case.

Example 4.1 (Redundancy). Table 4.1 shows the redundancy of the three ar-
ray configurations in Fig. 4.1. Each array is redundant and R > 1. The non-
overlapping configuration in a) is the most redundant, since the freedom in
placing the sensors independently is inefficiently utilized. The fully overlapping
configuration in c¢) is less redundant than the partially overlapping array in b),
despite having one more transmitter.

IMoffet’s definition is R = N(N — D/H A — 1), whereas actually R = (N(N — 1)+ 1)/Hp
would be entirely consistent with (4.2). Here Hp £ maxpen, (Zh -1 9A2{0:h— 1}) is
the number of contiguous difference co-array elements.
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Table 4.1. Redundancy of array configurations in Fig. 4.1. Configuration c) achieves the lowest
redundancy, as it makes the most efficient use of its physical sensors in achieving a
contiguous sum co-array for the given overlap between the Tx and Rx arrays.

12l 12:] 12¢n2e| Hx R
a) 3 4 0 9 12/9~133
b) 3 4 2 9 11/9x=1.22
0 4 4 4 9 109=~111

In the case of fully overlapping Tx and Rx arrays, it is often of interest to
evaluate the asymptotic redundancy for a fixed aspect ratio p = h,/hy,
. . 21(02|+1)
Ro® lim R= lim ———— ", 4.3
e hx1—>oo hx1—>oo 2ph32€ ( )
By (3.15), the sum co-array is assumed w.l.o.g. to be a wide rectangle (h, < h,)
with aspect ratio p € (0,1]. In case of a linear array, the limit in (4.3) is evaluated
for the non-constant aspect ratio p = 1/h,.

4.1.3 d-spacing multiplicity

The d-spacing multiplicity, S(d), enumerates the number of inter-sensor spac-
ings of a given displacement d € N.. For example, in an array where the smallest
physical inter-sensor spacing is half a wavelength, S(2) denotes the number
of sensor pairs separated by one wavelength. Denoting by & the difference
co-array of the union of the Tx and Rx arrays 2; UZ,, the multiplicity of dis-
placement d = 1 is defined as

1
Sd) = 2 E va(da) 1(lldall2 = d). (4.4)
dA€@A

For linear arrays, d is a positive integer, and S(d) simplifies to the multiplicity
function of the positive difference co-array elements. In the planar case, d may
also assume non-integer values, i.e., d = 1,v2,2,1/5,V8,3, etc.

Typically, a low value for S(d) is desired for small d, as sensors that are
closer interact more strongly with each other [83]. In particular, the severity
of mutual coupling effects may controlled by decreasing S(d) [36, 163, 166,
307]. This simplifies array design, but has its limitations. Specifically, the
d-spacing multiplicity neglects important factors impacting coupling, such as
the element gain patterns, mounting platform, and isolation between, as well
as the scan angle and regularity of the Tx and Rx arrays [27, Ch. 8]. Since
treating such effects in a mathematically tractable way is challenging (without
resorting to numerical methods), proxies like the number of unit spacings S(1)
are occasionally considered instead to simplify array design

Example 4.2 (d-spacing multiplicity). Table 4.2 shows the d-spacing multiplici-
ties of the three array configurations in Fig. 4.1. Configuration c¢) has the fewest
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Table 4.2. d-spacing multiplicity of array configurations in Fig. 4.1.

S Sw2) S@ S(/6) S8 8B SW10) S(+13) S@ SH1D

a) 4 4 3 2 0 2 2 0 1 2

b) 4 0 3 0 0 2 0 0 1 0

c) 2 0 1 0 0 2 0 0 1 0
115

0'm u A Tm
Figure 4.2. Unique diagonal inter-sensor spacings of the planar array in Fig. 4.1 a) with a linear
sum co-array and non-overlapping Tx (7) and Rx (M) sensors.

unit spacings, i.e. S(1) = 2. In contrast to the linear arrays in c) and b), the
planar array in a) also contains non-integer valued spacings, which correspond

to the diagonal distances between sensors (see Fig. 4.2).

Weighted sum of d-spacing multiplicities
In order to prioritize the d-spacing multiplicity for different values of d, the
weighted sum of d-spacing multiplicities may be defined as

> S(d)-107 2= (ogv@r+1), (4.5)
d<|max(2;U2,)ll2

1>

Here, S(d) is the d-spacing multiplicity defined in (4.4), and U(d) is an upper
bound on S(d). The weight of each S(d) in (4.5) controls the relative emphasis
given to different d-spacing multiplicities. In general, these weights can be
any user-defined non-negative numbers. The particular (non-unique) choice in
(4.5) ensures that ¢ is minimized for the array with the fewest closely spaced
sensors among a set of sum co-array equivalent arrays with an equal number of
physical sensors. This suggests a monotonically decreasing weight function that
promotes large sensor displacements by prioritizing a low value of S(d) for small
d. Specifically, we require that any two arrays, say 9, and 9y, satisfy ¢, < ¢p, if
and only if there exists some d such that S,(d) < Sp(d) and for all < d it holds
that S,(1) =Sp().

A natural choice for the upper bound U(d) is the d-spacing multiplicity of the
smallest URA that is larger than or equal to each array being considered. That
is, each candidate array configuration and the N, x N, sensor URA satisfy

max(Z;UZ;) -min(Zy U2,) € {0: N, -1} x{0: N, -1}
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Table 4.3. Weighted sum of d-spacing multiplicities of array configurations in Fig. 4.1.

S SwW2) 8@ 9

a 4 4 3 00443,

b) 4 0 3 00403

o 2 0 1 0021
URA 13 8 6 0.1386..

Consequently, for a linear array of aperture L, (4.5) reduces to

L
c= Zs(d)' 10Tt (Llog(L—l+1)J+1), (4.6)
d=1

since d only assumes (positive) integer values.

Example 4.3 (Weighted sum of d-spacing multiplicities). Table 4.3 shows the
weighted sum of d-spacing multiplicities for the three MRAs in Fig. 4.1. Since
the 4 x 2 sensor URA covers all three arrays, (4.5) evaluates to ¢ = S(1)- 1072+
S(v/2)-1072 +8(2)-107* + ... Consequently, c¢) achieves the lowest ¢, followed by
b) which has the same S(1) as a), but a lower S(v/2).

As we will see next, the MRA is not unique in general. Consequently, it can
be useful to rank the different solutions according to the weighted sum of d-
spacing multiplicities. Effectively, ¢ can be thought of as a secondary objective
function or a regularizing term (satisfying 0 < ¢ < 1) that is added to the original
(integer-valued) objective function to promote large inter-sensor spacings.

4.2 Minimum-Redundancy Array

A large sum co-array is desirable for resolving as many scatterers as possible.
Array processing is also efficient and greatly simplified if the sum co-array
is contiguous, or if it contains a large contiguous subarray. The Minimum-
Redundancy Array (MRA) plays a critical role in this regard, since redundancy
quantifies how efficiently the sensors of the physical array and co-array are
utilized.

Moffet first proposed the MRA in the context of passive linear arrays and the
difference co-array [187]. He distinguished between the general and restricted
solutions, where the latter constrains the difference co-array to be contiguous.
The restricted MRA thus yields the maximum number of contiguous co-array
elements for a given physical aperture (cf. Section 3.4.2). Note that a general
MRA can, but need not be restricted. Hoctor and Kassam later extended the MRA
to active sensing [113]. They specifically considered the restricted linear MRA
with a contiguous sum co-array. Linear difference and sum MRAs correspond to
extremal difference bases [228, 150, 294] and extremal additive bases [232, 49,
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230, 132], respectively. Additive bases have been studied in number theory since
the early 1900s and are informally known as solutions to the postage stamp
problem [177, 191]. The canonical postage stamp problem seeks a set of stamps
that can represent each non-negative integer fare smaller than some 4 € N using
the sum of at most %2 stamps. The restricted postage stamp basis with maximal
h for k =2, or extremal restricted 2-basis, coincides with the linear sum MRA.

In contrast, fewer works have considered the planar MRA or the corresponding
planar basis in detail [212]. Particularly planar sum MRAs have received scant
attention. Such planar arrays are important in many active sensing tasks,
including radar, imaging, and direction finding. Even the linear sum MRA lacks
a clear definition in the case of partially overlapping Tx and Rx arrays.

Section 4.2.1 proposes a definition of the restricted sum MRA, which not only
applies to planar arrays, but also to the three cases of Tx and Rx array overlap
listed in Section 4.1.1. This is an extension of the definition the linear fully
overlapping (restricted) MRA proposed in Publication IX, which in turn is based
on the definitions in [187, 113]. Sections 4.2.2 and 4.2.3 briefly consider the
design of non-overlapping, respectively, partially overlapping Tx and Rx arrays.
Section 4.2.4 discusses in detail the fully overlapping case, which is the focus of
the chapter.

4.2.1 Definition of MRA

Directly minimizing the expression for redundancy in (4.2) yields the most
general definition of the planar sum MRA. However, the resulting optimization
problem is of limited value unless physically meaningful constraints are included.
A more practical formulation is obtained by constraining the number of physical
sensors or the virtual array aperture. We propose the following two definitions
of the (restricted) MRA—corresponding to minimizing (4.2) subject to a fixed

denominator and numerator, respectively:

1. MRA with constrained number of sensors. If the number of trans-
mitters and receivers is fixed, in addition to the number of transceivers,
then the MRA is any solution to

maximize h.h,
@gg\lz; hy,hyeN

subjectto  Dy+Dr ={0:hy— 1} x{0:hy— 1} (P4.1)
|2t| = Nt, 12| = Ny, and |2y N D] = N.

Problem (P4.1) can have both linear and planar solutions, since the aspect
ratio in (3.15) is not constrained. In practice, the aspect ratio is determined
by the relative importance of the azimuth and elevation domains.

2. MRA with constrained co-array aperture. If the size of the sum co-
array is constrained, in addition to the fraction of all Tx or Rx sensors that
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Figure 4.3. MRAs for a fixed number of sensors (top) and a fixed size co-array (bottom). Both
solutions assume fully overlapping Tx and Rx arrays.

are transceivers, then the MRA is any solution to

1
minimize |2¢/|2y| — =12: N 2| (12: N 2;| - 1)
D N2 2

subject to D¢+ P, ={0:hy — 1} x{0:hy — 1} (P4.2)
1Dy N D124 U Dy | = .

Scalar 7 € [0,1] controls the degree of overlap between the Tx and Rx
arrays, without fixing the number of sensors. Specifically,n=1and n=0
correspond to the fully overlapping and non-overlapping cases, respectively.
In the partially overlapping case, it may be more convenient to constrain
the degree of overlap to an interval of values rather than exactly 7.

The “fixed number of sensors” formulation in (P4.1) coincides with the conven-
tional definition of the sum MRA in the restricted linear case, when the Tx and
Rx arrays are fully overlapping [113]. The difference MRA is also originally
defined for a constrained number of sensors [187]. The linear difference MRA
with a constrained aperture [31, 242] is called a sparse ruler [244, 233].

The “fixed co-array aperture” formulation in (P4.2) is convenient when only a
limited area for placing the sensors is available, or when the desired co-array is
strictly planar and nonsquare. Fig. 4.3 illustrates a solution to (P4.1) and (P4.2)
in the case of fully overlapping Tx and Rx arrays. Note that we can assume
wlo.g. that min(2;+2;) = 0 to exclude trivial offsets of the sum co-array.
Nonetheless, (P4.1) and (P4.2) remain combinatorial problems that are usually
difficult to solve efficiently for a large number of sensors or co-array aperture.

4.2.2 Non-overlapping Tx and Rx arrays
In the non-overlapping case, or in the case of a single overlapping sensor, (P4.1)

and (P4.2) have a simple closed-form solution that achieves R = 1. This solution
has a nested structure consisting of a dense and a sparse Uniform Rectangular
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Figure 4.4. MRA in Proposition 4.1. The Tx and Rx arrays (which are interchangeable) are either
non-overlapping or have a single common sensor (offset 7 = 0 depicted).

Array (URA). Fig. 4.4 illustrates this nested configuration, where the Tx and Rx
arrays are (the definitions may naturally be reversed)

2;={0:N1—-1}x{0:N3—1}+1,
4.7
2y, ={0:N1:N1(No—1)} x{0: N3 :N3(N4—1)}-1.

Here {N ,-}‘i‘:1 € N are the array parameters and I € Z?2 is an offset vector. The
following proposition lists the conditions under which (4.7) is an MRA.

Proposition 4.1 (Non-overlapping MRA). The nested structure in (4.7) is a so-
lution to (P4.1) if and only if N{N3 = Ni; NoN4 = Ny; and N < 1, correspondingly,
(P4.2) if and only if NyNg = hy; N3Ny =hy; and (N1N3+NaN4)n=0or (1+1n).

Proof. This follows directly from the unit (i.e., minimum) redundancy property
of (4.7). Namely, R = |2:||2:|/|D + ;| = 1, since by definition |2¢ N 2| < 1;
|@t| =N1N3; |@r| =N2N4; and @t +@r = {0 :N1N2 — 1} X {0 :N3N4 — 1}. O

Proposition 4.1 implies that the MRA solving (P4.1) can have several shapes
with sum co-arrays of different aspect ratios, as shown in Fig. 4.5. Two of
the three solutions in Fig. 4.5 yield linear Tx and Rx arrays. One consists of
perpendicular ULAs following from setting Ny = N4 =1 or Ny = N3 =1. The
other, with Ny = N2 =1 or N3 = N4 =1, has a linear nested structure consisting
of a dense and a sparse ULA placed in parallel. Two additional solutions, with
the same sum co-arrays as solutions #1 and #3 in Fig. 4.5, follow from swapping
the definitions of the Tx and Rx array in (4.7) and setting N3 = Ny =1 or
N;=Ng2=1,and N1 =2; Ny =3 or N4 =3, respectively. Other non-overlapping
MRASs may exist too, as the solutions to (P4.1) and (P4.2) need not follow (4.7).

Previous works have also studied the nested configuration (4.7) in the one-
dimensional (linear array) case [174, 56]. However, the minimum-redundancy
property of (4.7), especially in the two-dimensional (planar array) case, has not
been established or explicitly stated before to the best of our knowledge. We
note that (4.7) is similar to the passive Nested Array [200, 201, 202], as both
leverage arithmetic sequences to ensure a contiguous sum or difference co-array,
respectively.
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Figure 4.5. Three MRAs with |2;| = 3 transmitters, |2;| = 4 receivers, |2y N 2;| = 1 transceiver,
and Hy = 12 contiguous sum co-array elements. Shifting the Tx or Rx array yields a
non-overlapping MRA. Each configuration is a solution to (P4.1) by Proposition 4.1.

4.2.3 Partially overlapping Tx and Rx arrays

As previously shown, the MRA with a single overlapping Tx and Rx sensor
is practically equivalent to the MRA with no overlap. In contrast, the MRA
with an overlap of |2y NZ,| € {2 DU Dy — 1} sensors is an open problem.
However, we do not pursue this problem further, since the non-overlapping and
fully overlapping cases seem to be of greater practical interest in applications.
We focus our attention on the fully overlapping MRA, which turns out to be a
considerably more challenging problem than the MRA with a single overlapping
Tx/Rx sensor.

4.24 Fully overlapping Tx and Rx arrays

In the case of fully overlapping Tx and Rx arrays (each sensor is a transceiver)
the “fixed co-array size” formulation of the MRA in (P4.2) reduces to

migg{,lzize |2| subjectto Z2+2={0:h,—1}x{0:h, -1} (P4.3)
This is a natural definition of the MRA in the strictly planar array case, whereas
the “fixed number of sensors” formulation in (P4.1) is more appropriate in the
linear array case (with the additional constraint that 4, = 1). The rest of this
chapter focuses on (P4.3), as we mainly consider planar arrays henceforth.
W.l.o.g., the sensors are constrained to the non-negative orthant, with the first
sensor placed at the origin. In fact, any array 2 with a contiguous sum co-array
satisfies

D <{0: Ly} x{0:L,},

where L, = (h,—1)/2 and L, = (h, — 1)/2 are the side lengths of the physical
array. This implies that A, and A, are odd. Hence, L, and L, provide a more
convenient parametrization of an array with shared Tx and Rx sensors and a
contiguous sum co-array.
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Global search algorithm
The number of possible solutions to (P4.3) grows exponentially in L, and L,.
Specifically, proving that a given array of N sensors is a solution to (P4.3) re-

(Lx+§7)£Lly +1)) possibilities with N — 1 sensors

quires showing that none of the (
are feasible solutions. For example, if N = 36 and L, = L, =9, then the number
of possible 35 sensor solutions is (13050) o 10%7. Although the number of cases
can be reduced to (gé) x 10?5 by deducing the necessity of certain corner sen-
sors (cf. Publication V, Property 1), exhaustively checking these by brute force
remains impractical. However, a sensible search strategy can yield an answer
even in this seemingly hopeless case.

Publication V proposes a global search algorithm for solving (P4.3) based on
concatenating smaller subarrays found by a branch-and-bound algorithm into
a larger array with a contiguous sum co-array. Using this so-called meet-in-
the-middle algorithm, we have found all MRAs for 1 <L, <L, <13. In the
following, we briefly summarize the key ideas of both the branch-and-bound
and the meet-in-the-middle algorithms, with an emphasis on the latter. The

interested reader is referred to Algorithms 1 and 2 of Publication V for details.

1. Branch-and-bound algorithm. The branch-and-bound algorithm pro-
posed in Publication V is a two-dimensional extension of Challis algorithm
[49]. The basic idea of a branch-and-bound search is to traverse a (binary)
search tree of possible solutions, and prune branches containing infeasible
solutions along the way [147]. Feasibility may be inferred from a prob-
lem specific fitness function or condition, which may show that a specific
branch of the search tree cannot contain a feasible solution because a
better solution or branch is already known. Ideally, this pruning occurs
at an early stage of the search, such that a substantial fraction of the
potential solutions can be discarded. Consequently, pruning is the key
ingredient of any effective branch-and-bound algorithm. In principle, the
branch-and-bound algorithm could directly solve (P4.3) to find the MRA.
However, we consider a more computationally efficient approach, where
the branch-and-bound method serves as an intermediate step of the main
(meet-in-the-middle) algorithm described later.

In particular, the branch-and-bound algorithm is used to find all arrays &
satisfying 2 +2 <{0:h, -1} x{0: h, — 1} for given hy,hy, and |2|=N. We
note that any physical sensor outside the desired contiguous part of the
sum co-array is wasted, which implies that

2<c{0:h,—-1}x{0:h,-1}.

Consequently, each point on the A, by A, grid of potential sensor positions
can be represented by a binary variable denoting the presence or absence
of a sensor. Starting with a total budget of sensors N, we traverse the grid
of potential sensor positions row-by-row, considering two simple pruning
tests at each position:
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* Sum test: Since the algorithm proceeds row-wise (starting from the
origin), any sensor added deeper in the search tree cannot contribute
to the currently considered point in the sum co-array. Hence, if this
point is not covered by the sum of two previously added sensors, then
it must contain a sensor.

¢ Gaps test: Assume that after placing n < N sensors, G holes remain
in the sum co-array. A simple counting argument shows that the
remaining N —n sensors can generate at most (n+1)+(n+2)+...N =
(N +n+ 1)(N —n)/2 additional sums. Consequently, if G > (N +n +
1)(N — n)/2, then the current branch must be pruned.

The solutions found by this algorithm can then be efficiently pieced to-
gether to form the MRA, as described next.

. Meet-in-the-middle algorithm. The meet-in-the-middle algorithm pro-

posed in Publication V is a two-dimensional extension of an algorithm
by Kohonen [132], who originally used the approach to find the largest
(restricted) linear MRA known to date? [133]. The algorithm leverages the
fact that an MRAs can be constructed by concatenating smaller subarrays
found by the branch-and-bound method. Instead of searching for the whole
array at once, it is significantly cheaper to first find all subarrays whose
concatenation could produce an array with a contiguous sum co-array for
the given number of sensors, and then determine by trial-and-error which
concatenations actually do. The computational advantage follows from
the fact that finding smaller solutions is exponentially faster than finding
larger ones due to the combinatorial nature of the problem. Additional
speed-up is gained from judiciously selecting the subarrays to concatenate
first, as several infeasible concatenations can be eliminated at an early
stage. This radically reduces the number of subarray pairings that need to
be checked. By carefully constraining the number of sensors and the sum
co-array of each subarray, the algorithm is guaranteed to find all MRAs
for a given L, L, pair.

Fig. 4.6 illustrates the partitioning of the candidate MRA, which plays a
key role in the proposed two-dimensional meet-in-the-middle method. The
algorithm starts by decomposing the array 2 into four disjoint subarrays
{@i};l:l, such that 2 = U?:l% and ;NP =@ V i # j. The sum co-array of
2 can thus be written as the union of the self, neighboring, and diagonal

pairs of sums:

4 4 2
D+9D = (U@i+@i> (@] <U@i+@1+(imod4)) U] <U@i+@i+2) .
i=1

i=1 i=1

self sums neighboring sums diagonal sums

2Corresponding to |2| = 48 physical sensors and |Z5| = 734 sum co-array elements.
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Figure 4.6. Decomposition of planar array leveraged by meet-in-the-middle algorithm. The
physical array is partitioned into four disjoint subarrays contained in the colored
rectangles (left). The union of the self, neighboring, and diagonal sums of the
subarrays (center) constitute the sum co-array (right). For the sum co-array to
be contiguous, its boundary must be covered by the self sums of the appropriate
subarrays. Adapted from Publication V, Fig. 2.

Each of the four corners of the sum co-array contain patches that must be
covered by the self sums alone. It is easy to verify that these patches cor-
respond exactly to the areas containing each subarray 2; in the assumed
partitioning of 2. Hence, after appropriate rotations and translations,
the subarrays necessarily have a sum co-array covering the respective
patches in the partitioning. This, combined with the fact that the num-
ber of sensors of 2 must satisfy |2| = Z?zl |2, considerably reduces the
number of candidate subarrays. Consequently, for a certain partitioning of
2 and a given number of sensors, the subarrays {@i}?zl can be found by
the branch-and-bound algorithm. After this, pairs of neighboring subarray
candidates are concatenated and the feasibility of the result is verified.
If the sum co-array of the concatenation contains gaps in a region which
must be covered by self and cross sums of sensors in those two sets (see
Fig. 4.6), then the pair is discarded. Otherwise the pair is retained, and
eventually concatenated with another feasible pair to form a candidate
for 2. If the sum co-array of & is contiguous, then it is a candidate for an
MRA with N sensors. The array is an MRA if the algorithm failed to find
a feasible solution for N —1 sensors.

Solutions

Publication V, Table 4 summarizes® the properties of the MRAs for 1 < L,=
L, <13 found using the meet-in-the-middle algorithm. The number of solutions,
after taking into account mirror symmetries, grows rapidly with the number of
sensors. For example, the MRA has N =52 sensors and 159744 solutions when
L, =L, =13. We have also found that the number of sensors in all square MRAs

31n the notation of Publication V: s =2L =k -1, and k= k* = N.
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with side length L is N =4L, when 1 < L < 23. For instance, N =92 when L = 23.
Fig. 4.7 shows all of the 28 MRAs for L =7 in increasing order of the weighted
sum of d-spacing multiplicities ¢ in (4.5). See also Publication V, Fig. 4 for the
MRAs with minimal ¢ when 1 <L, <L, =17.

4.3 Scalable sparse configurations in fully overlapping case

The main drawback of finding the MRA is that it generally requires solving a
combinatorial optimization problem. Consequently, generating MRAs with a
large aperture or number of sensors is usually impractical. In contrast, if a
sparse array configuration allows a simple parametric description, then arrays
of any size can be easily synthesized. For example, some MRAs have a highly
regular structure and are thus easily parameterized. This enables generating
scalable low-redundancy arrays of practically any size and aspect ratio.

This section discusses parametric sparse array configurations that achieve
a low redundancy. We focus on fully overlapping Tx and Rx arrays with an
emphasis on restricted configurations. In particular, Section 4.3.1 describes a
planar array proposed in Publication IV that is observed to be the MRA with
the fewest closely spaced sensors in some cases. Closely spaced sensors can
interact strongly and lead to undesired mutual coupling. Section 4.3.2 considers
alternative configurations, originally mainly presented in Publication V, that
are less sensitive to changes in the array aspect ratio. Finally, Section 4.3.3
discusses a general framework for symmetric linear arrays with a contiguous
sum co-array developed in Publication IX.

4.3.1 Square arrays inspired by the MRA

Some MRAs admit a particularly simple parametrization. For example, solution
#28 in Fig. 4.7 is known as the Boundary Array (BA) [139]. The BA with side
lengths L, and L, is defined as (see Fig. 4.8 for an illustration)

Pea = (10: Ly} x{0,Ly}) U ({0,L4} x{0:Ly}).

The number of physical sensors of the BA is |2pa| = 2(L +L,). Although the BA
is an not an MRA for any L,,L,, less redundant configurations do not always
exist when Ly = L, = L. In particular, Publication V, Table 3 reveals that the
BA is an MRA for all L < 23. It remains an open question whether the square
BA is an MRA also for L > 23.

Publication IV shows that the restricted MRA with the fewest closely spaced
sensors also follows a remarkably simple pattern for certain L. This so-called
Concentric Rectangular Array (CRA), depicted in Fig. 4.8, minimizes the weighted
sum of d-spacing multiplicities ¢ in (4.5) among all known square restricted
MRAs with even side length 6 < L < 12. For comparison, the BA is typically
the MRA with maximal ¢. A key property of the CRA is that it has a constant
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Figure 4.7. Square MRAs with 15 x 15 element sum co-array. The solutions are in increasing
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number of unit spacings S(1). In fact, S(1) = 16 regardless of aperture, when
L,,L, =4 and even. This is unlike the BA, where S(1) scales linearly with the
array dimensions as S(1) = 2(L + L ). Similarly to the BA, the sum co-array of
the CRA is contiguous for any feasible choice of parameters L, and L, (Publica-
tion VIII, Theorem 1). The difference co-array of both arrays is also contiguous,
since the physical arrays have mirror symmetry.

A drawback of the CRA and BA is that they become increasingly redundant
for non-square arrays, i.e., aspect ratios not equal to unity. In particular, by
substituting the number of sensors N = h, +h, —2 and aspect ratio p = h,/h,
into (4.3), the asymptotic redundancy evaluates to

. (R4 p)=2)(h(1+p)=1) (1+p)?
Ry = lim = .
hy—00 2.0h325 2p

Hence, R, grows without bound with decreasing p and reaches its minimum
Ro, =2 at p =1. That is, the closer the configurations are to a linear (rather
than square) array, the more redundant the sum co-array tends to be.

4.3.2 Rectangular arrays insensitive to aspect ratio

Publication V proposes a novel parametric array configuration called the Short-
Bars Array (SBA) achieving asymptotic redundancy R, = 2 for practically any*
aspect ratio p. The sensor positions of SBA are given by

Pspa 2 (10: N1 -1} x{0: N3 : N3Ny~ D}) U (10: N1 : Ny(We — D} x {0: N3 — 1}),

where array parameters {Ni}?:1 <N, satisfy N1Ng = b, and N3Ny = h,, such
that the sum co-array contains a contiguous h, xh, subarray, as shown in Fig. 4.9.
The number of sensors of the SBA is N = N1N4+NoN3—1. If o, and A, are
perfect squares, then N is minimized for N; = Ng = /A, and N3 = Ny = \/E In
this case, the SBA has N = 2V, \/iTy —1=2,/ph,—1sensors and the asymptotic
redundancy in (4.3) evaluates to

Re = lim @hsyp - D2havP _
x—00 2ph326

We may also construct a restricted array achieving R, = 2 for practically any
aspect ratio. Specifically, the Restricted Short Bars Array (R-SBA) is formed by
concatenating rotated and shifted copies of the SBA as follows:

Dr-sBA = Pspa U (maxPspa — Dspa) U {Lre1+(ez—e1)od | d € Dspa }
U {Lyez +(e1—eg)od |d e @SBA}-

Here, o is the Hadamard (elementwise) product and e; € {0,1}2 the standard unit
vector. The number of sensors in the R-SBA is N =2(N1 N4+ N2 N3g—2), assuming

4More precisely: there exist valid array parameters yielding R, = 2 and approximating
any p €(0,1] to an arbitrary precision.
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1) with closed-form sensor positions. The BA is an MRA for at

least side lengths L € {0:23}. The CRA is an MRA for (at least) L € {6:2:22} and the

MRA with the fewest closely spaced sensors for L € {6:2:12}.

Figure 4.8. Square arrays (p
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N32,N4 = 3. The array side lengths satisfy L, = N1(N2—1) and L, = N3(N4—1).
If L, and L, are perfect squares, then the choice N1 = /L, and N3 = /L, yields
an asymptotic redundancy independent of p:

2.
hy—o00 Qh%p

For arbitrary L, and L,, the minimum-redundancy parameters {N i}?: ; can be
found numerically, e.g., using a grid search similar to Publication IX, Algorithm 1.
Fig. 4.9 illustrates the R-SBA with L, =12 and L, = 4, corresponding to a 25 x 9
element contiguous sum co-array with aspect ratio p = 9/25 =0.36. The R-SBA
has N = 30 physical sensors, which is less than the co-array equivalent BA with
N =32 sensors, albeit more than the MRA with N =28. The SBA of equivalent
physical aperture shown in Fig. 4.9 has a smaller co-array (15 x 6 contiguous
elements), whereas the co-array equivalent SBA has a larger physical aperture
(67% larger L, and 50% larger L,). The R-SBA and other configurations with
a contiguous sum co-array are therefore of primary interest when the physical
dimensions of the array are tightly constrained.

If the sum co-array is not required to be contiguous, then less redundant
configurations can be constructed. For example, Publication V, Corollary 19
presents a two-dimensional extension of an additive basis by Mrose [194] achiev-
ing Ro = 1.75 for any fixed h,. Publication V, Corollary 15 also shows that
the two-dimensional Nested Array [201, 202] (on a rectangular lattice) achieves
R, =2 for practically any p.

Fig. 4.10 summarizes our findings regarding planar arrays with a contiguous
sum co-array by showing the asymptotic redundancy of the R-SBA, CRA, and
BA, along with the (non-asymptotic) redundancy of the MRA with side length
L, <L, <13 (see Publication V). The redundancy of the MRA approaches R = 2
as the aperture grows, providing empirical evidence that the R-SBA, CRA,
and BA are close to minimally redundant. The redundancy of the MRA also
decreases with the aspect ratio, suggesting that R, < 2 may be possible. Indeed,
1.19 < Ry, < 1.92 holds for the linear MRA (see Publication IX, Theorem 1),
corresponding to aspect ratio p =0 as L, — oo.

4.3.3 Linear arrays with mirror symmetry

Publication IX proposes a general framework for constructing symmetric linear
array configurations with low redundancy. This framework is motivated by
the fact that any mirror symmetric® array has an identical sum and difference
co-array up to a shift® [111, p. 740]. Specifically, if 2 = max? — 2, then 2 + 2 =
2-2+max%. By virtue of symmetry, arrays with a contiguous sum co-array can
thus be synthesized using configurations with a contiguous difference co-array,
such as the ones presented in Section 2.2.2. This greatly simplifies the design of
array configurations suitable for not only active, but also passive sensing.

5That is, a 180° rotational symmetry along the center point (max%2 + min2)/2.
6This also holds for the multiplicity functions of the co-arrays by PIV, Lemma 1.
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Figure 4.9. Aspect ratio insensitive rectangular arrays (p = 0.4) with closed-form sensor positions.
Both the SBA and R-SBA achieve asymptotic redundancy R, = 2 irrespective of
p, unlike the BA and CRA. The SBA requires a larger physical aperture than the
R-SBA to achieve a comparable (hole-free) sum co-array.
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General structure of symmetric linear array

In general, a symmetric linear array can be described by a generator array ¢ c N
and a non-negative offset / € N, which determines the spacing between ¢ and its
mirror image max%¥ —¥:

Ds.g 29U (max¥ -4 +1).

The properties of this symmetric array with generator 4 (S-4) are primarily
determined by ¢, which can be any array of choice. However, for the sum co-
array of the S-¢ to be contiguous, both ¢ and [ should satisfy certain conditions
(see Publication IX, Theorem 2, Corollaries 1 and 2).

A particularly useful sufficient condition is the following: if ¢ has a contiguous
difference co-array and the offset / is no larger than the number elements in the
hole-free part of the sum co-array of ¢4, then the S-¢ has a contiguous sum (and
difference) co-array. That is, if ¢ —% 2 {0 : max ¥} and [ < maxpen, (b | 4+921{0:
h—1}), then 5.4 + Ps.4 ={0:2max%Ps.«}. Given a parametric ¢ that satisfies
this property, both the parameters of ¢ and the offset [ may be optimized.

Low-redundancy symmetric arrays with contiguous sum co-array

Publication I, ITI, and VII consider three symmetric arrays optimized for mini-
mum redundancy: the Concatenated Nested Array (CNA), the Interleaved Wich-
mann Array (IWA), and the Kigve Array (KA).

The minimum-redundancy parameters of the CNA and IWA have closed-form
expressions, whereas those of the KA can be found in linear time with respect
to the number of sensors N. Publication IX, Proposition 1 establishes that the
minimum-redundancy symmetric array with a Nested Array [200] generator is
actually a CNA. The IWA and KA are symmetric arrays with Wichmann [294]
and Klgve-Mossige basis [191] generators, respectively. Although neither the
IWA nor KA is necessarily the minimum-redundancy symmetric array for the
respective generator, they compare favorably with the CNA. In particular, the
IWA achieves the same asymptotic redundancy as the CNA: R, = 2, but has
only approximately half the number of unit inter-sensor spacings: S(1) < N/4+1.
The minimum-redundancy KA achieves the lowest asymptotic redundancy of
any currently known scalable linear array with a contiguous sum co-array:
R, =23/12 < 1.92 (see [130, Theorem, p. 177] or Publication IX, Proposition 2).
The minimum-redundancy KA has approximately S(1) o« N/5.75 unit spacings.
Publication VII shows that the KA can also be constrained to achieve S(1) =8
for any N = 12 at the cost of a slightly higher asymptotic redundancy R, = 2.
A low number of unit inter-sensor spacings can reduce the unwanted effects of
mutual coupling, e.g., in direction finding, as demonstrated in Publication VII.

Comparison to asymmetric arrays with non-contiguous sum co-array

Fig. 4.11 shows the CNA, IWA and KA for N = 14 sensors, along with the
respective sum and difference co-arrays. For reference, the generator arrays of
these symmetric arrays (using the aperture maximizing parameters) are also
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shown, i.e., the Nested Array (NA), Wichmann Array (WA), and Klgve-Mossige
Array (KMA). Both the sum and difference co-arrays are contiguous for the CNA,
IWA, and KA, whereas only the difference co-array is contiguous for the NA, WA
and KMA. The WA achieves the largest difference co-array but has gaps in its
sum co-array. The KMA and KA have the largest sum co-array.

CNA{ssss = = = = = = @=sms
IWAfss sem = = = = snmms

KA =
NA 1
WA H
KMA -

CNA
IWA
KA
NA
WA
KMA

0 20 40 60 80 100 120

(b) Sum co-array
T T
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TWA
KA
NA
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KMA

1 1 1 1 1 1 1
-60 -40 -20 0 20 40 60

(c) Difference co-array

Figure 4.11. Sparse linear array configurations. The symmetric arrays have a contiguous sum
and difference co-array, whereas the asymmetric arrays require a larger physical
aperture to achieve a comparable sum co-array. The NA, WA, and KMA are the
generators of the general symmetric arrays giving rise to the CNA, IWA, and KA.

The KMA actually has approximately 10% more sum co-array elements (both
contiguous and in total) than the KA as the number of sensors approaches
infinity (cf. Publication IX, Table V). For the same aperture (approaching infinity),
the KA has 57% more sum co-array elements, but only 31% more physical sensors.
Hence, the KA attains an increased number of DoF's for a given physical aperture,
at the cost of a moderate increase in the number of physical sensors compared to
the KMA. Compared to the MRA, the KA requires 0—27% more physical sensors
to achieve the same physical aperture or number of DoFs. Unlike the MRA, the
KA can be easily generated for any number of sensors.

4.4 Discussion

A key message of this chapter is that sparse array configurations with a con-
tiguous sum co-array and minimal or low redundancy can be constructed for
practically any number of sensors, aperture or aspect ratio. These arrays are
suitable for active sensing applications where the physical dimensions of the
array or the number of sensors and Tx/Rx front ends are tightly constrained.
The presented array configurations are nevertheless subject to further im-
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provement. In fact, even the redundancy of the restricted MRA can be reduced by
relaxing the requirement of a contiguous sum co-array and instead considering
the general MRA problem. The reduction in redundancy comes at the price of a
larger physical aperture for a given number of physical sensors or virtual DoF's.
This may or may not be an issue, depending on the physical area available for
placing the sensors. The general MRA is of significant theoretical interest, as it
provides the least lower bound for the redundancy of any array. Appendix A.4
discusses the general MRA in further detail.

Novel array designs can likewise reduce the redundancy of the scalable sparse
array configurations in Section 4.3. For example, extending the symmetric linear
array framework in Section 4.3.3 to planar arrays may bridge the gap in the
asymptotic redundancy between the presented strictly planar and linear arrays
with Ry, =2 and R, = 1.92, respectively. Lower redundancy linear arrays exist
as well. In particular, Publication IX, Fig. 6 shows a noticeable gap in the (non-
asymptotic) redundancy between the KA and MRA. The asymptotic redundancy
of the KA may also be suboptimal, as indicated by the following argument:
Recall from Section 2.4.1 that the observed ratio between the number of physical
sensors of sum and difference MRAs with the same physical aperture closely
matches v2 = 1.4, which is in agreement with a simple counting argument
based on the (non-)commutativity of the (difference) sum operator. Since the
WA is a difference MRA for at least 14 < N < 26 (cf. Section 2.2.2), and the ratio
between the number of sensors in the KA and WA is v23/3 = 1.6 > 1.4, it is
reasonable to expect that a scalable (contiguous sum co-array) configuration
with 1 —3v/2/23 = 12% fewer sensors than the KA exists.

Finally, we remark that a principal advantage of the co-array perspective
adopted in this work is that it is environment-independent. For example, two
co-array equivalent arrays yield the same identifiability conditions in parameter
estimation (provided the co-array is contiguous) [135], or achieve the same set of
effective beampatterns [111]. Array design and signal processing can therefore
be decoupled, which greatly simplifies both tasks. Naturally, this incurs a loss in
optimality compared to the joint design. However, depending on the application,
the cost may be acceptable when simplicity is prioritized, or online optimization
and adaptation of the hardware cannot be afforded.
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5. Active linear imaging using
low-complexity architectures

Active sensing is concerned with detecting, classifying, and inferring properties
about potential targets in the scattering scene based on observing the backscat-
tering of the transmitted signals. Typical quantities of interest are the target
locations (angle and range), powers, and velocities (Doppler shift). In case of
the signal model in (3.5), we are mainly interested in the scatterer directions vy
and reflectivities y;. These parameters can be uniquely estimated, i.e., they are
identifiable, when the number of independent measurements in (3.5) is larger
than or equal to the number of unknowns. This is commonly the case in, for
instance, radar, where the scattering scene only contains a few far field point
targets [211, 306]. The co-array model establishes that the upper limit on the
number of identifiable parameters is determined by the number of co-array
elements [2, 135, 287, 165], rather than the number of physical sensors as is
commonly assumed [256, 257]. However, the parameters are unidentifiable if
the number scatterers is exceedingly large compared to the number of sensors,
regardless of the number of co-array elements or temporal samples. Indeed, the
number of point targets may even be uncountably infinite if the scatterers are
continuous or distributed [277, 149, 221]. This is typically the case in medical
ultrasound imaging, where internal organs and other scatterers of interest have
complicated shapes. Useful information may nevertheless be extracted from
this ill-posed problem in the form of an image, or a spatial spectrum estimate
[255], of the scattering scene. Specifically, beamforming can reveal the spatial
distribution and relative powers of the scatterers. In the identifiable case, i.e.,
when the number of point scatterers or parameters describing the extended
scatterers is sufficiently small, methods such as MUSIC can provide improved
resolution and statistical performance [143, 277]. This work focuses on linear
imaging, where the parameters of the signal model may be unidentifiable. Our
emphasis is on improving the resolution and decreasing the side lobe levels by
utilizing the sum co-array in joint transmit-receive beamforming.

The chapter is organized as follows. Section 5.1 briefly reviews the basics of
beamforming in active imaging, including relevant terminology and notation.
Specifically, we consider image synthesis using image addition [111], i.e, multi-
ple transmit and receive beamforming weight pairs corresponding to different
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transmission-receptions or Tx waveforms. Section 5.2 analyzes the noise and
interference suppression capability of image addition. Section 5.3 formulates an
optimization problem for finding the beamforming weights that achieve a desired
image fidelity using as component images as possible. We discuss approximate
solutions to the posed optimization problems in the fully digital (Section 5.3.1),
hybrid (Section 5.3.2), and fully analog beamforming (Section 5.3.3) cases.

5.1 Overview of active imaging using beamforming

Linear imaging refers to the formation of a spatial spectrum estimate, or image,
by linear processing. In particular, we consider images consisting of a discrete
grid of pixels, where each pixel corresponds beamformed output. Beamforming
is widely employed in spatial spectrum estimation, since it requires minimal
assumptions on the signal model. For example, scatterers do not need to be
described by a finite number of parameters, nor does the array response need to
be known exactly. Another advantage of beamforming is its low computational
complexity, since it is a linear operation. The main disadvantages of beam-
forming are its diffraction limited resolution and poor statistical performance
in parameter estimation due to bias [304, 275, 143]. Typical applications of
linear imaging are diagnostic medical ultrasound, sonar, radar, and microwave
imaging tasks, such as concealed weapon detection [13] and through-the-wall
imaging [20, 107].

Next, we discuss beamforming and linear imaging in more detail. We describe
the concept of the point spread function (PSF), which characterizes the key
properties of a linear imaging system, such as the resolution and side lobe
levels. We demonstrate the dependence of the PSF on the sum co-array, and
review the image addition method for synthesizing arbitrary PSFs by multiple

transmissions and receptions [111].

5.1.1 Joint transmit-receive beamforming

Beamforming refers to directional transmission or spatial filtering [279]. In
transmit beamforming, the spatial self-interference of the radiated wavefield
is controlled by appropriately scaling and phase shifting (or in general, delay-
ing) the output of each Tx element so that they add constructively in desired
directions. The resulting spatial distribution of radiated power is called a beam
or a beampattern. In receive beamforming, the Rx sensor outputs are scaled
and phase shifted prior to their addition. This beam can be flexibly shaped and
steered post-acquisition, especially when the beamforming architecture of the
receiver is fully digital. In contrast, the transmit beam is typically fixed for
the duration of a pulse. In this work, we consider joint Tx-Rx beamforming,
where the effective Tx-Rx beampattern is determined by the product of the Tx
and Rx beampatters [252, 174], [261, Section 7.5.1]. The effective beampattern
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Figure 5.1. Beampatterns of an active array. The effective beampattern is the product of the Tx
and Rx beampatterns. The Tx-Rx beampattern achieves a narrower main beam and
lower side lobe levels than the Tx and Rx beampatterns. Adapted from Publication
VIII, Fig. 2 © 2020 IEEE.

can therefore achieve a narrower main beam or lower side lobe levels than the
individual Tx and Rx beampatterns, as illustrated in Fig. 5.1. Note that with
planar arrays, beamforming is typically performed in two dimensions—azimuth
and elevation. The beam may also be focused in range.

Following the general MIMO signal model in (3.4), the output of the beam-
former can be expressed using the post matched filter received data matrix X
as y= c?st = (ws ® ey) T vee(X). Here e, € CMr is a digital Rx beamforming
vector, and ws € CN+ is a waveform diversity weight vector that linearly combines
measurements corresponding to the different Tx waveforms post-acquisition. By
(3.4), the beamformer output becomes

y=wiew,) (A 0 Ay + (SHw, s w,)Tn. (5.1)

Recall that the Tx/Rx beamforming vectors w; satisfy (3.6), where the digital Tx
beamforming vector can be decomposed as

ci=C;R;ws;. (5.2)

In (5.2), Cs € CMexN: ig the digital waveform mixing matrix and R, € ﬂ-ﬂyi is the
positive definite waveform cross-correlation matrix defined in (3.3). In (5.1), S is
the N, x T Tx waveform matrix and n ~ €.4(0,02I) a N,T-dimensional vector
of i.i.d. spatio-temporally white circular complex Gaussian noise. Since a linear
transformation of Gaussian random variables is Gaussian, the scalar noise
component in (5.1) also follows a zero-mean complex-valued normal distribution,
albeit with a different variance, i.e.,

SHw; @w,)'n ~ €N 0,02 IR w2 w,13). (5.3)

Note that the effective N¢N,-dimensional Tx-Rx beamforming vector w; ® w, in
(5.1) is the Kronecker product of the Tx and Rx beamforming vectors.

5.1.2 Linear imaging and image addition

The beamformer output is typically computed for a set of pixels—or voxels in
three-dimensions—each corresponding to a distinct array steering direction and
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Tx-Rx beamforming weight pair. An image is a collection of pixels, i.e., (5.1)
evaluated for a finite set of Tx/Rx beamforming weight pairs. By the far field

assumption (A2), the steering direction u € R? of a given pixel can be written as!

T
u:[singbsim‘) cosf)] )

where ¢ € [-7/2,7/2] and 9 € [0,7] denote the azimuth and elevation angles,
respectively. If more than one of the pixels correspond to same transmission,
then the noise is correlated between pixels. This may be the case in, e.g., medical
ultrasound imaging, where the number of Tx beams (focal points) is often lower
than the number of Rx beams [261, p. 194].

Image addition

Image addition is a method for synthesizing a high-quality composite image
by adding together several component images of possibly lower quality [111].
This may come at the cost of an increased image acquisition time, depending
on the degree of waveform diversity. As illustrated in Fig. 5.2, image addition
suppresses side or grating lobes, which may arise due to the employed sparse
array geometry or hybrid/analog beamforming architecture.

In particular, consider the effective Tx-Rx beamforming weight vector

wi W, = vec (wrth).

Clearly, the range of this vector is limited by the rank-1 matrix wrw?. To

overcome this limitation, image addition instead considers the @-fold sum

Q Q
Z wyq @y g =vec(W), where W= Z Wr g wzq (5.4)
q=1 q=1

is the N, x N co-array weight matrix, and wg,qCN & denotes the Tx/Rx beamform-
ing weight vector of the gth component image. The output of the beamformer in
(5.1) after image addition thus becomes

Q Q
y=Y wigew ) (A0 Ay + Y (SHw,  ow. o) n,, (5.5)
g=1 g=1
where n, € CM:T is the noise vector of the gth component image, and ws g € cNs

is the corresponding waveform diversity combining vector.

Number of component images versus pulses

The number of component images @ generally depends on the performance
requirements of the beamformer. Factors influencing the value of @ are, e.g.,
the array geometry, beamforming architecture, desired beampattern (affect-
ing the reconstruction fidelity of the final image), and the tolerated image

LVector u contains the x and y components of the three-dimensional unit vector pointing
in the direction of the pixel. The xy-plane contains the Tx and Rx sensors (see Fig. 3.1b).

76



Active linear imaging using low-complexity architectures

=

>

(a) Single image (b) Component images (c) Composite image

Figure 5.2. Image addition. The fidelity of a single component image (@ = 1) is improved by
summing multiple component images into a composite image (@ =4).

acquisition time. For example, if the beamforming weights are unconstrained,
then any NyN,-dimensional effective beamforming vector can be achieved using
@ =rank(W) < min(N¢, N,) component images by application of singular value
decomposition (SVD), as we will show in Section 5.3.1.

In the general MIMO beamforming model (5.5), @ does not necessarily equal
the number of transmissions and receptions, or pulses, P. Due to waveform
diversity, a single pulse yields as many unique component images as the number
of linearly independent transmit waveforms Ng. Generally, the number of
component images can be up to @ = PN;. As we consider @ to be the main free
variable in this thesis, the number of pulses should satisfy

P =[Q/Ng]. (5.6)

By (3.6) and (5.2), the ¢gth transmit beamforming weight vector corresponding
to the pth transmission can therefore be written as

wig=FipCs pRsws g,

where F; , is the Ny x M Tx phase shift matrix. The pulse and component image
indices satisfy p =1,2,...,P and q € .%, S {1:@Q}, where set

Fp 2 {(p— 1N, +1:min(pNs,Q)} (5.7)

contains the indices of the component images corresponding to the pth pulse.
Equivalently, the qth waveform diversity vector of dimension N can be chosen
as ws 4 = (Ft,pCs,pRs)th,q to achieve a desired wy g, since the transmission-
specific beamforming matrix Fy ,C; , € CV*Ns has full column rank. Here (-)
denotes the Moore-Penrose pseudoinverse.

Finally, it is instructive to consider (5.6) in the case of the O-MIMO and PA
architectures discussed in Section 3.3.2. In the (fully digital) O-MIMO case, a
single pulse (P = 1) suffices to achieve any PSF supported on the sum co-array.
This holds regardless of the value of @, since Ny = N; and @ < min(N¢,N,).
Using more than min(N¢, N;) component images (P = 2 pulses) improves the
SNR, although multiple pulses are not necessary from the point of view of image
addition. In contrast, the PA architecture requires P = @ pulses, since N = 1.
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Figure 5.3. PSFs corresponding to typical beamforming weight choices. There is a general
trade-off among the main lobe width, side lobe levels, and array gain.

5.1.3 Point spread function

The point spread function (PSF) is the spatial impulse response of a linear
imaging system [91, p. 20]. The effective PSF of an active array, determined by
the product of the Tx and Rx PSF's, fully characterizes the achievable resolution
and interference suppression capability of the imaging system. In general, the
PSF is a complex-valued function defined as

w(u,v) 2 vec (W) (ay(v) ® a (v)), (5.8)

where u € R? is the focusing direction of the array (in the xy-plane), and v € R?
is the direction of a unit reflectivity point-scatterer. Fig. 5.3 shows examples of
common one-dimensional PSFs. Image addition allows for any linear array with
a contiguous sum co-array of appropriate size to achieve any of these PSFs.

Space invariance
The PSF is space-invariant or isoplanatic if w(w,v) = (v — u) holds [91, p. 21].
For example, consider the weighted spatial matched filter with

wi(u)=wsoag(u). (5.9)

Here w; € CNe is a direction-independent apodization vector, and az(u) is the
complex conjugate of the Tx/Rx array steering vector in direction u. Conse-
quently, the PSF becomes

v(v,u) = vec'(W)((ay(v)oa; (w) ®(a,(v)oal(w),

where the effective apodization vector vec(W) following (5.4) is independent of u.
By the omnidirectional sensor assumption in (A4), the PSF reduces to

y(w-u)= VecT(W)(at(v —u)®a(v—u)), (5.10)

which is space-invariant, as it only depends on the difference v —u. The fact that
matrix W does not depend on u considerably simplifies the task of designing the
beamforming weights.
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Connection to sum co-array

The PSF can be interpreted as the spatial Fourier transform of the virtual beam-
forming weights of the sum co-array [111]. Indeed, this Fourier transform pair
is analogous to that of the physical beamforming weights and beampattern of an
ideal array [278, p. 95]. Hence, a desired PSF is achieved by appropriately design-
ing the sum co-array weights. In particular, let ¥ £ [y(v1), w(vg), ..., w(vy)]T €
CV denote the PSF sampled in V distinct directions {Ui}y:y By (5.10) and (3.16),
this can be written as

w=(A;0A;) vec(W)=ATws. (5.11)
Here, ws € CN* is the sum co-array beamforming weight vector, defined as
ws £ Y vec(W), (5.12)

and Y € {0, 1}V=*N:Nt ig the co-array selection matrix in (3.17). The effective and
sum co-array steering matrices A;© A, € CN"V*V and Ay € CV=*V | respectively,
are sampled in the same V directions as y. If rank(Ay) = N5, implying that
V = Ny, then the mapping between w and wy in (5.11) is one-to-one (invertible).

5.2 Noise and interference suppression capability

The noise and interference suppression capability of image addition is clarified
by decomposing the beamformer output into three terms: a signal of interest
(Sol) term, an interference term, and a noise term. Assuming w.l.0.g. that the
array is steered in the direction of the Sol, i.e., u = v1, and that the remaining
K — 1 scatterers act as interferers, (5.5) becomes

K

y(@) =y1y(0) + Z%‘U/(Ui —u)+na(u).

i=2
Here v is the (space-invariant) PSF in (5.10), n ~ 6.#(0,0?) is measurement
noise, and « is a normalization factor that—assuming the noise in (5.5) is
uncorrelated between pulses—reduces to (see Appendix A.5)

[QIN,] 2
aw)= | Y || Y RPw,wew: )| .
p=1 lgez, 2

Recall that .#, is the set of component image indices corresponding to the pth
pulse, as defined in (5.7).
By the coherent scatterer assumption (A2), the SINR becomes

E(ly1y(0)) _ ly11?1p(0)?

SINR £ = )
[E(] 25{22 Yiw(v; —u)+ na(u)|2> | Zfiz Yiw(v; — u)|2 +02|a(u)|?

The effect the PSF, and specifically, image addition, has on the SINR is of
particular interest in the following two special cases:
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K orivwi—w|* > o%a)?

K orivwi—w|* < o%la@)?.

Next, we consider both of these cases separately, with an emphasis on the latter.

5.2.1 Interference-limited regime

In the interference-limited regime, the SINR is completely characterized by
the PSF and the scattering coefficients. Image addition may therefore improve
the SINR by suitably shaping the PSF. However, emitters that do not interact
with active illumination, or only backscatter weakly, will be indifferent to the
Tx beam. The imaging system is therefore susceptible to active interference in
directions where the Rx beam has high side lobes, regardless of the effective
Tx-Rx beampattern.

The SINR in the interference-limited regime largely depends on the scattering
scene. A detailed, yet sufficiently general quantitive analysis lies beyond the
scope of this work. Instead, we focus on the noise-limited regime in the following.

5.2.2 Noise-limited regime

In the noise limited regime, the SINR reduces to the SNR, which is defined as

SNR 2 [E(|Y11V(0)|2) ~ |71|2‘1//(0) 9

[E(Ina(u)lz) T 02 la)

The SNR crucially depends on the beamforming gain, which is quantified by
the magnitude of w/a = wtr(at®ar) where wy, £ vec(W)/a is the normalized
effective beamforming vector of the imaging system. Consequently, we have
ly1l? ly11?
SNR = 1wl (@i e an)? = L lwi 3NN, (5.13)

by the Cauchy-Schwartz inequality—assuming unit magnitude steering vector
entries. The main quantity of interest ||wtr||2 = ||W|| /|a|? can be written as

Q Q H H
Z =1 Zl:l W Wi, | W, Wy

. (5.14)
/N
ZFQ Zq,leﬂp wqusws,leqwr,l

2 _
lwllz =

The numerator of (5.14) contains the cross-correlations between the Tx/Rx beam-
forming weight vectors of all component image pairs. Similarly, the denominator
contains the cross-correlations of the post-acquisition beamforming vectors (re-
lated to the Rx and waveform diversity weights). In contrast to the numerator,
the inner products in the denominator are only between component image pairs
corresponding to the same pulse. In case of the phased array (PA) and orthogonal
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MIMO (O-MIMO) architectures (cf. Section 3.3.2), (5.14) simplifies to:

Q Q H H
Zq:l 21:1 W; W, Wy Wr,]

if PA
S lwe g3 ’
w13 = o v
1+ Zp,r:l;r#p qufp leyr W Ws, | Wy o Wr | if O-MIMO.

[Q/N1 H H ’
Zp:l Zq,la}p Wy Ws, | Wy Wr 1

The maximum SNR of the O-MIMO architecture is less affected than the PA
by the number of component images @ due to the lack of Tx combining gain.
In the O-MIMO case, ||wtr||§ only depends ratio of the inter- and intra-pulse
cross-correlations of the beamforming weights. Indeed, if @ < N then Ithrllg =1,
since a single pulse is sufficient to obtain any sum co-array weighting.

For further insight into (5.14), we next examine the single component image
case, @ =1, and then extend our analysis to the general case, @ = 1. Note that @
and the number of linearly independent Tx waveforms N, are considered free
variables, whereas the number of pulses is determined as P = [@/N;].

Single component image, @ =1
When @ =1, the expression in (5.14) simplifies by (3.6) and (5.2) to

lwl3  I1FCsRswsl3

= < |F,CsRY?|2. (5.15)
IRw, |2~ |RY2w,|3 s T2

2
lwellz =

The final step in (5.15) follows from the Cauchy-Schwartz inequality, or by noting
that (5.15) is a Rayleigh quotient, whose maximum is the largest singular value

(squared) of matrix FtCsRsl/z. Consequently, (5.15) holds with equality when

-1/2
s

scaled but nonzero) leading right singular vector of F;C;R i/ 2,

the waveform diversity weight vector ws = R, /“ri, where r; is the (arbitrarily

Eq. (5.15) is independent of the Rx beamforming vector, which mainly affects
the SINR by shaping the PSF. Hence, the SNR is primarily limited by the
transmit combining gain, which is characterized by the largest singular value
of the N x Ny matrix FtCSRsl/ 2. This reduces to the squared norm of the Tx
beamforming vector wi when N = 1. Typically, the power per Tx sensor or total
Tx power is constrained, which means that ||wt||§ is fixed. For example, consider
the PA with spatially matched beamforming weights w; = a{ and w, = ca;,
where ¢ € C\ {0} is an arbitrary nonzero constant. This beamformer maximizes
the SNR assuming that each Tx sensor is operating at full power such that
||wt||§ = N;. In this case, (5.13) yields the well-known result (cf. [124, Eq. (20)])

SNR o« NZN,,

that is, the SNR is proportional to the square of the number of Tx sensors and
scales linearly with the number of Rx sensors. In the O-MIMO case we have
SNR « NiN;. The Tx combining gain of the PA thus yields an SNR gain of a
factor Ny compared to the O-MIMO case. This holds regardless if the total Tx
power scales with the number of Tx sensors (as is assumed here) or not.
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Multiple component images, @ =1

When @ = 1, two extreme cases emerge, where the beamforming weights are
either mutually orthogonal, or identical between component images. Eq. (5.14)
simplifies substantially in both cases, which helps clarify the influence of image
addition on the SNR.

¢ Orthogonal Tx/Rx weights, i.e., wt}}qwt,l =0or quwr,l =0V q#l:
S lweg I3l g 13
S8 IR 2w, g 13 wr.q 1

The Cauchy-Schwartz inequality and (5.2) then yield an upper bound on

2
lwerlly =

the normalized beamforming weight vector of the imaging system:
w5 < m 12,2 max [lwyql3, if PA
lwirlls < max [|FyqCs R, %5 = ¢ 9611:@) 5.16)
e L, if O-MIMO.

If the Tx beamforming weights are further normalized as w43 = Ny,
then by (5.13) the PA has SNR o« NZN, (O-MIMO has SNR ox NiN,).

* Identical Tx/Rx weights, i.e., w4, =w; and wy g =w;; V q,1:

9 Q% w3
lwerl3 = <o - .
p=1 Zg,leyp wg Rws

Further assuming that w,  =w;; #0 V q,l, p yields

Qllwll3, if PA
[Q/N¢], if O-MIMO.

w3 < Lﬂ min, IF:qCs RY2I5 = { (5.17)

S
If |wll2 = Ni, then the PA has SNR o« QNZN, (O-MIMO has SNR o
max(Q, Ny)Ny).

Eq. (5.16) establishes that image addition using orthogonal beamforming weights
cannot markedly increase the SNR compared to the single component image case.
Multiple component images may nevertheless improve the SINR by facilitating
a wider selection of PSFs. The orthogonal case is of particular interest in fully
digital beamforming, where SVD can be used to find the beamforming weights.

Eq. (5.17) agrees with the intuition that the SNR increases linearly with the
number of pulses [@/N;] when employing identical beamforming weights. This
corresponds to reducing noise by summing identical images with independent
noise realizations obtained over multiple pulses. However, the interference
suppression capability does not improve, since the set of achievable PSF's is
limited to that of a single component image.

Often the beamforming weights of different component images are not com-
pletely identical nor orthogonal. For example, the hybrid or fully analog beam-
forming architectures discussed in Sections 5.3.2 and 5.3.3 impose constraints
on the beamforming weights that may prevent orthogonality. The exact SNR
can nonetheless be computed by evaluating (5.13) numerically.
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Figure 5.4. Fully (a) digital and (b) analog beamforming architectures. The digital receiver has
unconstrained beamforming weights, but requires an expensive Rx front end for
each sensors. The analog receiver only has a single front end, but the beamforming
weights are constrained to phase shifts with a common gain. See also Fig. 3.2 for the
general hybrid case including the transmitter. Adapted in part from Publication VI,
Fig. 1 © 2019 IEEE.

5.3 Low-complexity imaging using few component images

Fig. 5.4 illustrates the fully digital and analog beamforming architectures intro-
duced in Section 3.3.1. Historically, beamforming architectures were analog in
applications, such as, communications, radar, and sonar [109, 87, 131]. Over the
past decades, digital architectures have become more commonplace, especially
at microwave frequencies, thanks to the proliferation of and advances in digital
hardware and computing [87]. There has recently been a revived interest in
combining analog and digital processing in hybrid beamforming architectures
(see Fig. 3.2 in Section 3.3.1). A key driving force behind this trend is mmWave
and beyond communications and sensing. This paradigm envisions using arrays
with a large number of antennas—up to hundreds or even thousands—packed in
a small physical area. Prime examples include 5G communications and automo-
tive radar [100, 204]. However, at frequencies approaching the THz regime, fully
digital beamforming is still infeasible and hybrid or fully analog architectures
are employed instead. The main drawbacks of high hardware costs and power
consumption [226, p. 128] can be alleviated by reducing the number of Tx/Rx
front ends and assigning part of the processing to the analog domain using
inexpensive phase shifter networks.

Another means to reduce the number of front ends is to employ fewer physical
sensors. Sparse arrays can be used in conjunction with non-digital beamforming
architectures to achieve further savings. As an extreme example, consider the
difference between a fully digital URA with N sensors and Tx/Rx front ends,
and an co-array equivalent fully analog sparse array, such as the MRA, with
o (\/N ) sensors and a single front end. Alternatively, for the same number of
sensors, a sparse array with a hybrid beamforming architecture can outperform
a fully digital uniform array in, e.g., DoA estimation tasks [114, 96, 137].

This section considers hybrid beamforming in the context of active sensing.
In particular, we study linear imaging using fully digital (Section 5.3.1), hybrid
(Section 5.3.2), and fully analog (Section 5.3.3) beamforming architectures at
both the transmitter and receiver. We assume that both the Tx and Rx array
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has the same beamforming architecture for simplicity. We focus on image
addition and formulate novel optimization problems for finding the beamforming
weights achieving a desired PSF using as few component images as possible. By
virtue of the sum co-array model adopted in this work, our discussion naturally
accommodates both uniform and sparse array configurations. Details of the
results presented in the section may be found in Publication II, VI, and VIII.

5.3.1 Fully digital beamforming

A fully digital beamforming architecture has a dedicated Tx or Rx front end for
each sensor, which means that Mz = N;. This provides maximum flexibility in
signal processing, but comes at the expense of high cost and power consumption.
Since a fully digital architecture does not require phase shifters, the phase
shift matrices F; reduce to identity matrices (Fy = I). By (5.2), the Tx and Rx
beamforming weight vectors are unconstrained, i.e., w; € CNe, which implies
that they may be recovered from the SVD of co-array weight matrix W in (5.4).
Specifically, let the SVD of W be W = UXVH and denote

Q
— T _ T
W= E Wr Wi 4 =W, W,
q=1

where matrix W € CNex@ contains the respective Tx/Rx beamforming weights of
all component images. A valid choice for the beamforming weight matrices is, for
example, W, =UZX and W; = V*, where U and V are unitary matrices. To ensure
that least one sensor is transmitting at full power, we may additionally multiply
W; (and W;) from the left (right) by an appropriate normalizing diagonal matrix
(and its inverse).

Least squares beamforming weights
Matrix W may be found by minimizing the /9 approximation error between the
desired and realized co-array weighting (or PSF), defined as

2 ||ws — Y vec(W)||5. (5.18)

Infinitely many W minimizing € = 0 may exist, since Y is an Ny x N.N; matrix
with full row rank and Ny < N, N;. In other words, setting € = 0 is equivalent to
solving ws = Y vec(W), which is an underdetermined system of equations when
the sum co-array is redundant, i.e., Ny < N,.N;. A typical choice for W, which is
always unique, is the least squares (LS) solution with minimum Frobenius norm
[Wlr (see, e.g., [184, p. 423])

vec(W) =Y ws. (5.19)
By (3.19), the pseudoinverse of matrix Y is given by

Y =yT(YY") " = YT diag\(wy),
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where vy € NZJYZ is the sum co-array multiplicity vector defined in (3.13). The
LS solution distributes the desired co-array weights equally among the Tx-Rx
sensor pairs contributing to the given co-array element. Eq. (5.19) is therefore
equivalent to the uniform weight assignment scheme proposed by Kozick and
Kassam [139, 141] and discussed in Publication II.

A drawback of the LS solution is that it does not generally yield a low rank W.
Consequently, unnecessarily many pulses or linearly independent Tx waveforms
may be required for achieving the desired co-array weighting (or PSF)2.

Optimization of beamforming weights

To address the shortcomings of the LS solution, Publication II proposes searching
for the beamforming weights that minimize the number of component images @,
while ensuring that the realized co-array weighting is within a given tolerance
of the desired weighting. Since @ = rank(W), this optimization problem can be
written as

minimize rank(W) subject to [lwz — Y vec(W)||2 < emax. (P5.1)
WECNrXNt

Here wy € CV is a desired co-array weight vector, Y € {0, 1}V=*NrNt the co-array
selection matrix defined in (3.17), and €pyax = 0 the maximum tolerated approxi-
mation error. Unfortunately, (P5.1) is a non-convex problem. However, the rank
function may be replaced by the nuclear norm to yield a convex problem that
typically yields a low-rank solution. The nuclear norm is the tightest convex
relaxation to the rank function [70]. The resulting semidefinite program can be
efficiently solved using standard numerical solvers [266].

Publication VIII presents another approach based on alternating minimization
[118] and binary search (bisection). As summarized in Algorithm 1, this method
fixes @ and iteratively attempts to solve

minill\r/lize ||wz —Yvec (WrWtT) H; (P5.2)
WeechNexQ
by bisecting over @ to find the smallest value for which the objective function
€ is smaller than or equal to the desired approximation error tolerance ey ax.
Although (P5.2) is a non-convex problem, it is biconvex in W; or W,. This
implies that a local minimum may be found efficiently using least squares, as
summarized in Publication VIII, Algorithm 1.

If the PSF is not space-invariant, then W may need to be computed for multiple
steering directions u. This may be the case when sensors have directive gain
patters or scatterers are located in the near field of the array. For details, see
Section V-D of Publication VIII and [223].

Bounds on the number of component images
Publication VIII, Proposition 1 presents a lower bound on the number of compo-
nent images @ required by the fully digital beamformer to achieve any co-array

2An exception is the case when the sum co-array is completely non-redundant, i.e.
N3 = N¢N;, which implies that (5.19) is the unique minimizer of (5.18).
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Algorithm 1 Binary search (bisection) solving (P5.1)

1: procedure BINSEARCH(Y,ws, Emax)

2 2={1,2,...,min(N;, Ny)} > set of feasible values of @

3 while 2 # ¢ do > find smallest @ solving (P5.1)

4: @ — |[(max2 + min 2)/2] > select midpoint of interval

5: Solve (P5.2) to obtain W;, W, and ¢ in (5.18)

6 if € > enax then > infeasible solution

7 2—-2\{min2,...,Q} > discard smaller values

8 else > feasible solution

9 2 —2\{Q,...,max2} > discard larger values
10: W) —W, and W* — W > update solution

11:  return W, W*

weight vector in (5.12). The lower bound, which is based on a simple “equations
versus unknowns” argument, is given by the inequality

— 2_4
Ni+N, \/(]\;t+Nr) Nz’ (5.20)

Q=

since W is a N, x Ny matrix of rank @, Y has full row rank, and ws is a N3-
dimensional vector. Consequently, the following necessary condition holds: there
exists a W that satisfies ws = Y vec(W) for any ws € CN= only if

e @ =1, for the ULA with Ny=N,=N and Ny =2N -1

@ = 2, for the URA (see Appendix A.6)
* @ =0O(N), for any sparse array with Ny < N; x N and Ny « N?
¢ @ =min(N,,Ny), for any nonredundant array with Ny = N¢N,.

We conclude that the sparser the array, the larger the necessary number of com-
ponent images. Specifically, order-wise optimal sparse arrays with N physical
sensors have G(N?) co-array elements and therefore require G(N) component
images to achieve an arbitrary co-array weighting. We note that a similar rela-
tion also holds in DoA estimation. That is, IV sensor sparse linear arrays, such
as the Nested or Co-prime Array, require O(IN) times more snapshots than the
O(N?) sensor ULA of equivalent aperture to achieve comparable MSE of the
source direction estimates [289].

Eq. (5.20) also reveals that the URA may require a larger @ than the ULA.
Note that (5.20) is only necessary for exactly achieving any co-array weight
vector wy. Hence, some wy may be achieved using a smaller @. For example, if
wy is real-valued (but W is complex), then the lower bound of the URA reduces
to @ = 1. Similarly, if a given ws only needs to be attained approximately, then
(5.20) does not necessarily hold.

The upper bound @ < min(N,,N;) guaranteeing synthesis of any wy may
also be improved in some cases by considering array-specific synthetic aperture
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schemes. These schemes allow adjusting the sum co-array weights independently
by partitioning the Tx and Rx arrays into physical subarrays, such that the
virtual subarrays (of the co-array) corresponding to different component images
do not overlap. Tighter bounds may be achieved by allowing for overlap at the
expense of a possibly more complicated weighting scheme. Fig. 5.5 illustrates
weighting strategies for the ULA, URA, CNA and BA, whose simple structures
make them amenable to this analysis. Hence, the following sufficient condition
holds: there exists a W that satisfies wy =Y vec(W) for any ws € CN: if

2, for the ULA
4, for the URA
Q=< Na1 (5.21)
5 for the CNA
(N?%, for the BA.

Consequently, the ULA achieves any co-array weighting using 1 <@ < 2 compo-
nent images, whereas the URA needs 2 < @ < 4. Sparse arrays, such as the CNA
and BA, require @ o« N, where N is the number of sensors. Eq. (5.21) follows
directly from Fig. 5.5 using the fact that p = (2L, +1)/(2L,+1) and N = 2(L . +L,)
in case of the BA, and N1 < (N +1)/4 in case of the (minimum-redundancy) CNA
by Publication IX, Eq. (16). Here p € (0,1] is the aspect ratio defined in (3.15).

Consider the number of component images @ relative to N as N approaches
infinity. For the CNA, this asymptotic ratio is bounded as®

1-— =< lim —<—-. (5.22)

In practice, the CNA therefore achieves any co-array weighting when @ is
between 13-50% of the value of N. Similarly, for the BA we have*

2
1= 1= (Y2 < im &< P (5.23)
p+1 N-ooN p+1

In the square array case, p = 1, (5.23) simplifies to the bound of the CNA in
(5.22). In the non-square case, p <1, the BA becomes increasingly redundant
as p — 0 (see Section 4.3.1), which implies that fewer component images are
needed. For example, when p = 1/2, the BA achieves any co-array weighting
when @ is between 12-33% of the value of N. The BA reduces to the ULA for
o= h;l, and @ becomes independent of N per (5.21).

5.3.2 Hybrid beamforming

Hybrid beamforming reduces the hardware costs and power consumption of the
array by employing 1 < M; < N¢ Tx/Rx front ends along with an analog phase

N2
putation from (5.20) and Publication VIII, Theorem 3 and Corollary 4.

4The bound Q= <1 —4\/1- (p—‘{fl %)2>N follows from (5.20) and Section 4.3.1.

SSpeciﬁcally, the lower bound @ = (1 - %1 /36N 77)N follows by straightforward com-
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Figure 5.5. Synthetic aperture schemes for independently weighting the sum co-array elements.
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These schemes yield array-specific upper bounds on the number of component images
required to achieve any co-array weighting exactly. The active physical and virtual
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shifter network (see Fig. 3.2). These savings come at the expense of a loss in the
flexibility provided by digital beamforming. In case of the hybrid beamformer,
the co-array weight matrix in (5.4) becomes

Q
W= Frgergel FL =F.IoC)IoC)"F]. (5.24)
q=1

Here, the Ny x M@ matrix F; =[F; 1,Fs s,...,Fg g] collects the N x M; phase
shift matrices F , € %¢(B) of all component images, and ¢ (B) denotes the set of
phase shift matrices with B-bit phase quantization defined in (3.7). The M; x @
matrix Cg 21e £1,€£2,-.-,€5 @] contains the respective digital beamforming
vectors ¢; € CMe,

The optimal analog beamforming weights can be found similarly to the digital
case by iteratively solving the following optimization problem with respect to
the analog and digital Tx/Rx beamforming matrices F¢ and C ,5:5

minimize [ws-Y(FuloChoF.doC)1];

FeeCNeMeQ 0 pecMex

(P5.3)
subject to  F; € %:(B).

Publication VIII, Algorithm 3 proposes a greedy search method for finding an ap-
proximate solution to (P5.3) for any number of bits B used to quantize the phase
shifters. The algorithm sequentially attempts to find the best single compo-
nent hybrid beamforming weights whose Kronecker product is aligned with the
residual between the desired and realized co-array weight vector. The optimal
weights are found at each iteration by projecting the fully digital beamforming
weights to the set of feasible hybrid beamforming weights (cf. Publication VIII,
Algorithm 2). The fully digital weights can be computed using Algorithm 1 in
Publication VIII.

Publication VIII, Theorem 1 shows that if B — oo, then the number of com-
ponent images @ is upper bounded by min(N,, Ny), similarly to the fully digital
case. Remarkably, the hybrid beamformer only requires two Tx and Rx front
ends to synthesize any PSF achieved by the fully digital beamformer. Publi-
cation VIII, Theorem 2 further demonstrates that if B = 1 and M; = 2, then
@ < N;N;. This bound can actually be tightened to @ < Ns < N, N, as proven in
the following new result, included in this thesis only.

Proposition 5.1 (Hybrid beamformer). Let M; =2 and B =1. Any ws € CNx
may be written as wy = Y vec(W), where Y is defined in (3.17), and W € CNex N
factorizes as in (5.24) with @ = Nx. For example, F , € Z¢(1) following (3.7) and
csq€ C2 may be selected as
[w03],
Fig=[1 2e,,-1] and egq="——"1, (5.25)
where any choice of indices ng € {1: N¢} satisfying d,, +d;,, = ds 4 is valid.

5Modifications to Algorithm 1: on line 2 set max2 = Ny if B < oo (see PVIII, Theorem 1
and Proposition 5.1 of this thesis), and on line 5 solve (P5.3).
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Proof. By (5.25), each component image contributes to exactly one entry in
matrix W. Furthermore, each non-zero entry of W affects only a single entry
of wy, since the rows of Y are orthogonal. In particular, F¢ jcz o = 4/ [wz] 4 8nes

where e, €{0, 1}V¢ is the standard unit vector of dimension N ¢ with a unit entry
atindex ng €{1,2,...,N¢}. Note that n¢ is a function of q. Hence, we have

Nz NZ
vec(W) = Zvec (Fr,qcr,chngq) = Z [ws] v (eniq)®enyiq))-
g=1 q=1

Ifdipnyq) +drpnq) =ds g, then Y(e,, ®e,,) = e, holds by definition, where e is
an Ny-dimensional standard unit vector. Hence, wy = Y vec(W) follows. O

The bound @ < N3z implied by Proposition 5.1 holds for any B = 1, since
F:(1) < F:(B) by (3.7). It is also valid for any Mz = 2, since zeros and arbitrary
columns can be appended to ¢¢ , and F¢ , respectively. Note that @ satisfies
the lower bound in (5.20) also in the hybrid case.

5.3.3 Fully analog beamforming

In a fully analog beamforming architecture, each sensor is connected to the same
Tx or Rx front end through a phase shifter network. This actually corresponds to
the phased array architecture in (3.9), since a single Tx front end implies a single
transmit waveform appropriately delayed at each sensor, i.e., M{=1 = Ng=1.
By (5.2), the Tx/Rx beamforming weight reduces to w; = f:c;, where f; € &:(B)
is the N;-dimensional analog phase shift vector with B-bit phase quantization
and c; € C is a digital gain. Hence, the co-array weight matrix can be written as

Q

W=> crgcigfrqfiy =Frdiag(e)F],
q=1

where the analog and digital beamforming weights of all component images
are contained in the Nz x @ phase shift matrix F; and digital beamforming
weight vector ¢ £ [ct,16r,1,c,2C025--4,Ct,Q cr,Q]T, respectively. Assuming w.l.o.g.
that [cy 4| < 1, we set ¢y g =1 Vq to maximize the Tx combining gain.

The optimal @-component image beamforming weights are then found by
solving the following optimization problem®

minimize |jws - YFioFe |5 subject to Fs e Fs(B). (P5.4)
F:eCVerQcec?
Publication VI, Algorithm 1 presents a gradient descent algorithm for finding
an approximate solution to the non-convex optimization problem (P5.4) in the
case of infinite precision phase shifters, i.e., B — co. This approach leverages the
fact that the objective function is a continuous and differentiable with respect to

6Modifications to Algorithm 1: on line 2 set max.2 = 4max(N,,Ny) if B — 0o, otherwise
max2 = 4Ny (see PVIII, Theorem 3 and Lemma 3). On line 5, solve (P5.4).
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Figure 5.6. Physical array and sum co-array of linear configurations with shared Tx and Rx
sensors. The ULA has N =9 physical sensors, whereas the MRA has N = 6. The sum
co-arrays are contiguous with Ny = 17 virtual elements.

the Tx/Rx phase matrix ®; € RN:*Q by (3.7), and that the optimal digital gain
vector is given by the least squares solution ¢ = (Y(F; o F,))'ws. In the case of
finite precision phase shifters, i.e., B < 0o, the greedy search of Publication VIII,
Algorithm 4 can be applied similarly to the hybrid case discussed in Section 5.3.2.

Each component image of the fully analog beamformer corresponds to a sep-
arate transmission and reception due to the lack of waveform diversity. Publi-
cation VIII, Theorems 3 and 4 show that the number of component images @
is upper bounded by 4 min(N,, Nt) when B — oo, and 4N, Ny when B = 1. The
latter bound can be tightened to @ < 4Ny by application of Proposition 5.1 and
Publication VIII, Lemma 3.

5.3.4 Numerical examples

We illustrate the concepts presented in this section by a simple example using
a uniform and sparse linear array. Further numerical results can be found in
Publication IT and VIII.

Array configuration and sum co-array

Consider the two linear arrays with fully overlapping Tx and Rx sensors depicted
in Fig. 5.6. The ULA has N =9 and the MRA N = 6 physical sensors. Both
arrays have an aperture of L = 8 and a contiguous sum co-array with Hy =17
virtual elements. Fig. 5.7 shows the beamforming weights and PSF's of both the
physical array and sum co-array assuming unit Tx and Rx beamforming weights
and a unit inter-sensor spacing of 6 = /2. The resulting sum co-array weight
function indicates the multiplicity of each virtual element. The sum co-array
weight function is the convolution of the Tx and Rx weight functions. Hence, by
the Fourier transform relation, the effective PSF is the product of the Tx and Rx
PSFs.

PSF synthesis using image addition
Finding the Tx and Rx beamforming weights achieving a desired co-array weight-
ing requires solving the inverse problem (P5.1). In particular, the solution to
(P5.1) yields the minimum number of physical Tx and Rx weighting pairs given
a fully digital beamforming architecture.

For example, let the desired co-array beamforming weight function be a rect-
angular window, i.e., wy = 117. This yields an effective PSF with a narrow main
lobe and a peak side lobe level of approximately —13 dB. Fig. 5.8 shows the
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Figure 5.7. Beamforming weights (blue) and respective beampatterns (red), assuming unit Tx
and Rx weights. The co-array weight function, corresponding to the multiplicities of
the virtual elements per (3.13), is the convolution of the Tx and Rx weight functions.
The effective beampattern is the Fourier transform pair, given by the product of the
Tx and Rx beampatterns.

beamforming weights and PSF's of the ULA and MRA found using Algorithm 1
in Section 5.3.1 combined with Publication VIII, Algorithm 1. The ULA requires
@ =1 and the MRA @ =2 component images when the approximation error
tolerance is set to emax = 1078/ ||w>;||§. If emax = 0, then the MRA must satisfy
@ =2 by (5.20) and @ <4 by (5.21), since the MRA actually coincides with the
CNA for N =6 sensors.

Effect of hybrid and fully analog architectures

In case of a non-digital beamforming architecture, more component images may
be needed to achieve the desired PSF, even in the case of the ULA. Fig. 5.9
illustrates the fully digital, hybrid, and fully analog beamforming architectures
assuming the number of Tx and Rx front ends equal M. Fig. 5.10 shows the
PSF's achieved by Publication VIII, Algorithms 1 and 3 for different values of
@. The phase shifters of the hybrid and fully analog beamformers use B = 3 bit
phase quantization. The coarse phase quantization and low number of front
ends M can be offset by increasing the number of component images @.

By Publication VIII, Theorem 1, the hybrid beamformer with M =2 and no
phase quantization (B — oo) achieves the PSF of the fully beamformer exactly
using the same number of component images, i.e., @ = 1 in case of the ULA and
@ =2 in case of the MRA. If B < oo, then Proposition 5.1 guarantees equivalence
between the hybrid and fully digital beamformer provided @ = Ny = 17. In
practice, Fig. 5.10 demonstrates that already @ = 2 or 4 yields the desired PSF
with negligible approximation error in the hybrid case with M € {2, 3}.

Similar conclusions hold for the fully analog case, albeit for a larger @. By
Publication VIII, Theorem 3, if B — oo, the PSF of the fully digital beamformer
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Figure 5.8. Beamforming weights (blue) and respective beampatterns (red), assuming a rectan-
gular sum co-array weight function. The MRA requires two component images to
achieve the desired co-array weighting, due to having fewer physical sensors than

the ULA.
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Figure 5.9. Fully digital, hybrid, and fully analog beamforming architectures. In the hybrid
and analog cases, each front end and sensor is connected via a phase shifter with

adjustable phase.
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Figure 5.10. PSFs of fully digital, hybrid, and fully analog beamformers. A reduction in the
number of Tx/Rx front ends M can be offset by increasing the number of component
images @. In this example, @ =—2 suffices in the fully digital case, whereas @ = 4-8
may be needed in the hybrid and fully analog cases, respectively. The ULA requires
fewer component images than the MRA due to having has more physical sensors.
The phase shifters of the hybrid and analog architectures use B = 3 bit phase
quantization.
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Figure 5.11. Scattering scene and image obtained by the fully digital architectures. The ULA
requires @ = 1 component image and MRA @ = 2 components.

is achieved by quadrupling the number of component images, i.e., by setting
@ =4 in case of the ULA and @ = 8 in case of the MRA. For finite B, @ =
4N5s = 68 is theoretically sufficient by Proposition 5.1 and Publication VIII,
Lemma 3. Fig. 5.10 illustrates that a much smaller value, e.g., @ = 8, is enough
to approximate the desired PSF in practice.

Note that the PSF ceases to be space-invariant (cf. Section 5.1.3) when arbi-
trary phase shifts cannot be applied to steer the array. For example, when B =3,
only 23 = 8 distinct phase shifts are achieved. The Tx and Rx beamforming
weights therefore need to be recomputed for most steering directions, when
employing coarse quantization. This requires solving (P5.3) in the hybrid case,
or (P5.4) in the fully analog case.

Imaging example

For our final example we consider an imaging simulation. We approximate two
continuous reflectors spaced apart by roughly one beamwidth” using K = 100
point scatterers with magnitudes depicted in Fig. 5.11a. The phases are set to
zero for all scatterers, i.e., £y, =0 V k. For simplicity, we limit our discussion
to the fully digital beamforming architecture and the hybrid beamformer with
M =2 Tx/Rx front ends and B = 3 phase shift bits.

Fig. 5.11b shows the image produced by either of the fully digital arrays, i.e.,
the ULA using @ = 1 or the MRA using @ = 2 component images. The general
shape of the scatterers is resolved, along with the gap between them. Note
that it is less obvious how to apply, e.g., MUSIC or compressed sensing in this
scenario, since the number of point scatterers is much greater than the number
of sum co-array elements, that is, K = 100 > Ny = 17.

Fig. 5.12 shows the image produced by the hybrid beamforming architectures
for @ =1 and @ = 4 component images. In the single image case, the low
number of phase shifts bits results in poor image quality and a loss of resolution,
especially in the case of the MRA. This is due to the fact that the PSF is not
spatially invariant, i.e., the Tx/Rx beamforming weights have to be recomputed

B [198, Eq. (20.10.7)], the full width half maximum at boresight is approximately

0)\8,2?5’1 , which for N3 =17 and 6 = 1/2 evaluates to roughly 6°.
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Figure 5.12. Images obtained by hybrid beamforming architectures. The steering quantization
noise due to the low number of phase shift bits is suppressed by using several
component images.

for each steering direction. Increasing the number of component images to @ =4
suppresses these artifacts, and the resulting image closely resemble that in
Fig. 5.11b obtained by the fully digital architecture.

Fig. 5.13 shows the images produced by the fully digital and hybrid (phased)
arrays in the presence of receiver noise with variance 02 = 1073. The ULA
achieves a higher SNR due to having 3/2 times the number of sensors of the
MRA. In particular, by (5.13), the maximum SNR—assuming a single component
image and no apodization—is SOIOg% ~ 5.3 dB higher for the ULA. The true SNR
difference is 10log gg (7;(1) ~ 1.3 dB, which is obtained by evaluating (5.13) for the
realized component image beamforming weights of the fully digital ULA with
@ =1 and MRA with @ =2 assuming a single boresight scatterer. In the case of
the hybrid beamformers with @ =4, the SNR difference is 10log gg g? ~1.7dBin
favor of the ULA. We note that the beamforming weights are neither orthogonal

nor fully correlated between component images. Specifically, the inter-image
H

% < 0.23 for both the Tx and Rx beamforming

weights of the fully digital MRA. In the hybrid case, the maximum inter-image

Lo ek we |
cross-correlation is maxy; ——&e =0 (.71 for both the Tx and Rx beamform-
97 we g ll2llwe ;2

ing weights of the MRA, and < 0.31 for the ULA. Due to the larger number of
component images, the hybrid beamformer improves the SNR compared to the
fully digital beamformer by 10log gg gg ~ 1.3 dB and 10log gg g} ~ 0.9 dB in case
of the ULA and MRA, respectively.

cross-correlation is

5.4 Discussion

A central goal of this chapter was to characterize the trade-off between the
number of component images and image quality in sparse array imaging. The
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Figure 5.13. Images with receiver noise. The ULA achieves a higher SNR than the MRA due to
having more sensors. Image addition only marginally improves the SNR since the
beamforming weights are approximately orthogonal between component images.

presented results yield a quantitative description of the relation among the num-
ber of component images and the SNR, array sparsity, beamforming architecture,
waveform diversity, or the number of pulses. Note that the considered beam-
former designs essentially leverage redundancy to optimize the beamforming
weights. Even the sum co-array of the MRA generally has redundant virtual ele-
ments, which implies the existence of multiple choices of beamforming weights
yielding a desired effective Tx-Rx beampattern. Minimizing the number of com-
ponent images is advantageous not only for reducing image acquisition time, but
also for simplifying the array architecture and improving the Tx combining gain.
Recall that a MIMO array obtains as many component images  per pulse as the
number of employed linearly independent Tx waveforms Ng. Consequently, if a
desired point spread function can be achieved (approximately) using a smaller
@, then N can also be reduced. This implies both fewer necessary front ends at
the transmitter and matched filters at the receiver. The Tx combining gain is
also increased because some of the Tx sensor outputs are (fully) correlated.

We conclude the chapter by briefly considering image addition in the case of
incoherent scatterers or emitters. Appendix A.7 extends the discussion on image
addition by examining related concepts in imaging applications and beyond.

Incoherent image addition

A careful examination of the assumptions listed in Section 3.1 reveals that
the coherent scatterer assumption (A2) is not invoked until this chapter. In
particular, (A2) is not necessary for deriving the signal model in (3.5). Rather, it
is needed for coherent (“complex”) image addition to work properly when compo-
nent images correspond to different transmissions. A loss of scatterer coherence
between pulses can result in degraded image quality [112]. If the scattering
coefficients fluctuate significantly between pulses, then incoherent (“intensity”)
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image addition [111] may have to be employed instead. This requires computing
second-order statistics of the received data, i.e., the received signal covariance
matrix. If the scatterers are mutually uncorrelated, then the difference-sum
co-array is a more relevant virtual array model than the sum co-array, as pointed
out in Appendix A.2.2.

Naturally, image addition can also be applied to passive sensing and the differ-
ence co-array [111, 9, 62]. Indeed, the nonlinear signal power-based beamformer
discussed in Section 2.3.1 is a prime example of incoherent image addition.
However, differently from the PA case in active sensing, and similarly to the
O-MIMO case, the number of component images @ is less critical in passive
sensing. Specifically, @ does not affect the acquisition time of the image. Imaging
time is rather determined the number of snapshots needed to estimate the data
covariance matrix. Recall from Section 2.3 that at least as many independent
snapshots as physical sensors are required for the sample covariance matrix
to have full rank. If the beamforming architecture is hybrid or fully analog,
then the number of snapshots may need to be increased to compensate for the
reduction in the number of Rx front ends.
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6. Conclusions

A variety of multisensor system applications, such as volumetric imaging, multi-
target tracking, as well as mmWave and beyond radar/communications, impose
increasingly stricter demands on the performance of sensor arrays. In particular,
achieving a high spatial resolution requires an array with a large electrical
aperture. This entails a large number of physical sensors and expensive RF-IF
front ends when conventional uniform array designs are employed. However,
sparse arrays leveraging the virtual co-array model can drastically lower the
number of sensors and front ends, while retaining many of the advantages of an
equivalent aperture uniform array.

This thesis presented novel results in sparse array design and processing for
active sensing. Specifically, Chapter 4 considered sum co-array-based array
designs of the minimum-redundancy type. These array configurations achieve a
contiguous sum co-array of desired size using as few physical sensors as possible.
A contiguous sum co-array has several advantages. For a given physical array
size, it provides a maximum number of degrees of freedom (DoF's) in imaging and
direction finding applications. Many algorithms developed for uniform arrays
can also be directly applied to a contiguous co-array.

Chapter 5 introduced a general framework for linear imaging using low-
complexity beamforming architectures and few component images. Beamforming
provides a simple and computationally inexpensive approach to active sensing.
Hybrid and analog beamforming architectures—either together with, or as an
alternative to sparse arrays—further reduce the number of expensive Tx/Rx front
ends and DACs/ADCs. This may come at the cost of an increase in the number
of component images required to achieve a desired image quality. Minimizing
the number of component images is therefore necessary to reduce the image
acquisition time or the number of linearly independent transmit waveforms and
the related hardware requirements. Next, we summarize the main results of
the thesis and outline directions for future work.

99



Conclusions
6.1 Sparse arrays with a contiguous sum co-array

Chapter 4 proposed a general definition of redundancy that takes into account
different degrees of overlap between the transmitting and receiving arrays.
Based on this definition, we formulated the Minimum-Redundancy Array (MRA)
optimization problem in the case of non-overlapping, partially overlapping, and
fully overlapping Tx and Rx arrays. We computed several novel solutions to
this problem. In particular, we focused on planar MRAs where each sensor is
a transceiver contained in an L, + 1 by L, + 1 rectangular grid. Here, L, and
L, denote the normalized side lengths of the rectangle in units of the smallest
inter-sensor spacing, which is typically half a wavelength. We found all MRAs
for 1=L, <L, <13, and established that the number of sensors N in square
MRAs follows the simple relation N = 4L for at least L <23, where L=L, =L,
is the side length of the square.

We derived several scalable array configurations that are both easy to generate
and achieve a low redundancy for any number of sensors, aperture, or aspect
ratio. For instance, the novel Concentric Rectangular Array (CRA) has several
desirable properties when its side lengths are equal (L = L, = L,). Specifically,
the square CRA achieves the same number of sensors as the MRA for at least all
even 6 < L <22, similarly to the well-known Boundary Array (BA), which has
N =4L sensors for any L = 1. The square CRA is also the MRA with the fewest
closely spaced sensors for at least L € {6,8,10,12}. In the strictly rectangular case
(Ly # Ly), we showed that the Restricted Short Bars Array (R-SBA) achieves
a low asymptotic redundancy for practically any aspect ratio. In the linear
array case (L, = 0), we presented a general framework for symmetric arrays,
which allow constructing arrays with contiguous sum and difference co-arrays
using any configuration with a contiguous difference co-array. The Concatenated
Nested Array (CNA) and Klgve Array (KA) are examples of such symmetric
arrays. The KA has the lowest asymptotic redundancy of any currently known
scalable array with a contiguous sum co-array. It has 0—-27% more sensors than
the MRA of equivalent aperture, when the aperture approaches infinity.

New contributions included in this thesis only are the definition of redun-
dancy for diverse Tx/Rx array overlap in (4.2), the non-overlapping MRA in
Proposition 4.1, and the aspect ratio insensitive R-SBA in (4.8).

The presented novel sparse array configurations provide both theoretically
important bounds on the achievable redundancy, as well as practical array
designs relevant for active and passive sensing.

6.2 Image addition using few component images
Chapter 5 studied active coherent imaging using image addition. Image addition

allows synthesizing arbitrary point spread functions (PSFs) supported on the
sum co-array by linearly combining multiple component images corresponding
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to different Tx and Rx beamforming weights. The number of component images
@ depends mainly on the desired PSF and the sparsity of the array. Specifically,
we showed that any N sensor sparse array with G(N?) sum co-array elements
requires O(N) component images to achieve an arbitrary feasible PSF. For
example, the CNA and square BA satisfy 0.13N < < 0.5N for large N. In
contrast, the Uniform Linear Array (ULA) satisfies 1 <@ < 2 and the Uniform
Rectangular Array (URA) 2 <@ <4, regardless of N.

We furthermore showed that the signal-to-noise ratio (SNR) of image addition
primarily depends on the cross-correlation between the beamforming vectors cor-
responding to different component images. Image addition does not significantly
affect the SNR compared to the single component image case, since the beam-
forming weights are typically approximately orthogonal between component
images. However, using multiple component images facilitates a wider range of
PSFs, which may suppress interference from unwanted scatterers. The number
of component images can at most equal the product of the number of pulses
and linearly independent transmit waveforms. Hence, waveform diversity can
reduce image acquisition time in case multiple component images are used.

Finally, we showed that redundancy provides DoF's in selecting the physi-
cal beamforming weights producing a desired co-array weight function. We
leveraged this fact by formulating an optimization problem for minimizing the
number of component images, subject to the realized PSF being within a pre-
determined tolerance of the desired PSF. We proposed numerical methods for
approximately solving this problem in the case of fully digital, hybrid, and fully
analog beamforming architectures. We demonstrated that hybrid and fully
analog beamformers reduce the number of expensive Tx/Rx front ends at the
expense of a possible increase in the number of component images. For example,
any hybrid beamformer with at least two Tx and Rx front ends can achieve any
PSF of a fully digital beamformer using an equivalent number of component
images @, provided that the phase shifters have continuously adjustable phases.
When the number of phase shift bits is finite, @ is at most proportional to the
number of sum co-array elements. A smaller value of @ usually suffices in
practice, as demonstrated numerically.

Novel contributions included in this thesis only are the characterization of the
SNR of image addition in Section 5.2, the tighter upper bounds on @ in (5.21)
and Proposition 5.1, as well as the inclusion of waveform diversity in the general
analysis of image addition—see (5.6), for instance.

The presented results yield insight into the influence of various system pa-
rameters on the number of component images needed in sparse array imaging.
Furthermore, they provide explicit methods for computing the physical beam-
forming weights yielding a desired effective beampattern. The contributions
are of theoretical and practical relevance to imaging system designers, who
have to weigh the costs and benefits of different array configurations, degrees of
waveform diversity, and beamforming architectures.
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6.3 Open problems and future work

Several research topics remain for future work. The following list highlights
selected directions and open problems suggested by this dissertation:

* Redundancy of MRA. The MRA serves as a benchmark for sparse array
configurations with a contiguous sum co-array. However, the exact re-
dundancy of the MRA is unknown. Novel array configurations could offer
tighter upper bounds on the asymptotic redundancy of the MRA, especially
in the linear array case. In the rectangular case, lower bounds applicable
to any fixed aspect ratio remain to be derived. In the square array case, a
proof or counterexample of the minimum redundancy property of the BA
(for any L = 1) and CRA (any even L = 6) is yet to be found.

* General MRA. Chapter 4 focused on the restricted MRA. However, the
general MRA remains unexplored in the case of fully overlapping Tx and
Rx arrays (cf. Appendix A.4). For example, it is not known if the general
MRA achieves a lower asymptotic redundancy than extremal additive 2-
bases, i.e., solutions to the canonical postage stamp problem. The general
MRA is of interest because it is the least redundant array for a given
number of physical sensors or contiguous DoF's (and aspect ratio).

¢ Joint array and beamformer design. Chapter 5 considered beam-
former weight optimization assuming a fixed array configuration. Variable
sensor positions could nevertheless be accommodated by imposing a joint
sparsity constraint on the Tx and Rx weight vectors of different component
images. This joint array and beamforming weight design problem is closely
connected to blind deconvolution [254] and phase retrieval [72], where
sparsity constraints are regularly employed to obtain unique solutions
[286, 300, 197, 245, 1171.

Other important subjects also merit closer attention. For example, the practical
relevance of this work would benefit from an in-depth study of the discussed
sparse array configurations and beamforming techniques in a specific application.
For instance, ultrasound imaging often entails challenging near field operating
conditions and stringent requirements on the frame rate, which the array and
beamformer designs need to take into account. Likewise, future applications
such as THz sensing [227] or joint sensing and communications [205] warrant
dedicated studies. The considered hybrid beamforming architectures could
also be extended to accommodate for low resolution ADCs, partially connected
phase shifter networks, and mixed digital/hybrid/analog beamforming (e.g., a
fully digital Rx but an analog Tx array). Furthermore, sum co-array-based
adaptive beamforming and high-resolution imaging or direction finding are of
great practical and theoretical interest. It would additionally be valuable to
investigate the Cramér-Rao lower bound of the derived active sensing model
and its extensions—especially from the perspective of the co-array.
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A. Appendix

A.1 Derivation of received signal model

By (A1) and (A2), the received signal #(¢) € CMr at time ¢ is the sum of phase
shifted copies of the transmitted signals contained in vector s(¢) € CV¢, scaled by
the scattering coefficients {y; }le:

K
&) =F; <Zykar(vk)a?(vk)Ftcss(t) + n(t)) :
k=1

Here n(t) € CMr is a receiver noise vector, which by (A5) follows a complex
circularly symmetric normal distribution, i.e., n(¢) ~ €.#(0,02I). By collecting
T snapshots at time instances ¢ = ¢1,%9,...,t7 during one pulse, we obtain the
M, x T received data matrix

X =FYA,TATF.C,S+N),

where S =[s(¢1),...,s(¢7)] is the Tx waveform matrix, and N = [nr(t1),...,n(t7)]
is a noise matrix with i.i.d. zero-mean complex Gaussian entries. By (A2), the
scattering coefficients contained in the diagonal matrix I' are fixed during the
coherence time of the scene.

The received signal then undergoes matched filtering to deconvolve the trans-
mitted signals from the received data and improve the SNR. The data matrix
after this final linear pre-processing stage becomes X = XSH e cM:Ns which
yields the received signal model in (3.4).

A.2 Relaxations to signal model assumptions

In practice, assumptions (A1) to (A5) of Section 3.1 may not hold exactly. For
example, deviations to the sum co-array model may be induced by wideband
waveforms, near field or incoherent scatterers, sensor nonidealities, such as
mutual coupling or cross-talk, as well as interference or clutter.
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A.2.1 Wideband transmit waveforms

Wideband transmit pulses are regularly employed in, for example, radar, sonar
and ultrasound applications to improve range resolution. The narrowband
assumption (A1) may therefore not always be valid. Wideband processing can be
implemented simply using a bank of narrowband processors, or tapped delay
lines after each sensor [278, ch. 6.13]. True time delays should be used to
allow for frequency dependent phase shifting [235]. Interaction between the
transmitted waveforms and frequency-selective scatterers or the (dispersive)
propagation medium may have to be modeled as convolutions in the time domain
or multiplications in the frequency domain.

Fortunately, wideband effects are typically benign and mainly provide addi-
tional DoF's for array processing tasks, such as beamforming and parameter
estimation (assuming frequency-independent reflectivity). Frequency content
beyond the carrier frequency manifests as extra virtual elements in the co-array.
Indeed, since the electrical and virtual array aperture vary with wavelength,
the wideband co-array can be interpreted as the union of narrowband dilated
co-arrays, each corresponding to a discrete frequency in the transmitted pulse
(active sensing) or source signal spectrum (passive sensing) [9, 10]. Specifically,
for transmit pulse with (baseband) frequency support 98, the wideband sum
co-array is [10]

U <1+;)@z={<1+}’:>(dt+dr)

feRB

dgE@g;fEQB},

where f is any frequency in the spectrum of the pulse and 95 is the sum co-array
in (3.12) at the carrier frequency f.. For a large number of discrete frequencies,
or a continuous spectrum, the wideband co-array becomes a continuous virtual
aperture. Bandwidth can thus be exploited to fill the co-array and reduce the
number of physical sensors [192, 37, 220].

A.2.2 Incoherent scatterers

Scattering coefficients may vary between pulses or scans due to small changes
in orientation with respect to the Tx or Rx array [260]. For instance, the radar
cross-section of non-spherical objects can be sensitive to even minor angular
perturbations [248, pp. 33—46]—a fact which is exploited by stealth aircraft.
Scatterers are therefore commonly assumed to be incoherent between pulses
[277, 102]. In this case, (A2) is replaced by the assumption of K uncorrelated
far field point scatterers with zero mean and covariance matrix R, £ [E(yyH) =
diag(p), where p € RK, . For simplicity, consider the O-MIMO model in (3.10).
The covariance matrix of the received signal, R, = E(xx™), then becomes

R.=(A0A)R/ (A 0 AT +0°1.
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Correspondingly, the vectorized covariance, r, £ vec(R,), reduces to
re=(A; A 0A;0A,)p +cvec(I).

The major difference to the received signal model of the O-MIMO array in (3.10)
is that the effective steering matrix is now A{ ©A; © A;© A, which has at most
NENE unique rows. This is obviously much more than N¢N,, which implies that,
compared to (3.5), even more scatterers may be resolved using the same number
of physical sensors [35, 213]. In fact, by (A4), the incoherent measurement model
has support on the difference-sum co-array,

Ps-Ps={di+d.—d|-d, | de,d; €D }.

This reduces to the difference co-array of the Rx (Tx) array for a single Tx (Rx)
sensor. Note that the coherent signal model in (3.5) can be thought of as a
worst-case scenario, as more uncorrelated scatterers than the number of sum
co-array elements can always be resolved.

In practice, the covariance matrix has to be estimated from a finite sample.
This may limit the use of second or higher-order statistics in rapidly changing
scattering environments, where the coherence time is short compared to the
observation period. For example, a full rank estimate of the sample covariance
matrix could require as many as N{N, snapshots, each corresponding to a
separate transmission and reception. In contrast, the coherent signal model
in (3.5) requires only first-order statistics, and is therefore applicable even in
the single snapshot case. Ultimately, the appropriate signal model depends on
the time-dynamics of the sensing environment, as rapidly changing or moving
scatterers will only stay coherent for short periods of time.

A.2.3 Near field scatterers

The far field assumption in (A2) becomes increasingly inaccurate when the
distance between the array and the closest scatterer approaches the electrical
aperture of the array. This may be the case in medical ultrasound applications,
where the scanning probe is in direct contact with the patient.

In the presence of near field scatterers, the true spherical shape of the propa-
gating wavefronts have to be taken into account. The co-array therefore ceases
to have a clear definition and loses some of its utility. However, an approximate
perturbation term to the far field co-array can be derived, yielding insight into
near field effects [142]. This spatially varying co-array [106] depends not only
non-linearly on the sensor positions, but also on the scatterer directions and
ranges. In particular, for a linear array with normalized Tx/Rx sensor positions
9: c Z, inter-sensor spacing 0 € R, a scatterer in direction v € [-1,1], the array
focused in direction u € [-1,1] and range r € R, (of the scatterer), the spatially
varying co-array is [106]
u+v

@“f:{d d
SR w7

(d2+d?) | ey ).
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Consequently, the field of view of the array may have to be decreased with range
for the far field co-array to remain an adequate model in the near field [142, 10].
The useful field of view may be extended by adjusting the beamforming weights
to suppress elevated side/grating lobes caused by the mismatch between the
far and near field co-array models [223]. The co-array has been successfully
leveraged in near field imaging also in practice [8, 57].

A.2.4 Nonideal sensors

Assumption (A4) does not hold for arrays with directional element gain patterns
or nonidealities, such as gain or phase errors [76], mutual coupling [18, 83],
cross-talk [129, 302, 92], or perturbations in the sensor positions [136, 288].
These phenomena can affect the Tx/Rx steering vector a; such that the effective
steering matrix A; ©® A, cannot be expressed as a function of the sum co-array
as conveniently as in (3.11). Array calibration and wavefield modeling [67]
may therefore be necessary to obtain satisfactory performance in various array
processing tasks, such as DoA estimation [30, 61].

In the case of direction-dependent but linear nonidealities, the Tx/Rx steering
vector in direction v assumes the form @(v) = M(v)as(v), where My € CNe*Ne s
a perturbation matrix and a; is the ideal Tx/Rx steering vector in (3.1). This
results in the effective Tx-Rx steering vector

@(v)® @.(v) = (My(v) ® M(v)) (ay(v) ® ax(v)).

For example, the O-MIMO received signal model in (3.10) then becomes

K
x=) (M) eM(vp) (ai(r)®ar(®p))ys +n,
k=1
which is similar to the direction-dependent range-Doppler model in (3.20).
If the nonidealities are direction-independent, then the additional DoF's pro-
vided by co-array are more immediately leveraged [224] (see also [137] for a
similar model). In this case, the perturbed effective Tx-Rx steering matrix is

At OAY =(M;@M,)A(0A,),

where A; is the ideal Tx/Rx steering matrix in (3.2). This can serve as a simple
model for mutual coupling in a linear array of dipole antennas. Typically,
the coupling magnitude and phase of any sensors pair d;¢ ,,d¢ ,, are assumed
inversely, respectively, linearly proportional to the inter-sensor distance |d¢ , —
dg m| [163]. The resulting mutual coupling model is usually of the form

exp(jﬁ |d£,n - d&,ml)
lden—deml+cl(n=m)’

(M), =

where a € C and € [0,27) are parameters representing the coupling magni-
tude/phase offset and the phase increment, respectively. Although such sim-
plified models are mathematically convenient, they often lack physical rigor.
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Mutual coupling is fundamentally a direction and polarization-dependent phe-
nomenon [81]. Accurately assessing its effects therefore requires measurements
or physical modeling [36].

A.2.5 Non-Gaussian noise and interference

Sensor nonidealities, such as mutual coupling, may result in nonwhite or non-
Gaussian noise, which violates assumption (A5). Noise that does not follow a
circularly symmetric complex normal distribution can also be caused by modeling
errors, man made or natural impulsive (heavy-tailed) disturbances, interference,
and outliers in the data [309, p. 126]. The statistics of the noise do not directly
affect the validity of the co-array model. However, robust signal processing may
be required to reliably handle deviations from the ideal noise model [308].

Clutter is a prime example of a non-Gaussian source of interference. Clutter
generally denotes the unwanted reflections caused by scatterers that are not of
direct interest, such as the ground or rain in radar [248, p. 470]. Clutter can be
suppressed by beamforming (cf. Section 5.2), or by Doppler processing when the
clutter occupies the same resolution cell as a scatterer of interest.

Another non-Gaussian disturbance is speckle, which especially affects coherent
imaging systems such as synthetic aperture radar [190]. Like clutter, speckle
is actually signal-dependent interference, as it is a consequence of the surface
roughness of the scattering objects. Speckle is caused by the superposition of
reflections from small (compared to the carrier wavelength) coherent scatterers
within a resolution cell, which may result in significant fluctuations between
pixels in the image. The amplitude and phase of these fluctuations are often
exponentially and uniformly distributed, respectively [190, Eq. (8)]. Speckle
can be mitigated by incoherently averaging multiple images over different view
directions or frequencies [248, p. 528].

A.3 Expression for redundancy of active array

The general expression for redundancy in (4.2) is obtained by decomposing the
set of Tx and Rx sensors into the union of overlapping and non-overlapping
sensors. Specifically, denote the set of overlapping Tx/Rx sensors as

€2 D.ND,.

Hence, Z; = € U(2; \ €) holds. By basic properties of unions and sums of sets
[241, Eq. (3.1)], the sum co-array can then be written as

D+ Dy =CU(D\E)+CU(D\6)

=(E+B)VV(E+DN\CIU(E+D\E)U (D \EC + D\ 6).
Consequently, the number of sum co-array elements satisfies

Dt +Dp| S |C+C|+|C+D\NC|+|C+D \NC|+ D \C +D \F|.
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The maximum number of unique pairwise self sums of N elements is N(N + 1)/2,
whereas the maximum number of unique cross sums between two sets containing
N and M elements is MN. Therefore, the number of sum co-array elements is
upper bounded as follows:

1
Dy + Dy < §|<g|(|<g| +1) + |61\ G| + €11 D: \ €| + |2, \ €112, \ 6.

Substituting |2; \ €| = |2z | — |€| into the previous expression then yields

1
D+ D1 < |412:1 ~ 5 161(161 - 1),

where the right-hand side is the numerator of the redundancy R in (4.2).

Note that for any |2¢|,|2;| and |¥|, the sets 9, and 2, can be chosen such
that equality holds in the above inequality (simply spacing the elements of 2;
adequately nonuniformly and widely apart suffices). By definition, unit redun-
dancy R =1 is achieved if and only if the sum co-array is both nonredundant
and contiguous, i.e., |2 + Dy| = |D¢||D¢| — |€1(|6| —1)/2 and Hs = |9 + Dy |.

A.4 General Minimum-Redundancy Array

Chapter 4 focused on the restricted MRA and other low-redundancy array
configurations with a contiguous sum co-array. However, the general MRA may
actually achieve a lower redundancy by allowing for holes in the co-array.

In the case of non-overlapping or partially overlapping Tx and Rx arrays, the
nested construction in Proposition 4.1 is both a general and a restricted MRA.
However, in the fully overlapping case, little is known about the general MRA.
General linear MRASs correspond to solutions of a generalization of the postage
stamp problem, where the postage stamp values are allowed to be negative.
Compared to the case of strictly non-negative stamp values, the general postage
stamp problem has barely received any attention [19], [95, pp. 246-247]. Two-
dimensional solutions, corresponding to general planar MRAs, are completely
unknown. We note that Publication V extended the canonical postage stamp
problem from N to N2. Solutions to this problem correspond to an intermediate
form between general and restricted MRAs.!

Table 1.1 illustrates the distinction between the restricted and general MRA
using three linear arrays with N =11 sensors, corresponding to

(i) an extremal restricted postage stamp set (a restricted MRA)
(ii) an extremal postage stamp set (not a restricted nor a general MRA)

(iii) a generalized postage stamp set (possibly a general MRA).

LThis terminology is in slight contradiction to Publication IX, where the general MRA
was (improperly) defined as a solution to the canonical postage stamp problem.
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Table 1.1. Restricted MRA, (i), and two less redundant configurations, (ii) and (iii), for N = 11
sensors. The number of contiguous DoFs Hy in (3.14) can be increased by allowing for
holes in the sum co-array. Little is known about the general MRA, which maximizes
Hy without constraining the co-array to be contiguous.

Physical array, 2 2+9 Hs Reference

G {0,1,2,5,8,11,14,17,20,21,22} {0: 44} 45 [132]
Gi) {0,1,2,3,7,11,15,19,21,22,24}  {0:46,48} 47 [134]
Gii) {0,2,3,5,9,13,17,21,23,24,26} {0,2:50,52} 49 [19]

Configuration (i) is a solution to the restricted postage stamp problem, i.e., an
extremal restricted additive 2-basis or restricted MRA, and thus achieves a
contiguous sum co-array with Hs =45 elements. Configuration (ii) is a solution
to the canonical postage stamp problem, i.e., an extremal additive 2-basis, which
achieves Hs =47 contiguous DoF's at the expense of a non-contiguous co-array.
This configuration maximizes Hy under the constraint that the contiguous sub-
array of the sum co-array contains the origin, {0}. By relaxing this requirement,
the number of contiguous DoF's can be increased further to Hy = 49, as con-
figuration (iii) demonstrates. Whether configuration (iii) is a general MRA is
still unknown. Note that there is no obvious a priori reason for the contiguous
subarray of the sum co-array to contain the origin. This is unlike the general dif-
ference MRA, which must contain the origin, as a less redundant configuration
could otherwise be constructed.?

A.5 Variance of beamformer output after image addition

In the following we derive the variance of the beamformer output after image ad-
dition. First, note that (5.5) can be written as y = §+7, where § is a deterministic
signal component and 7 is stochastic noise component. Assuming independent
noise realizations between pulses, the noise term can be expressed as

~

where the beamforming weight vector of the pth pulse is
Wy = Z Sst,q QW q.
qES,

Here, P is the number of pulses and .#, the set of component image indices
associated with the pth pulse—see the definitions in (5.6) and (5.7).

By assumption (A5), the noise vector of each pulse follows a complex circularly
symmetric distribution, n, ~ €40, o2I). Since 7 is a sum of independent

2Proof by contradiction: Assume 2 is the MRA. If {0} ¢ 2 — 9, then |2 - 2| < N(N —-1)/2.
However, the minimum-redundancy NA satisfies |2na — 9nal = N(N +2)/2 -1 [200],
which is greater than N(N — 1)/2 for N = 1. Hence, 2 cannot be the MRA.
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zero-mean complex normal random variables, it also follows a complex normal
distribution with zero mean. By the independence of the noise between pulses,
the variance of #i reduces to

P
=12 2 ~ 12
E(A%) =02 lli, 3,
p=1

where by (3.3) and basic properties of the Kronecker product we have

Z Sst,q ®Wwr g
q€S,

2

2

2

§ : 1/2
Rs Ws,q ® Wr q
qeg, 2

~ 112
5 =

Hence, the variance of the noise or the beamformed signal y is

2

E 1/2
Rs Ws,q ® Wr,q
qeg, 2

p
E(ly-E0P®) =E(aH) =0
p=1

In the single component image case @ = 1, which implies P = 1 since P = [®/N;],
we recover the variance of the beamformed output without image addition, i.e.,
02||R§/2ws||§||wr||%, as asserted in (5.3).

A.6 Lower bound on number of component images of URA

Consider a URA with N = N, N, transceivers, where N, and N, denote the
number of physical sensors in the x and z dimensions. The number of sum
co-array elements is Ny = hyhy = (2N, — 1) (2N, —1). The lower bound on the
number of component images can thus be written as @ = g, where by (5.20)

g:N—\/N2—4N+2(Nx+Ny)—1.

We now show that if the array is strictly planar, i.e., N;,N, = 2, then (5.20)
implies that @ = 2. First note that

1=N-V(N-12=N-+/N2-2N +1.
Consequently, g > 1 if and only if
2N +2(Nx+N,)-2<0 <= 0<(N, -1, -1).

If Ny,Ny =2, then (N, —1)(N, - 1) > 0, which implies that g > 1,1i.e., @ = 2. It is
easy to verify that actually g < 2. Again, note that

2=N-V(N-22=N-+N2-4N +4.

This implies that g < 2 if and only if
5
2(Ny+Ny)-520 < N,+N,-1= 2

If Ny,N, =2, then N, + N, — 1 =3 >5/2, which implies that g < 2. Consequently,
@ = 2 is the greatest lower bound that follows from (5.20) in case of the strictly
planar URA.
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Appendix
A.7 Image addition: a general framework for linear imaging

In this appendix, we shortly consider previous works related to image addition
and examine connections to applications beyond active imaging. In particular,
we offer a broad interpretation of image addition as a general framework for
linear imaging techniques.

A.7.1 Origins and related concepts in imaging

The origins of image addition can be traced back to the mid 1960s. Early
works by Gabor et al. considered the phase-coherent summation of component
images in optical holography [88]. Around the same time, Wild applied sim-
ilar ideas to incoherent imaging in radio astronomy using annular apertures
[295]. Hoctor and Kassam later generalized Wild’s image synthesis method
to both coherent and incoherent imaging using the co-array formalism [111].
In particular, Kassam et al. used image addition to match the image quality
of elliptical, rectangular, and arbitrary convex polygonal continuous apertures
with a filled interior using only (subapertures on) the boundary of the array
[178, 121, 122, 139, 141]. Kozick and Kassam also considered approximating the
image quality achieved by continuous apertures using SVD and a finite number
of sensors and component images [139, 140].

Curiously, image addition is rarely explicitly mentioned in the contemporary
array processing literature. Active sensing and imaging nevertheless routinely
employ multiple transmission-receptions, or transmission schemes based on
synthetic aperture techniques, waveform diversity, or multiple frequencies, as
pointed out in Section 2.4 and Appendix A.2.1. All of these approaches fit within
the image addition framework. Indeed, the co-array can be synthesized and
weighted in various ways using multiplexing in time, space, or frequency. For
example, synthetic aperture radar (SAR) is a form of temporal multiplexing.
SAR, which is routinely employed by remote sensing satellites [190], uses the
motion of the transmitter or receiver to create a large virtual array (co-array)
that improves resolution compared to the stationary array. SAR techniques are
also employed in passive sensing in conjunction with sparse arrays [219, 218].

In ultrasound imaging, so-called plane wave compounding [189] is a popular
method with parallels to image addition and synthetic aperture techniques. In
plane wave compounding, several defocused transmissions are used to reduce
the scan time by avoiding transmit focusing. The component images are linearly
combined post-acquisition to form a composite image by synthetic focusing. This
may be interpreted as a form of image addition, where the transmit weights of
the component images are chosen to produce plane waves at diverse angles. De-
focused transmissions are a practical alternative to range focusing on transmit
when a high frame rate is required. Plane wave compounding, together with
compressive sensing techniques [284, 44], Fourier-domain processing [55, 54], or
sparse arrays [60] enable real-time three-dimensional imaging, which is of par-
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Appendix
ticular importance in medical imaging applications, such as echocardiography.

A.7.2 Connections beyond imaging

The key ideas of image addition have also independently emerged in non-imaging
applications. In the design of multistage separable two-dimensional filters, the
response of any filter can be decomposed into a sum of (separable) filters ex-
pressible as the product of a pair of one-dimensional filters [269]. The filter
coefficients of the one-dimensional filters are analogous to the physical beam-
forming weights of the Tx and Rx arrays. The analogy is particularly appropriate
in case of the fully digital beamformer. For example, [247] considered reducing
the computational complexity of separable filter learning by solving a real-valued
unconstrained optimization problem similar to the nuclear norm relaxation of
(P5.1) discussed in Section 5.3.1 and Publication II.

Problems with Kronecker structure akin to that encountered in image addi-
tion have even appeared in communications. For instance, a low-dimensional
Kronecker factorization of the Rx beamforming vector can yield a computational
advantage in massive MIMO systems employing planar arrays and beamforming
in both azimuth and elevation [229]. Multiple transmissions (corresponding to
@ > 1) are generally avoided in communications when spectral efficiency is of
principal concern.

Moreover, image addition is fundamentally connected to so-called blind prob-
lems [11, 161, 300], such as blind deconvolution in image processing [254, 144,
153], blind channel identification or equalization in communications [171, 268,
195], and self-calibration in array processing [75, 82]. Indeed, the task of recov-
ering the unknown Tx and Rx beamforming weights from their convolution—the
sum co-array beamforming weight function—is a (noiseless) blind deconvolution
problem. Note that image addition modifies the standard blind deconvolution
problem by allowing for the desired result to be comprised of the sum of several
convolutions (for example, see [181]).
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Errata

Publication |

In Section II-D1 and Table I, the aperture and number of elements of the PA should
be L=N(N +1)/4-1/2 and N =(v16L +9—1)/2. In (5) and Table I, the upper bound
on R, in case of the MRA should be 1.92. Correspondingly, the last column of Table I

should read (from top to bottom): 0.72-0.79; 1; 1.02-1.12.

Publication Il

The third row of the second column on the first page should read: “...[7] is one solution

that extends symmetrical MRAs into a ...”.

Publication IV

The last sentence of Section II-B1 should read: “For example, any linear array...”.
Corrections to Table I: in case of the MRA S(2) = 0 and R, < 2; in case of the URA
S(2) =2(LyL, - 1). It should be noted that the results in Table I hold for L,,L, =2 in

case of the MRA and BA, and L,,L, = 4 and even in case of the CRA.
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Errata

Publication VII

In Definitions 1 and 4, S(d) and 2 should be S(d) =), ; <5 1(dy—dn =d) and

92 ={0:N1+1:(Ng—1)(N7+ 1)}, respectively.

Publication VIII

In Section VII-E, the dimensions of the one-dimensional Dolph-Chebyshev window

should be 2-17 — 1 = 33, that is, wpc € R33.
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Multisensor systems are a key enabling technology in, e.g., radar, sonar,
medical ultrasound, and wireless communications. Advantages of using
multiple sensors include spatial selectivity, improved signal-to-noise
ratio, and the capability to reject unwanted interference.

Conventional multisensor systems employ a simple array of uniformly
spaced sensors. However, a uniform array spanning a large electrical
aperture may become prohibitively expensive, as many sensors and
costly electronics are needed. In contrast, sparse sensor arrays require
drastically fewer resources to achieve comparable performance.

This dissertation proposes novel sparse array designs and signal
processing methods for active sensing and imaging. These cost-effective
arrays resolve vastly more scatterers than sensors, and synthesize
transmit-receive beampatterns that are conventionally achieved by
uniform arrays only. The dissertation also develops methods for
coherent linear imaging, where image quality is improved by summing
multiple component images. The component images may correspond to
separate transmissions and receptions depending on the employed
beamforming architecture and waveform diversity. The contributions of

the thesis are of practical value in the design of sensor arrays for active

sensing.
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