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Abstract: The basic microsopic physical laws are time reversible. In contrast, the second
law of thermodynamics, which is a macroscopic physical representation of the world,
is able to describe irreversible processes in an isolated system through the change of
entropy 4S > 0. It is the attempt of the present manuscript to bridge the microscopic
physical world with its macrosocpic one with an alternative approach than the statistical
mechanics theory of Gibbs and Boltzmann. It is proposed that time is discrete with
constant step size. Its consequence is the presence of time irreversibility at the microscopic
level if the present force is of complex nature (F (r) 6= const). In order to compare
this discrete time irreversible mechamics (for simplicity a “classical”, single particle in a
one dimensional space is selected) with its classical Newton analog, time reversibility is
reintroduced by scaling the time steps for any given time step n by the variable sn leading
to the Nosé-Hoover Lagrangian. The corresponding Nosé-Hoover Hamiltonian comprises a
term Ndf kB T ln sn (kB the Boltzmann constant, T the temperature, and Ndf the number of
degrees of freedom) which is defined as the microscopic entropySn at time point n multiplied
by T . Upon ensemble averaging this microscopic entropy Sn in equilibrium for a system
which does not have fast changing forces approximates its macroscopic counterpart known
from thermodynamics. The presented derivation with the resulting analogy between the
ensemble averaged microscopic entropy and its thermodynamic analog suggests that the
original description of the entropy by Boltzmann and Gibbs is just an ensemble averaging of
the time scaling variable sn which is in equilibrium close to 1, but that the entropy term itself
has its root not in statistical mechanics but rather in the discreteness of time.

Keywords: Entropy; discrete time; inflation of the universe; scaling of time;
time reversibility
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1. Introduction

While the basic (microscopic) physical laws including the fundamental differential equations of
mathematical physics Hamilton’s, Lagrange’s, Maxwell’s, Newton’s, Einstein’s, and Schroedinger’s
are time reversible, only the second law of thermodynamics describing macroscopic systems brings the
arrow of time into play by requesting that the entropy increases in an isolated macroscopic system [1–4].
Following the systematic formulation of statistical mechanics by Gibbs and Boltzmann, entropy S

reflects thereby the number of accessible micro-states of the system in study in its thermodynamic
equilibrium (for a micro canonical ensemble SG = kB lnΩ with kB the Boltzmann constant, and Ω the
number of accessible micro-states [1,5–7] and exerts its presence as being part of the total free energy
(for example for an ideal gas the Gibbs free energy is given by G = U + pV − TS with U is the inner
Energy, p the pressure, V the volume, and T the temperature; [1,5]). The latter argument brings the
term entropy S back to its roots, where Clausius tried to design and understand “heat engines”, which
are cyclic machines for the conversion of heat Q into useful work, and found when averaged over many
cycles that for an irreversible machine ΔQ

T
= ΔS > 0 [8]. Although the statistical mechanics argument

of entropy increase with time by describing a system tendency towards its most probable state, which
is the equilibrium state, is sound, Loschmidt and Zermelo’s reversal and recurrence objections remain
as powerful as ever [9–12]. Both objections have been extensively discussed and are just mentioned
here in short. The center of Zermelo argument is that if waited long enough any system, which started
at a special low entropic state, under a time reversible physics may go back to its special low entropic
starting state requesting a decrease of entropy over a long period of action, which is in general not
observed. Lohschmidt indicated that any time reversible microscopic process in a closed system can be
reversed by reversing all the velocity vectors of the involved particles and if done so yielding a decrease
of entropy over a long trajectory, something that is not observed in general as just mentioned.

In addition to these objections of the interpretation of entropy, it is the author’s notion, that the
arrow of time is such an important physical measure that it has likely its root deep in physics at
the microscopic level and not just at the macroscopic statistical level—a point of view that was also
mentioned beforehand by others (for example [2,13]) and is experimentally supported by the observed
time symmetry violation of the weak force [14]. The idea of an arrow of time (at the microscopic
level) requests the existence of time contrasting the view of many scientists and philosophers, who
suggested that time is an illusion [15]. In the following, we will assume time and the arrow of time to be
fundamental already at the microscopic level.

But from where could the arrow of time, time irreversibility, and entropy be originated from? As we
shall see, it is our attempt to derive the arrow of time and the entropy part of the total free energy from
the assumption that time is discrete. Although the introduction of a discrete time is not new and upon
energy quantization for quantum mechanics straightforward (for example References [16–18]) it is not a
very popular concept, since upon the introduction by Newton, time and space are an infinitely divisible
continuum yielding powerful mathematical description in classical physics, quantum mechanics, as well
as special and general relativity theories. An experimental argument in favor of the discreteness of time
is, that the experimentally measured time is composed of an array of events, which can be exemplified in
physics only by an energy-consuming clock measurement, and thus can not be measured continuously
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because of the uncertainty principle between energy and time (ΔE Δt > h/2 with h being the Planck
constant).

There have been a few attempts in the literature that developed theories with time as a discrete
parameter (such as [19–27]). To describe the time evolution of Hamiltonian systems with time as
a discrete parameter Lee introduced time as a discrete dynamical variable [22]. Lee points out that
throughout the development of physics, time always appears as a continuous parameter, while the space
coordinates in non-relativistic theories are dynamical operators dependent on time. Lee showed that
the introduction of time as a dynamical variable enables the discretization of time without violating the
conservation of energy law. Subsequently, by invoking the discrete-time action principle by Cadzow [28]
Jaroszkiewicz and coworkers [24,25] succeeded in developing an equation of motion with time as a
discrete parameter having time steps of equal size. Valsakumar [27] took a fresh look at the problem
under the assumption that the time steps are identical to the Planck time (5.4 × 10−44 s). By adopting
the phase space density approach he yields the discrete time-analog of the Liouville equation of the
phase space density in classical mechanics. Amongst others, his approach yields an arrow of time that
follows from the documentation that the replacement of the time derivative by a backward difference
operator only can preserve the non-negativity of the phase space density [28]. In parallel, in attempts
to unify the general relativity theory with quantum mechanics including in particular quantum loop
theory [15,29] it is assumed at the most fundamental level that time has a granular structure with the
Planck time as the smallest time step. Furthermore, it appears that the Dirac equation which describes
the free electron is more sound in presence of a discrete time than its continuous analog without loosing
Lorentz invariance [15,21].

We follow here the approach by Lee [22] introducing time as a dynamical discrete variable yielding
a scaling of time that depends on the potential present. This Ansatz is only applied to classical
physics because of simplicity. The consequences of scaling time onto the law of energy conservation
requests a reformulation of the Hamiltonian as established by Nosé for isothermal molecular dynamics
simulations of macroscopic systems [30–34]. There is a logarithmic term in the Nosé-Hamiltonian which
is dependent on the scaling of time. As we shall see, this term is defined as the microscopic entropy
and if ensemble-averaged is equivalent to the macroscopic entropy as also exemplified by the simple
example of the expansion of an ideal gas. After the introduction of the discrete time (Section 2.1), time
irreversibility in a microscopic system is discussed (Section 2.2), followed by the reintroduction of time
reversibility through scaling of time (Section 2.3) yielding the microscopic entropy of a single particle
(Section 2.5) and a many particles system (Section 2.6). It is then further shown that the averaged
microscopic entropy corresponds to the Boltzmann entropy (Section 2.7) as well as the Gibbs entropy
(Sections 2.8 and 2.9). In (Section 2.10) the microscopic and macroscopic entropies of the volume
expanding gas are calculated, followed by a discussion on time-irreversibility within time reversible
descriptions of physical laws (Section 2.11). In Section 2.12 an explicit description of the evolution of a
single particle within the established discrete time theory is given, followed by a conclusion.
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2. Theory

2.1. Under a Discrete Time

In classical physics, a non-relativistic particle with mass m at the position r(t) at a given time t

in a potential V (r) has the following Lagrangian L = 1
2
mṙ2 − V (r) with ṙ = dr

dt
being the velocity.

The use of bold letters indicate thereby the vector character of the physical variables such as r and ṙ.
In examples having a one dimensional space only they are replaced by normal letters (such as and ṙ

and r). The classical trajectory of a particle is determined by the minimal extremity of the action Ac,
which is usually defined by the time integral over the Lagrangian between the two time points of interest
(ti and tf ):

Ac =

∫ tf

ti

L(r, ṙ, t) dt (1)

denoting c for the continuous or classical case.
In the discrete time formalism, Lee (1983) [22] replaced the continuos function r(t) by a sequence of

discrete values:
(r0, t0), (r1, t1), ..., (rn, tn), ..., (rN+1, tN+1) (2)

with (r0, t0) the initial and (rN+1, tN+1) the final position. In this description rn is still continuous,
while tn is discrete. In discrete mechanics there are many possible definitions of the concomitant
velocity ṙn and acceleration r̈n. Since it is the attempt of the present work to introduce a time
irreversible microscopic physics, the velocity at time point n ṙn is defined time asymmetric (note, this
contrasts to time symmetric definitions such as the leapfrog schemes [5] usually used for example in
molecular dynamics simulation to obtain a time-reversible mechanics. Furthermore, we would like
to note that although such leapfrog schemes are symmteric in time there is a loss of the “instant in
time”). Furthermore, it is defined backward in time in order to determine it from the past permitting a
forward progressing description. This approach is in line with our daily experience that the presence
is determined by the past and presence (such as experimentally-derived information from the past
and presence):

ṙn = ṙn(rn, rn−1; tn, tn−1) =
rn − rn−1
tn − tn−1

(3)

Using this description of the velocity the following action in presence of a discrete time formalism
is defined:

A =
N+1∑
n=1

(
1

2

m (rn − rn−1)
2

tn − tn−1
− (tn − tn−1)V (rn)

)
(4)

(Please note, that the definition of the action is different from the one defined by Lee [22] who uses
a mean potential to get a symmetric action along the space coordinate).

According to Lee [22] the discrete analog of Newton’s law can be derived by setting

∂A

∂rn
= 0 (5)

which yields

m(
rn − rn−1
tn − tn−1

− rn+1 − rn
tn+1 − tn

)− (tn − tn−1)
∂V (rn)

∂rn
= 0 (6)
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m

rn−rn−1

tn−tn−1
− rn+1−rn

tn+1−tn

tn − tn−1
=

∂V (rn)

∂rn
(7)

m r̈n = m
ṙn+1 − ṙn
tn − tn−1

= −∂V (rn)

∂rn
= F(rn) (8)

with F(rn) is the (vectorial) force of the potential V (rn) at point (rn, tn), which is discrete in time.
The acceleration r̈n is defined through the Newton’s law of Equation (8) by

r̈n = r̈n(F(rn),m) = r̈n(rn+1, rn, rn−1; tn+1, tn, tn−1) = r̈n(ṙn+1, ṙn; tn, tn−1) =
ṙn+1 − ṙn
tn − tn−1

(9)

With these definitions ṙn and r̈n are bound to the corresponding time tn. ṙn is defined backward in time,
while r̈n is defined by the force F(rn) through the discrete variant of the Newton’s law of Equation (8).
The Newton’s law also defines the velocity forward in time (i.e., ṙn+1) if the time step size is known
(such as tn − tn−1 = const). These definitions follow a general correspondence principle between
continuous classical mechanics and the presented discrete mechanics introduced in Table 1 and enables
the calculation of a time trajectory. Thus, for any time series t1, .....tN+1,the positions r1....., rN+1,
velocities ṙ1........ṙN+1 and the acceleration r̈1......., r̈N+1 can be determined given the starting position
(r0, t0) and the potential V (rn) as discussed in details in 3.12 (note, that ṙ0 and r̈0 are not defined
because of the unknown t−1, but they are also not necessary for the determination of the trajectory).

Table 1. Correspondence principle between continuos classical mechanics and the discrete
mechanics presented here. (a) other definitions are in principle possible; (b) Xn(tn)

is a time-dependent variable such as rn and Ln; (c) Ẋn(tn)is a time-derivative of the
time-dependent variable Xn(tn) such as ṙn.

Continuos mechanics Discrete mechanics (a)

t tn

dt tn − tn−1

r rn
∂X
∂t

Xn(tn)−Xn−1(tn−1)
tn−tn−1

(b)
∂Ẋ
∂t

Ẋn+1(tn+1)−Ẋn(tn)
tn−tn−1

(c)

Alternatively, a Lagrangian Ansatz for the derivation of the Newton law given a sequence of time
points {tn, n = 0, 1, ..., N + 1} in presence of a discrete time can be derived as follows:

We start with the above equation of the Lagrangian (from Equation (4)) being

Ln = Ln(rn, rn−1; tn, tn−1) =
1

2

m (rn − rn−1)
2

(tn − tn−1)2
− V (rn) =

1

2
mṙ2n − V (rn) = Ln(rn, ṙn) (10)

If the discrete analog of the Lagrangian equation ( ∂
∂t

∂L
∂ṙ

= −∂L
∂r

) is written following the correspondence
principle depicted in Table 1

1

tn − tn−1
(
∂L(rn+1, ṙn+1)

∂ṙn+1

− ∂L(rn, ṙn)

∂ṙn
) = − ∂L

∂rn
(11)
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the same discrete Newton’ law is obtained as above: m r̈n = m ṙn+1−ṙn
tn−tn−1

= F(rn).

Figure 1. The dependencies of the velocity ṙn and the acceleration r̈n from the
corresponding times tn and space rn coordinates are graphically indicated. The discreetness
of time is indicated by time points n− 1, n, and n + 1.

t

r

r

r

n-1 n n+1

tn - tn-1

rn - rn-1

rn+1 - rn

2.2. Time Reversibility/Irreversibility in a One Dimensional Space

Having established the Newton’s law (Equation (8)) in presence of a discrete time, we would like to
pursuit the issue of time reversibility or irreversibility. It is immediately evident from the inspection of
the discrete Newton’s law (Equation (8)) that under the assumption of having ∆tn = tn − tn−1 = const

the equation is not time symmetric because of the term F(rn). Only for F(rn) = const or/and at the
continuous limit for tn − tn−1 → 0 with limtn−>tn+1F(rn) = F(rn+1) time reversibility is obtained.
This finding is irrespective of whether the action is symmetric in rn or not. Hence, the discreteness of
time with a ∆tn = const in presence of a complex force (i.e., F(rn) 6= const) yields immediately time
irreversibility and an arrow of time.

More formally, time reversibility can be described by a two step process having one step forward
followed by a step backward. Let us first consider the evolution of the Newton’s law of a single particle
with two step forwards in a one dimensional space (i.e., rn = rn and F(rn) = F(rn) = −∂V (rn)

∂rn
)

(i)

ṙn+1 = ṙn −
1

m
(tn − tn−1)

∂V (rn)

∂rn
(12)

(ii)

ṙn+2 = ṙn+1 −
1

m
(tn+1 − tn)

∂V (rn+1)

∂rn+1

(13)

If the second step is now backward in time

ṙn+2 = ṙn+1 +
1

m
(tn+1 − tn)

∂V (rn+1)

∂rn+1

(14)

and if time reversibility is requested

ṙn = ṙn+2 = ṙn+1+
1

m
(tn+1−tn)

∂V (rn+1)

∂rn+1

= ṙn−
1

m
(tn−tn−1)

∂V (rn)

∂rn
+

1

m
(tn+1−tn)

∂V (rn+1)

∂rn+1

(15)

Looking at the last equation with ∆tn = const it is evident that only with ∂V (rn)
∂rn

= F (rn) = const

Equation (15) is fullfilled and thus the process of interest is reversible. Under a more complex force
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however in presence of ∆tn = const the process is irreversible. That complex processes with many
particles under a complex force are time irreversible is in line with our daily experiences (such as a cup
that falls from a table and breaks into pieces), and thus sound, albeit most of the physical laws are time
reversible including the Newton’s mechanics. It is therefore, the view of the author that the presented
discrete homogeneous time mechanics (abbreviated diho mechanics) with ∆tn = const = ∆t (with ∆t

probably equal to the Planck time 5.4 × 10−44 s) may well describe nature, while the continuous, time
reversible Newton mechanics is only an approximation. Usually, this approximation appears to work
very well attributed to the small deviation from time reversibility because the time interval ∆t is very
short. However, in macroscopic processes with many particles the Newton mechanics apparently breaks
down since it requires a description of the system by means of thermodynamics including the entropy
term and time irreversibility. If the presented discrete time mechanics is a more profound theory than the
Newton’s mechanics, on the one hand it should reflect irreversible properties of large complex systems
usually described by thermodynamics and statistical mechanics (i.e., time irreversibility and entropy),
while on the other hand it should under certain boundary conditions asymptotically approximate the
Newton’s mechanics and thus time reversibility.

Indeed, by inspection of Equation (15) there is the possibility to obtain also in presence of a discrete
time and a complex force (i.e., F (rn) 6= const) time reversibility by introducing time as a discrete
dynamic variable t̃n. If time is a discrete dynamic variable it is a function of n and the step sizes
t̃n− t̃n−1 are variable as indicated in Figure 2. This so-called discrete scaled representation (abbreviated
by the disca representation in Figure 2; note this representation has in addition a scaling variable sn

to be introduced below) enables to guarantee the time reversibility of the Newton law (Equation (14))
by requesting

t̃n+1 − t̃n

t̃n − t̃n−1
=

F (rn)

F (rn+1)
(16)

Equation (16) is called in the following the reversibility axiom. (Note, Equation (16) is not defined for
F (rn+1) = 0 unless F (rn) is also 0 and thus with F (rn) = const = 0 constant time steps are obtained;
correspondingly Equation (15) is fullfilled for ∂V (rn)

∂rn
= ∂V (rn+1)

∂rn+1
= 0).

Figure 2. The various discrete mechanics description used in this manuscript are displayed
side by side including the nomenclature used. The discrete time points are shown and labeled
in part. Also, the time difference between time points are indicated.

discrete, homogeneous (diho)

n = 0       1       2

∆t = constt0 t1 t2

discrete, heterogeneous (dihe)
tn-tn-1 

time arrow

continuous, homogeneous
(classical Newton mechanics)

dt 

discrete, scaled (disca)
∆t sn  = (tn-tn-1) 

time arrow

~

t0 t1 t2

t0 t1 t2~ ~ ~

 

s1 s2~~

~~
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In other words, if the potential, respectively its corresponding force, is of complex nature (i.e.,
F (rn) 6= const) time is a dynamic variable following Equation (16) to guarantee time reversibility
of the system of interest. The request of a dynamic discrete time if the potential is of complex nature has
already been mentioned by [22]. One may argue now, that the discrete scaled time description may be
superior to the discrete homogeneous one because it enables a time reversible description. However, the
following caveats appear: (i) The description of complex physical systems is reversible, which is against
our daily experience. Thus, by the introduction of time reversibility consequently the arrow of time got
lost; (ii) In a three dimensional space, time has to be expanded to a tensor of second rank as discussed
in details in the next section; (iii) A further complexity arises in a many particles system as discussed
later yielding time to be a multi-dimensional tensor. These arguments indicate again that ∆tn = const

(possibly in the order or equal to the Planck time). Under this assumption time reversibility of a system
with a complex potential is lost and hence an arrow of time is introduced automatically without the need
to introduce a macromolecular ensemble description that follows thermodynamics.

However, by establishing a discrete dynamic time variable combined with Equation (16) a first
important connection between the time irreversible discrete, homogeneous mechanics (diho) and its
acclaimed approximation the Newton mechanics has been obtained by establishing a discrete but time
heterogenous description (disca) of mechanics (compare the characteristics of the three systems in
Figure 2). In the next chapters the introduction of the time scaling variable sn will allow to complete
the connection between the two mechanics theories, yielding a microscopic entropy description as we
shall see. In other words, it is the authors assumption in the following that the time quantum is constant
(and therefore independent of the step number n or the potential present) and the dynamic nature of
the time is only of use to calculate the progression of the energy as discussed below, respectively, to
guarantee energy conservation. Before we go on, we make a short excursion into the description of time
reversibility in a three dimensional space.

2.3. Time Reversibility/Irreversibility in a Three Dimensional Space

Let us in the following consider the evolution of the Newton’s law of a single particle in presence
of a discrete time in a three dimensional space under the request of time reversibility. By trying
to expand our finding about force-dependent scaling of time from the one dimensional case to the
corresponding three dimensions the complication arises that the force is now a vector (i.e., Fn(rn) =

(F x(rn), F y(rn), F z(rn)), while so far time was a scalar. In order to enable time reversibility, time is
expanded to a diagonal tensor of second rank (e.g. a 2× 2 matrix with only diagonal elements):

tn →

 txn 0 0

0 tyn 0

0 0 tzn

 = tn1 (17)

with 1 being the unity matrix and tn =

 txn
tyn
tzn


This extension should be regarded as a mathematical trick as mentioned above in order to enable a

formalism for time reversibility under a discrete time.
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In accordance to the two step process in one dimension described above, the corresponding two step
process in a three dimensional space of one step forward followed by a backward step is described by

ṙn = ṙn+2 = ṙn+1 + (tn+1 − tn)1F(rn+1) = ṙn − (tn − tn−1)1F(rn) + (tn+1 − tn)1F(rn+1) (18)

The time reversibility of the Newton’s law requires the time is scaled by

t̃xn+1 − t̃xn
t̃xn − t̃xn−1

=
F x(rn)

F x(rn+1)
,
t̃yn+1 − t̃yn
t̃yn − t̃yn−1

=
F y(rn)

F y(rn+1)
,
t̃zn+1 − t̃zn
t̃zn − t̃zn−1

=
F z(rn)

F z(rn+1)
(19)

Note, that while in each dimension there appears a separate time scaling and this scaling is dependent
on the corresponding spatial component of the forces present, the time evolution of the system is still
discrete and the time evolution is defined by the number of steps n and not the step size. While this
approach works mathematically it is composed of a bizarre complexity (i.e., multi dimensional time)
and hence it is regarded only as a mathematical trick to get insights into entropy as we shall see in
the following.

2.4. Scaling of Time in Accordance to Nosé

For simplicity we go back to the single particle in a one dimensional space and its description by the
discrete constant time description (diho in Figure 2). We now introduce the scaling variable s̃n and scale
in parallel the time to yield

s̃n(tn − tn−1) = t̃n − t̃n−1 (20)

with tn − tn−1 = ∆t = const. (Please note, that the sn is defined as the corresponding variable s of
Nosé with dt = dt̃

s̃
, following the denotation for ˜ used in the review by Hünenberger (2005). In this new

so called discrete, scaled representation (so called disca representation) described in Figure 2 the time t̃n
is still a dynamic variable, while the system is extended by the scaling variable s̃n. The transformation
from the diho to the disca representation is thus obtained by

r̃n = rn , ˙̃rn =
ṙn
sn

, s̃n = sn , and ˙̃sn =
ṡn
sn

. (21)

˙̃sn (and correspondingly ṡn) is thereby defined by ˙̃sn = s̃n+1−s̃n
t̃n−t̃n−1

defining it forward in time
˙̃sn(t̃n+1, t̃n, t̃n−1) as it has been done for r̈n(tn+1, tn, tn−1) (see Figure 1).

Such an approach of scaling of time has been introduced by Nosé. He established the mathematical
formulation of the so called Nosé-Hoover thermostat [32–37] enabling the molecular dynamics
simulation of a system to sample configurations of a canonical (constant-temperature) ensemble. It
is based on the extension of the real system by an artificial dynamical time scaling variable s. This
important relationship serves in the following for the establishment of the microscopic entropy of a
single particle (note, that sn is the discrete analog of s). Most importantly thereby is by doing so
Nosé introduced a Lagrangian that in presence of the dynamical variable s yields in addition to the
Newton law, also a Hamiltonian and guarantees a Boltzmann weighted canonical ensemble desription.
Furthermore, its ensemble-averaged Hamiltonian is thereby a constant of motion referring to the energy
of the system. Hence, the Nosé-Hoover thermostat introduces a Lagrangian that describes a system
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on the microscopic level under scaling of time, which yields upon ensemble averaging a macroscopic
thermodynamic description of the system bridging the microscopic with the macroscopic world.

Following Nosé and the transformation rules of Table 1, the discrete time analog of the Nosé
Lagrangian at time point n for a single particle is then given by

LN
n =

1

2

m (r̃n − r̃n−1)
2 s̃2n

(t̃n − t̃n−1)2
− V (r̃n) +

1

2
Q ˙̃s2n − g kB T lns̃n (22)

where kB is the Boltzmann constant, a constant Q, which has been described as a “mass”-like term for
the motion of s̃n with Q > 0 with actual units of energy time squared, and g is equal to the number
of degrees of freedom in the real system Ndf . (Note, since sn is according to the reversibility axiom
dependent on the force F as we shall see below the system of interest is not an extended system as in
the case of Nosé and therefore g = Ndf and not Ndf + 1 as it is the case for the Nosé extended system.
In the absence of a requested reversibility the system would be extended though. Furthermore, we would
like to mention that although under the given conditions of having a single particle in a one dimensional
space g could by defined, the variable is kept here). The first two terms of the Lagrangian represent the
kinetic energy minus the potential energy of the system, while the third and fourth terms represent the
kinetic energy minus the potential energy associated with the s̃n variable. The third term can thus be
interpreted as a kinetic energy of a heat bath/the thermostat coupled to the system of interest, and the
fourth term describes the heat transfer between the heat bath and the system of interest. The thermostat
mimics a bath composed of an infinite collection of harmonic oscillators or one with an infinite number
of “particles” in a box and thus shows an infinite heat capacity [36]. The heat or temperature bath
is however of another nature than usually defined in thermodynamics because it is a heat bath of the
unitless time scaling variable s̃n with a mass-like Q with units Js2 (energy · seconds · seconds) and a
velocity ˙̃sn with unit s−1. Nonetheless, it enables the use of a temperature as highlighted by the explicit
presence of the temperature T in the fourth term of the Lagrangian although the system described is of
microscopic nature.

By applying the discrete Lagrangian equation (Equation (11)) the Newton’s equation in the new
representation is given by

1

t̃n − t̃n−1
( ˙̃rn+1 − ˙̃rn

s̃n
2

s̃2n+1

) =
m−1F (r̃n)

s̃2n+1

(23)

which can be simplified to

¨̃rn =
( ˙̃rn+1 − ˙̃rn)

t̃n − t̃n−1
=

m−1F (r̃n)

s̃2n+1

− γ̃n ˙̃rn (24)

This Newton equation is extended by a friction term γ̃n = s̃n+1−s̃n
(t̃n−t̃n−1) s̃n+1

(1 + s̃n
s̃n+1

) =
˙̃sn

s̃n+1
(1 + s̃n

s̃n+1
).

Hence, after transformation into the discrete, scaled so called disca system (Figure 2) the Newton
equation is extended by a friction term which is attributed and dependent on the variables s̃n and s̃n+1

as well as the corresponding time step. While this equation is in principle reversible, it is interesting to
note, that it could be irreversible if the friction term is constrained to values =0. The ad hoc introduction
of such a friction term is often used in classical mechanics to introduce irreversibility, stochastisity
or/and to deal with the interaction of the system of interest with its surrounding as exemplified for
example by the Langevin dynamics [5,37]. It is also used to describe and study the quantum mechanical
decoherence phenomenon [38].
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Equivalent to Equation (24) is the following equation

¨̃rn =
m−1F (r̃n)

s̃2n
−

˙̃sn
s̃n

(1 +
s̃n+1

s̃n
) ˙̃rn+1 (25)

It is now required that the system in the disca frame must be reversible. Hence, using the Newton
equation a step forward yields

˙̃rn+1 =
m−1F (r̃n)

s̃2n+1

(t̃n − t̃n−1) + ˙̃rn
s̃2n
s̃2n+1

(26)

the second step backward is then

˙̃rn+2 = −m−1F (r̃n+1)

s̃2n+2

(t̃n+1 − t̃n) + ˙̃rn+1

s̃2n+1

s̃2n+2

(27)

if time is reversible ˙̃rn+2 = ˙̃rn and s̃n+2 = s̃n and thus

˙̃rn = −m−1F (r̃n+1)

s̃2n+2

(t̃n+1 − t̃n) + (
m−1F (r̃n)

s̃2n+1

(t̃n − t̃n−1) + ˙̃rn
s̃2n
s̃2n+1

)
s̃2n+1

s̃2n+2

(28)

˙̃rn = −m−1F (r̃n+1)

s̃2n+2

(t̃n+1 − t̃n) +
m−1F (r̃n)

s̃2n+2

(t̃n − t̃n−1) + ˙̃rn (29)

yielding the reversibility axiom in the disca representation to be

s̃n+1

s̃n
=

t̃n+1 − t̃n

t̃n − t̃n−1
=

F (r̃n)

F (r̃n+1)
(30)

In the disca frame the system is thus reversible if Equation (30) is fulfilled.

2.5. The Microscopic Entropy of a Single Particle

Following Nosé [22,37] from the Lagrangian (Equation (22)) in the disca representation the
corresponding Hamiltonian can now be writ

HN
n =

1

2
m ˙̃r2n s̃

2
n + V (r̃n) +

1

2
Q ˙̃s2n + gkBT ln s̃n (31)

This function is a constant of the motion and evaluates to the total energy of the disca system.
Nosé and Hoover figured that the equations of motion can be reformulated to go back to a

representation that has a homogenous time sampling yielding the disco representation defined in
Figure 2 [32,33,37]. The transformation from the disca system to the disco system variables is thereby
achieved through

rn = r̃n , ṙn = ˙̃rns̃n , s̃n = sn , F (rn) = F (r̃n) , ṡn = s̃n ˙̃sn , (32)

and r̈n = sn+1sn ¨̃rn + ˙̃rnṡn = sn+1sn ¨̃rn + ˙̃rns̃n ˙̃sn = s2n ¨̃rn + ˙̃rn+1s̃n ˙̃sn

Based on these expressions, the Lagrangian equations of motions can be rewritten

r̈n =
1

m
F (rn)− γnṙn+1 (33)
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with γn = ṡns
−1
n = sn+1−sn

Δt sn
= 1
Δt

( sn+1

sn
− 1)

An equivalent expression is

r̈n =
sn

sn+1m
F (rn)− ṡn

sn+1

ṙn =
1

m
F (rn+1)−

ṡn
sn+1

ṙn (34)

The constant of motion evaluating to the total energy of the entire, pseudo extended system is
given by

HN
n =

1

2
mṙ2n + V (rn) +

1

2
Q
ṡ2n
s2n

+ gkBT ln sn (35)

(note, however, that this term is no longer a Hamiltonian; Q is still a “mass”-like term for the motion
of sn , and g is equal to the number of degrees of freedom in the real system Ndf [37]).

This constant of motion is composed of the inner energy of the system U described by the first two
terms followed by the energy of the bath and the exchange energy (i.e., the latter two terms having the
variable sn). The resemblance of this term with the free energy (or Helmholtz Energy) A = U − TS is
next put forward (note, the variable A is used instead of the traditionally used letter F for the Helmholtz
energy, because F is used here for the force). It is intriguing to define a microscopic entropy of a single
particle at time point tn to be

Sn = −g kB ln sn (36)

yielding

HN
n =

1

2
mṙ2n + V (rn) +

1

2
Q
ṡ2n
s2n
− T Sn = U +

1

2
Q
ṡ2n
s2n
− T Sn (37)

By using in the definition the word “microscopic”, we follow a suggestion by Prigogine [12] because
Sn is a non ensemble-averaged term. Note, since we are in a time reversible description, the microscopic
entropy is in general of reversible character and thus not a monotonously increasing quantity (see below
and Section 2.11).

2.6. The Microscopic Entropy of a System With Many Particles

To extend the system from one particle to Z particles with Z very large (we are still in a one
dimensional space and the particles are not interacting with each other keeping the potential simple
Vi(ri,n)) for each particle i there is a separate scaling of time denoted si,n that follows the reversibility
axiom

si,n+1

si, n
=

Fi(ri,n)

Fi(ri,n+1)
which yields

Hn =
Z∑
i=1

1

2
miṙ

2
i,n + Vi(ri,n) +

1

2
Qi

ṡ2i,n
s2i,n

+ gikBT ln si,n (38)

and correspondingly, the microscopic entropy of a Z particles system is defined as

Sn = −
Z∑
i=1

gi kB ln si,n (39)

In an attempt to simplify Equation (39) by reducing amongst others the number of scaling factors si,n

the following description of the microscopic entropy is introduced by assuming there are J groups of
particles and within each group the particles have undistinguishable properties but are still distinct since
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the system is microscopically described (i.e., within a group each particle has gj degrees of freedom,
the same responds to the potential, the same scaling factor, and the same velocity and mass). We define
pj = # of particles in group j

Z
=

Zj

Z
with

∑J
j=1 pj = 1. For very large systems (i.e., at the thermodynamic

limit) pj is also the probability of a particle to be in the j group. Thus, the derived microscopic entropy
of the Z particles system at time point tn is given by

Sn = −Z
J∑

j=1

pj gj kB ln sj,n =< −kB g ln sn >= −kB Ndf < ln sn > (40)

with g = Z gi. In the latter part of Equation (40) it is assumed that all particles have the same degree of
freedom and thus g = Z gi = Ndf with Ndf being the degree of freedom of the entire system.

In the next step, it is assumed that the scaling of time is very small (i.e., sj,n is very close to 1).
This assumption called in the following the “slow changing force limit” is valid if the change of the
force from one time step to the next is very small (i.e., F (rn+1) ≈ F (rn) + Δ with Δ small, see also
Equation (30)). Support for a sj,n close to 1 is also based on the notion that scaling of time is usually
not directly observed in physics. Under this assumption the ln of Equation (40) can be described by
a Taylor expansion of first order and the averaging can be put inside the ln, which results in

Sn = −kBNdf < ln sn >≈ −kBNdf

J∑
j=1

pj (sj,n − 1) = −kBNdf [(
J∑

j=1

pj sj,n)− 1] (41)

Sn ≈ −kBNdf ln
J∑

j=1

pj sj,n = −kBNdf ln < sn > (42)

In accordance, the microscopic entropy difference between two time points n and m for a Z particles
system with having all particles the same gi is given by

ΔS = Sm − Sn = −kB Ndf (< ln sm > − < ln sn >) ≈ −kBNdf ln
< sm >

< sn >
(43)

It is interesting to note that this description can be used to calculate for a Z particles system the
microscopic entropy difference between two time points by using averaged time scaling factors.

Furthermore, in contrast to the macroscopic thermodynamic entropy, the microscopic entropy can
also be calculated for a system with a single particle or a few particles at any given time point n.
In addition, the microscopic entropy difference can be calculated without having the system in both
states in equilibrium and the averaging is not over all possible states as in statistical mechanics,
but over the observed state. However, the change of the microscopic entropy is in general not a
monotonously increasing quantity as requested for the macroscopic entropy, an issue to be discussed
below (Section 2.11). Nonetheless, with the above mathematical trickery a close resemblance between
the microscopic and macroscopic entropy is obtained.

2.7. Boltzmann Entropy Versus the Microscopic Entropy of a Many Particles System

It is attempted in the following to show a profound relationship between the microscopic entropy and
the corresponding macroscopic one. Let us start with the Boltzmann entropy which shall be defined as
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the macroscopic entropy of a large system of Z independent, identical, indistinguishable particles (such
as the ideal gas or diluted gas) for which each micro-state has the same probability. Boltzmann showed
that the entropy is then given by

SB = −kB < ln pj >= −kBZ
J∑

j=1

pj ln pj (44)

with pj =
Zj

Z
being the probability of a single particle to be in the state j and the average is a single

particle average taken over all the possible states J of the particle. The derivation of this formulation of
the Boltzmann entropy is starting with the well known formula

SB = kB lnW (45)

with
W =

Z!∏J
j=1 Zj!

(46)

describing the number of micro-states that the Z particles system can adopt if there are J distinguishable
groups of states that each is composed of Zj particles [7].

Using the Stirling formula (i.e., ln Z! = Z lnZ − Z or Z! = (Z
e
)Z ) which is true for large Z,

Equation (45) can be simplified to

SB = kB (ln Z! −
J∑

j=1

lnZj!) = kB(Z lnZ − Z − [
J∑

j=1

Zj lnZj − Zj]) (47)

= kB(Z lnZ − Z −
J∑

j=1

Zj ln Zj +
J∑

j=1

Zj) = kB(Z lnZ −
J∑

j=1

Zj ln Zj)

SB = kB Z (ln Z −
J∑

j=1

pj ln [pjZ]) = kB Z (ln Z −
J∑

j=1

pj ln pj −
J∑

j=1

pj ln Z) = −kBZ
J∑

j=1

pj ln pj

(48)
In comparison, the microscopic entropy of this Z particles system is given by Sn =

−kB Z
∑J

j=1 pj ln sj,n with gj = 1, which is for example the case for an ideal monoatomic gas in
a one dimensional volume. Because the description is microscopic each particle is distinct and thus
requests its own scaling of time (i.e., sj,n). In the “slow exchanging force limit” the averaging can be put
inside the ln (Equation (42))

Sn ≈ − kBZ ln < sn >= −kBZ ln
J∑

j=1

pj sj,n (49)

Since the macroscopic entropy is only defined by an averaging, which in the case of interest can
be done by a single particle averaging (Equations (44)–(48)), only the single particle average of the
microscopic entropy can be compared with its macroscopic counterpart yielding with δlj being the
Kronecker’s delta function

< Sn >≈ −kB Z < ln

J∑
j=1

pj sj,n >= −kB Z

J∑
l=1

pl δlj ln(

J∑
j=1

pj sj,n) = −kB Z

J∑
l=1

pl ln (pl sl,n) (50)
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A classical thermodynamic system in equilibrium for which the entropy is calculated can be assumed
to be in the “slow changing force” limit with sl,n close to 1, yielding

< Sn >≈ −kBZ

J∑
l=1

pl ln(pl sl,n) ≈ −kBZ
J∑

l=1

pl ln pl = SB (51)

Thus, for a system in the “slow changing force limit” with independent non interacting particles,
the average microscopic entropy in equilibrium approximates the Boltzmann entropy of the system.
An interpretation of this analogy suggests that the original description of the entropy by Boltzmann is
just a statistical averaging of a variable which is close to 1 (i.e., sl,n) but that the entropy term itself has
not its root in statistical mechanics but rather in the discreteness of time.

2.8. Gibbs Entropy versus the Microscopic Entropy of a Many Non-Interacting Particles System

Above, we have shown that the average microscopic entropy at equilibrium of a system of
Z independent, non-interacting, indistinguishable particles approximates to the Boltzmann entropy.
However, in more complex systems the above defined Boltzmann entropy leads to increasingly wrong
predictions of entropies and physical behaviors, because it ignores the interactions and correlations
between different particles. Instead one must follow Gibbs, and must consider the ensemble of states
of the system as a whole, rather than single particle states. If there are totally Ω micro-states k that all
together describe the same macro-state the following description corresponds to the Gibbs entropy

SG = −kB
Ω∑

k=1

pk ln pk (52)

with pk being the probability of a macro-state to be in the micro-state k with
∑
Ω

k=1 pk = 1 (note, pk is
thus defined differently than above).

In a micro canonically behaving system the probability of each micro-state is equal with pk = 1
Ω

yielding the famous entropy formula [7]:

SG = kB lnΩ (53)

In comparison, the microscopic entropy of a Z non-interacting particles system was described by
Sn = − kBZ < ln sn > with < ln sn > the sum of ln sn,i over all particles i multiplied by 1

Z
,

which is equal to the average over the particles in the thermodynamic limit (Z → ∞ and V → ∞). In
addition, in the thermodynamic limit, the ensemble averaging of a function over all the micro-states of the
macro-state is identical to the averaging over the particles if they do not interact with each other yielding
Z < ln sn >particle averaging =< ln sn >ensemble averaging=

∑
Ω

k=1(pk ln sk,n) ≈ ln
∑
Ω

k=1(pk sk,n)

following the ideas of Equations (41)–(43). Thus,

Sn ≈ −kB ln
Ω∑

k=1

(pk sk,n) (54)
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Since the macroscopic entropy is only defined for an ensemble, only the average over all the
micro-states of the microscopic entropy can be compared with its macroscopic counterpart yielding

< Sn >≈ −kB < ln
Ω∑

k=1

(pk sk,n) >= −kB
Ω∑

m=1

pm δmk[ln
Ω∑

k=1

(pk sk,n)] = −kB
Ω∑

m=1

pm ln(pm sm,n) (55)

The delta function δlj thereby guarantees the independency of each micro-state.
Assuming the system to be in the “slow changing force” limit the ensemble-average microscopic

entropy in equilibrium is given by

< Sn >≈ −kB
Ω∑

m=1

pm ln (pm ) = SG (56)

Thus, for a many non interacting particles system in equilibrium in the “slow changing force” limit,
the microscopic entropy averaged over all the possible micro-states approximates the Gibbs entropy of
the system. The Gibbs and Boltzmann entropies are thus derived from a particle-individual scaling of
time. The individual time scalings were thereby requested by the hypothesis of a discreteness of time in
combination with the acclaimed time reversibility nature of the established microscopic laws of physics.

It is interesting to note however, that individual time scaling in presence of a continuous time would
also yield a microscopic entropy, which would correspond to the Gibbs entropy if ensemble averaged.
While the author prefers scaling of time to be a consequence of the simple and sound rational of time
being discrete, its continuos analog may have also its merits.

2.9. Gibbs Entropy versus the Microscopic Entropy of a System with Interacting Particles

It remains to be shown that the ensemble average of the microscopic entropy approximates the Gibbs
entropy also in a system with many (Z) particles which may interact with each other. In order to describe
such systems, a few concepts have been established in statistical mechanics of which we will discuss here
the mean field approximation and the “two particles only” or pair approximation [7].

In the presence of an intermolecular potential V (ri,n, rk,n) with a long range in distance such as
gravitation with its 1

|ri,n−rk,n|
dependency, it appears that the individual contributions of the interactions

1
2

Z∑
i,k=1(i 6=k)

V (ri,n, rk,n) in the Hamiltonian/Lagrangian can be approximated by a mean potential

described by 1
2
V (ri,n). This description can be interpreted as the potential that all the particles together

induce at the position ri at the given time point n. Obviously, with this approximation the particles are
statistically independent of each other relaxing the acclaimed complexity that arises from switching the
description from a particle to an ensemble point of view, and thus ensemble averaging and single particle
averaging are equivalent. Furthermore, since the mean potential is now of the form of the potential
introduced above (for example Equations (10) and (38)) the above derivation of the macroscopic Gibbs
entropy from the microscopic one (Equation (56)) can be applied also to interacting particles if their
interaction is described adequately with a mean field approximation.

While for long range potentials the mean field approximation appears to be reasonable, it fails for
short range potentials such as the interatomic potential in a diluted real gas. In such systems the



Entropy 2014, 16 3165

pair approximation can be put forward, which assumes that the system is composed of two particles
only. For diluted systems under short range potentials this approximation is reasonable, because for
most of the states not more than two particles will be present within the relevant action distance of the
short range potential at any given time yielding a system of statistically independent pairs of particles.
The pair of particles is thus the smallest unit for averaging and pairs of particles are independent of
each other yielding an equivalence between ensemble averaging over the pair and single pair averaging.
If the pair potential acts onto the two particles equivalently with |F (ri,n, rk,n)| = |F (rk,n, ri,n)|
the two particles show also the same scaling factor si,n = sk,n (because of the reversibility axiom)
and thus the microscopic entropy of the pair is given by Sn = − kB 2 ln sn yielding for the microscopic
entropy of the Z particles system Sn ≈ − kB

Z
2

2 ln < sn >pair average= − kB ln < sn >ensemble average

and finally this results in < Sn >≈ SG upon ensemble averaging of the microscopic entropy.
It remains however to be shown that without any assumption of a model the ensemble average of the

microscopic entropy is equivalent to its macroscopic analog.

2.10. Example: The Change of the Entropy of a Volume-Expanding Ideal Gas

Although it was demonstrated above theoretically that the ensemble-averaged microscopic entropy
approximates the Gibbs entropy, an example is given next for furhter illustration. By doing it, we will
however elucidate an important not yet in details considered problem of the theory introduced, which is
the problem of time-irreversibility in time reversible descriptions of physical laws (Section 2.11).

In the example the entropy change of the expansion of an ideal gas is calculated following the
microscopic entropy expression derived above. The isothermal reversible expansion (i.e., T = const) is
along r of an ideal gas located in a box with the area A and the side r from the initial Volume Vi = riA

to the final volume Vf = rf A. From a macroscopic view the expansion of the Z particles system is
based on a force F which acts on the area A giving rise to the pressure p = F

A
. Using the conventional

thermodynamics the change of the macroscopic entropy is calculated to be ∆SG = Sf−Si = Z kB ln
Vf

Vi
.

Using the microscopic entropy definition of the Z particles system (Equation (43)) the change of the
microscopic entropy of an expanding gas can be described by

ΔS = Sf − Si ≈ −kBZ ln
< sf >

< si >
= −kBZ ln

< F (ri) >

< F (rf ) >
= −kBZ ln

Fi

Ff

(57)

For this derivation, the reversibility axiom of Equation (16) was used (note, it has not been used
above for the derivation of the ensemble-averaged microscopic entropy). Furthermore, it was assumed
that the averaged force < F (rn) > that acts on the particle is equal to the macroscopic force Fn = pnA

(this relationship is based on the principle that in a time reversible isothermal process the split of a force
into a sum of smaller forces must follow the summation rule because of the impossibility to make a
perpetum mobile).

Furthermore, during the isothermal expansion of the gas the following dependence between the force
and the volume is given through the ideal gas equation pV = Z kB T (note, the ideal gas equation
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is believed to be correct also under a discrete time, because of its time insensitive character and the
experimental verification).

dpV + pdV = 0 (58)

dF
V

A
+

F

A
dV = 0 (59)∫
dF

F
= −

∫ dV

V
(60)

⇒ ln
Ff

Fi
= −lnVf

Vi

(61)

For the microscopic entropy change we finally get

∆S = Sf − Si = −Z kB ln
Vf

Vi

(62)

This obtained entropy change is equal to the macroscopic entropy change ∆SG multiplied by minus 1
using the classical description of entropy. Obviously, the factor −1 is disturbing. An attempt to resolve
this apparent discrepancy is given in the next section.

2.11. The Problem of Time-Irreversibility in Time Reversible Descriptions of Physical Laws

It has been mentioned that there is a fundamental problem to connect the reversible physical
description of a microscopic system with its macroscopic analog usually described by statistical
mechanics, because it appears to be difficult or impossible to connect a reversible description with an
irreversible one [2,12]. In the approach presented, this problem is still puzzling as demonstrated with the
example above on the expansion of the idea gas and as discussed in the following.

We did start with a time-irreversible microscopic description of a system under a complex potential
by introducing the discreteness of time and by defining the time steps to be of constant size (i.e.,
∆tn = const). However, since most of the physical laws are time reversible, we (re)introduced time
reversibility including the time reversibility axiom (i.e., Equation (16): sn+1

sn
= tn+1−tn

tn−tn−1
= F (rn)

F (rn+1)
)

by scaling of time yielding a time reversible description of the energy of the system including the
constant of motion evaluating to the entire energy with the microscopic entropy (i.e., Hn = 1

2
mṙ2n +

V (rn) + 1
2
Q ṡ2n

s2n
+ gkBT ln sn and Sn = −g kB ln sn for a single particle, Equations (37)–(40)). Thus,

both the microscopic entropy as well as the reversibility axiom are reversible. In other words, for
the reversibility axiom and the energy description with the microscopic entropy the arrow of time is
lost. The consequence of the loss of the arrow of time for the reversibility axiom is that it is not
possible to distinguish between a forward and a backward process. Mathematically, this means that the
reversibility axiom is either the one defined in Equation (16): s̃n+1

s̃n
= F (r̃n)

F (r̃n+1)
or s̃n+1

s̃n
= F (r̃n+1)

F (r̃n)
derived

from the corresponding backward process starting with ṙn−1 = ṙn − 1
m

(tn+1 − tn)∂V (rn)
∂rn

in analogy to
Equations (12)–(15) (i.e., ṙn−2 = ṙn−1 − 1

m
(tn − tn−1)

∂V (rn−1)
∂rn−1

followed by the reversion of time of the

second step ṙn−2 = ṙn−1+ 1
m

(tn−tn−1)
∂V (rn−1)
∂rn−1

= ṙn− 1
m

(tn+1−tn)∂V (rn)
∂rn

+ 1
m

(tn−tn−1)
∂V (rn−1)
∂rn−1

= ṙn

and ∂V (rn−1)
∂rn−1

= ∂V (rn+1)
∂rn+1

). Hence, the loss of the arrow of time due to the introduction of a time reversible
discrete physics introduces the following ambiguity for the reversibility axiom:
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s̃n+1

s̃n
=

F (r̃n)

F (r̃n+1)
or

s̃n+1

s̃n
=

F (r̃n+1)

F (r̃n)
(63)

This finding resolves apparent problems such as the expanding gas discussed above (Section 2.10).
Indeed, in the case of the expanding ideal gas, the introduction of the absolute value removes the
negative sign in the calculation of the macroscopic entropy change from its microscopic analog
yielding an approximate equivalency between the ensemble-averaged microscopic entropy and its
macroscopic counterpart.

The remaining caveat is that the constant of motion Hn = 1
2
mṙ2n + V (rn) + 1

2
Q ṡ2n

s2n
− T Sn with

Sn = −g kB ln sn is still time reversible. If however, the “mass” Q of the heat bath/the thermostat
(or Qi of all the heat baths) goes towards infinity (Q → ∞, Qi → ∞) the oscillatory nature of the
Nosé-Hoover “thermostat” is lost and concomitantly time irreversibility is obtained. Note, in molecular
dynamics simulations, the value of Q is chosen such, that during a calculation the temperature fluctuates
around the temperature of the temperature bath. If Q is set small, there is a fast oscillation, if it is too
long the oscillation is too slow and very long simulations are required to obtain a canonical distribution
of the system. In the case of Q → ∞, s = 1 and thus a regular molecular dynamics simulation without
thermostating is established [30–34]. In the discrete time description of the Hn however sn 6= 1 (unless
F (rn) = const) and thus time irreversibility is obtained.

This ad hoc introduction of requesting Q → ∞ in order to introduce a time irreversible description
of the system is strengthened by the following argument. Let us again consider the time reversible
evolution of a single particle under a given potential V (rn) at time point n described by the Nosé-Hoover
Lagrangian (Equation (31); Hünenberger, 2005 [37]; Nosé 1984a [30])

LN
n =

1

2
mṙ2n − V (rn) +

1

2
Q
ṡ2n
s2n
− gkBT ln sn (64)

The time reversible nature of the velocity has been demonstrated above resulting in the reversibility
axiom (Section 2.4). However, also the evolution of the scaling factor sn must be time reversible.
With the definition of the scaling factor velocity ṡn = sn+1−sn

tn−tn−1
(see Chapter 3.4) the scaling factor

evolves in a first step forward to
sn+1 = sn + ṡn(tn − tn−1) (65)

and accordingly for the second step

sn+2 = sn+1 + ṡn+1(tn+1 − tn) (66)

If the second step is now backward in time

sn+2 = sn+1 − ṡn+1(tn+1 − tn) = sn + ṡn(tn − tn−1)− ṡn+1(tn+1 − tn) (67)

With the request of time reversibility sn = sn+2 which simplifies the above equation by using
tn − tn−1 = const to

ṡn = ṡn+1 (68)

which is true for a two step process with a step forward in time followed by a step backward in time.
This result is obvious since the change of scaling of time in the step n → n + 1 should be equal to the
change of scaling of time of the step backward n + 1→ n multiplied by −1.
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In addition, also the scaling factor sn must follow (its) (discrete) Lagrangian equation (i.e.,
1

tn−tn−1
(∂L(sn+1,ṡn+1)

∂ṡn+1
− ∂L(sn,ṡn)

∂ṡn
) = − ∂L

∂sn
) yielding

1

tn − tn−1
(Q

ṡn+1

s2n+1

−Q
ṡn
s2n

) =
3

2
Q
ṡ2n
s3n

+ gkBT
1

sn
(69)

Q

tn − tn−1
(
ṡn+1 − ṡn + ṡn

1
− ṡn

s2n+1

s2n
) = (

3

2
Q
ṡ2n
s3n

+ gkBT
1

sn
)s2n+1 (70)

Q(
ṡn+1 − ṡn
tn − tn−1

) = Q s̈n = (
3

2
Q
ṡ2n
s3n

+ gkBT
1

sn
) s2n+1 − ṡn(1−

s2n+1

s2n
) (71)

Since the right hand of Equation (71) is not evidently 0, but with the above Equation (68)
(i.e., ṡn+1 − ṡn = 0) the left hand is 0 for Q 6= ∞ , Equation (71) can only be fulfilled with a Q → ∞.
Thus, Q → ∞ is a requirement and a consequence of the request of a time reversible scaling factor
yielding thereby a time irreversible constant of motion referring to the total energy as expected from a
thermodynamic point of view. With setting the “mass” Q of the heat bath/the thermostat (or Qi of all
the heat baths in the case of a multi particle system) towards infinity (Q → ∞), the “kinetic” energy
of the heat bath of the scaling variable sn (or si,n) is infinite and thus has an infinite capacity to take up
the energy that is lost in the discrete time steps of the system. This description may open a discussion
about the nature of the heat bath (baths), which is not a regular thermodynamic heat bath because it deals
with the unitless scale variable sn (si,n) outside the space-time. While on the one hand it is possible to
interpret the scaling of time as an extension of the space-time by additional dimensions (i.e., for each
particle three additional dimensions si,x,y or z) as has been done by Nosé in the Nosé-Hoover thermostat
(however with a single s only), the author prefers the view, that the introduction of the scaling of time is
just a mathematical construct that enables to preserve the first law of thermodynamics, which describes
energy conservation.

2.12. Time Progression of a Discrete System Step by Step

For a simulation of a time irreversible system comprising one particle (or many particles) it is
potentially interesting to write down the progression of the system step by step. Having constant
time steps ∆t the evolution of a single particle system in a one dimensional space starting under the
(boundary) conditions

V (rn), F (rn), m, ṙ1, t1, r1, and ∆t can be calculated step by step as follows:
Using the (discrete) Newton equation

r̈1=
1

m
F (r1) (72)

Using the definition of the discrete r̈n the velocity of step 2 can be obtained

ṙ2 =
1

m
F (r1)Δt + ṙ1 (73)

with the definition of the velocity the coordinate at step 2 can then be obtained

r2 = ṙ2Δt + r1 (74)
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which allows the calculation of the acceleration by

r̈2=
1

m
F (r2) (75)

The corresponding microscopic entropy change is then given by

∆S = S2 − S1 = kB(|lnF (r1)

F (r2)
|) (76)

Correspondingly, the step n + 1 can be derived from values from step n by

ṙn+1 =
1

m
F (rn)Δt + ṙn (77)

rn+1 = ṙn+1Δt + rn (78)

r̈n+1=
1

m
F (rn+1) (79)

and

∆S = Sn+1 − Sn = kB(|ln F (rn)

F (rn+1)
|). (80)

3. Conclusions

It was demonstrated that under the hypothesis that time is discrete with constant time steps the
microscopic physical laws in presence of a complex force (F (r) 6= const) are time irreversible. Upon
the introduction of the scaling of the discrete time in order to reintroduce time reversibility a microscopic
entropy is obtained, which ensemble average in equilibrium under the “slow changing force” limit
appoximates the macroscopic Boltzmann/Gibbs entropy. Thus, an alternative microscopic description
of entropy is derived. Since this approach does not rely on the statistical mechanics approach of
Gibbs and Boltzmann, the Loschmidt and Zermelo’s reversal and recurrence objections appear to be
resolved [9–11], and an arrow of time is obtained already at the microscopic level of physics.

The now arising question is, which entropy derivation is the correct one, the established Gibbs and
Boltzmann ensemble-averaged macroscopic entropy or the presented one with the microscopic entropy?
In favor of the presented theory are the reversal and recurrence objections and the establishment of
a microscopic arrow of time that is connected to the second law of thermodynamics. However, the
continuos time descriptions of physics introduced by Newton is highly successful and thus has obviously
also its merits. In a first attempt towards answering the question raised, it is required to highlight the
differences between the two entropy descriptions (Equations (53) and (56)):

SG = −kB
Ω∑

k=1

pk ln pk

and

< Sn >≈ −kB
Ω∑

m=1

pm ln(pm sm,n)
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Thus, the ensemble averaged microscopic entropy approximates its macroscopic counterpart only at
the “slow changing force” limit at which sm,n is close to 1.

In other words, only at the “slow changing force” limit the two entropy descriptions are equivalent.
However, if the acting force changes considerably within a time step Δt, which has been hypothesized
to be the Planck time (i.e., 5.4×10−44 s), the ensemble averaged microscopic entropy is distinct from its
Gibbs analog. If experimental data under such conditions would be available insight into the nature of
the entropy might be possible. Such conditions may have been present at the beginning of the universe
during which the acting potential must have been changed very fast. In this context it is interesting
to mention that the observed inflation of the universe might support the presented theory, because the
inflation can apparently be explained by a scaling of time [3,15,31,39], and the scaling of time is at
the heart of the presented theory being a consequence of a time-reversible description of an irreversible
process under a discrete time. In return, if time is discrete in nature, the apparent inflation is an artifact
of the established time reversible description of a time irreversible universe. Another area of potential
interest, that could eventually help in the elucidation of the origin of the entropy, might be the analysis
of the observed time asymmetry of the weak force in particle physics [13]. Alternatively, fast kinetic
experiments could elucidate potentially the scaling of time. Currently, the limit for such experiments is
in the attosecond range and so far no time anomalies have been reported [40].

In conclusion, an alternative microscopic derivation of entropy is given, which originates from the
quantization of time, which is a concept that has only occasionally been investigated in the past. For
the author this theory resolves the many objections that have been raised for the Boltzmann/Gibbs
entropy and introduces an arrow of time at the microscopic physics level. However, whether time is
discrete, whether it is universal or must be classified [41] or/and the presented microscopic entropy
is an adequate microscopic representation of the macroscopic entropy state function remains to be
demonstrated (experimentally).
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