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Abstract—Intrusion Detection Systems are commonly used
by organizations to monitor network traffic and detect attacks
or suspicious behaviours. However, many attacks occur across
organizations and are often difficult to detect using any single
IDS. Collaborative Intrusion Detection Systems could lead to
more accurate prediction and detection of cyber threats as well
as a reduction of security administrators’ workload as similar
threats from different places can be merged. However, most
organizations are unwilling to disclose sensitive information about
their internal network topology and traffic, lending these systems
unusable. Existing solutions using homomorphic encryption and
secure multi-party computation are often expensive. In this
paper, we propose efficient and privacy preserving techniques to
correlate alerts generated at different organizations. We propose
sk Prototypes, a distributed clustering algorithm for horizontally
partitioned mixed data using additive secret sharing. This algo-
rithm can be used to create a privacy preserving, collaborative
intrusion detection system. We also propose dpkPrototypes
which uses differential privacy on categorical attributes and
is more efficient than skPrototypes for categorical attributes
with many distinct values. Theoretical and experimental results
validate the effectiveness of our algorithms.

I. INTRODUCTION

Deployed Intrusion Detection Systems (IDS) monitor com-
puter networks and provide organizations with data concern-
ing potential malicious activity occurring on their networks.
Machine learning techniques can be employed on the data
collected by these systems to help predict and prevent further
malicious activity on these networks. However, in order for
machine learning techniques to be successful in analyzing
data and predicting how and when certain attacks are going
to occur, a large data set is needed to train the machine
learning model. Multiple organizations often experience the
same types of attacks, sometimes occurring from the same
malicious actors. A commonality of attacks and actors leads
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to the potential for multiple organizations to benefit from the
training of a machine learning model with the data collected
from intrusion detection systems deployed across multiple
computer networks belonging to different organizations.

Collaborative instruction detection systems (CIDS) [1] can
conduct intrusion detection in a distributed manner. More
specifically, each local intrusion detection system monitors its
local network and generates alerts or other security data that
can be correlated, aggregated, and analyzed by a collaborative
analysis unit. However, with the increasing emphasis on data
privacy and security, participating organizations are expected
to be wary of training a collective machine learning model,
unless their sensitive data is guaranteed to be kept private and
secure from the other participating clients.

Existing solutions for privacy-preserving collaborative intru-
sion detection use homomorphic encryption [2], [3] or secure
multi-party computation [4], [5] techniques. The idea is to
use these techniques to correlate or aggregate alerts generated
from local IDS. However such techniques are expensive [6]
and do not scale to accommodate big data.

In this paper we focus on a common task in CIDS: the
aggregation and correlation of similar alerts generated by local
IDS using privacy-preserving clustering. Although privacy-
preserving clustering has been studied [7], [8], most solutions
apply to either numerical data or categorical data, whereas
alerts often have both categorical and numerical data. In this
paper, we make the following contributions:

1) We propose skPrototypes, a privacy preserving, col-
laborative clustering algorithm based on additive secret
sharing for horizontally partitioned mixed numerical and
categorical data. Additive secret sharing has been shown
to be more scalable than homomorphic encryption tech-
niques [6]. We apply this algorithm to the analysis of
the intrusion alert data collected by intrusion detection
systems across multiple organizations.

2) We propose dpk Prototypes which applies a differential
privacy technique on categorical attributes. Using differ-
ential privacy reduces communication overhead of secret

Authorized licensed use limited to: University of Maryland Baltimore Cty. Downloaded on February 07,2022 at 13:54:57 UTC from IEEE Xplore. Restrictions apply.



addition on categorical attributes without compromising
privacy.

We performed preliminary experiments comparing
skPrototypes and dpk Prototypes with a non privacy-
preserving baseline. The results show reasonable over-
head of our proposed approaches. Interestingly, although
dpk Prototypes reduces communication cost in each
iteration of clustering, it does not lead to lower overall
communication costs compared to skPrototypes be-
cause the noise introduced by differential privacy leads
to slower conversion of clusters. This is a trade off that
is worth further investigation.

3)

The rest of the paper is organized as follows. Section II
gives a survey of related work. Section III reviews necessary
background regarding clustering for mixed data. Section IV
describes the two algorithms we propose. Section V analyzes
the costs of our proposed algorithms. Section VI examines pri-
vacy concerns regarding what is protected and what is revealed
by our approach. Section VII reviews our experimental results.
Section VIII gives our conclusions and considers future work.

II. RELATED WORK
A. Federated Learning

Federated learning [9] builds a machine learning model
from data distributed at multiple sites without sharing the data
directly. Instead, the machine learning step is distributed to
local sites and intermediate results are shared. A recent survey
of this approach is found in [10]. Our efforts fit the Horizontal
Federated Learning task described in [10] where the data
set used to train the machine learning model is horizontally
partitioned across the collaborative clients, meaning that the
participating clients have their own data sets which share
the same feature space but differ in samples. In the case of
collaborative Intrusion Detection Systems, data could also be
considered horizontally partitioned since each client shares a
similar feature space (i.e. source and destination IP addresses
and port numbers, timestamps, alert types, and protocols across
network traffic), but different samples since the participating
clients are collecting this similar data on their own networks.

B. Secure Multi-Party Computation and Secret Sharing

Secure multi-party computation uses cryptography proto-
cols to compute a function over data distributed at multiple
parties without revealing data at each party. Cramer et al.
[11] surveyed the theories and practices of Secure Multiparty
Computation (SMC). Two commonly used SMC techniques
are homomorphic encryption and secret sharing. In our work,
we use Secret Sharing to implement a k-prototypes clustering
algorithm on horizontally partitioned mixed data as part of a
collaborative, privacy preserving intrusion detection system.

C. Distributed Privacy Preserving Clustering

K-means clustering is a popular clustering method for
numerical data. A survey of privacy preserving k-means
clustering can be found in [7]. For data with categorical
attributes, Dash et al. proposed a priavcy preserving k-medoid
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algorithm [8]. Doganay et al. [12] proposed several algo-
rithms for K-means clustering with additive secret sharing
for vertically partitioned data sets. In these methods, parties
distribute random shares of its own data to all other parties in
the computation. Our approach proposes privacy-preserving
clustering techniques for horizontally partitioned data with
mixed types.

D. Collaborative Intrusion Detection

The state of the art for CIDS is described in [1]. CIDS share
data from multiple organizations to more effectively detect
attacks. This can be accomplished with both active measures
such as the deployment of honey pots, and passive measures
such as end point monitoring. In our work, we focus on sharing
and correlating data collected by passive measures to detect
intrusions.

There are three types of architecture for a CIDS: 1) cen-
tralized systems which correlate and analyze data on a single
machine, 2) hierarchical systems that aggregate data before
forwarding it to the next level in the system architecture, and
3) distributed architectures that share alert correlation responsi-
bilities across all machines in the CIDS. In the centralized and
hierarchical architecture, there is a single point of failure (the
machine that does the final analysis) as well as a bottleneck
point when large amount of data needs to be correlated. In our
work, we assume the distributed architecture.

Do and Ng [13] proposed a privacy-preserving collaborative
intrusion detection system where participating organizations
can encrypt their intrusion alert data and outsource their data
to a shared server to reduce the cost of data storage and
maintenance. It also discusses three different types of alert
correlation algorithms: similarity-based methods, sequential-
based methods, and case-based methods. It defines similarity-
based methods as techniques that cluster and aggregate intru-
sion alerts based on the similarities of some selected features,
such as source and destination IP addresses, source and des-
tination port numbers, protocols, time-stamp information, and
alert types. It defines sequential-based methods as techniques
that correlate alerts by using causality relationships among the
alerts. Finally, it defines case-based methods as techniques that
rely on the existence of a knowledge-based system to represent
well-defined attack scenarios. The solution we propose in this
paper falls into the category of similarity-based correlation
methods.

E. Differential Privacy

Differential privacy [14] is a strong privacy model that pro-
vides worst case privacy guarantees. Essentially, adversaries
cannot distinguish the results generated by two data sets that
differ by a single record. More specifically, let Dy and D,
be two data sets that differ by just one record. Let X be a
randomization method that outputs a result r given a data set.
Let Px (D1, r) be the probability of X generating r given D1,
and Px(Ds,r) be the probability of X generating r given
D5,. The randomization mechanism is « differential private

O<a<l)if % is in the range of [a, 1/«]. Note that
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this definition is a simplified version of the standard definition
where a privacy budget ¢ is used and here o = e™¢.

The Laplace mechanism [14] is a commonly used method
to implement differential privacy. A drawback of the Laplace
mechanism is that it only works for numerical data and the
noise is unbounded. Nonetheless, [15] provides a two-sided
geometric mechanism which instead outputs discrete noise and
is more suitable for categorical attributes. « is a parameter
that controls the degree of privacy protection (also called
privacy budget). The geometric mechanism generates noise z
by: Pr[Z = z] = 3=2al?l, for every integer z. The perturbed

. . o™
data is “«- differential private.”

III. BACKGROUND
A. K-Prototypes Clustering for Mixed Data

Our approach for a privacy preserving, collaborative in-
trusion detection system uses a modified version of the k-
means clustering algorithm to generate clusters of related
security alerts sourced from multiple local intrusion detection
systems. Security alerts contain both numerical attributes such
as timestamps and IP addresses, as well as categorical data
values such as the names of alert classifications.

The k-means clustering algorithm computes Euclidean dis-
tance from a data point and each cluster centroid. The data
point is then assigned to the cluster it is closest to. After this
has been done for all data points in the data set, the center of
each cluster is recalculated by taking the mean of all of the
data points assigned to that cluster. These two processes are
repeated until the cluster centroids converge.

We used k-prototype clustering [16] which is a modified
version of k-means that works for mixed types of data.
The clustering algorithm for alert data in the centralized
case,ckPrototypes, is provided in Algorithm 1.

For our application, we refer to data points as entities,
which, in our experiments, are defined as security alerts. The
alert data used in this paper is generated by SNORT [17]
and contains the following attributes: source IP, destination
IP, timestamp, rule ID, source port, destination port, and alert
type.

We compute the distance between two entities as follows.
Let w;; be the j-th attribute of entity x;, N be the set of
numerical attributes, and C' the set of categorical attributes. We
use Euclidean distance to calculate the distance between two
entities for numerical attributes. For a categorical attribute, the
distance equals zero if the two entities have the same value
for the given categorical attribute (an exact match), and the
distance equals to one otherwise, as in [16]. More specifically,
the distance between two entities x; and x; is

Z(xij _-le)2+’yzé(ximxlu) (1)

JjEN ueC

Here, §(2iy, 1) = 0 if @, = xyy, and 0(x4y, x1) = 1 if
Tiy F Ty 7Y 1S @ weight parameter.

Another difference between k-prototype and k-means is
recalculation of cluster centers. In standard k-means clustering
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for numerical data, the mean value of an attribute of each entity
in a cluster is calculated and set as the new value for its re-
spective attribute in the cluster’s centroid. This method works
for numerical attributes, but not categorical ones. Instead, k-
prototype computes the mode value for a qualitative attribute
across the entities as the value for the centroid’s attribute, as
in [16]. Note that to compute mode we need to compute the
frequency of each distinct value of a categorical attribute in a
cluster.

Algorithm 1 : ckPrototypes()

1: initialize cluster centroids to random values

2: finished = false

3: while not finished do

4:  for all entities e do

5: assign e to nearest cluster
6: end for
7
8

for all clusters do

set new centroid to average (for numerical attributes)
and mode (for categorical attributes) of contained
entities

9:  end for

10: if distance(old centroids, new centroids) < ¢ then

11: finished = true

12:  end if

13:  centroids = new centroids

14: end while

B. Additive Secret Sharing

Our solution uses additive secret sharing [11]. We selected
additive secret sharing instead of other secret sharing methods
such as Shamir’s secret sharing [18] because of its low com-
putation overhead. In our application, the sensitive data that
cannot be shared with each party are the values of source and
destination IP addresses, timestamps, and the modes of each of
the categorical data features in the local data-set of a party. We
implemented additive secret sharing by making shares of both
the frequencies of distinct values of the categorical attributes
(necessary to compute the mode) and values of timestamps
and IP addresses (numerical attributes).

The general method used to make n shares of an integer
value s and return those shares in an array is described in
Algorithm 2. In additive secret sharing, to make n shares of an
integer secret s, n — 1 random shares are created by randomly
choosing integers or doubles respectively between 0 and s
exclusive, so that:

rn=(s—1r1—re—..rp_1) mod Q

The last share is modulo divided by a large prime Q. To
reconstruct s, one just needs to sum up all shares and then
modulo Q. If a numerical attribute has a floating point number,
we can convert it to integer by multiplying a large integer and
then rounding it to the closest integer.
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Algorithm 2 : makeShares(int s, int n)

Algorithm 3 : hkPrototypes()

1: int lastShare = s

int thisShare = 0

for all integers i in the range (0, n-2) do
thisShare = random int in range (0, Q)
lastShare = lastShare - thisShare

end for

shares[n-1] = lastShare

return shares

mod @

IV. PRIVACY-PRESERVING K-PROTOTYPES CLUSTERING
FOR HORIZONTALLY PARTITIONED MIXED DATA

A. Horizontally Partitioned K-Prototypes Algorithm

We propose a modified ck Prototypes clustering algorithm
to work in a decentralized, multi-party case, with horizontally
partitioned data. Each party owns a subset of the full data-
set, with each subset having the same structure (attributes).
The modified algorithm can be applied to the clustering of
IDS alerts across a number of multiple contributing parties
each with their own sets of alert data. Our implementation
assumes that each contributing party could shares its own
data with all of the other contributing parties, but the com-
putation is distributed. Algorithm 3 shows the pseudo-code
for hkPrototypes, the clustering algorithm implemented for
this horizontally partitioned scenario. The approach for a
multiparty case is similar with the one in ckPrototypes in
terms of how entities are assigned to a cluster, but each party
does its own assignment (see lines 4-8 in Algorithm 3), and
computing a cluster’s centroid requires cooperation between
parties, as shown in lines 9-15 in Algorithm 3.

B. Privacy Preserving K-Prototypes Clustering Algorithm

We propose sk Prototypes, a privacy-preserving version of
hk Prototypes. skPrototypes uses additive secret sharing to
protect sensitive values. We used secret sharing because it is
more efficient than other cryptographic methods.

In our algorithm, shown in Algorithm 4, the assignment
of entries to the nearest cluster is not affected because each
party only needs to use its local data. The step to recompute
centroids does require information from all parties. In order
to make this step privacy preserving, the calculation of cluster
centroids is done with additive secret sharing as defined as
secureEntitySumProtocol in Algorithm 5.

In this secure sum protocol, each party computes the local
sum of each of the features of the local entities within a given
cluster (Lines 1 to 7). For numerical attributes, the local sum
is simply the sum of each attribute’s values. For a categorical
attribute, the local sum is the frequency of each distinct value
of that attribute.

Next, each party splits each entry in the local sum into
n random shares, where p is equal to the number of parties
(line 8). p — 1 shares are then distributed to other parties.
Each party then computes the intermediate sum by adding
up all of the shares it has received from all of the other
parties as well as its local share. Finally, all parties, other
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1: initialize cluster centroids to random values

2: finished = false

3: while not finished do

4:  for all party p; do

5 for all entities e at party p; do

6: assign e to nearest cluster

7 end for

8: end for

9:  for all clusters c do

10: for all parties p; do

11: compute local sum of numerical attributes in clus-
ter ¢ and frequencies of distinct values for categor-
ical attributes

12: send these local sums and frequencies to a ran-
domly chosen coordinator
13: end for
14: The coordinator computes new centroid as average
(for numerical attributes) and mode (for categorical
attributes)

15:  end for

16:  if distance(old centroids, new centroids) < t then
17: finished = true

18:  end if

19:  centroids = new centroids

20: end while

than a randomly chosen coordinator, send their intermediate
sum to the coordinator. The coordinator computes the final
sum by adding up all of the party’s calculated intermediate
sums. The secureEntitySumProtocol is repeated for all clusters
to calculate the final sums of each cluster. For numerical
attributes, the final sums are then divided by the total number
of entities within each respective cluster to calculate the
resulting centroids. For categorical attributes, the algorithm
selects the distinct value with highest frequency (i.e., the
mode) for the new centroid.

Figure 1 shows an example of skPrototypes. There are
three parties and two attributes are shown: timestamp and rule
ID. We only show the values for the ruleID that appear in the
dataset. The example shows one cluster, where rule ID has two
distinct values (Snort rule 1003 and 957) in the cluster. Each
party has a local sum computed for the numerical attribute
(timestamp), as well as a count for each distinct value for
categorical attributes. The random shares are also shown below
the local sum. Party 1 will send the second random share (the
second row in its random share table) to party 2 and send
the third random share to party 3. Party 2 and 3 will do the
same. Each party then computes intermediate sum based on its
own random share (e.g., row 1 for party 1) and random shares
received from other parties. Finally these intermediate sums
will be sent to a randomly chosen coordinator to compute the
final sum.
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Algorithm 4 : skPrototypes()
1: initialize cluster centroids to random values
2: while not finished do
3. for all party p; do
4 for all entities e at party p; do
5 assign e to nearest cluster
6: end for
7
8
9

end for

for all clusters c do
c.centroid = secureEntitySumProtocol(c) / (number
of Entities assigned to c¢)

10:  end for

11:  if distance(old centroids, new centroids) < ¢ then
12: finished = true

13:  end if

14:  centroids = new centroids

15: end while

Part 1's Local Sum Part 2's Local Sum

Times | Count | Count | Cluster ' i

Part 1's Intermediate Sum Times |Count | Count | Cluster
tamp | 1003 |957 -

) Times | Count | Count | Cluster tamp {1003 [957
3760 |20 |10 1
' tamp | 1003 | 957 800 |25 |14 1

PartUsRandomShares 1000, | 1044 |graa=|1 |, Part 2's Random Shares
1000 (10 |4 1 _

ﬁgg* 3|2 50 (6 |4 |1
1260 |6 2 1 =

3600 | ¢ 2000 |6 6 1
1 4 4 1
0 ——{1300 13 |4 1

Part 2's Intermediate Sum

Algorithm 5 : secureEntitySumProtocol(Cluster ¢)
1: for all Party p; do
2:  Initialize localSum as an array of zeros, with one entry
for each numerical attribute and one entry for each
distinct value of a categorical attribute
3:  for all Entities e on p; do
if e.isAssignedTo(c) then
5: for numerical attributes, add e’s value to the
corresponding entry in localSum; for categorical
attributes, add one to the entry corresponding to
the value of e.
end if
end for
8:  Entity[] shares = makeShares(localSum, numberOfPar-
ties)
9:  for all Other Parties p; do

10: party p; sends shares[j] to p;

11: p;.intermediateSum += shares from party p;

12 end for

13: end for

14: for all Parties p; other than a coordinator o do

15:  send p;.intermediateSum to coordinator o

16:  coordinator o computes finalSum += p.intermediateSum
17: end for

18: return finalSum from o

C. Using Differential Privacy for Categorical Data

One problem of skPrototypes is the communication over-
head for computing secret shares of categorical attributes. For
a numerical attribute, only p shares need to be sent by each
party. For a categorical attribute with d distinct values, each
party needs to send dp shares where p is the number of
parties. The overall communication overhead for a categorical
attribute for one iteration of clustering is O(dp?) because there
are p parties. The communication overhead can be high for
categorical attributes with many distinct values. Security alerts
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Part 3 Local Sum Times | Count | Count | Cluster
Times | Count | Count | Cluster tamp {1003 | 957
tamp 1003 | 957 _

Part 3's Intermediate Sum o 1260+ | G| 246432 1
3800 (15 |10 1 il 2000+ |=18 |11
} Times | Count | Count | Cluster 2300=

Part 3's Random Shares famp | 1003 |957 5560

o 3 4 1 1500+ [4+13+ | 44443= |1 Fdlsum @
200 |6 3 ! 1300+ 623111 Times | Count | Count | Cluster
w s |3 |1 400 amp |1003 |957
=3200 -
12360 |60 |34 1
Fig. 1. Example for skPrototypes

Part 1's Local Sum Part 2's Local Sum

Times_ | Count | Count | Cluster | part 1 ntermedate Sum Times | Count | Count | Cluster
tamp | 1003 |957
i Timestamp | Cluster tamp_| 1003 |57
3760 |20 |10 1 4800 |25 |14 1
part 1's Random S 1000+1500+11 |1 N
art 1 Random Shares, 003600 Part 2's Random Shares, perturbed count
perturbed count
1500 {22 |16 1
1000 {13 |14 1 —
‘ 2000 1
1260 1 —
— —11300 1
1500 1

Part 2's Intermediate Sum

Part 3's Local Sum

Timestamp Cluster
Times | Count | Count | Cluster
" 1260+2000+2300= |1
tamp 1003 | 957 5560
Part 3's Intermediate Sum
3800 |15 |10 1 A T
Timestamp Cluster Final Sum l
Part 3's Random Shares, -
perturbed count 1500+1300+400 1 - Times | Count | Count | Cluster
~ tamp | 1003 | 957
1m0 {19 |4 |1 =3200
] 12360 (54 |34 1
2300 1
400 1

Fig. 2. Example for dpkPrototypes

typically contain many categorical attributes and some of them
(e.g., port number) have many distinct values.

To address the communication overhead issue, we propose
another algorithm, dpkPrototypes which uses differential
privacy for the categorical attributes. This algorithm works
exactly as sk Prototypes for the numerical attributes, but uses
an approximate frequency for each distinct categorical value
and sends this approximate frequency directly to all other
parties, so there is no need to send random shares for the
categorical attributes. As a result, the communication overhead
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is reduced from O(p?d) to O(pd) for each categorical attribute.

The pseudo-code for the dpkPrototypes algorithm is the
same as for skPrototypes shown in Algorithm 4, but instead
of using secureEntitySumProtocol in line 9, it uses the
dif ferentiallySecureEntitySumProtocol shown in Algo-
rithm 6. Algorithm 6 describes our method of computing a new
centroid using both secure sharing and differential privacy. For
numerical attributes, secure sharing is used. For categorical
attributes, noise is added to frequency of a distinct value v,
based on privacy parameter a.

We use a noise following truncated two-sided geometric dis-
tribution [15]. The two-sided geometric distribution is defined
as below:

1l-«a
Cl+a

Algorithm 7 shows the details of how the noise is added. First,
a random number z in the range of 0 to 1 is generated (line
1). If z is less than ;—g, the algorithm returns the original
frequency (line 4) because this is the probability when noise
z = 0 in Equation 2. Otherwise, it will compute the new
frequency. In line 7 another random number v is generated
and line 8 computes x = Ceiling(log(u)/log(1 — p)), which
follows standard geometric distribution based on inverse trans-
form sampling [19], a classical method to generate random
numbers following a distribution. Lines 9 to 12 flip z’s sign
to negative with 0.5 probability so as to make z follow a two
sided geometric distribution.

The remaining issue is that noise needs to be truncated such
that the perturbed frequency must be in the range of zero to
maximal possible frequency (i.e., number of entities in that
cluster). This is resolved in lines 13 to 20 where the perturbed
frequency is truncated to zero or the maximal frequency if it
is less than zero or greater than maximal frequency, thereby
enforcing « differential privacy according to [15].

Figure 2 shows an example of dpk Prototypes. The setup is
the same as Figure 1. The difference is that now for categorical
attributes (rule ID here), only perturbed count is computed for
each distinct value of categorical attributes. For instance, at
Party 1 the perturbed count for rule 1003 is now 13 instead
of the original count 20. Only random shares of numerical
attributes need to be sent to other parties. For categorical
attributes, the perturbed count will be directly sent to the
chosen coordinator to compute final sum. In this example,
although the final count of rule 1003 and 957 are different
from the correct count shown in Figure 1, the relative order
between these two counts is still preserved so rule 1003 will
be still the mode for the new cluster centroid.

Pr(Z = 2] al?l 2)

V. ALGORITHM COST ANALYSIS

In this section we consider the costs of our algorithms.
Let n be the number of entities, k be number of clusters,
p be number of parties, m, be the number of numerical
attributes and m. be the number of categorical attributes. At
each iteration, the hkPrototypes method needs to compute
distances between every data entity to cluster centroids. For
numerical attributes, the cost is O(m,,) for each distance
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Algorithm 6 : differentiallySecure
EntitySumProtocol(Cluster c)
1: for all Party p; do
2:  Initialize localSum as an array of zeros, with one entry
for each numerical attribute and one entry for each
distinct value of a categorical attribute
3:  for all Entities e on p; do
if e.isAssignedTo(c) then
5: for numerical attributes, add e’s value to the
corresponding entry in localSum; for categorical
attributes, add one to the entry corresponding to
the value of e.
end if
end for
for all categorical attribute A do
for all distinct value v of A at party p; do
set frequency of v = perturb(frequency of v from
localSum)
11: end for
12:  end for
13:  Entity[] shares = makeSharesNumericalOnly(localSum,

@ 9 23D

numberOfParties)
14:  for all Other Parties p; do
15: party p; sends shares[j] for numerical attributes to p;
16: p;.intermediateSum += shares from party p;
17 end for
18: end for

19: for all Parties p; other than a coordinator o do

20:  for numerical attributes, p; sends p;.intermediateSum to
coordinator o

21:  coordinator 0
p;.intermediateSum

22:  for categorical attributes, p; sends perturbed frequency
for each seen value v directly to o

23: o computes sum of approximate frequencies for each v

24: end for

25: return finalSum and sum of approximate frequencies

from o

computes finalSum +=

computation. For categorical attributes, the cost is O(m.). So
the overall cost of distance computation is O(nk(m, + m.))
in each iteration. Computing the local sum takes O(nm.,,)
on numerical attributes and O(nm,) for categorical attributes
if a hash table is used to keep every distinct value of a
categorical attribute (so it costs constant time to increment
frequency for each value of a categorical attribute). For each
numerical attribute at each party, the local sum of k clusters
needs to be sent to the coordinator, so the communication cost
is O(kmy,p). For each categorical attribute, the frequency of
every distinct value in each cluster needs to be sent to the co-
ordinator. As a result, the communication cost for categorical
attributes is O(km.dp). This process repeats for ¢ iterations.
Therefore, the communication overhead is O (k(m,,+m.d)pi).
The coordinator needs to sum up the received local sums and
frequencies of each distinct value from each party, which costs
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Algorithm 7 : perturb(frequency c)
1: x = RandomDouble()
2: check = (1 - alpha) / (1 + alpha)
3: if X < check then

4 return ¢

5: else

6: p = l-alpha

7 u = RandomDouble()

8 x = Ceiling(log(u)/log(1-p))

9:  posOrNeg = RandomDouble()

10:  if posOrNeg <= .5 then

11: X = x*(-1)

122 end if

13:  ifx+c <0 then

14: newFrequency = 0

15:  else if x + ¢ > maxFrequency then
16: newFrequency = maxFrequency
17 else

18: newFrequency = ¢ + x

19:  end if

20: end if

21: return newFrequency

O(k(my, +med)p). So the overall computation complexity is
O(kn(my, + me)i + k(my, + med)pi).

skPrototypes differs from hk Prototypes in computing the
new centroids. It needs to split every local sum for numerical
attributes in a cluster or frequency for a distinct value of a
categorical attribute in a cluster into p shares, and send p —
1 shares to different parties. So the computation overhead is
O(kn(my, + m¢)i + k(m,, + m.d)p?i). The communication
overhead is O(k(m,,+m.d)p?i). The p? term in both formulas
exists because every party needs to send p — 1 shares. So if d
and p are large (i.e., categorical attributes have many distinct
values and there are many parties), sk Prototypes will become
quite expensive.

dpk Prototypes differs from sk Prototypes on how it pro-
cesses categorical attributes. Instead of using additive secret
sharing, it adds noise to the frequency of each distinct value.
So its computation complexity is O(kn(m,,+m.)i+km,p*i+
kmcdpi). This is lower than the computation complexity
of skPrototypes as the p? term for categorical attributes
becomes p. Its communication complexity is O(km,p?i +
km.dpi), which is also lower than that of skPrototypes.

VI. PRIVACY DISCUSSION

We assume a semi-honest model where each party follows
the protocol but each party might want to infer more informa-
tion. This is a common assumption for most secure multi-party
computation methods.

What is protected: Our methods protect values of nu-
merical attributes, as well as the frequencies of occurrences
of individual categorical features through secret sharing or
differential privacy. The security of additive secret sharing of
an integer value is explained in [11] and any adversaries with
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fewer than p — 1 shares cannot reconstruct the original values.
In dpk Prototypes, differential privacy is used to protect the
frequency of distinct values of categorical attributes.

What is revealed: Our methods reveal whether or not a
particular value of a categorical attribute appears in the data
set of a party, but not the specific counts for that value.
This is because the shares of the mode map include the
unprotected values of the categorical data, as well as random
shares (in the case of secret sharing) or the approximated (via
differential privacy) frequency of each value for each category
attribute. This allows a semi-honest party to discern from a
share whether a certain categorical value occurs within the
data set of a party which sends a share. However, the exact
frequency of a categorical value is protected by the splitting
and sharing of the value across the other parties. For example,
in our application to IDS alert data, the presence of any activity
on a specific port or alerts of a specific rule ID or type is
learned whenever a mode map is shared and the values for
those ports, alert types, or rule IDs are nonzero.

VII. EXPERIMENTAL EVALUATION
A. Set Up

Software/Hardware: We ran our experiments on a set
of distributed machines connected via a central server on
a local area network. The machines and server were each
running Ubuntu 18.04.5 LTS(64bit), with 16GB RAM, and
about 100GB hard disk. The following experiments were run
on a distributed system, so the results do reflect the time delay
expected by network latency in a real-life application.

Algorithms Implemented: We implemented
skPrototypes,  hkPrototypes, and  dpkPrototypes
clustering algorithms by modifying the Java implementation
of the centralized k-means clustering algorithm found in [20].

Data: The following experiments were run using the full
SNORT alert data from [21], which is generated from MAC-
CDC 2012 data. We preprocessed the data to extract features
including source IP, destination IP, timestamp, rule ID, source
port, destination port, and alert type. All source IPs, destination
IPs, and timestamps were converted to numbers. For IP
addresses, the dotted quad formatted strings were converted
to integers using a the “Power of 256 approach as described
in [22]. These values were then normalized by dividing
them by the double equivalent of the universal broadcast
IP address, 255.255.255.255. Each timestamp was converted
to unix time using Java’s toEpochSecond() function in the
LocalDateTime library. These values were then normalized by
dividing them by the max Epoch time value of December 31st,
2012 23:59:59.999 UTC, since all of our data was assumed
to be collected during the 2012 calendar year. The numerical
attributes were later converted to integers in secret sharing by
multiplying by a large integer. Rule ID, port numbers, and
alert types were treated as categorical features. In the case of
rule IDs and port numbers, the integer values of these features
are simply compared for equality. Since alert type is a plain
text, Java’s hash-map data structure was used to map each
alert type to an integer. The corresponding integer values for
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the alert type strings are then compared for equality. To test
the algorithms, three separate machines, each representing a
party, executed the various CIDS algorithms by making three
random shares of the full SNORT alert data-set from [21].

Methodology: To conduct these experiments, each of the
algorithms was run 10 times for each configuration and we
took the average execution time.

Parameters Varied: Throughout experimentation, the number
of clusters, algorithms used, and number of parties were
varied.

Performance Metrics: We use bytes of data shared during
the clustering process and average execution time of the
clustering program measured in milliseconds.

B. Experimental Results

Execution time with Varied number of clusters: Fig-
ure 3 shows execution time, in milliseconds, of our three
algorithms with varying numbers of clusters ranging between
three and eight, and with five parties involved. As shown
in Figure 3, hkPrototypes is faster than skPrototypes and
dpk Prototypes, which is expected as the former does not pro-
tect privacy. Surprisingly, dpkPrototypes is slightly slower
than skPrototypes. We dug deeper and found that although
dpKprototypes is faster than sk Prototypes in each iteration
of the clustering algorithm, the noise added to make the result
differential private also leads to slower convergence and more
iterations are needed for dpk Prototypes. All three algorithms’
execution time also increases with number of clusters. The
increase seems to be super linear, possibly because when
number of clusters increases, the clustering algorithms also
converge slower.

Bytes transferred with varied Cluster Counts: Figure 4
shows the relationship between the total number of bytes
transferred during the clustering process versus the number of
clusters. Five parties are involved. skPrototypes and dpkPro-
totypes transfer significantly more bytes than hkPrototypes,
which is expected since multiple shares of the data itself must
now be shared amongst the collaborating parties, rather than
just the sums themselves.

Again it is surprising that dpkPrototypes transfers more
Bytes than skPrototypes. dpkPrototypes is expected to transfer
fewer bytes because it uses differential privacy on categorical
attributes and thus does not need to transfer multiple shares
for such attributes. We found that the noise added to enforce
differential privacy led to slower convergence and more it-
erations. Figure 5 shows the number of bytes transferred per
iteration and it is clear that dpk Prototypes transferred slightly
less data than skPrototypes.

Varying privacy parameter e: In Algorithm 7, the « is
actually determined from the function e~ ¢ where € is the
privacy budget set by the user. The greater the €, the smaller
the o and the smaller the noise added to the original frequency.
Additionally, the smaller the «, the more quickly the per-
turbed data will converge in the clustering algorithm, thereby
minimizing the number of iterations. This relationship can be
seen in Figure 6. Given a fixed number of clusters (in this
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case, seven), differing values for e resulted in variable iteration
counts for dpk Prototypes. hkPrototypes and skPrototypes do
not require any € value as no noise is being added so we
just show the number of iterations for skPrototypes as a
reference. As shown, the greater the € value, the less the data
will be perturbed meaning it will converge faster. The results
also show that dpkPrototypes lead to more iteractions than
skPrototypes for most € values except when € = 1.

Bytes transferred with varied number of clusters and
number of parties Figure 7 shows the Bytes transferred
during the clustering process when varying the number of
clusters and parties. The experiment was run with the number
of clusters varying between three and eight, and number
of parties varying between three and five. In addition, the
algorithm tested on was skPrototypes. This shows the number
of bytes transferred increases with number of clusters and
number of parties, which is expected. The increase is linear
with number of clusters, which is expected based on the
analysis in Section V.

Quality of generated clusters: The optimal number of
clusters is seven as the sum squared error does not decrease
much using more clusters. We manually inspected the cluster
centroid of each cluster generated by the different algorithms
and these centroids are quite similar across the different
algorithms, meaning protecting privacy does not change much
of the results. These centroids also represent similar alerts (of
similar IP addresses, alert types, etc.). So the results confirm
that using collaborative intrusion detection can significantly
reduce the number of threats that need further investigation as
similar attacks across organizations have been merged.

VIII. CONCLUSION AND FUTURE WORK

We implemented two privacy-preserving distributed clus-
tering methods skPrototypes and dpkPrototypes, both of
which work on mixed types of data and can be used by a
CIDS to merge alerts generated from different organizations.
Our experiments show that the quality of clusters generated
by our methods is close to the clusters generated by methods
without privacy protection. Privacy protection does incur extra
execution time and communication cost, but the increase is not
dramatic.

Our experiments implemented a distributed system by hav-
ing each party member communicate via a central server.
While the computations are distributed, the communications
can be bottle necked in the server, and they rely on trusting the
server. Further work should limit server usage to establishing
network connection to other hosts as well as securing the data
connections to ensure privacy. We will also look into how to
improve dpkPrototypes to reduce the amount of noise such
that the clustering process can converge faster.
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