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Unstructured data in electronic health records, represented by clinical texts, are a vast source of healthcare
information because they describe a patient’s journey, including clinical findings, procedures, and informa-
tion about the continuity of care. The publication of several studies on temporal relation extraction from
clinical texts during the last decade and the realization of multiple shared tasks highlight the importance of
this research theme. Therefore, we propose a review of temporal relation extraction in clinical texts. We ana-
lyzed 105 articles and verified that relations between events and document creation time, a coarse temporality
type, were addressed with traditional machine learning–based models with few recent initiatives to push the
state-of-the-art with deep learning–based models. For temporal relations between entities (event and tem-
poral expressions) in the document, factors such as dataset imbalance because of candidate pair generation
and task complexity directly affect the system’s performance. The state-of-the-art resides on attention-based
models, with contextualized word representations being fine-tuned for temporal relation extraction. How-
ever, further experiments and advances in the research topic are required until real-time clinical domain
applications are released. Furthermore, most of the publications mainly reside on the same dataset, hindering
the need for new annotation projects that provide datasets for different medical specialties, clinical text types,
and even languages.
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1 INTRODUCTION

Whenever patients seek medical care data, their information is recorded in electronic health
records (EHRs) and stored in either a structured or unstructured format. Structured data include
medication information, laboratory data, and radiologic images [1]. In contrast, unstructured data
are represented by clinical texts, such as discharge summaries and pathology reports. Much of the
information in EHRs is unstructured, limiting its secondary use in improving medical research
and developing tools to assist patient care. For instance, the authors of [2] observed during a study
related to six hospitals that, on an average, 75% of all data elements were not available in a struc-
tured format or computable database fields. The preference for free text relies on the fact that it
facilitates communication among the care team and enables health professionals to provide more
detailed information because they are not restricted to structured fields [3].

Natural language processing (NLP) tools enable the secondary use of clinical texts by devel-
oping frameworks that automatically analyze and transform textual information into structured
representations [4]. The application of NLP to texts written by healthcare professionals in a
healthcare environment is called clinical NLP [5]. It extracts rich and contextual information not
available elsewhere and involves rich temporal and background information about current sta-
tus/conditions, even information about a patient’s past (e.g., a treatment that occurred a long
time ago) [6, 7]. It can also provide information about the future (e.g., foreseen interventions and
treatments).

Temporal relation extraction aims to provide order among mentions over texts, representing
medical events or temporal expressions. In the clinical domain, events are clinically relevant sit-
uations (e.g., treatments, problems, tests), and temporal expressions allude to temporal mentions
(e.g., duration or date mentions). A temporal expression can be either a time mention in the free
text or document creation time (DCT).

Research on temporal relation extraction is opportune because of the longitudinal data present
in the EHRs, with several clinical texts on the same patient written at different times. Clinical texts
that reflect a specific time frame, such as discharge summaries that cover the temporal window
from patient admission until discharge, are also relevant.

Noncommunicable diseases (NCDs), such as cardiovascular diseases and cancers, have a lon-
gitudinal nature and provide extensive and continuous dataflows relevant to temporal relation
extraction [8]. Research that can improve or supplement clinical decision-making related to NCDs
is valuable, as NCDs are the leading cause of death globally, accounting for over 70% of deaths [9].
Another research topic of interest is related to adverse events, since symptoms and signs tend to
appear over time after the start of a specific treatment (e.g., medication).

However, there are some challenges related to temporal relation annotation and extraction. Tem-
poral relations can be implicit and vague, which is troublesome for both extraction and annotation
[10]. In general, text annotation is a complicated process, but the annotation of temporal relations
is much more complicated. For instance, temporal relation extraction in the clinical domain has
a lower inter-annotator agreement (IAA) than other clinical annotation tasks, such as event and
temporal expression annotation tasks [7]. Aspects such as lack of formalism and writing quality
may make the extraction of temporal relations in the clinical domain more complicated than in the

ACM Computing Surveys, Vol. 54, No. 7, Article 144. Publication date: September 2021.

https://doi.org/10.1145/3462475


Temporal Relation Extraction in Clinical Texts: A Systematic Review 144:3

general domain [11]. Furthermore, for clinical domain corpora, both annotation and extraction can
require specific medical expertise, which can be expensive for the annotation process and difficult
in the extraction step.

Further, clinical texts can exhibit specific characteristics that can directly impact the text pre-
processing steps and extraction results. There is an extensive use of abbreviations and acronyms,
particularly in individual institutions or medical specialties. Domain-specific vocabulary and as-
sumptions are also present [4, 12]. In addition, texts may contain flexible formatting and atypical
grammatical constructions [13, 14]. Moreover, the need for specific knowledge and tools may be
a limiting factor, especially in the clinical domain, owing to the lack of resources and available
data. Sophisticated NLP tools, which can be used for preprocessing and aggregating information,
are typically provided by language-dependent frameworks, hindering the use of languages other
than English. The amount of available data is also a limiting factor, and deep learning approaches
rely on a large amount of data to address generality. Additionally, access to clinical domain data
is difficult because of data privacy.

Many studies on temporal relation extraction are related to datasets that have become available
to researchers because of shared tasks. Hopefully, several shared tasks have been organized to
provide data that the research community can use to develop temporal extraction techniques and
compare extraction performance. The interest in temporal relation extraction from clinical narra-
tives began to grow with the Informatics for Integrating Biology and Bedside (i2b2) 2012 challenge
[15], and then with Clinical TempEval in semEval2015 [16], semEval2016 [17], and semEval2017
[18] shared tasks. With the intent of discussing the approaches used (both shared task–related or
not), highlighting the main aspects, and pointing out the best methods in studies, we performed a
systematic review that followed the PRISMA statement [19].

Although there are two reviews on extracting temporal relationships in clinical texts, some top-
ics still need to be covered. The authors of [20] highlighted some preliminary studies between
2006 and 2012, while the authors of [21] presented studies between 2006 and 2018. Owing to re-
cent discoveries, the state-of-the-art changed over these two years, which was not covered by the
authors of [21]. Currently, the state-of-the-art for several NLP tasks involves attention-based mod-
els and contextualized word representations. Hence, we aim to address this gap by considering the
most recent approaches and discoveries. Further, a limitation of the review presented by the au-
thors of [21] was that they only considered free text written in English, which limits the review
power of providing insights about research in other countries. Thus, we aim at covering this gap
in our review with no language restrictions. Additionally, using our publication selection criteria,
we analyze a significantly more extensive set of articles than that contemplated by the authors
of [21], covering the research topic evolution over the years and providing a deeper analysis of
the approaches. Further, we provide visual representations to improve the understanding of the
temporal relation types and their importance, highlighting their differences and their applicability
in the clinical domain.

The objective of this study is to present a review of the state-of-the-art temporal relation ex-
tractions from clinical texts. It aims to answer the following question: “What is the effectiveness
of machine learning and rule-based techniques in identifying temporal relations in clinical texts?”
Our secondary objective is to provide insights into the domain evolution over time by leverag-
ing temporal relation extraction objectives and developing frameworks. A reader of this review
can expect an analysis of temporal relations and investigate the best performing techniques and
frameworks for temporal relation extraction.

The remainder of this article is structured as follows. Section 2 provides an overview of temporal
relation extraction, including explanations of temporal relation representations and an example
highlighting its importance for the clinical domain. In Section 3, the methodological steps are
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detailed, and global quantitative results and details of the datasets are provided. We divided the
task of temporal relation extraction into two distinct types: (i) DocTimeRel, a temporal relation
between an event and the DCT, a temporal expression referring to a date in the document header
that indicates when the document was created/written; and (ii) TLINK, a temporal relation between
mentions that occur over the text, where mentions can be events and temporal expressions (do not
involve the DCT). We adopted this strategy based on the previous temporal relation shared tasks
for both clinical and general domains and because each type has different extraction characteristics
and task complexities. We elaborate on the DocTimeRel-related articles in Section 4 and the TLINK-
related articles in Section 5. In Section 6, we present an overview of the datasets and relevant
approaches for the general domain. In Section 7, we present our conclusions.

2 TEMPORAL RELATION EXTRACTION

Temporal relation extraction can be summarized in two steps: (i) identifying a relation between
pairs of mentions (e.g., event and temporal expressions) and (ii) classifying this relation into a
temporal relation type among a predefined set. Depending on the application, only the first step
is sufficient, but a more detailed representation can be obtained only by using both steps.

In Section 2.1, we explain temporal relation representations and discuss the differences between
temporal relation sets. In Section 2.2, we explain the event and temporal expression characteristics
in both clinical and general domains while providing a concrete example of the importance of
temporal relation extraction for the clinical domain.

2.1 Temporal Relation Representations

The interval-based algebra proposed by Allen in 1983 was used as a framework for temporal re-
lation extraction. Several studies adopted Allen’s representation [10], which quickly became a
temporal modeling pattern [11]. Allen’s representation assumes that, given two points in time or
intervals of time, any relationship between them could be represented by seven relations: BEFORE,
MEET, OVERLAP, DURING, START, FINISH, and EQUAL [10]. Considering the inverse relations
(EQUAL does not have an inverse relation), there are 13 possible relations. Allen’s relations are
listed in Table 1 (Allen’s Algebra column).

Several annotation standards have been developed based on Allen’s representation. We highlight
TimeML [22], a reference for temporal annotation for the general domain, and THYME-TimeML
[6], an adaptation of TimeML for the clinical domain.

TimeML is a temporal markup language developed exclusively to annotate events, temporal
expressions, and relations in the text [22]. Researchers in the NLP community have developed
TimeML to move temporal information from a free-text format to a structured data format [23]. In
TimeML, events are situations that occur, and temporal expressions are mentions of dates, times
(specific time during a day), durations, and sets [24]. The TLINK tag represents a temporal rela-
tionship between events and temporal expressions. The main difference between Allen’s repre-
sentation and TimeML is that TimeML does not address OVERLAP relations. The relation EQUAL
in Allen’s algebra is represented over four relations in TimeML: IDENTITY, SIMULTANEOUS,
HOLD, and HELD BY [25]. The IDENTITY relation is similar to the SIMULTANEOUS relation
but is used only in event co-reference cases [26]. The TimeML relations are displayed in Table 1
(TimeML column).

THYME-TimeML was developed to annotate the temporal history of our medical events
(THYME) corpus, which comprises clinical notes from patients with cancer and pathology reports.
Thus, the event definition involves a clinical vocabulary, with mentions such as medical problems
(e.g., signs and symptoms), treatments (e.g., medications), and tests (e.g., laboratory exams). Some
of these events are particular to oncology. In THYME-TimeML, events are mentions relevant to
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Table 1. Temporal Relation Types with Their Respective Graphical Representation

and Identification in Allen’s Representation, TimeML, THYME-TimeML,

and i2b2 Annotation Schemas

Note: Relation types annotated but not used for the shared tasks are marked in gray.

constructing a clinical timeline. The temporal expression definitions are similar to TimeML, with
the addition of a new category for preoperative, intraoperative, and postoperative mentions [6].
The significant differences between TimeML and THYME-TimeML for temporal relation anno-
tation are as follows: (i) THYME-TimeML created the DocTimeRel category, while the relations
between events and the DCT are considered as common TLINKs in TimeML, and (ii) THYME-
TimeML introduces the narrative container concept.

The DocTimeRel relations are considered an event attribute and have the following relation set:
BEFORE, AFTER, OVERLAP, BEFORE/OVERLAP, and AFTER. The THYME-TimeML DocTimeRel
relations are displayed in Table 1 (THYME-TimeML DocTimeRel column). BEFORE/OVERLAP
indicates that the event occurred in the past and still occurs in the DCT. For instance, depending
on the annotation schema, chronic diseases can be annotated as BEFORE/OVERLAP because they
exist before the clinical document creation and continue to exist during its writing.

The narrative container concept is used to annotate the TLINKs. The THYME-TimeML
TLINK relation set are BEFORE, OVERLAPS, BEGINS_ON, ENDS_ON, and CONTAINS. The
THYME-TimeML TLINK relations are displayed in Table 1 (THYME-TimeML TLINKs column).
The narrative container concept introduced in [27] involves the CONTAINS relation. The authors
of [27] emphasize the importance of an annotation schema that resulted in maximally annotated
temporal relation information while not relying on models that were too difficult to apply.

The choice of using narrative containers comes from the difficulty in capturing every possible
relation and the rise in disagreement that occurs when annotators try to do so [6]. By using this
choice of annotation, whenever possible, time expressions and events are connected to a narrative
container (event or temporal expression anchor) that defines their temporal interval. Several events
or temporal expressions can be connected to the same anchor, which contains them (represented in
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the CONTAINS row in Table 1). Events and temporal expressions in the same narrative container
can be related, as a single element, with other containers [28]. The most significant advantage is a
reduction in the number of required annotations [28]. The narrative container strategy is suitable
in the clinical domain because there are central mentions of the texts, such as temporal expressions
of date and time types, or more comprehensive events, such as mentions of exams.

There are different definitions of temporal annotation schemes for clinical and general domains.
Even in the clinical domain, depending on the clinical text type, medical specialty, and task extrac-
tion objective, the definitions are different. For instance, if the objective is to extract drug-adverse
event (DAE) patterns from clinical texts, the events could be restricted to medications and experi-
enced symptoms. Additionally, temporal expressions could be restricted to only precise dates, and
a reduced temporal relation set could be used.

Different annotation schemes will have a temporal relation set based on the annotation require-
ments. For instance, the temporal relation OVERLAP is generic, implying that the two mentions
somehow overlap. However, specific relations such as IDENTITY and SIMULTANEOUS indicate
a particular OVERLAP case in which both events coincide, having the same start and endpoints.
There is a trade-off between the amount of information represented by a relation set and the task
complexity in both the annotation and extraction steps. A more elaborate temporal relation set
may enable a more accurate representation of the temporal information. However, the annotators
may need to distinguish between temporal relation types with slightly different concepts, which
may cause disagreements and create a low number of annotations for certain relation types.

Additionally, the information necessary to distinguish between close temporal relation types
may not be mentioned in the text or may need specific knowledge or interpretation. In the clinical
domain, we often see that text writing quality and size—as certain clinical text types are short
and objective—may limit an extended set of relations because of the number of disagreements and
implicit information. For instance, several temporal relation types were annotated in the THYME
corpus according to the THYME-TimeML scheme. However, only the CONTAINS relation type was
used in Clinical TempEval shared tasks because of the low number of annotations for the other
relation types. To provide a proper visualization of this aspect, we marked all relations annotated
but not used during Clinical TempEval shared tasks in gray and the used relations in bold.

The same happened for the i2b2 2012 shared task annotation process, another essential corpus
for temporal relation extraction in the clinical domain. The corpus was annotated with an extended
set of relations (Table 1, column i2b2 2012 schema): BEFORE, BEFORE/OVERLAP, OVERLAPS,
DURING, ENDS_BY, AFTER, BEGINS_BY, and SIMULTANEOUS. However, owing to a low IAA
and a low number of annotations for specific types, the shared task’s relation set was restricted to
AFTER, BEFORE, and OVERLAP. To provide a proper visualization of this aspect, we marked all
relations that were annotated but not used during the i2b2 2012 shared task in gray and the used
relations in bold. Additional details regarding shared-task datasets are provided in Section 3.3.

Thus, an extended relation set is ideal, but the trade-off between temporal information and task
complexity must be considered.

2.2 Temporal Relation Extraction Example

In this section, we provide an example in Figure 1 to justify the benefit of extracting temporality
from clinical texts. In this example, we show the different temporal extraction levels applied to
the same sentences. The sentences were created to simulate sentences written during a patient’s
clinical consultation with a cardiologist.

In this example, the patient had a history of hypertension and myocardial infarction. The patient
underwent two procedures: myocardial revascularization and transluminal angioplasty. In the
patient action plan, the medication Selozok was prescribed. These events are specific to cardiology.
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Fig. 1. Example of the benefit of temporal relation extraction levels.

Each specialty will have events—such as particular medical problems, symptoms, treatments,
medicaments, and exams—that are not commonly mentioned in other medical specialties.

Using a simple approach of merely connecting every event to its DCT (Figure 1, Simple row),
we cannot infer any order. Thus, in this scenario, all events coincided with time, which is not
valid. Of course, this can provide sufficient information for specific temporal relation extraction
tasks, especially when dealing with substantial clinical texts in a no-annotation scenario, using
only automatically generated annotations by frameworks such as cTAKES [29] and Metamap [30].

By adding more information with the annotation of DocTimeRel relations (Figure 1, DocTimeRel
row), we can provide a coarse ordering. In this example, we use the categories BEFORE, OVERLAP,
AFTER, and BEFORE/OVERLAP in THYME-TimeML, for didactical explanations. Unlike before, it
is shown that myocardial infarction, myocardial revascularization, and transluminal angioplasty
are related to the patient’s past medical history because they were annotated as BEFORE. Addi-
tionally, we can infer hypertension as a condition from the patient’s past that still occurs during
the DCT, a BEFORE/OVERLAP annotation, demonstrating the characteristics of chronic diseases.
Further, it is evidenced that the medication, Sezolok, is related to the patient’s future because of
the AFTER annotation.
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Table 2. Inclusion and Exclusion Criteria

Criteria Inclusion criteria Exclusion Criteria

Title and Abstract
Must mention temporality extraction in the
abstract
Must mention working with clinical free text

Review or update articles
Articles not written in English

Full text

Must provide information about the method
used to address temporality extraction
Must provide at least one quantitative measure
to evaluate the experiments

Do not provide information
about the dataset size and data
source

However, DocTimeRel is too generic for certain temporal relation extraction studies. For in-
stance, BEFORE categories are too extensive because they do not refer to a certain point or closed
period but rather to a broader period. DocTimeRel relation usage enables some event ordering, as
not each event or temporal expression has associated TLINKs, but TLINKs provide a more detailed
representation.

Adding TLINKs (Figure 1, DocTimeRel + TLINK row) to anchor events to specific periods of
time represented by temporal expressions improves the timeline representation. For example, it is
now evident that both myocardial infarction and myocardial revascularization occurred in 2009.
However, as indicated, the coronary transluminal angioplasty happened only 4 years later, in 2013.
Temporal expressions referring to dates in the patient’s medical history can be underspecified, not
containing all information required for normalization (year, month, and day information). In this
example, both 2009 and 2013 are underspecified temporal expressions.

It is evident that the patient had hypertension for 10 years. This period of 10 years is somewhat
imprecise because it does not reflect a specific period, being only an approximation. Furthermore,
the medication is associated with its frequency, which is daily. Temporal expressions regarding
medication frequency can be tricky and specific to the clinical domain. For instance, we could
have the same medication with different dosages on different days of the week, or expressions
such as b.i.d. (twice a day) and q.i.d. (once a day) from Latin, which indicates frequency.

3 METHODOLOGY

PubMed Central (MedLine), ScienceDirect, and ACL Anthology databases were selected for this
review. The inclusion and exclusion criteria for the title and abstract analysis and the full-text
analysis are provided in Table 2. The search expression was: (“temporal relation” OR “temporal
relations” OR “temporal extraction” OR “temporal information” OR “temporal relationship” OR
“temporal relationships” OR “timeline”) AND (“clinical text” OR “clinical texts” OR “clinical nar-
ratives” OR “clinical narrative” OR “clinical reports” OR “clinical report”).

We considered all published articles till October 23, 2020, with no limitations on the publication
year. The PRISMA flow diagram is shown in Figure 2. With the search expression, we retrieved
2,728 articles: 1,232 from PubMed, 917 from ScienceDirect, and 579 from ACL Anthology. We
identified 22 additional articles relevant to the review’s scope by reading the selected articles
and their references. From these 2,750 articles, 171 duplicated articles were excluded. The 2,579
remaining articles were subjected to a title and abstract analysis, followed by a full-text analysis.
After analyzing the title and abstract, we selected 229 articles; after the full-text analysis, only
105 remained. All 105 articles were analyzed, and the most important ones are summarized in the
tables. Important studies were defined as those that could be directly compared to infer the most
effective strategies. In the tables, we have divided the approaches by dataset, sorted them by their
performance, and visually emphasized those with the highest performance in bold.
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Fig. 2. Methodological steps used for this systematic review.

Fig. 3. Number of publications by year, separated by dataset, in chronological order.

3.1 Global Quantitative Results

Figure 3 shows the number of publications by year according to the dataset, differentiating the
datasets available to the community through shared tasks from others. There were studies be-
fore 2013, but an increase in the number of publications occurred in 2013 following the i2b2 2012
challenge. Furthermore, in 2015, most of the publications were related to the i2b2/UTHealth 2014
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challenge dataset, which focused on the extraction of risk factors for cardiovascular diseases with
a multi-label DocTimeRel extraction task.

Of the 105 reviewed publications, 70 dealt with shared-task datasets. Except for [31] and [32],
which additionally used another dataset, the other 68 publications only used shared task–related
datasets. Hence, most publications were related to shared task datasets. Further, 17 were related
to the i2b2 2012 dataset, 14 to the 2014 i2b2/Health dataset, and 40 to the THYME corpus.

In 2013 and 2014, there were some preliminary studies on the THYME corpus [6, 33, 34]. How-
ever, the number of publications related to the THYME corpus has started to grow with the Clin-
ical TempEval challenges. In Clinical TempEval 2015, only two teams participated in the shared
task owing to the long authorization process. Therefore, only two publications were related to the
THYME corpus in 2015. Nevertheless, with the Clinical TempEval 2016 and Clinical TempEval 2017
challenges, the number of publications related to the THYME corpus increased from 2016 onward.

Publications on the i2b2 2012 dataset have been around since 2013 and those regarding the
i2b2/UTHealth 2014 dataset have been around since 2014. However, since 2016, only [35] and
[36] attempted to improve the reported results over these datasets, in contrast to [37] and [38],
by focusing on specific relation types. The datasets used to push the state-of-the-art are the 2016
and 2017 editions of Clinical TempEval, especially the 2016 edition. The 2017 edition was aimed
at cross-domain extraction with different training and testing data domains.

Most of the selected publications involved corpora written in English: 94 of the 105 reviewed
articles. Publications in languages other than English include [39–42] in Chinese, [43, 44] in
Korean, [45] in Dutch, [46] in Italian, [47] in Swedish, and [48] in Spanish. Additionally, [31]
dealt with English and French, extracting temporal relations from both the THYME corpus and
the MERLOT corpus [49], which are from medical texts in French. One can conclude that there is
room for research in languages other than English.

3.2 Datasets

In this section, we provide the details of the datasets. Table 3 describes each dataset, providing
information about the data origin and clinical document type, temporal annotation schema, di-
mension, and all related studies among the reviewed articles.

For the Clinical TempEval datasets, there is a clear difference between TLINKs and DocTimeRel,
with separate annotations and evaluations in the evaluation script. DocTimeRel is considered an
event attribute, with one DocTimeRel annotation for every event. The Clinical TempEval 2015
dataset contains 440 documents, averaging 136.05 events, 13.43 temporal expressions, and 37.43
TLINKs per document. The Clinical TempEval 2016 has more annotated data, with a total of
591 documents, averaging 133.42 events, 13.30 temporal expressions, and 39.33 TLINKs. The aim
shifted toward a cross-domain extraction from Clinical TempEval 2017 with different training and
testing domains. The Clinical TempEval 2017 dataset comprises 769 documents, averaging 120.83
events, 12.70 temporal expressions, and 33.28 TLINKs per document.

The i2b2/UTHealth 2014 challenge [126] was related to heart disease mentions and focused
on discovering potential risk factors. However, there was no separate evaluation of temporality
extraction.

4 EXTRACTION OF DOCTIMEREL RELATIONS

In this section, we analyze the articles that extracted DocTimeRel relations. We consider Doc-
TimeRel relations between the event and a DCT, even if the authors identify only a relation
between these two arguments, not classifying it into any category. We sort the results according
to the strategy used to deal with temporality with three categories: rule-based systems (see
Section 4.1), machine learning systems (see Section 4.2), and hybrid systems (see Section 4.3). As
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Table 3. Datasets

Dataset description
Temporal Annotation
(labels/categories) Dimension (Train: Test) Related studies

Reports from Stanford Translational Research
Integrated Database Environment (STRIDE)

— — [50–52]

Reports from Palo Alto Medical Foundation
(PAMF) dataset

— — [50]

Reports from Synthetic Derivative (SD)
database

— 2,268 patients (1,512:759) [53]

Reports from patients in the Intensive Care
Unit (ICU)

— 1,040 reports (5-fold
cross-validation)

[54]

Training Reports from Mayo Clinic sick-child
daycare program
Testing: Reports from Mayo Clinic pediatric
patients

— 237 patients (125:112) [55]

Reports from diverse types from the
University of Pittsburgh Medical Center’s
MARS repository

DocTimeRel (HISTORICAL, RECENT,
HYPOTHETICAL)

240 reports with 4,654
annotations (2,377:2,277)

[56]

General practitioner entries, specialist letters,
radiology reports, and discharge letters from
the Erasmus Medical Center (EMC) corpus

DocTimeRel (HISTORICAL, RECENT,
HYPOTHETICAL)

7,500 reports (3,750:3,750) [45]

Patient reports from Clinical e-Science
Framework Services (CLEF-S) project

DocTimeRel (BEFORE, AFTER,
IS_INCLUDED) and TLINK (BEFORE,
AFTER, IS_INCLUDED)

98 reports [57]

Reports from the Research Patient Data
Repository of Partners Healthcare
(i2b2/UTHealth 2014 shared task)

DocTimeRel (BEFORE, AFTER,
DURING) multi-label

1,304 reports (790:514) [36, 58–70]

Discharge summaries from Partners
Healthcare and the Beth Israel Deaconess
Medical Center (i2b2 2012 shared task)

DocTimeRel (BEFORE, OVERLAP,
AFTER) and TLINK (BEFORE,
OVERLAP and AFTER)

310 reports (190:120) [7, 11, 12, 23, 32, 35,
37, 38,

71–76, 127, 130, 135]

Reports from Stockholm adverse drug event
(ADE) corpus

DocTimeRel (PAST, FUTURE) 400 reports (320:80) [47]

Reports from diverse types from the
University of Pittsburgh Medical Center

DocTimeRel (HISTORICAL,
RECENT)

42 reports [78]

Reports from diverse types of MRSA cases DocTimeRel (WAY BEFORE
ADMISSION, BEFORE ADMISSION,
ON ADMISSION, AFTER
ADMISSION, AFTER DISCHARGE)

51 reports (10-fold
cross-validation)

[80]

Reports DocTimeRel (WAY BEFORE
ADMISSION, BEFORE ADMISSION,
ON ADMISSION, AFTER
ADMISSION, AFTER DISCHARGE)

1,613 medical concepts
(968:645)

[81]

Clinical notes and pathology reports from
colon cancer patients from the Mayo Clinic
(THYME corpus)

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER)

78 reports [33, 34, 82]

Clinical notes and pathology reports from
colon cancer patients from the Mayo Clinic
(THYME corpus)

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER) and
TLINK (CONTAINS, OVERLAP,
BEFORE, BEGINS_ON, ENDS_ON)

107 reports [6]

Clinical notes and pathology reports from
patients with colon cancer from the Mayo
Clinic (THYME corpus—Clinical TempEval
2015 shared task)

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER) and
TLINK (CONTAINS)

440 reports (293:147) [12, 128]

Clinical notes and pathology reports from
patients with colon cancer from the Mayo
Clinic (THYME corpus—Clinical TempEval
2016 shared task)

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER) and
TLINK (CONTAINS)

590 reports (440:150) [28, 31, 77, 83–107]

(Continued)
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Table 3. Continued

Dataset description
Temporal Annotation
(labels/categories) Dimension (Train: Test) Related studies

Clinical notes and pathology reports from
patients with colon and brain cancer from
Mayo Clinic (THYME corpus—Clinical
TempEval 2017 shared task)

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER) and
TLINK (CONTAINS)

759 reports (621:148) [77, 99, 102, 103,
108–113]

Reports from Gastroenterology, Hepatology,
and Nutrition departments (MERLOT corpus)

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER) and
TLINK (CONTAINS)

500 reports [31]

Cardiology texts from Molecular Cardiology
Laboratories of the Istituti Clinici Scientifici
Maugeri (ICSM) hospital

DocTimeRel (BEFORE, OVERLAP,
BEFORE/OVERLAP, AFTER)

75 reports (60:15) [46]

Reports DocTimeRel (CURRENT, HISTORY,
FUTURE, UNKNOWN)

1,089 reports [114]

Discharge summaries, and clinical progress
notes from the cardiovascular diseases risk
factor corpus (CVDsRFC)

DocTimeRel (CONTINUING,
DURING, BEFORE, AFTER)

600 reports (420:180) [40]

Reports in the Spanish language — 200 reports [48]

Reports from patients in the ICU from the
Royal Prince Alfred Hospital

— 200 reports (10-fold
cross-validation)

[115]

Reports — 200 patients [116]

Reports from Mayo Clinic — 20 patients [117]

Reports from Mayo Clinic — 1507 patients [118]

Reports from Record Interactive Search (CRIS)
database

— 70 reports [119]

Vaccine Adverse Event Reporting System
(VAERS) reports and US Food and Drug
Administration (FDA) Adverse Event
Reporting System (FAERS) reports

— 140 reports [32]

Discharge summaries from the Seoul National
University Hospital HER

— 200 reports (170:30) [44]

Reports from Guangdong Provincial Hospital
of Traditional Chinese Medicine (GPHTCM)

— 24,817 reports (24,417:400) [39]

Discharge summaries from the University
Hospital in Korea

— 150 reports [43]

Discharge summaries — 354 reports [120]

Discharge summaries from Columbia
University Medical Center

— 20 reports [121]

Reports from the MMIC-II dataset — 100 reports [122]

Discharge summaries from the New England
Journal of Medicine (NEJM)

TLINK (AFTER, BEFORE,
INCOMPARABLE)

60 reports [123, 124]

Reports from diverse types TLINK (AFTER, BEFORE, OVERLAP) 80 reports (cross-validation) [125]

Reports TLINK (BEGINS, END,
SIMULTANEOUS, INCLUDES,
BEFORE)

47 reports (10-fold
cross-validation)

[79]

Reports from a hospital in China TLINK (SIMULTANEOUS, BEFORE,
AFTER)

563 reports (413:150) [41]

Reports of diverse types from a hospital in
China

— 100 patients [42]

We highlight the datasets used in shared tasks in bold. The i2b2 2012 dataset contains 310 discharge summaries, averaging
86.6 events, 12.4 temporal expressions, and 176 TLINKs per note. There is no distinction between TLINKs and DocTimeRel
in the annotations; the shared-task evaluation script evaluated them jointly. Thus, it is difficult to evaluate each temporal
relation category’s contribution in the final result.
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Table 4. Articles Related to DocTimeRel that Used Full Rule-Based Systems

Authors Best Strategy SE Results
I2b2 2012 dataset

[71] Rules Fm 0.5628
[32] Rules

√
Match ratio 0.69 (NTC)

I2b2/UTHealth 2014 dataset
[70] df + specific rules Fm 0.915
[67] Rules Fm 0.907
[58] df + context-aware refinement approach Fm 0.897
[69] Df Fm 0.890
[64] df + specific rules Fm 0.8776
[65] Df Fm 0.875

Legend: SE, separated evaluation; AUROC, area under the receiver operator curve; DAE, drug-adverse
events; DCT, document creation time; DDI, drug-drug interaction; Fm, F-measure; ICU, intensive care
unit; Regex, regular expression; TRE, temporal relation extraction; RFE, risk factor extraction; df, “default
value” strategy; NTC, not comparable.

we provide an in-depth overview and evaluation of all selected articles, we compiled a summary
(see Section 4.4) with highlights and conclusions.

4.1 Rule-Based Systems

Systems that exclusively extracted DocTimeRel relations with a rule-based approach are listed in
Table 4. The table contains information about the article’s primary objective, the strategy used to
extract temporality, the obtained results, and an indicator of a separate evaluation for the tempo-
rality extraction with a separate evaluation (SE) column. If the article had a separate evaluation
for temporality, the obtained results were related to the extraction. Otherwise, the obtained results
were related to the system’s primary objective.

Rule-based systems can be divided into two types: (i) those that only identify a relationship
between the event and the DCT by connecting both and (ii) those that also classify the relation
into a category.

The first type is usually associated with systems in which the temporal extraction is just a step
in the information extraction methodology, and no complex temporal information is required. The
authors of [48, 50–55] used this approach.

One of the research topics in which this strategy has been widely used is the identification of
adverse events with the extraction of drug-drug interactions (DDIs) and drug-adverse events. The
authors of [50] and [51] focused on creating a timeline for each patient, using statistics to extract
DDIs, and compared the results with structured data, the standard information source. In contrast,
the authors of [52] created a framework to differentiate DAE mentions from indications by creat-
ing pairs of drug diseases. The authors of [53] also extracted DAE but restricted it to interactions
between clopidogrel and mentions of bleeding, using a temporal feature based on the difference be-
tween the mentions’ DCTs. Another research topic was the identification of occurrence dates for a
specific condition in patient longitudinal data, for example, pneumonia in [54], and asthma in [55].

The second type provides more detailed temporal information, where the task difficulty
depends on the number of categories; this is because each category needs its own specific rules.
All remaining articles mentioned next are from the second type.

We highlight ConText [56], a regular-expression-based tool to extract event attributes. It
extracts the experiencer, negation, and temporality (DocTimeRel). Experiencers and negation
are relevant for extraction because they completely change the event’s context. There was an
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adaptation of ConText to Dutch with additional rules, named ConTextD [45]. The authors of [57]
present a preliminary CLEF study on temporal extraction.

For the i2b2/UTHealth challenge dataset, rules were popular for extracting DocTimeRel as the
scope of events was limited to specific predefined risk factors, facilitating the creation of rules. For
corpora such as the THYME corpus and i2b2 2012 corpus, where there is a wide range of events
with different characteristics, the creation of rules is more challenging and prone to overfitting.

A widely used strategy for the i2b2/UTHealth 2014 challenge was to use the most frequent label
in the training set for each risk favor, the default value strategy. This strategy was used alone or
in combination with additional rules to deal with specific cases. This strategy was used alone in
[65], with superior results in the training set over ConText. Additional rules were used in [58, 64,
69, 70]. However, the authors of [69] verified that the system’s most significant error source was
attribute extraction, mainly, the DocTimeRel component. The authors of [67] used rules but did
not rely on the default value strategy, creating rules based on observations on the training set
and the ConText output.

For the i2b2 2012 dataset, the authors of [32] and [71] used rule-based systems. However, their
performance was inferior to machine learning–based or hybrid systems.

There was no separate evaluation of temporal relations in the i2b2/UTHealth 2014 challenge
script. However, we believe that a well-constructed machine learning–based system or hybrid
system outperforms rule-based systems. Additionally, rule-based systems are not robust enough
to deal with datasets in which event annotations involve several different aspects (treatments,
symptoms, medical problems, and exams) and ensure generalization.

4.2 Machine Learning

This section analyzes the articles that used machine learning–based systems for DocTimeRel (sum-
marized in Table 5).

Unlike the previous section, all machine learning–based approaches identified the relation
and classified it into a specific category. In addition to DocTimeRel, the authors of [47] extracted
attributes such as negation and speculation. In contrast, the authors of [82] used only DocTimeRel
as a feature for DAE identification, with the temporal feature improving the classification results.
The DocTimeRel relation was also used as a feature in [81] for co-reference resolution. The
DocTimeRel system was developed in [80], based on a CRF classifier.

There was a preference for support vector machines (SVMs) and conditional random fields
(CRFs) among the traditional machine learning classifiers. However, other machine learning clas-
sifiers were also used in the reviewed publications: random forest (RF) classifiers by the authors
of [47] and [106], RIPPER classifiers by the authors of [68] and [78], OneRule classifiers by the
authors of [62], and logistic regression (LR) classifiers by the authors of [86].

The use of CRF classifiers is widespread in shared task–related and regular datasets. One of
the advantages of CRF is the possibility of extracting the entities and classifying the relation
simultaneously in a sequence-labeling task with a single classifier. A single CRF classifier for
DocTimeRel extraction was used in regular datasets by the authors of [80] and [81]. For the i2b2
2012 dataset, the authors of [73] used a single CRF classifier, even in a scenario with two DCTs
(admission and discharge dates). For the Clinical TempEval shared tasks, a single CRF classifier
was used by the authors of [28, 84, 85, 91, 111, 112, 128].

When considering the number of publications here and the hybrid systems sections, SVM was
the most used machine learning algorithm. For shared task–related datasets, the SVMs held or
maintained the best performance. In regular datasets, a single SVM classifier was used by the
authors of [46] and [82]. For the i2b2/UTHealth 2014 dataset, several publications used SVM clas-
sifiers, but most combined it with rules or the default value strategy. The exception was [59], which
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Table 5. Articles Related to DocTimeRel that Used Machine Learning Systems

Authors Best strategy SE Results
I2b2 2012 dataset

[72] SVM clf Fm 0.6954

[12] 2 SVM clfs Fm 0.695

[11] 2 SVM clfs Fm 0.6932
[73] CRF clf Fm 0.693
[127] 2 SVM clfs Fm 0.6849

I2b2/UTHealth 2014 dataset
[59] label-powerset strategy + SVM clfs Fm 0.9268

[68] 21 RIPPER clfs + voting Fm 0.9185

[36] BI-LSTM Fm 0.9081
[62] OneRule clfs Fm 0.857

Clinical TempEval 2015 dataset
[12] SVM clf

√
Fm 0.807

[128] CRF clf
√

Fm 0.791
Clinical TempEval 2016 dataset

[103] BERT +MTL Fm 0.86 (NTC)
[31] SVM clf

√
Fm 0.87

[97] Structured perceptron + ILP
√

Fm 0.846

[28] CRF clf
√

Fm 0.844
[94] SVM clf

√
Fm 0.835

[86] LR clfs
√

Fm 0.815
[106] RF clf

√
Fm 0.807

[98] CNN +MLP
√

Fm 0.788
[85] CRF clf

√
Fm 0.714

[84] CRF clf
√

Fm 0.712
[91] CRF clf

√
Fm 0.687

Clinical TempEval 2017 dataset
[113] SVM clf

√
Fm 0.519 UDA, 0.591 SDA

[109] Structured perceptron + ILP
√

Fm 0.49 UDA, 0.56 SDA

[112] CRF clf
√

Fm 0.45 UDA, 0.52 SDA
[111] CRF clf

√
Fm 0.40 UDA, 0.50 SDA

[108] SVM clf
√

Fm 0.49 SDA
[110] RNNs

√
Fm 0.32 SDA

Legend: SE, separate evaluation; DAE, drug adverse events; IE, information extraction; RF, random forest;
clf, classifier; Fm, f-measure; ML, machine learning; CRF, conditional random fields; AD, after discharge;
BA, before admission; OA, on admission; WBA, way before admission; AA, after admission; TRE, tempo-
ral relation extraction; SVM, support vector machine; GRU, gated recurrent unit; ATT, attention; CNN,
convolutional neural network; RFE, risk factor extraction; LSTM, long short-term memory; MTL, multi-
task learning; ILP, integer linear programming; LR, logistic regression; MLP, multilayer perceptron; UDA,
unsupervised domain adaptation; SDA, supervised domain adaptation; RNN, recurrent neural network;
NTC, not comparable.

used a label-powerset strategy to transform the multi-label classification into several binary clas-
sification tasks addressed with SVM classifiers.

For the i2b2 2012 dataset, the authors of [72] used a single SVM classifier, while the authors
of [11], [12], and [127] involved two SVM classifiers, one for each DCT. Additionally, the authors
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Table 6. Features Used by the Machine Learning Systems

Feature Explanation

Nearby tokens Nearby tokens around the mention over a token window (e.g., 2 or 3 tokens)

Tense Tense of the verbs in the same sentence of the mention

Nearby events Surrounding events with their respective attributes

Nearby temporal expressions Surrounding temporal expressions and their respective attributes

Nearby part-of-speech (POS) tags Nearby POS around the mention over a token window (e.g., 2 or 3 tokens)

Event information Event tokens, POS tags, and attributes (e.g., category and polarity)

Event position Event position in the document, generally associated with the section header (e.g.,
medical history)

Lexicon searching Semantic features based on search for event terms in crafted lexicons or the Unified
Medical Language System (UMLS)

of [127] also used two SVM classifiers for relations between temporal expressions and the DCT,
which most authors ignored.

For preliminary THYME corpus studies and Clinical TempEval–related articles, a single SVM
was used by the authors of [6, 12, 31, 94, 108, 113]. Among these, we highlight [12] and [31]. The
first developed a system with features that were fully extracted by cTAKES and experimented
with both i2b2 2012 and Clinical TempEval 2015 datasets. The second experiment was conducted
in a multilingual setting, extracting DocTimeRel from the MERLOT (French) corpus and THYME
corpus.

The classifiers that achieved the best performance used features to better understand the context
and the event. The features generally associated with the best performing systems are listed in
Table 6.

Owing to the clinical text characteristics, specialized tools to preprocess the text and generate
features are widely used. For instance, cTAKES provides several components, such as a sentence
boundary detector, tokenizer, and part-of-speech tagger. Further, semantic features can be obtained
by cTAKES, named entity recognition (NER) components, or by mapping tools such as Metamap.
A more detailed analysis of the specialized tools commonly used in the clinical domain can be
found in [21].

Over the years, approaches based on deep learning have emerged. For the Clinical TempEval
2016 dataset, the authors of [98] used a convolutional neural network (CNN) with a multilayer
perceptron (MLP). For the 2017 edition dataset, the authors of [110] used a recurrent neural
network (RNN) classifier for each relation type. For the i2b2/UTHealth 2014 dataset, the authors
of [36] jointly extracted the entities and DocTimeRel with a bidirectional long short-term memory
(Bi-LSTM)–based architecture. In addition to Bi-LSTM, they tested standard RNNs, CNNs, and
LSTMs, achieving superior results with Bi-LSTM. However, the results were still not comparable
with those of traditional machine learning algorithms. For regular datasets, the authors of [40]
extracted risk factors for cardiovascular diseases, similar to the i2b2/UTHealth 2014 shared-task
objective, using a CNN-based model.

All of these approaches dealt only with the DocTimeRel task. However, some authors developed
frameworks that jointly predicted DocTimeRel with another NLP task. For instance, the authors
of [114] proposed a framework based on GRU, deep residual networks, and attention to jointly
predict DocTimeRel and presence attributes. The authors of [97] and [109] focused on structured
machine learning, jointly predicting DocTimeRel and TLINKs using a structured perceptron model
and integer linear programming (ILP) and achieving consistent results over Clinical TempEval
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Table 7. Articles Related to DocTimeRel that Used Hybrid Systems

Authors Best strategy SE Results
I2b2 2012 dataset

[7] SVM clf + rules Fm 0.63
[130] SVM clf + rules Fm 0.5594

I2b2/UTHealth 2014 dataset
[66] 3 SVM clfs + df + rules + ann refinement Fm 0.9277

[60] CART DT + df Fm 0.917
[61] Markov networks + rules Fm 0.9098
[63] NB clf + rules Fm 0.8302

Clinical TempEval 2016 dataset
[88] LR clf + rules

√
Fm 0.743

Legend: SE, separate evaluation; TRE, temporal relation extraction; SVM, support vector
machine; clf, classifier; RFE, risk factor extraction; df, default value strategy; ann, annota-
tion; DT, decision tree; NB, naïve Bayes; LR, logistic regression.

2016 and 2017 datasets. Recently, the authors of [103] have developed a one-pass model based
on bidirectional encoder representations from transformers (BERT) [129] that leverages global
embeddings to jointly predict TLINKs and DocTimeRel. As the system was developed at the entity
level, considering both events and temporal expressions as inputs, the model had to classify the
entity into the BEFORE, OVERLAP, BEFORE/OVERLAP, AFTER, and TIMEX3 categories, where
the first four events are DocTimeRel categories and the last is a label only for time-related entities.

4.3 Hybrid Systems

This section analyzes the articles that used hybrid systems for DocTimeRel (summarized in
Table 7).

There were fewer hybrid systems than rule-based and machine learning–based systems. Con-
sidering the i2b2 2012 dataset, the authors of [7] and [130] used an SVM classifier with crafted
rules. The authors of [88] used an LR classifier with craft rules for the Clinical TempEval 2016
dataset. However, systems relying only on machine learning achieved superior results for these
datasets.

The i2b2/UTHealth 2014 dataset had predefined risk factor categories with specific patterns
over the training set. Hence, the authors widely used both the default value strategy and manually
crafted rules. Manually crafted rules were also used by the authors of [61] and [63] to comple-
ment machine learning classifiers. The default value strategy was used by the authors of [60] to
complement machine-learning classifiers. Additionally, the authors of [66] used manually crafted
rules, default value strategy, and SVM classifiers but improved the performance by annotating the
training set, providing a grainier set of annotations.

Thus, there is no evidence that hybrid systems are superior to systems that rely only on machine
learning, especially in a scenario with no predefined categories and predominant labels over the
training set.

4.4 DocTimeRel Conclusions

Connecting an event to its corresponding DCT can provide sufficient temporal information
for specific extraction tasks. However, a more detailed representation that also classifies the
relation into specific categories provides additional temporal information at the cost of increasing
task difficulty. For instance, the DocTimeRel categories in [47] were PAST and FUTURE, while
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the THYME corpus categories were BEFORE, AFTER, OVERLAP, and BEFORE/OVERLAP. In
addition to having more categories to classify events, differentiating between them can become
complicated because they depend on textual tips and clinical knowledge. For instance, to label
BEFORE/OVERLAP, the event’s continuity until the DCT must be ensured.

Rule-based systems or hybrid systems were adequate for the i2b2/UTHealth 2014 dataset. How-
ever, for datasets such as the i2b2 2012 and THYME corpus, rule coverage would be low because of
different patterns and event diversity over the text. SVM and CRF classifiers are widely used for tra-
ditional machine learning, with SVM providing slightly superior results for the analyzed datasets.
DocTimeRel is a classification problem with well-defined categories, and a feature set that lever-
ages information about the entity and context and does not require an extensive set of features
can achieve excellent performance. Among the best performing systems, we noted a preference for
specialized tools such as cTAKES, which provides several components, such as a sentence bound-
ary detector, tokenizer, and part-of-speech tagger. We highlight the SVM-based approaches of [12]
and [31]. The authors of [12] developed a system with features that were fully extracted by cTAKES
while conducting experiments on two datasets, and the authors of [31] conducted experiments in
a multilingual setting, developing systems for French and English languages.

Recent publications have experimented with CNN-, LSTM-, Bi-LSTM-, and attention-based
models. However, the volume of research over the last few years is far from TLINK extraction,
and most of the approaches are not directly comparable to previous studies because of different
evaluation settings. In addition to SVM, we highlight the multi-task learning (MTL) approaches
of [97], [109], and [103], which jointly predict DocTimeRel and TLINK relations. The first two de-
veloped a system based on the structured perceptron model and ILP, while the third developed a
one-pass model based on BERT. Because TLINK and DocTimeRel extraction are dependent tasks,
joint learning can improve results. For instance, if one event has a DocTimeRel annotation of BE-
FORE and another one has AFTER, no TLINK should be marked between them when we consider
the THYME annotation guidelines.

5 EXTRACTION OF TLINK RELATIONS

In this section, we analyze the articles that extracted TLINK relations. We sort the results according
to the strategy used to deal with temporality with three categories: rule-based systems (Section
5.1), machine learning systems (Section 5.2), and hybrid systems (Section 5.3). As we provide an
in-depth overview and evaluation of all selected articles, we compiled a summary (Section 5.4)
with highlights and conclusions.

5.1 Rule-Based Systems

In rule-based systems, the creation of candidate pairs to feed the classifiers is not needed. There-
fore, the aspects of creating rules for entities that are on a single sentence or abroad sentences are
underspecified.

A strategy used by the authors of [48, 57, 116–119] was to create rules to connect events to
dates, a specific type of temporal expression that reflects calendar times [131]. The authors of [57]
classified the relation into a specific type, which is an additional step in connecting the event to
its respective date. In [119], rules jointly connected symptoms to dates and normalized the date
mentions.

Developing strategies to deal with low-quality and noisy texts, which are common character-
istics of clinical texts, has been addressed by the authors of [32] and [115]. The authors of [32]
aimed at extracting temporal information from low-quality texts, such as medical product safety
surveillance reports, connecting dates, and time intervals to events. Further, the authors of [115]
focused on developing a question answering-system based on noisy texts.
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The studies from [43] and [44] focused on creating temporal snippets of texts. The authors of [44]
aimed at extracting temporal segments, where temporal segments were text segments containing
topics with the same temporal or topical content. The authors of [43] extracted clinical semantic
units (CSU), which are segments of text based on temporal expression position with rules. These
segments contain events based on their position in the text. The CSUs were then classified into
problem-action relations.

There are other relevant studies, such as [39, 120–122]. The authors of [39] created triples of
events, temporal expressions, and descriptions, where descriptions were elaborations or outcomes.
The authors of [120] adapted the TARSQI Toolkit, built for newswire texts, to clinical texts, predict-
ing whether the patients were in statins when they were admitted. The authors of [121] evaluated
the performance of a system developed to enable question answering from discharge summaries.
The authors of [122] tested a temporal query system to identify acute kidney injuries of patients
in intensive care units.

5.2 Machine Learning Systems

This section analyzes the articles that used machine learning–based systems for TLINKs (summa-
rized in Table 8). Most articles in the TLINK extraction section were machine learning or hybrid
systems.

Most articles here and in the next section (hybrid systems) are related to shared task datasets.
The datasets were not shared-task related in [41, 42, 79, 123–125]. In [123] and [124], the focus was
on ordering with temporal segments. The authors of [79] and [125] focused on ordering events by
considering the relations between event mentions only. The authors of [79] tested both pairwise
classification and event ranking, and achieved better ranking results. The authors of [41] focused
on temporal indexing, predicting TLINKs between events and temporal expressions while keeping
the most relevant pair for each event. The authors of [42] focused on extracting several entities
and relations from clinical texts using a BERT model.

The remaining articles are detailed according to the candidate pair selection strategy and the
approaches used to extract the relations. The task of training classifiers to extract relations consists
of generating training samples. Positive samples are provided through annotations, but negative
samples need to be generated by developers. For instance, a strategy for generating instances can
be creating all possible pairs among the entities within a document. However, this approach would
generate a much higher ratio of negative samples than positive samples, especially for datasets
such as the THYME corpus and i2b2 2012 with diverse types of events and temporal expression
annotations. There were close to 133 events and 13 temporal expression annotations per document
in the Clinical TempEval 2016 dataset. Creating all possible pairs would be unrealistic, especially
when considering the relations between events. Thus, the premise of temporal relation extraction
is that it is not possible to cover all positive samples without creating too many negative samples.
Hence, there is a trade-off between the number of positive samples covered and the number of
negative samples generated.

A widely used strategy was to restrict within-sentence relations by considering all possible pairs
within the same sentence. This strategy was used in [6, 12, 31, 33, 34, 77, 84, 86, 87, 89, 90, 99–101,
104, 108, 111]. Most of these studies are related to the THYME corpus, either initial publications
about the THYME corpus or publications dealing with Clinical TempEval datasets. For the Clin-
ical TempEval 2016 dataset, approximately 74% of the TLINKs in the training set were related to
within-sentence relations. Hence, if the testing set follows the same pattern as the training set, ap-
proximately 26% of the positive instances would be false negatives because the frameworks would
not predict these relations.
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Table 8. Articles Related to TLINK that Used Machine Learning Systems

Authors Best strategy Candidate pair selection WS CS NS SE Results

I2b2 2012 dataset

[127] WS: 3 SVM clfs; CS: 3 SVM
clfs

WS: APP, CS: rules
√ √

Fm 0.6849

[35] WS: NB clf; CS: NB clf WS: rules, CS: rules
√ √

Fm 0.671

[130] 2 SVM clfs Rules
√ √

Fm 0.5594

[37] BI-LSTM; TS expansion -
√

Fm 0.6217 (NTC)

Clinical TempEval 2015 dataset

[12] 2 SVM clfs. CSL; TS
expansion

WS: APP
√ √

Fm 0.321

Clinical TempEval 2016 dataset

[103] BERT; 3 class; MTL APP over TK
√ √ √

Fm 0.686

[102] BERT; TS expansion; 3-class APP over TK
√ √ √

Fm 0.684

[107] Context segmentation;
Associated ATT; Position

weights

APP over TK
√ √ √

Fm 0.643

[89] WS: tree-based
Bi-LSTM-RNN

WS: APP
√ √

Fm 0.633

[99] Bi-LSTM; TS expansion;
3-class; XML markup

WS: APP
√ √

Fm 0.630

[90] Tree-based Bi-LSTM-RNN WS: APP
√ √

Fm 0.629

[95] LSTM; MTL APP over TK
√ √ √

Fm 0.628

[101] SVM clf + CNN; XML
markup

WS: APP
√ √

Fm 0.621

[105] WS: Bi-LSTM; CS: Bi-LSTM;
3-class

WS: APP, CS: rules
√ √ √

Fm 0.613

[87] 2 CNNs; 3-class; XML
markup

WS: APP
√ √

Fm 0.515
event-event, 0.700
event-time (NTC)

[77] RNN; ATT; Piece
representation

WS: APP
√ √

Fm 0.729 (NTC)

[104] GRU + ATT; 3-class; XML
markup

WS: APP
√ √

Fm 0.690 (NTC)

[97] Structured perceptron; ILP;
MTL

APP over TK + rules
√ √ √

Fm 0.608

[93] Classifier ensemble; ILP -
√ √

Fm 0.595

[100] 2 SVM clfs; TS expansion WS: APP
√ √

Fm 0.594

[94] WS: 2 SVM clfs; CS: 4 SVM
clfs; CSL

WS: APP + pair
filtering, CS: rules

√ √ √
Fm 0.573

[96] 2 SVM clfs WS: APP + restrictions,
CS: rules

√ √ √
Fm 0.551

[31] SVM clf. 3-class WS: APP
√ √

Fm 0.53

[28] WS: 2 SVM clfs; CS: 2 SVM
clfs

WS: APP, CS: rules
√ √ √

Fm 0.511

[86] LR clf WS: APP
√ √

Fm 0.506

[84] 2 CRF clfs WS: APP
√ √

Fm 0.453

[85] CRF clf -
√ √

Fm 0.313

[83] 4 CRF clfs WS: APP, CS: rules
√ √ √

Fm 0.264

[92] List-Net [132] -
√ √

MSE 0.072 (NTC)

(Continued)
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Table 8. Continued

Authors Best strategy Candidate pair selection WS CS NS SE Results

Clinical TempEval 2017 dataset

[103] BERT; 3 class; MTL APP over TK
√ √ √

Fm 0.582 UDA

[102] BERT; TS expansion; 3-class APP over TK
√ √ √

Fm 0.565 UDA

[99] Bi-LSTM; TS expansion;
3-class; XML markup

WS: APP
√ √

Fm 0.547 UDA

[77] RNN; Attention; Piece
representation

WS: APP
√ √

Fm 0.63 (NTC)

[111] XGBoost clf WS: APP
√ √

Fm 0.34 UDA,
0.25 SDA

[113] WS: Bi-LSTM; CS: Bi-LTM;
3-class

WS: APP, CS: rules
√ √ √

Fm 0.328 UDA,
0.316 SDA

[109] Structured perceptron; ILP;
MTL

APP over TK
√ √ √

Fm 0.32 UDA,
0.28 SDA

[108] 2 SVM clfs WS: APP
√ √

Fm 0.26 (SDA)

[112] WS: 2 clf ensembles; CS: 2
clf ensembles; CSL

WS: APP, CS: rules. Pair
filtering; rules

√ √ √
Fm 0.23 UDA, 0.15

SDA

Legend: WS, within-sentence; CS, cross-sentence; NS, not specified; SE, separate evaluation; TO, temporal ordering; ILP,
integer linear programming; ME, maximum entropy; clf, classifier; Fm, f-measure; SVM, support vector machine; TRE,
temporal relation extraction; APP, all possible pairs; LSTM, long short-term memory; CNN, convolutional neural net-
work; NTC, not comparable; NB, naïve Bayes; TS, training set; CTE, Clinical TempEval; CSL, cost-sensitive learning;
3-class, transforming into a 3-class classification task; MSE, mean squared error; MTL, multi-task learning; TK, token
window; ATT, attention; RNN, recurrent neural network; GRU, gated recurrent unit; LR, logistic regression; CRF, con-
ditional random fields; UDA, unsupervised domain adaptation; SDA, supervised domain adaptation.

Some publications considered all possible pairs within a sentence and added specific heuristics
to cover cross-sentence relations. This strategy was used in [28, 83, 94, 96, 105, 112, 113, 127]. The
authors of [83] and [127] considered pairs between entities in neighbor sentences, restricting them
to a one-sentence window. The authors of [105] and [113] also considered pairs between entities in
neighbor sentences, but increased the range to a three-sentence window. The authors of [28] also
defined heuristics based on a sentence window and considered entity position, such as considering
only the first and last event mentions in the sentence. The strategy used in [112] was based on the
previous studies in [28] and [94]. The authors of [96] added a restriction that considers all possible
pairs in a sentence or line.

The approach of [94] created all possible pairs within a sentence but added restrictions to
exclude those unlikely to have a relation. The filtering rules involved section information and
event attributes. The same strategy was used to create pairs within a two-sentence window, but
for pairs with greater sentence window values, additional rules were created to create fewer
pairs.

A widespread strategy in the latest publications, being recurrent over the current state-of-the-
art approaches, restricts candidate pairs based on token windows. Thus, there are no criteria based
on the same or different sentences; they are based only on the token distance. This strategy was
used in [95, 97, 102, 103, 107, 109]. A token window of 30 was used in [95], [97], and [109], with
the authors of [97] and [109] restricting it to entities in the same paragraph. A token window of
60 was used in [102] and 100 in [107]. Further, the authors of [103] tested token windows of 60,
70, and 100.

Overall, traditional machine learning approaches restricted to within-sentence pairs achieved
the best results. However, the authors of [96] and [97] achieved competitive results with the token
window strategy. Previous deep learning–based state-of-the-art approaches restricted candidate
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pairs to within-sentence pairs, but the latest considered all possible pairs over a certain token
window.

In addition to the candidate pair selection strategy, another important topic is the strategy used
to extract TLINKs. We summarize the approaches in traditional machine learning and deep learn-
ing, aiming to provide an overview of the evolution of approaches over time.

For traditional machine learning, most approaches use SVM classifiers. SVM classifiers were
used in [6, 12, 28, 31, 33, 34, 94, 96, 100, 108, 127, 130]. CRF classifiers were used in [83–85]. Addi-
tionally, the authors of [111] used an XGboost classifier, and the authors of [35] used naïve Bayes
classifiers.

SVM classifiers outperformed the previously mentioned traditional machine learning classi-
fiers, with separate classifiers for TLINKs between events (event-event) and between events and
temporal expressions (event-time). Event-event relations are more complicated because of lower
annotation quality and because they suffer more from imbalance with a higher number of negative
samples when training the classifiers [100]. Additionally, event-event and event-time TLINKs have
different characteristics because they occur in different contexts. Thus, creating separate classifiers
with different sets of features is effective.

Separate SVM classifiers for within-sentence event-event and event-time TLINKs were used in
[6, 12, 28, 94, 96, 100, 108, 127]. This approach was also valid for articles dealing with cross-sentence
relations. The authors of [28], [94], and [127] used an SVM classifier for event-event and another
SVM classifier for event-time relations. The authors of [94] used two more SVM classifiers to deal
with event-event and event-time pairs across more than two sentences.

Cost-sensitive learning was used in [12], [94], and [112] to mitigate the class imbalance by
adding different costs for each class misclassification.

The feature set for traditional machine learning classifiers is similar to the features detailed
in Section 4.2, with additional features representing the relation between entities. These features
generally rely on extracting information about the dependency path, conjunctions, number of
words, and words between entities. For event-event TLINKs, the presence of overlapped heads is
generally used to detect co-references.

A combination of different classifiers was used in [93] and [112]. This strategy was beneficial in
[93], with comparable results to the state-of-the-art SVM-based models for the Clinical TempEval
2016 dataset. The authors of [93] combined classifiers from different publications with ILP. The
classifiers were obtained from [28, 86, 91, 94, 96].

Approaches based on MTL have also been effective in [97] and [109]. These approaches have
already been detailed in Section 4.2, as they jointly predict DocTimeRel and TLINKs. Furthermore,
Leeuwenberg and Moens [96, 97] had the best performance for both Clinical TempEval 2016 and
2017 datasets when deep learning–based systems were not considered.

However, machine learning systems do not perform as well as deep learning–based systems.
In addition to the algorithms, some strategies have improved the results for deep learning–based
systems.

One widely used strategy for the THYME corpus was developed in [106] and consisted of trans-
forming the two-class classification task (CONTAINS and NO RELATION) into a three-class clas-
sification task (CONTAINS, NO RELATION, and IS CONTAINED). All pairs from left to right were
considered, and the label was changed to IS CONTAINED when necessary. Further, not consider-
ing all possible permutations by only considering pairs that occur from left to right reduces the
number of candidate pairs to half, mitigating the class imbalance problem. This strategy was used
in [20, 31, 34, 87, 99, 102, 103, 113].

Another popular strategy is to expand the training set with additional examples. This strategy
is helpful for both machine learning and deep learning systems. The authors of [12] and [100]
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developed a training set expansion technique based on the UMLS, looking at the UMLS entities
that overlapped with the annotated event spans. The authors of [37] proposed creating additional
artificial training data using a transformer model with language generation. In addition, The au-
thors of [99] and [102] used unlabeled THYME corpus additional data to generate more training
instances with self-training, using cTAKES to generate events and temporal expressions over the
unlabeled data. However, self-training was based on a Bi-LSTM model in [99], while a strategy
based on fine-tuning the BERT was used in [102].

The encoding of relation arguments by XML tags was first introduced in [87]. It was modified
in [101] to represent the temporal expressions with a single pseudo-token. This modified version
was used in [99, 101, 104].

Among the architectures used, we differentiate between publications that addressed only
within-sentence relations and those that addressed cross-sentence relations. The conclusions are
based on the complete TLINKs set, but the comparison is fairer this way.

Among publications that addressed only within-sentence relations, the authors of [89] and [90]
used tree-based Bi-LSTM-RNNs, the authors of [99] used BI-LSTM with self-training, the authors
of [87] used CNNs, the authors of [101] used a hybrid approach based on a CNN and an SVM model,
the authors of [104] used GRUs and attention, and the authors of [77] used RNNs, attention, and
piecewise representation. Based on these results, we highlight [89] and [99]. The authors of [89]
adapted the tree-based Bi-LSTM-RNN model in [133], making new sentence-level annotations to
adapt the input, relying on the dependency structure between the pair and the output. The authors
of [99] combined several factors that were successful in the previous approaches. The approach
used a Bi-LSTM model, additionally encoding relations with XML tags, transforming into a 3-class
classification task, and adding training samples with self-training.

Among publications that addressed within-sentence and cross-sentence relations, [95] com-
bined LSTM and MTL, [105] and [113] used BI-LSTM models, [107] used context segmentation
and associate attention, [102] fine-tuned BERT and used self-training, and [103] fine-tuned BERT
with MTL. Based on the results, we highlight [102] and [103]. The authors of [102] combined the
fine-tuning of BioBERT [134], a pre-trained model on biomedical texts, self-training and trans-
forming into a 3-class classification problem. The authors of [103] used a one-pass BERT model
that leverages global embeddings and MLT to jointly predict TLINKs and DocTimeRel.

5.3 Hybrid Systems

This section analyzes the articles that used hybrid systems for TLINKs (summarized in Table 9).
Most articles in this section are related to the i2b2 2012 dataset, where specific TLINKs, especially

cross-sentence TLINKs, were extracted with rules. In this section, we analyze the candidate pair
selection strategy and the approach used to extract the TLINKs.

For candidate pair selection, the most successful approaches have developed different strategies
to generate pairs for within-sentence and cross-sentence TLINKs.

To create pairs for within-sentence relations, a common strategy is to create all possible pairs
within a sentence. This strategy was used in [7, 12, 38, 72, 106, 135]. The authors of [11] considered
all consecutive pairs in a sentence or pairs with a dependency relation. The authors of [73] and
[74] used the strategy proposed in [11]. Both strategies were successful, with [11] being more
restrictive in terms of the number of created pairs.

To create pairs for cross-sentence relations, the typical strategies were to restrict the pairs to
all possible pairs in a sentence range or develop strategies focused on creating pairs for specific
cases, such as co-references. The first strategy was used in [12] and [106], with a restriction for
consecutive sentences in [12] and a restriction of a three-sentence window in [106]. For the second
strategy, the authors of both [11] and [72] focused on co-referencing event-event pairs, creating
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Table 9. Articles Related to TLINK that Used Hybrid Systems

Authors Best strategy Candidate pair selection WS CS NS SE Results

I2b2 2012 dataset

[74] [11] + rules + additional
features

WS: rules, CS: rules
√ √

Fm 0.702

[72] WS: 2 ME clfs; CS: 1 ME clf +
rules

WS: APP, CS: rules
√ √

Fm 0.6954

[12] WS: 2 SVM clfs; CS: 2 SVM
clfs + rules; CSL; TS

expansion

WS: APP, CS: rules
√ √

Fm 0.695

[11] WS: 2 SVM clfs; CS: 2 SVM
clfs; Rules

WS: rules, CS: rules
√ √

Fm 0.6932

[73] [11] + rules + additional
features

WS: rules, CS: rules
√ √

Fm 0.693

[7] WS: 2 SVM clfs + temporal
graph; CS: rules

WS: APP
√ √

Fm 0.63

[76] 9 clfs + rules Cross-product
√ √

Fm 0.6231

[71] 2 ME clfs + rules Rules
√ √

Fm 0.5628

[135] SVM clf + rules WS: APP, CS: rules
√ √

Fm 0.537

[23] WS: ME clf + conflict
resolution, CS: rules

WS: rules
√ √

Fm 0.43

[75] [73, 74] [73, 74]
√

Fm 0.341 (NTC)

[38] SVM clfs + rules + CSL WS: APP
√

Fm 0.6377 (NTC)

Clinical TempEval 2015 dataset

[128] CRF clf + rules Rules
√ √ √

Fm 0.181

Clinical TempEval 2016 dataset

[106] WS: SVM clf; CS: SVM clf;
Rules; 3-class

WS: APP, CS: rules
√ √ √

Fm 0.538

Legend: WS, within-sentence; CS, cross-sentence; NS, not specified; SE, separate evaluation; Fm, f-measure; ME, maxi-
mum entropy; clf, classifier; APP, all possible pairs; CSL, cost-sensitive learning; TS, training set; CTE, Clinical TempEval;
CRF, conditional random fields; 3-class, transforming to a 3-class classification.

pairs of events with matching attributes. Additionally, the authors of [11] added a criterion to
consider only events with the same head noun. The authors of [11] also focused on the main events,
considering pairs involving all first and last events in two consecutive sentences. The authors of
[73] and [74] also used the strategy found in [11].

The approaches used to extract the TLINKs were SVM classifiers in [7, 11, 12, 38, 73–75, 106,
135], CRF classifiers in [128], and ME classifiers in [72]. All of these approaches also used rules
to infer TLINKs or solve conflicts between classifier predictions. Strategies that were effective in
the previous section, such as cost-sensitive learning and training set expansion, were used in [12]
(further details in Section 5.2).

For within-sentence relations, as in the previous section, the most successful approach was to
create separate classifiers for event-event and event-time TLINKs. This strategy was used in [7, 11,
12, 72–74].

We highlight some approaches for cross-sentence relations. The authors of [77] used a classifier
for event-event and another for event-time. The authors of [11] and [72] used a classifier to detect
co-references, but the authors of [11] used an additional classifier to detect the main events. The
authors of [73] and [74] also used the strategy proposed in [11].

Regarding the rules created by the publications, we highlight [11, 12, 72–74]. The authors of
[11] developed a rule-based result-merging module. The authors of [12] focused on creating rules
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for detecting co-references in different sentences. The authors of [72] also developed rules for
inferring cross-sentence relations. The framework proposed by the authors of [73] and [74] initially
attempted prediction with rules and then relied on the machine learning–based models if no rule
was applicable.

We highlight [11, 12, 72–74] according to their performance over the i2b2 2012 dataset. Further,
the state-of-the-art for i2b2 2012 belongs to [74]. The authors of [74] developed a hybrid system
based on [11], with a preference for inferring TLINKs with rules and a more elaborate feature set.
They employed discourse-based features along with domain-independent and domain-dependent
semantics.

5.4 TLINK Conclusions

Most publications on TLINK extraction were based on datasets made available by shared tasks.
The datasets were the THYME corpus, which is related to the Clinical TempEval shared tasks and
the i2b2 2012 corpus. However, the most recent searches were related to the THYME corpus. For
instance, the state-of-the-art for the i2b2 2012 corpus belongs to an approach developed in 2014,
evidencing that this dataset is not as widely used for TLINK extraction as the THYME corpus.

However, a downside is that few recent studies have addressed different datasets from the clin-
ical domain in their evaluations; primarily, they have extracted TLINKs from different THYME
corpus portions (Clinical TempEval 2016, 2017 edition corpora). This is unlike the NER-related
publications, which generally provide evaluations for multiple datasets, such as the evaluations
for BioBERT or ClinicalBERT [136] pre-trained models. Thus, there is a need for more annotated
datasets for TLINK extraction, especially for different medical specialties and clinical text types.
This way, the approaches can be evaluated over different scenarios, and a more solid evaluation
can be obtained.

Two factors were relevant when defining approaches to extract TLINK: a strategy to generate
candidate pairs and a strategy to extract TLINKs. Recently, the most common approach has been to
delimit within-sentence pairs or operate over a token window. Current state-of-the-art approaches
restrict pairs based on a token window ranging from 60 to 100 tokens. However, there was no
further analysis of these strategies’ effects over the patient timeline, such as when evaluating any
essential positive pair about the patient condition that was entirely ignored by the candidate pair
generation technique.

There has been an evident evolution of TLINK extraction techniques over the years, from com-
pletely rule-based systems to traditional machine learning-based systems with different heuristics
and several specialized classifiers, and then to deep learning–based systems. First, models based on
CNN, LSTM, and Bi-LSTM were developed, but attention-based models started achieving superior
results.

Regarding the embeddings, besides word embeddings, we noticed character embeddings in [105]
and contextualized embeddings in [102] and [103]. Some authors pre-trained word embeddings
based on medical and biomedical corpora. A comparison between the concatenation of word em-
beddings is provided in [99], with the best results involving combining word embeddings from
concatenated general and clinical domains, with the clinical word embeddings being pre-trained on
the MIMIC-III corpus [137] and unbalanced THYME corpus notes. For contextualized embeddings,
the authors of [103] used the BERTbase model, while the authors of [102] conducted experiments
with BERTbase, BioBERT, and a pre-trained BERT model in MIMIC-III clinical notes. BioBERT
achieved slightly superior results for the Clinical TempEval 2016 datasets when compared with
the BERTbase.

The state-of-the-art now resides on BERT pre-trained models by creating candidate pairs over
token windows and transforming the classification task into a three-class classification task
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(detailed in Section 5.2). This approach was used in [102] and [103]. Each publication has its own
strategies. The authors of [102] focused on generating additional self-training instances, while
[103] jointly predicted TLINKs and DocTimeRel using an MTL-based approach.

These results show the power of language models pre-trained using transformers, such as BERT,
which can replace word embeddings; this is because the embeddings are contextualized. They can
be fine-tuned to several NLP tasks using an additional output layer [138].

6 TEMPORAL RELATION EXTRACTION IN THE GENERAL DOMAIN

This section provides an overview of the datasets and publications relevant to the general do-
main. The TempEval-3 (TE-3) corpus was related to the TempEval 2013 shared task and was based
on the AQUAINT and TimeBank [139] corpora. According to the authors of [140], the annota-
tors only labeled relations key to understanding the document during the TimeBank annotation
process, which resulted in sparse annotations. Therefore, they annotated the TimeBank-Dense,
which increased the number of annotations, considered additional relation categories, simplified
the relation types, and added a VAGUE relation type.

Regarding the TE-3 corpus, we highlight the ClearTK-TimeML system, which is generally used
as a baseline for the TE-3 corpus and has been applied to the clinical domain in [6] (see Section
5.2). For TimeBank-Dense, we highlight the CAEVO system [141], which is generally used as a
baseline for TimeBank-Dense, a sieve-based approach that uses smaller specialized classifiers while
leveraging rules.

Among recent publications, we have highlighted [142–144]. All of them used contextualized
word embedding as an input in their systems. The authors of [142] used ELMo [145] contextual
embeddings and attention mechanisms to jointly predict event duration and temporal relations
with MLP. The authors of [143] used BERT and POS embeddings as inputs for a model based
on Bi-LSTM and structured SVM, and verified the performance improvement with contextualized
embeddings. The authors of [144] combined contextualized word embeddings, Siamese networks,
and ILP, and verified that both BERT and ELMo improved the results. Hence, the contextual rep-
resentations were only used as embeddings but improved the results.

7 CONCLUSIONS

This article reviews existing temporal relation extraction approaches in clinical texts, dividing
temporal relations into DocTimeRel and TLINKs. The DocTimeRel relation extraction is less com-
plicated than TLINK extraction, as evidenced by the performance over the datasets. The DCT is
a temporal expression of the date type, which is completed by having explicit information about
the year, month, and day. Additionally, depending on the annotation scheme, an event always has
a temporal relation with the DCT, with no need to create candidate pairs connecting the events to
diverse temporal expressions over the document. Hence, DocTimeRel relations do not suffer from
the same imbalance that TLINKs suffer. This is because, for TLINKs, most of the created pairs have
no relation, being negative examples to the classifiers. In contrast to TLINK extraction, which is ac-
tively researched to push the state-of-the-art, DocTimeRel is a secondary research topic. For Doc-
TimeRel, most of the articles relied on traditional machine learning approaches, especially SVMs.
However, recent architectures based on MTL have started achieving positive results. TLINKs have
been an active field of research over the past years, with the current state-of-the-art based on con-
textual embeddings and approaches based on BERT. In recent publications, training set expansion
and MTL have positively impacted the results.

Most publications on TLINKs are based on a single dataset, limiting the evaluation of the ap-
proaches in different medical specialties, clinical text types, and languages. Research on this topic
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would improve if additional datasets with different medical specialties, clinical text types, and lan-
guages were made available to the research community. For instance, in a survey for primary care
consultation, it was discovered that in 18 countries, the average consultation time was 5 minutes
or less [146]. It would be interesting to analyze how well a system would perform for this short
and highly structured clinical text type.

Additionally, the TLINK extraction performance for clinical texts is relatively low compared
with other NLP tasks, such as event and temporal expression extraction. For the dataset available in
the Clinical TempEval 2016, the primary research target, the state-of-the-art approaches, achieved
an f-measure close to 0.7, with only one relation type being considered (CONTAINS). This result
would not be suitable for an actual application in the clinical domain, where every misclassification
can negatively impact clinical decision-making. Hence, studies on performance improvement are
necessary. For instance, simplifying the event annotation guideline to be less extensive could lower
task complexity by reducing the number of events and candidate pairs. Furthermore, providing
additional annotated data could also improve the results.

Furthermore, in TLINK extraction evaluation, event and temporal expression inputs are gen-
erally gold-standard annotations. This would directly impact the performance in an end-to-end
system scenario by adding noise to the TLINK extraction system. Thus, considering the current
state of the research field, creating a real-time use in a clinical configuration is still a long way in
the future.

Based on our analysis, we identified directions for future research in temporal relation extraction
from clinical texts. One research topic involves fine-tuning pre-trained models with clinical texts,
such as ClinicalBERT, which could improve the ability of the model to understand the clinical con-
text. Furthermore, contextual representations such as BERT and its variants (e.g., distilBERT [147]
and RoBERTa [148]) or representations such as XLNet [149] could be used for relation extraction.
Additionally, several studies have demonstrated the positive effect of extending the training set.
Therefore, studying and evaluating data augmentation techniques could benefit future research.
One research direction that could be beneficial not only to relation extraction but also to several
other NLP tasks would be to develop models pre-trained on biomedical and medical texts, espe-
cially for languages other than English.

Although we achieved our review goals, we did not discuss which areas within the clinical
domain are directly affected by temporal relation extraction and how improving the temporal
relation extraction framework results could benefit them in the future.
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