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ABSTRACT The paper presents a model predictive approach for evaluating network lifetime and cluster 

head selection for a wireless sensor network. The dynamic parameters of a wireless sensor network are 

collected using Smart Mesh IP Power and performance calculator. The study considers a machine learning 

approach to combine clustering with the optimal routing protocol. The hop depth, advertising, number of 

Motes, backbone, routing, reporting interval, payload size, downstream frame size, supply voltage, and path 

stability are the predictors, and the current consumption, data latency, and build time are the response 

variables to establish the models for estimating the power and performance of the network. The remaining 

energy in each node, distance from the base station, and data transmission rate are the predictors, and the 

priority of the cluster head is the response variable to establish models for achieving an optimal routing path 

in a wireless sensor network. The standard tree, Support Vector Machine, Ensemble, and Gaussian process 

regression models for lifetime estimation are analyzed in comparison with the Smart Mesh IP tool, and the 

models for cluster head selection are investigated in comparison with ANFIS based models. This novel 

approach concentrates on the effect of various dynamic parameters on network lifetime prediction.        

INDEX TERMS Cluster heads, Machine learning, Network lifetime, Smart Mesh IP tool.  

 

I. INTRODUCTION 

With the advent of self-powered IoT devices, power 

optimization is required at the system level, circuit level, 

component selection, and physical implementation level 

while maintaining the device's size, cost, and flexibility. 

Extending the battery lifetime of IoT devices become 

important when sensors are deployed in locations not easily 

accessible/risky locations, and the replacement of batteries 

becomes difficult. 

Different low power circuit techniques used for reducing 

power consumption include Dynamic Voltage and 

Frequency Scaling, Multi-threshold CMOS technology, 

clock gating, and hardware-software co-design [1].  

Increasing sleep time by turning off unused modules can help 

save power at the system level [1] [2]. System-level power 

management techniques with multi-level design space can 

help tradeoffs between high performance, low cost, and low 

power requirements.   

Wireless Sensor Networks (WSN) change dynamically, 

impacting network lifetime parameters and synchronization 

issues. Different network parameters that affect the dynamic 

behaviour of WSN nodes are localization, connectivity & 

coverage, anomaly detection, fault detection, routing, 

congestion control, medium access control, data aggregation, 

target tracking and quality of service, various 

synchronization issues, event detection, energy harvesting, 

and mobile sink [3]. Some of the challenges in WSN include 

finding an optimum path for dynamic networks in three-

dimensional space, implementing effective protocols, and 

reducing packet collisions for the dynamic network to 
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improve reliability in large-scale networks that adapts to 

dynamic changes by self-charging and discharging duty 

cycles. 

 

Different network parameters include: 

• Advertising rate - the rate at which motes in-

network advertise. 

• Join duty cycle - how much time a searching mote 

spends listening for a network Vs. sleeping 

• Downstream bandwidth - affects how quickly 

motes can send data 

• Number of motes - contention among many motes 

simultaneously trying to join for limited resources 

slows down joining with collisions 

• Mote join state machine timeouts and path stability 

– user has little or no control. 

• Network topology – Mesh networks are self-

healing, while star and tree networks have a single 

point of failure.  

• Recovery time – if one of the nodes is powered 

down, time taken by the network to re-establish the 

full mesh or recover all other nodes for 

uninterrupted data delivery without degradation in 

the Quality of Service (QoS) metric. 

 

The Internet of Things (IoT) connects devices to the internet 

via the IP protocol.  Low energy consumption and low power 

operation become critical for IoT devices as they operate on 

batteries or harvest energy from the environment. Predicting 

the energy consumption and the device lifetime is thus 

essential for selecting the most suitable technology, 

communication protocols and finding the optimal 

configuration parameters in a network. 

 

A. BACKGROUND STUDY AND LITERATURE SURVEY 

The operating temperature and discharge current values 

influence energy stored in battery devices. Software and 

hardware-based approaches are used to estimate the state of 

charge and voltage of batteries using analytical battery 

models and electrochemical cells to implement energy-

aware policies. In literature, studies have evaluated the cost 

of complex algorithms in terms of memory usage, power 

consumption, and execution time in low-power MCUs. The 

cyclical behaviour of WSN nodes is assumed, and an open-

loop computation is used to study the behaviour of the 

battery [4]. 

 

Routing protocols choose the correct route from cluster head 

to base station. The objective of routing is to realize the 

scalability of the network, improve the data transfer and 

energy efficiency of WSNs. Energy-efficient routing 

protocols are classified based on network structure, 

communication model, topology, and reliable routing. Based 

on the network structure, routing protocols are classified as 

flat, hierarchical, and location-based protocols. In flat 

network architecture protocols like Sensor Protocol for 

Information via Negotiation (SPIN), Directed Diffusion, and 

Rumor Routing, the nodes follow a standard rule for data 

transmission. In hierarchical networks, the Cluster Heads  

(CHs) are responsible for communicating with the Base 

station. Each node is equipped with GPS in location-based 

networks, and sleep mode schemes are incorporated.  

Geographic Adaptive Fidelity (GAF), Geographic and 

Energy Aware Routing (GEAR), and SPAN are routing 

protocols based on location.  

 

Clustering is a solution used to solve network partitioning 

that arises because of the limited capacity of battery nodes  

[5]. Low Energy Adaptive Clustering Hierarchy (LEACH) is 

the most famous hierarchical routing protocol, where the 

cluster head (CH) is selected on a rotation basis based on a 

probabilistic threshold value, and only CHs are allowed to 

send the information to the base station (BS). Some of the 

drawbacks of LEACH include improper distribution of 

energy, non-reflection of remaining energy in nodes and 

unidentified CHs after some iteration. 

 

LEACH (Low Energy Adaptive Clustering Hierarchy) was 

proposed to guarantee a balanced energy utilization and to 

enhance the efficiency of WSNs by partitioning the network 

into multiple clusters and through a random Cluster Head 

(CH) rotation [6]. LEACH is a Medium Access Control 

(MAC) protocol based on the Time Division Multiple 

Access (TDMA) method. Two main stages of the LEACH 

algorithm include the Setup phase and Data Transfer Phase. 

The setup phase includes Cluster selection, TDMA schedule 

creation, and Cluster configuration. In the setup phase, a 

sensor node becomes a Cluster head if the number is less than 

the threshold value defined by eq (1): 

 

 𝑇(𝑛) = {

𝑃𝐿

1−𝑃𝐿∗(𝑟 𝑚𝑜𝑑 
1

𝑃𝐿
)
              𝑛 ∈ 𝐶

0                          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

}               (1) 

 

Where 𝑃𝐿 introduces the percentages of CHs in each epoch, 

r is the present epoch, and C is a set of sensor nodes that have 

not yet been CH in the period 1∕𝑃L epoch. Once CHs are 

chosen, the nodes join the cluster heads depending on 

specific metrics to the cluster head. The different metrics 

based on which CHs may be selected are (1) residual energy, 

(2) Centralization, (3) mobility, (4) energy efficiency, and 

(5) distance. Once clusters are established, the CHs send a 

TDMA schedule to allow nodes to recognize their time slot 

for sending the data to CHs. After the fusion of data by CHs, 

these data will be forwarded to the sink using the Code 

Division Multiple Access (CDMA) code to avoid collision 

[7]. The data transfer stage routes the data to the base station 

either using single-hop or multi-hop techniques.  The 

advantage of LEACH is that the nodes remain in sleep mode 

until their turn to send data. The disadvantage of LEACH is 
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that for a random selection of CHs the number of cluster 

heads cannot be guaranteed in each round. Also, as the 

remaining energy in each node is not considered, the nodes 

with low residual energy and high residual energy have the 

same chance of becoming cluster heads. CHs use the single-

hop to direct data to the BS, making LEACH not adopted for 

an extensive network. Different authors [8], [9] have 

surveyed various descendants of LEACH protocol like 

LEACH-C, MM-LEACH, TL-LEACH, Stable Election 

Protocol (SEP), V-LEACH, and Modified (MOD-LEACH). 

Table I shows the performance of various LEACH 

algorithms in terms of the number of data packets delivered 

to the Base station (BS), first dead node, and total energy 

dissipated. 

 

 

 

 

 

 

 

 

TABLE I PERFORMANCE OF VARIOUS LEACH ALGORITHMS [10], [11] 

Performance metrics LEACH LEACH-C LEACH-GA LEACH-

PSO 

Fuzzy 

based 

LEACH 

No of data packets 

delivered to BS 

4810 4890  6810 11110 

First dead node 348 round 379 round 696 round 398 round 410 round 

Total energy 

dissipated (J) 

2030 1962    

 

 

In LEACH-B, there is a Uniform Number of CHs given by 

the global number of nodes in the network and the proportion 

of CHs. The algorithm considers remaining energy after the 

first round and shows improvement in network lifespan than 

LEACH. 

Intelligent (I-LEACH) elects CH based on the remaining 

energy and nodes location. However, CH integrates collected 

data to reduce the cost of supplementary data transmission, 

which is not practical for nodes that receive different data. 

The residual energy of nodes 𝐸𝑟   

 𝐸𝑟  = 
𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡

𝐸𝑚𝑎𝑥
                                                                 (2) 

 where 𝐸𝑚𝑎𝑥   presents the initial energy of the node, while 

𝐸𝑐𝑢𝑟𝑟𝑒𝑛𝑡 represents the residual energy of each node. 

 

The distance from the base station to CH is given by 

𝑑𝑏𝑠−𝐶𝐻 =
𝑑𝑏𝑠

𝑑𝑓𝑎𝑟
                                                              (3) 

Here, 𝑑𝑏𝑠 parameter denotes the distance between a node 

and the BS, when the distance from the farthest node in a 

cluster to the BS is expressed by 𝑑𝑓𝑎𝑟 . To extend the 

network lifetime and the scalability, functions described in 

Eqs. (2) and (3) are incorporated and multiplied by the 

probability function. 

 

The LEACH protocol uses the energy model as used in 

Heinzelman et al [12]. Energy consumption at each node 

depends on the size of the data packet and the distance from 

the source node. For transmitting the l- bits of a data packet 

from a sensor node to its d distance remote receiver node, the 

total energy consumption of a sensor node is calculated by 

the following equation: 

 

𝐸𝑇𝑥(𝑙, 𝑑)

=  {
𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑙 ∗ 𝜖𝑓𝑠 ∗ 𝑑2         𝑖𝑓 𝑑 < 𝑑0
𝑙 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑙 ∗ 𝜖𝑚𝑝 ∗ 𝑑4         𝑖𝑓 𝑑 ≥ 𝑑0

} 

 

(4) 

However, for receiving the l-bits of a data packet at a sensor 

node, the energy consumed by the receiver nodes is 

calculated by the following equation: 

𝐸𝑅𝑥  =  𝑙 × 𝐸𝑒𝑙𝑒𝑐                                                          (5) 

The value of the 𝐸𝑒𝑙𝑒𝑐 is the energy dissipated per bit during 

the execution of the transmitter or receiver circuit. 𝜖𝑓𝑠 and 

𝜖𝑚𝑝 is the amplification coefficient of the transmission 

amplifier for free space and multi-path model, respectively. 

𝑑0 represents threshold transmission distance, and its value 

is generally 

 𝑑0 = √
𝜖𝑓𝑠

𝜖𝑚𝑝
.                                                                              (6) 

 
Finding the optimal number of cluster heads k: 

 

For N sensors divided into C clusters, the energy 

consumption of the cluster head is given by 

𝐸𝐶𝐻 = 𝑘𝐸𝑒𝑙𝑒𝑐
𝑁

𝐶
+ 𝐾𝐸𝐷𝐴

𝑁

𝐶
+ 𝐾𝜖𝑚𝑝𝑑𝑡𝑜𝐵𝑆

4                                (7) 

Where   𝐸𝐷𝐴  is the energy consumed in aggregation 

𝑑𝑡𝑜𝐵𝑆 is the average distance from the base station to the 

cluster head nodes. 

 

Energy consumed in non-cluster head nodes for transmitting 

the packet to the cluster head is given by 

 

𝐸𝑁𝑜𝑛−𝐶𝐻 = 𝑘𝐸𝑒𝑙𝑒𝑐 + 𝐾𝐸𝐷𝐴
𝑁

𝐶
+ 𝐾𝜖𝑓𝑠𝑑𝑡𝑜𝐶𝐻

2                         (8) 
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𝑑𝑡𝑜𝐶𝐻
2 =

𝑀2

2𝜋𝐶
    is the average distance from the non-cluster 

head nodes to their cluster head nodes. R is the radius of the 

network and 
𝑀2

𝐶
 is the area of each cluster.  

 

Total energy dissipated by a cluster is given by 

𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = 𝐸𝐶𝐻 + 𝐸𝑁𝑜𝑛−𝐶𝐻
𝑁

𝐶
                                             (9) 

 

Total energy dissipated for the frame is: 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐶𝐸𝑐𝑙𝑢𝑠𝑡𝑒𝑟                                                               (10) 

 

The optimal cluster heads can be obtained by differentiating 

𝐸𝑡𝑜𝑡𝑎𝑙  with respect to C 

 

𝑘𝑜𝑝𝑡𝑖𝑚𝑎𝑙 =
√𝑁∗𝜀𝑓𝑠

√2𝜋

1

𝜀𝑚𝑝

𝑀

𝑑𝑡𝑜𝐵𝑆
2                                                   (11) 

 
Mohammed Elshrkawey [13] has discussed an enhanced 

schedule based on Time Division Multiple Access (TDMA) 

and augmentation of energy balancing in clusters among all 

sensor nodes to reduce energy consumption and prolong the 

network lifetime of WSN.  A sensor node is considered a 

cluster head if the random number of the sensor node is less 

than the threshold value defined using factors like remaining 

energy of the sensor node, the distance of sensor node to the 

base station, and the number of times a node is selected as a 

cluster head. 

SEP (Stable Election Protocol) [14] can be applied for 

heterogeneous networks where a fraction of m nodes have 

additional energy factor 𝛼. The probability of these advanced 

nodes to become CHs is given by 

𝑝𝑎𝑑𝑣 =
𝑝𝑜𝑝𝑡(1+𝛼)

1+𝑚𝛼
                                                                (12) 

An increase in the number of advanced nodes results in an 

increased stability period and network life. However, 

throughput is also increased due to two levels of 

heterogeneity.  

 

TEEN [15] has two threshold levels - a hard threshold and a 

soft threshold. Nodes turn on their transmitters whenever the 

sensed attribute's value becomes equal or greater than the 

hard threshold, and data is conveyed to CHs. And for the 

second time, they transmit only in case the difference 

between sensed value and previously saved value at which 

transmission was done is greater than or equal to soft 

threshold. So, energy consumption and throughput are 

reduced; hence network life and stability period are 

improved than other protocols. 

 

Sharma S et al.[16], have used residual energy as a factor to 

make cluster head. The radial-based function network model 

and Artificial Neural Network (ANN) are used for the cluster 

head selection problem. The improved performance is 

observed in the number of alive nodes, total energy 

consumption, cluster head formation, and the number of 

packets transferred to the base station and cluster head 

compared with LEACH and LEACH-C algorithms.  

 

Han, Y., Li, G., et al. [17]  have discussed Clustering 

protocol based on the meta-heuristic approach (CPMA) that 

focuses on cluster head selection based on Harmony Search 

Algorithm, which aims to reduce total energy dissipation. 

The CPMA uses the Artificial Bee Colony algorithm to 

optimize crucial parameters. 

 

Seyyedabbasi, A. et al.[18], have developed an algorithm 

HEEL where the cluster head is selected based on node 

energy, the energy of node's neighbour, number of hops, and 

number of links to neighbours and shows improvement 

compared to Nr-LEACH, ModLEACH, LEACH-B, 

LEACH, PEGASIS energy-aware clustering scheme. 

 

Nelofar Aslam et al. [19] proposed a novel method for 

integrating a multi-objective function for charging a wireless 

portable charging device and sensor node's training for data 

routing carried out using clustering and reinforcement 

learning. The techniques used in our paper SVM and KNN 

have only been proposed as future scope of research and have 

not been implemented in lifetime prediction or selection of 

cluster heads. 

 

Different performance metrics of clustering algorithm 

include: 

i. Total Energy Consumption (𝐸𝑡𝑜𝑡𝑎𝑙) - It is defined 

as total energy consumption in the network after k 

rounds of data gathering from the area of interest. 

𝐸𝑡𝑜𝑡𝑎𝑙 = ∑ 𝐸𝑖,𝑘
𝑁
𝑖=1                                       (13) 

 

Here 𝐸𝑖,𝑘 is the total energy consumption by a node i after k 

number of rounds of data gathering from the network. 𝑁 is the 

total number of nodes in the network. 

ii. Number of alive nodes (𝑁𝑎𝑙𝑖𝑣𝑒_𝑛𝑜𝑑𝑒𝑠, 𝑘): It is 

defined as the total number of nodes alive whose 

residual energy is greater than the threshold energy 

after a specified number of data gathering rounds 

(k). 

(𝑁𝑎𝑙𝑖𝑣𝑒𝑛𝑜𝑑𝑒𝑠 , 𝑘) = |𝑁𝑖|;     1 ≤  𝑖 <

𝑁 𝑎𝑛𝑑 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑖  >  𝐸𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                         (14) 

iii.  Network lifetime: It is defined as the number of 

data gathering rounds that a WSN has carried on 

until the first node death. 

 

A comparison of energy consumed by different wireless 

protocols like IEEE 802.15.4/e, Bluetooth low energy 

(BLE), the IEEE 802.11 power-saving mode, the IEEE 

802.11ah, LoRa and SIGFOX is carried out based on the 

power required in the sleep mode, idle mode, transmit and 

receive mode and the duration of each state using an analyzer 

[20]. The results showed that BLE obtained the best network 

lifetime in all traffic intensities. At ultra-low traffic 

intensities, LoRa obtained the third-best network lifetime. 

https://ieeexplore.ieee.org/author/37086219728
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In literature [21], [22], [23], [24], [25], [26], [27], [28]  the 

energy consumption models take transmission power, the 

distance between two nodes, packet size, and path loss as 

parameters to predict battery lifetime. The approach 

modelled the behaviour of the physical layer, and it did not 

reflect the operation of duty-cycled IoT devices realistically. 

The topology of all networks considered in these works is the 

star.  

 

The importance of Machine Learning (ML) in WSNs due to 

the dynamic nature of networks is presented [29]. 

Maddikunta et al.,[30] have predicted battery life based on 

various regression models, and predictive accuracy of 97% 

was obtained. The different predictors used in work include 

the beach name, water temperature, turbidity, transducer 

depth, water height, wave period, and measurement 

timestamp. 

 

Artificial Intelligence is unlocking software solutions like 

ML approaches in battery systems to reduce fabrication and 

development costs while improving performance metrics. 

Data-driven models with ML algorithms can be used to 

predict the state of charge and remaining useful life in 

batteries. ML techniques can be applied to dynamic wireless 

sensor networks to affect the adaptiveness and ability of 

networks to respond quickly and efficiently without 

compromising the quality of service. 

 

Support Vector Machine (SVM) is a non-parametric method 

that relies on kernel functions to perform classification and 

regression tasks [31]. Here, a Lagrangian function is 

constructed as an objective function, and by introducing 𝛼𝑛 
and 𝛼𝑛

∗  (non-negative multipliers) for each training data 𝑥𝑛 
and response 𝑦𝑛. 
 

 

Where the Gram matrix 𝐺(𝑥𝑖 , 𝑥𝑗) represents whether the 

kernel function is linear, polynomial or gaussian. 

Subject to the constraint 

 

 (𝛼𝑛 − 𝛼𝑛
∗) = 0

𝑁

𝑛=1

                           (16) 

 
∀𝑛: 0 ≤ 𝑎𝑛 ,𝛼𝑛

∗ ≤ 𝐶                          (17)  
 

Where C is the box constraint that controls the penalty 

imposed on data points that lie outside 𝜖 margin and prevents 

the problem of overfitting.  

 

The function used to predict new values is given by 

𝑓(𝑥) =   (𝛼𝑛 − 𝛼𝑛
∗)𝐺(𝑥𝑛 , 𝑥)+ 𝑏

𝑁

𝑛=1

       (18) 

 
 

Each Lagrange multiplier is updated with each iteration until 

the convergence criterion is met. 

 

Ensemble learning is an ML and statistical technique that 

uses different ML algorithms to improve predictive 

performance. Here a Least Square Boosting (LSBoost) 

method minimizes the mean squared errors. 

 

Gaussian Process Regression (GPR) is a probabilistic and 

non-parametric model [32].  

For a training set {𝑥𝑖 , 𝑦𝑖} the GPR model is given by 

 

𝑃(𝑦|𝑓,𝑋)~𝑁(𝑦|𝐻𝛽 + 𝑓,𝜎2𝐼)                       (19)  
 

Where f represents a Gaussian process with zero mean for 

each input  𝑥𝑖, H represents the set of basis functions that 

projects the inputs into feature space, 𝛽 basis function 

coefficients and 𝜎2 error variance. While training using a 

GPR model, the coefficient of basis function, the noise 

variance 𝜎2 and hyperparameters of the kernel function are 

estimated.    

 

The selection of an appropriate ML model is insufficient for 

obtaining excellent performance and tuning the model 

argument before the learning process is called hyper-

parameter tuning. Bayesian optimization is an effective 

hyperparameter optimization tool.  

 

One of the major issues encountered in machine learning 

models is the problem of the bias-variance dichotomy. Bias is 

the error that is introduced by the model's prediction and the 

actual data. 

Bias=Predicted–Actual                   (20) 

High Bias means the model has created a function that fails 

to understand the relationship between input and output data. 

Low Bias means the model has made a function that has 

understood the relationship between input and output data. 

Variance - is the amount by which its performance varies 

with different data set. 

𝐿(𝛼)

=
1

2
  (𝛼𝑖 − 𝛼𝑖

∗)(𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

− 𝛼𝑗
∗)𝐺(𝑥𝑖 , 𝑥𝑗 )

+ 𝜖 (𝛼𝑖 + 𝛼𝑖
∗)

𝑁

𝑖=𝑖

+ 𝑦𝑖(𝛼𝑖
∗ − 𝛼𝑖)

𝑁

𝑖=1

                            (15) 

  



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152804, IEEE Access

 

VOLUME XX, 2017 1 

Low variance means the machine learning model's 

performance does not vary much with the different data sets. 

High variance means the machine learning model's 

performance varies considerably with other data set. 

A well-trained model should have low variance, and low 

Bias is also known as Good Fit. 

Overfitting - During the training phase, the model can learn 

the complexity of training data in so detail that it creates a 

complex function that can almost map entire input data with 

output data correctly, with very little or no error. The model 

shows low error or Bias during the training phase but fails to 

show similar accuracy with the test or unseen data (i.e., high 

variance) 

Underfitting - During the training phase, the model may not 

learn the complex relationship between training data in detail 

and can come up with a straightforward model. It is so simple 

that it produces too much error in prediction (high Bias). 

 

RMSE of training data should be more or less the same as 

the RMSE of testing data. The techniques for reducing 

overfitting include increasing training data, reducing model 

complexity, early stopping during the training phase, L1 and 

L2 regularization, and dropouts for the neural network. 

Techniques for reducing underfitting include increasing 

training, increasing model complexity, increasing the 

number of features, removing noise from data, and 

increasing the number of training epochs.  

Regularization is a technique that makes slight modifications 

to the learning algorithm such that the model generalizes in 

a better way. In L1 regularization, a penalty term that 

contains the absolute weights is added to reduce the 

complexity of the model. The equation for L1 regularization 

is given by: 

 

𝐿(𝑥, 𝑦) = 𝑀𝑖𝑛(∑ (𝑦𝑖 −𝑤𝑖𝑥𝑖)
2 + 𝜆∑ |𝑤𝑖|

𝑛
𝑖=1 )𝑛

𝑖=1             (21) 
 

In L2 regularization, a penalty term that contains lambda 

times squared weight of each feature is added to reduce the 

complexity of the model. The equation for ridge regression 

will be: 

 

𝐿(𝑥, 𝑦) = 𝑀𝑖𝑛(∑ (𝑦𝑖 −𝑤𝑖𝑥𝑖)
2 + 𝜆∑ (𝑤𝑖)

2𝑛
𝑖=1 )𝑛

𝑖=1           (22) 
 

Due to the addition of this regularization term, the values of 

weight matrices decrease because it assumes that a neural 

network with smaller weight matrices leads to simpler 

models. Therefore, it also reduces overfitting to quite an 

extent. 

 

The design of energy balanced and energy-efficient routing 

protocols is required for increasing the lifetime of wireless 

sensor nodes. Hierarchical clustering protocols extend the 

network lifetime by dividing nodes into multiple clusters. 

Some clustering algorithms in the literature are listed in 

Table II.  

 
TABLE II: LITERATURE SURVEY ON CLUSTERING ALGORITHMS  

Author Details Contributions 

Padmalaya Nayak, and 

D. Anurag [33] 

A Mamdani fuzzy-based 

LEACH is proposed with inputs 

as remaining battery power, 

mobility of base station, and 

centrality of clusters. The results 

indicate that the first node 

survives double the time, has 

62% reduced end-to-end delay, 

is more stable, and has 20% 

more life than LEACH. 

J-Kim et al.[34] CHEF, another fuzzy logic-

based clustering approach, elects 

a node with high energy and 

locally optimal one as the cluster 

head (CH).  The simulation 

result shows that the CHEF is 

22.7% more efficient than 

LEACH.  

The three fuzzy input parameters 

considered in CHEF are energy, 

concentration, and centrality. 

T Sharma and B. 

Kumar [35] 

F-MCHEL is an improvement 

over CHEF that provides more 

network stability than LEACH 

and CHEF. 

Mohit Mittal, Krishan 

Kumar [36] 

A self-organization map neural 

network an unsupervised 

learning network is used in this 

work.  

Zongshan Wang, 

Hongwei Ding, Bo Li, 

Liyong Bao, Zhijun 

Yang [37]  

Here, clustering using an 

improved artificial bee colony is 

used for selecting the CHs. The 

simulation results show that the 

proposed algorithm has a good 

energy consumption balance, 

energy efficiency, network life, 

period of network stability, and 

throughput. 

Yuan Zhou, Ning 

Wang and Wei Xiang 

[38]  

An improved Particle Swarm 

Optimization (PSO) technique 

based on the location of the base 

station, area, and number of 

nodes is used to create the cluster 

structure to optimize the 

network's energy consumption 

and minimize the transmission 

distance. 

B. CONTRIBUTION AND PAPER ORGANIZATION 

In this paper, ML methods are used to i) predict the CHs and 

an optimum number of nodes in a network ii) forecast the 

energy consumed of IoT nodes by considering the dynamic 

nature of the networks. The highlights of the paper include 
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• Dataset creation for prediction of current consumption, 

data latency and build time of Wireless Sensor Networks 

• A model predictive approach for evaluating the network 

lifetime and cluster head selection in a Wireless Sensor 

Network 

• Validation of the machine learning-based lifetime 

prediction model using Smart Mesh IP tool. 

• Comparison of the machine learning-based cluster head 

selection model with ANFIS based models. 

• Here considered analysis on the effect of various dynamic 

parameters on network lifetime prediction.   

• Machine Learning based cluster head priority is 

combined with modified threshold sensitive Stable 

Election Protocol (TSEP) for cluster head selection.   

• A comparison of various protocols like TEEN, SEP, 

LEACH and Machine Learning based TSEP (ML-TSEP) 

is carried out in terms of the average energy of each node 

and the number of dead nodes. 

•  This work contributes a novel approach to combining 

clustering with the optimal routing protocol. 

The paper has been organized as follows: Section II describes 

the data-driven and model predictive approach for combining 

the clustering and routing protocol in Wireless Sensor 

Networks. The results for Lifetime prediction and cluster head 

selection using ML are presented in Section III. A comparison 

of different ML techniques with its performance metric is also 

carried out in this section. The concluding remarks are 

outlined in Section IV. 

 
II.  Dataset for the Model Predictive Wireless Sensor 
Network 

 

The dataset for lifetime prediction is developed using smart 

mesh IP tool [17] as shown in Fig.1. A sensitivity study of 

various network parameters and its dependency on total 

current consumption of the network is also carried out using 

the data generated (Fig.2-4). 

FIGURE 1. Dataset for lifetime prediction is developed using SmartMesh 
IP tool 

 

 
 

 
 

FIGURE 2. Variation of current consumption with reporting interval at 
different hop depth 

 

FIGURE 3. Variation of current consumption with No. of Motes 

 

FIGURE 4. Variation of current consumption for different hop depths (0 – 

Routing, 1- Non-routing) 

 

 
III.  MODEL PREDICTIVE APPROACH FOR OPTIMAL 
ROUTING PATH AND LIFETIME PREDICTION 

 

A WSN consists of a network manager and several motes. The 

proper network interfaces configuration can address a wide 

range of sensor applications to tradeoff between speed and 

power consumption.  Each mote represents a location where 
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the sensor can send and receive data. The network manager 

builds and maintains the network and makes available the 

sensor data for data collection applications. Some motes can 

directly communicate to the manager, while others must route 

the data through other motes. Turning off-network advertising 

and reducing downstream communication can reduce the 

network's power consumption, thereby doubling the battery 

life of nodes. Configuring the nodes as a mesh network and 

configuring all battery-powered nodes to be non-routing can 

also result in a battery life greater than ten years. Non-routing 

nodes behave as leaf nodes that do not advertise and never 

route the data. Setting the backbone mode on at the manager 

reduces the data latency of the network; Fig. 5 shows a WSN 

obtained from the Smart IP Mesh calculator. Here we consider 

a WSN consisting of 200 sensor nodes installed on one floor 

of a building. The network is divided into four occupancy 

zones, each with its own Passive Infrared [PIR], Occupancy 

Sensors, two LED Luminaires and motorized window blinds 

[39], [40].  

 

 
FIGURE 5. A network with 30 motes and 3-hops 

The selection of CHs with appropriate clustering protocols is 

another crucial aspect for enhancing the network lifetime of 

IoT nodes. Optimal CHs are selected to obtain efficient routing 

in a multi-hop communication network. Fig.6 shows the block 

diagram for the optimal routing path of the network. In work 

presented in [41], a Fuzzy based LEACH protocol was 

developed to obtain a priority value for the CH based on the 

initial energy, distance from the base station, and data 

transmission rate. Using the Fuzzy based LEACH, the input-

output training dataset for ANFIS based LEACH is developed. 

The same dataset is used for training the machine learning 

model. The predictors of the Machine Learning model are the 

Remaining energy of nodes, Data Transmission rate, and 

distance from the base station.  Various machine learning 

models like Gaussian Process Regression, Support Vector 

Machine, Ensemble, and Decision Tree are deployed using the 

dataset. The detailed pseudocode for cluster Head Priority 

using Gaussian Process Regression (GPR) with Bayesian 

Optimization is illustrated in Table III. Once the optimal 

cluster heads are selected, those sensors transfer data to the 

cloud. 

 

 
FIGURE 6. Block diagram for optimal routing path of the network 

 

 

TABLE III ALGORITHM FOR GAUSSIAN PROCESS REGRESSION (GPR) WITH 

BAYESIAN OPTIMIZATION FOR CLUSTER HEAD PRIORITY 

Algorithm: Gaussian Process Regression (GPR) with 

Bayesian Optimization for cluster Head Priority 

Input: Set of 100 sensor nodes, with known initial energy 

𝐸𝑟 , Data transmission rate r and distance from the base 

station 𝑑𝑏𝑠−𝐶𝐻. 

Output: Priority of node to become cluster head 'p' 

 

Step 1: Deriving ANFIS based LEACH for cluster 

head priority 

i. Load training data generated from fuzzy-based 

LEACH 

 p = evalfis(fis,[ 𝐸𝑟; 𝑑𝑏𝑠−𝐶𝐻;r],options); 

ii. Use the existing fuzzy structure and Back 

Propagation optimization techniques to train the 

model using the Neuro-fuzzy designer tool of 

MATLAB 

 

Step 2: GPR with Bayesian optimization for lifetime 

prediction and cluster head priority 

Initialization: 

• Place a Gaussian process prior on f 

•    Observe f at n0 points according to an initial space-

filling experimental design. 

•        Set n at n0 

While n ≤ N do: 

• Update the posterior probability distribution on f 

using all available data for cluster head priority 

and lifetime prediction. 

• Identify the maximizer xn of the acquisition 

function EI over 𝒳, where the acquisition 

function is calculated using the current posterior 

distribution E I (x) = 𝔼(max( f (x) − f *,0)) 

where f * is the maximum value of f seen so far. 

• Observe yn = f (xn) 

• Increment n 

End while 

Return the point evaluated with the largest f (x) or the 

point with the largest posterior mean. 
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The power and performance predictor considers network 

topology, data report rates, packet size, supply voltage, and 

packet success rate as inputs and predicts the average current 

consumption, data latency, and network build time. Fig.7 

shows the block diagram for the network lifetime prediction 

model. The model used for predicting the current 

consumption, data latency, and build time of the WSN makes 

use of ten predictors, namely hop depth, advertising, number 

of motes, backbone, routing, reporting interval, payload size, 

downstream frame size, supply voltage, and path stability. 

Five-fold cross-validation is performed on the model to 

overcome the overfitting problem and to obtain a reasonable 

accuracy estimate on each fold. In k-fold cross-validation, the 

data is partitioned into k disjoint sets. Here the data is trained 

on the k-1 data set and tested first. The process is carried out 

for k iterations, and the accuracy score is calculated. The 

developed model is used to evaluate the dependency of various 

parameters on power and performance. 
 

FIGURE 7. Network lifetime prediction model 

 

A network consisting of 200 nodes is placed randomly in a 

region of 100 x100 sq.m, and the Base station is placed in the 

center. The parameters used in MATLAB simulation are 

shown in Table IV 

 
TABLE IV PARAMETERS USED FOR SIMULATION OF LEACH, SEP, TEEN, 

AND ML-TSEP 

Parameters Values 

Initial Energy E0 0.1 J 

Optimal Election Probability of a node 

to become cluster head 𝑝𝑜𝑝𝑡  
 

0.2 

Energy dissipated per bit during 

execution of the transmitter or receiver 

circuit Eelec 

50nJ/bit 

Amplification coefficient of the 

transmission amplifier for free space 𝜖𝑓𝑠 
10pJ/bit 

Amplification coefficient of the 

transmission amplifier for multi-path 

model Emp 

13 pJ/bit 

Data Aggregation Energy EDA 5 nJ/bit  

Values for Heterogeneity 

Percentage of advanced nodes 

 

m=0.5; 

alpha 

a=1; 

Maximum number of rounds rmax 100 

 

In the proposed Machine Learning-based Threshold Sensitive 

Stable Election Protocol (ML-TSEP), a node's probability to 

become CH is decided from the machine learning model.  In 

TSEP, two levels of heterogeneity is considered, and the 

transmission of data from sensor node to CH takes place based 

on the threshold defined by 

  𝑇1(𝑛) = 𝑇(𝑛)
𝐸𝑟𝑒

𝐸𝑖𝑛
(1 −

1

𝐸𝑎𝑣𝑔
)
𝑑𝑡𝑜𝐵𝑆𝑎𝑣

𝑑𝑡𝑜𝐵𝑆𝑛
(1 −

log10 𝑑)
1

𝐶𝐻𝑠
𝑁𝑏𝑛                     𝑖𝑓   𝑛 ∈ 𝐺                               (23) 

𝑇(𝑛) is the threshold defined in LEACH algorithm 

𝐸𝑟𝑒  is residual energy of sensor nodes 

𝐸𝑖𝑛 is initial energy of sensor nodes 

𝐸𝑎𝑣𝑔  is the average energy of sensor nodes in current round 

𝑑𝑡𝑜𝐵𝑆𝑎𝑣  is average distance of sensor nodes to base station 

𝑑𝑡𝑜𝐵𝑆𝑛 is distance of sensor node to base station 

𝐶𝐻𝑠 is the time that node is selected as a cluster head 

𝑁𝑏𝑛 is the number of neighbours of n nodes. 

G is set of sensor nodes that have not been cluster heads 

 

The summary of the steps involved in the proposed method 

include: 

Data Gathering - For lifetime prediction, the data is collected 

from the SmartMesh IP tool, and for cluster head priority, the 

data is collected from the fuzzy-based model. 

Data preprocessing to remove outliers and deleting duplicates 

The features most affecting the lifetime are identified for the 

lifetime prediction model. 

Build machine learning models using a Decision tree, Support 

Vector Machine, Ensemble, and Gaussian Process Regression 

Analyze the performance metrics of the models and identify 

the best model 

Hypertuning of the parameters using Bayesian optimizer 

Validation of the lifetime prediction model using test data 

obtained from SmartMesh IP tool. 

Comparison of the results (Mean Squared Values) of Machine 

Learning based and ANFIS based cluster head priority.  

Machine Learning based cluster head priority is combined 

with modified Threshold Sensitive Stable Election Protocol 

(ML-TSEP) for cluster head selection. The threshold value of 

the modified TSEP is given by (23) 

A comparison of various protocols like TEEN, SEP, LEACH 

Machine Learning based Threshold Sensitive Stable Election 

Protocol (ML-TSEP) is carried out in terms of the average 

energy of each node and the number of dead nodes. 

 

IV. RESULTS 

A. LIFETIME PREDICTION MODEL USING ML 

The different steps involved in developing an ML model 

include data collection, data preprocessing, model 

development, training, hyperparameter optimization, testing 

and validation, as depicted in Fig 8.  

 

The different performance metrics used for evaluating the 

regression model include root mean squared error, R-squared, 

mean absolute error, prediction speed and training time.  
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Mean Absolute Error (MAE) is the sum of the average of the 

absolute difference between the predicted and actual values 

given by (24) 

𝑴𝑨𝑬 =
𝟏

𝒏
∑|𝒀𝒊 − 𝒀�̂�|                               (24) 

where 𝒀𝒊 = actual output values, = �̂�𝒊 predicted output values. 

 The mean squared error (MSE) is given by Eq.(24). 

𝑴𝑺𝑬 =  
𝟏

𝒏
∑ (𝒀𝒊 − 𝒀�̂�)

𝟐𝒏
𝒊=𝟏 ………………(25) 

R-squared explains to what extent the variance of one 

variable explains the variance of the second variable. Higher 

the R-squared value, the better is the model. 
 

As there is more than one independent variable, linear 

regression is not used for predictive analysis. Table V shows 

the RMSE and performance metric for the lifetime prediction 

model, and Fig.9 shows the predicted and actual responses for 

different algorithms. 

 

 

The models are validated against actual current consumption 

and predicted current consumption, as shown in Fig 10. The 

actual measurement of current consumption is obtained from 

the smart mesh IP power and performance calculator, and the 

lifetime prediction model is validated. 

 

Table VI shows the interaction between the features to the 

response variable, the dependency of various parameters on 

current consumption, which helps reduce the dimensionality 

of data and thereby reduce the complexity of the model. It is 

seen that no of motes, hop depth and backbone most affect the 

current consumption of the wireless sensor network. 

 

Again, using 70% of data for training, 15% for validation, and 

15% for testing using neural network training tool of 

MATLAB with Bayesian regularization following mean 

square error and R-squared values are obtained as shown in 

Fig 11. The best training performance is observed at the 102nd 

epoch, as shown in Fig 7. Fig 8 shows the predicted and actual 

response at different iteration when trained using neural 

network training. The Bayesian regularization technique 

minimizes squared errors and weights and optimized learning 

parameters, as shown in Fig 9.  

FIGURE 8. Flow Diagram for a model predictive based optimal routing 

and lifetime prediction 

 

  
 

 

 

 

 

 

 

 

 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3152804, IEEE Access

 

VOLUME XX, 2017 1 

TABLE V: RMSE AND OTHER PERFORMANCE METRIC FOR THE LIFETIME PREDICTION MODEL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 
(b) 

 

 
(c) 

(d) 

FIGURE 9. Predicted response Vs true response for a) Optimizable SVM   b) Optimizable Tree   c) Optimizable GPR   d) Optimizable Ensemble 

 

 

Parameters Tree SVM Ensemble GPR 

RMSE (uA) 584.79 705.55 459.65 233.85 

R-squared 0.96 0.94 0.98 0.99 

MAE (uA) 263.47 283.16 272.24 111.72 

Prediction 

speed(obs/sec) 

22000 19000 5500 21000 

Training time (s) 26.723 149.3 114.52 142.28 

Optimizer Bayesian  Bayesian  Bayesian  Bayesian  

Feature selection No No No No 

PCA enabled No No No No 
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FIGURE 10. Validation of results for different algorithms 

 

 

 

TABLE VI: DEPENDENCY OF VARIOUS PREDICTORS ON CURRENT CONSUMPTION  

Predictors Hop 

Dept

h 

No of 

Mote

s 

Advertisi

ng 

Backbon

e 

Routin

g 

Reportin

g 

interval 

(s) 

Payloa

d size 

(Bytes) 

Downstrea

m frame 

size 

Suppl

y 

voltag

e 

Path 

stabilit

y 

Importance 

(w.r.t 

current 

consumptio

n) 

2148.

7 

101.7 4.6 6907.1 1.2 0.2 1 7.3 9.1 0 

  

  

 

 

 

 

 

 

 

 

 

FIGURE 11. Training testing and validation along with their MSE and R-Squared values 
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FIGURE 12. Mean squared error for training and testing datasets 

 

FIGURE 13. Predicted response Vs true response at different iteration 

 

TABLE VII: RMSE OF DIFFERENT MODELS   
Algorithm RMSE 

ANFIS hybrid optimization 

technique 

0.01 

Back propagation optimization 0.2535 

Linear regression 0.092 

Optimizable tree 0.02 

Optimizable SVM 0.0081 

Optimizable ensemble 0.0116 

Optimizable Gaussian process 

regression 

0.00408 

 

 

 

 

 

FIGURE 14. Optimized values of different hyperparameters 

 

 

FIGURE 15. Predicted Vs true response for CH selection 

 

FIGURE 16. Minimum MSE plot for optimizable GPR 
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B. RESULTS: CH SELECTION USING ML  

 

The RMSE values obtained from the ANFIS model and 

various ML regression models are shown in Table VII. Fig 15 

shows the predicted Vs. True response of the clustering model 

obtained using optimizable GPR. The results indicate that the 

R-squared value for this algorithm is close to one. Fig 16 

shows the Minimum Mean Squared (MSE) error using the 

GPR algorithm with Bayesian optimization. 

 

Battery life is calculated as  

 

Battery life (hours)

=  
Battery capacity (mAh)

Average Current (mA)
               (26) 

 
 

For a Tadiran TL4903AA with a capacity of 2160 mAh, the 

variation in battery life with current consumption is shown in 

Fig. 17. 

 

FIGURE 17. Battery lifetime Vs. current consumption  

 

A comparison of various protocols like TEEN, SEP, LEACH, 

and Machine Learning based Threshold Sensitive Stable 

Election Protocol (ML-TSEP) protocol is carried out in terms 

of the average energy of each node and number of dead nodes 

as shown in Fig.18 and Fig.19. 

 
FIGURE 18 Number of dead nodes in clustering protocols after 100 
iterations 

 
 
FIGURE 19. Average energy of different clustering protocols after 100 
iterations 

 

 
IV. CONCLUSION 

This research work combines intelligent clustering and routing 

protocols to improve energy consumption and the lifetime of 

wireless sensor nodes. In this work, the energy consumption, 

data latency, and build time of sensor nodes are predicted 

based on various parameters that affect the dynamic behaviour 

of WSNs, and the factors that most affect the response of the 

predictive model are identified. Predicting the lifetime of 

sensor nodes avoids the problems of the constant replacement 

of batteries, particularly for sensor nodes deployed in remote 

areas. The most affected network current consumption factors 

are hop depth, number of motes, and backbone. The results for 

lifetime prediction are validated with the results obtained from 

the SmartMesh IP tool. The GPR model for current 

consumption prediction shows significant improvement in 

RMSE, R-squared value, and MAE. Apart from this, the 

priority of CHs is predicted using ML techniques. The priority 

of a node to become cluster head acts as an input to the 

modified Threshold Sensitive Stable Election Protocol (ML-

TSEP), which selects the cluster head and transmits the data 

from the sensor nodes to the CHs. The cluster head prediction 

based on GPR shows significant improvement in RMSE 

compared to the ANFIS model.  
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