
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2022.3154474, IEEE Access

1

Improved YOLOv4 Based on Attention
Mechanism for Ship Detection in SAR Images
Yunlong Gao1,2, Zhiyong Wu1, Ming Ren1,2, Chuan Wu1
1(Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, Changchun 130033, China)
2(Key Laboratory of Airborne Optical Imaging and Measurement, Chinese Academy of Sciences, Changchun 130033, China)

Corresponding authors: Yunlong Gao (gaoyl15@mails.jlu.edu.cn) and Zhiyong Wu (wuzy@ciomp.ac.cn).

This work was supported in part by National Nature Science Foundation of China (No.61401425).

ABSTRACT Ship detection in synthetic aperture radar (SAR) images is an important and challenging work in the field of
image processing. Traditional detection algorithms usually rely on handmade features or predefined thresholds, the different
performance is obtained with varying degrees of prior knowledge, and it is difficult to take advantage of big data. Recently,
deep learning algorithms have found wide applications in ship detection from SAR images. However, due to the complex
backgrounds and multiscale ships, it is hard for deep networks to extract representative target features, which limits the ship
detection performance to a certain extent. In order to tackle the above problems, we propose an improved YOLOv4
(ImYOLOv4) based on attention mechanism. Firstly, to achieve the best trade-off between detection accuracy and speed, we
adopt the off-the-shelf YOLOv4 as our basic framework because of its fast detection speed. Secondly, a thresholding
attention module (TAM) is introduced to suppress the adverse effect of complex backgrounds and noises. Besides, we embed
channel attention module (CAM) into improved BiFPN as the feature pyramid network (FPN) to better enhance the
discrimination of the multiscale target features. Finally, the decoupled head with two parallel branches improves the
performance of classification and regression. The proposed method is evaluated on public SAR dataset and the experimental
results demonstrate that it has higher efficiency and feasibility than other mainstream methods, yielding the accuracy of
94.16% at intersection over union of 0.5 and 58.19% at intersection over union of 0.75.

INDEX TERMS ship detection, SAR, attention, decouple head, YOLOv4

I. INTRODUCTION
With the continuous improvement of space remote sensing
imaging technology, high-resolution and wide-scale remote
sensing images are becoming more and more enriched and
facilitate a large range of applications. Remote sensing
applications make remote sensing images into plug and
play products, which are widely used in all aspects of social
and economic life, such as traffic control [1]-[2], geological
and mineral exploration [3], environment monitoring [4],
and urban construction [5]. As the key target of marine
monitoring and wartime attack, the detection of ships has
an important practical value for both civil and military
fields [6]-[10]. In recent years, many researches in this field
have prioritized synthetic aperture radar (SAR) images and
ship detection in SAR images has become one of the most
important remote sensing applications [11]-[16]. Compared
with optical sensors, SAR is an active microwave remote
sensing imaging sensor, which has the all-day and all-
weather surveillance capabilities, making it possible to
continuously monitor targets at sea [17]-[20]. Therefore, it
is very important to study the ship detection in SAR images.

Many studies have been carried out about ship
detection in remote sensing images in recent years [21]-[24].
Traditional feature extraction methods are usually based on
handmade features such as scale-invariant feature transform
(SIFT) [25], histogram of oriented gradient (HOG) [26] and
local binary patter (LBP) [27], followed by shallow
classification modules, e.g., support vector machine (SVM)
[28], extreme learning machine (ELM) [29], and Adaboost
[30]. Most of the traditional algorithms show great
performance for ideal-quality images. However, they are
highly dependent on manual feature extraction and
availability of prior knowledge such as predefined
thresholding and the distributions of sea clutters, let alone
the influence of complex backgrounds and noises. As a
result, their generalization ability is weak, and the detection
performance is far from satisfactory.

In recent years, driven by extensive remote sensing
images, deep learning methods have achieved great success
in object detection. State-of-the-art deep learning-based
ship detection methods include one-stage and two-stage
detectors. The one-stage detectors directly convert the
object detection into a regression problem which is fast
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running. You only look once (YOLOv1) [31] as the end-to-
end algorithm for object detection processes the input
images only once, and this reduces the computational
redundancy and improves the detection speed; Single Shot
Detector (SSD) [32], RetinaNet [33], YOLOv2 [34],
YOLOv3 [35], and the latest YOLOv4 [36] are the typical
one-stage detection algorithms; In two-stage detectors, the
first stage generates a set of candidate proposals while
filtering out the majority of negative locations, the second
stage classifies the proposals into background or foreground.
Region CNN (R-CNN) [37] introduces deep learning
methods to the field of object detection and outperforms
most of the traditional detection methods; Subsequently, a
series of two-stage algorithms are proposed, such as Faster
R-CNN [38], Mask R-CNN [39], and Cascade R_CNN [40].
Compared with the one-stage detectors, the two-stage
detectors offer high positioning accuracy with low running
speed.

With the rapid development of SAR sensors, the
volumes of SAR images are getting larger and the data are
easier to obtain which lead to the possibility of deep
learning algorithms for SAR object detection. However,
some challenges still exit: 1) complex backgrounds on land
and strong backscatters usually result in missing detections
and false alarms, and 2) ships are often clustered and the
shapes of targets in SAR images have an extreme aspect
ratio. Most of all, small ship objects restrict deep networks
to extract representative target features, which further limits
the ship detection performance. Researchers in deep-
learning community for ship detection in SAR images have
made a lot of attempts to exploit CNN-based ship detection
frameworks. Based on the original Faster R-CNN,
researchers have made some typical improvements such as
adding hard negative mining [41] and dense connection
[42]. There are also some methods dedicated to building a
more complex structure to improve the performance for
some tough problems like dense small ships [43]. Zhao
proposes a cascade coupled convolutional network with
attention mechanism to detect ships which shows a
promising result for small objects [44]. A novel dense
pyramid network with attention weighting is utilized and
solves the problem of multiscale ship detection [45].
Besides, some training techniques such as training from
scratch are also introduced in the SAR ship detection
problem, and the final results outperform other pretrained
ship detectors [46]. To achieve real-time ship detection in
SAR images, some methods based on one-stage detectors
have been gradually explored. For instance, Wang [47]
applies the end-to-end RetinaNet to SAR ship detection,
and constructs a multi-resolution and complex background
dataset, achieving a high detection accuracy. Du [48] uses
two identical sub-networks to extract features from the
input SAR image and the corresponding saliency map at the
same time, then the salient features are integrated to the
deep CNN features. Zhang [49] introduces a channel

attention module and a spatial attention module in the high-
speed and high-precision SAR ship detection network and
obtains very excellent detection performance. As far as we
know, most of the researches either focus on high-accuracy
or high-speed, and only a few researches focus on both.
However, both of two indicators are very import for SAR
ship detection.

In this paper, we propose a novel one-stage ship
detector named improved YOLOv4 (ImYOLOv4) based on
attention mechanism [50] for accurate ship detection in
SAR images. Firstly, to achieve the best trade-off between
detection accuracy and speed, we adopt the off-the-shelf
YOLOv4 as the inspiration of our basic detection
framework. Secondly, we design a thresholding attention
module (TAM) that is embedded in very first layer of the
network to perform denoising in the image-level. The TAM
block can adaptively learn a set of thresholding according
to the global information of the image to suppress noises,
avoiding the invalid data flow of the network. Besides, in
order to improve the detection performance of multiscale
ships, we obtain the optimal sizes of multiscale anchors by
K-means [51] clustering according to the SAR dataset, and
we improve the state-of-the-art feature pyramid network
(FPN) BiFPN [52] with channel attention module (CAM) to
complete the fusion operations. Finally, we use a decoupled
head structure to deal with the ship classification and
bounding box regression tasks separately. Based on these
novel techniques above, our experiments on the public SAR
Ship Detection Dataset (SSDD) [53] show that ImYOLOv4
could significantly improve the detection performance on
the ship targets with multiscale sizes in front of complex
backgrounds.

The main contributions of this paper are as follows:
(1) A novel one-stage ship detector named

ImYOLOv4 based on attention mechanism is proposed
which meets the requirement for both high-accuracy and
high-speed detection.

(2) We design an embedded TAM block to perform
denoising due to the considerations of complex
backgrounds and strong backscatters for SAR ship
detection.

(3) We integrate the CAM block with BiFPN module
as the feature pyramid structure to better complete the
fusion operations for the salient feature maps. The CAM
block helps ImYOLOv4 pay more attention to the targets of
interest, which ensures the effectiveness of detecting small
ships.

(4) We replace the YOLO’s head with a decoupled
head to deal with the ship classification and bounding box
regression tasks separately, the decouple head is validated
on public SAR dataset and the comparison results confirm
its improvement of detection performance.
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Figure 1. End-to-end framework of ImYOLOv4.

The rest of this paper is organized as follows. Section
2 briefly reviews the related work that are close to our
method. Section 3 introduces the framework of our
proposed method in detail. Dataset and implementation
settings are described in Section 4. A series of experiments
and results are presented in Section 5. Finally, we
summarize this paper in Section 6.
II.  Related Work

Deep learning-based methods have made a significant
advancement in the field of SAR ship detection. Based on
deep learning, researchers have introduced methods that
have shown good performance in order to get better
detection results. Ma [54] designs an Accelerated-YOLOv3
method which aims to reduce the computational time with
relatively competitive detection accuracy by constructing a
new architecture with less layers and channels. Chang [55]
proposes an enhanced GPU based deep learning method
called YOLOv2-reduced to detect ship from SAR images,
and the authors prove the method can make a big leap
forward in improving the detection performance. These
models with fewer number of layers sacrifice the accuracy
to achieve a trade-off between detection accuracy and speed.
In order to achieve accurate detection under poor image
quality and complex backgrounds, some improvements
have been proposed. Han [56] studies how the detection
performance varies from images with different complexity,
backgrounds, surroundings, and quality. Fu [57] designs a
fast ship detection method which consists of two cascade
deep convolutional networks: scene classification network
(SCN) and single shot detector (SSD), the SCN can quickly
eliminate the sub-images that may not contain ships, and
then the remaining sub-images are input into the SSD to
implement refined ship target detection. Sun [58]
introduces a category-position module based on attention
mechanism to improve the positioning performance in
complex scenes by generating guidance vectors. Wang [59]
proposes a mask to guide attention maps, which performs
well in the instance segmentation field. Masks are used to
enhance ship position information in ship detection field
and to eliminate the influence of complex backgrounds.

These improvements usually bring a large amount of
redundant information that greatly affect the detection
efficiency. Different from the related works, we design a
lightweight embedded TAM based on attention mechanism
to filter the adverse effect of noises. In order to ensure the
ability of detecting multiscale ships, Lin [60] proposes a
new network architecture based on the Faster R-CNN by
using squeeze and excitation mechanism to enhance the
salient features of ship targets. Kang [61] discloses a
contextual region-based convolutional neural network with
multilayer fusion, the framework fuses the deep semantic
and shallow high-resolution features, improving the
detection performance for small-sized ships. Sun [62]
introduces a novel bi-directional feature fusion module to
the YOLO framework to efficiently aggregate multiscale
features which can be helpful for detecting multiscale ships.
Cui [63] designs a feature pyramid network integrating
dense attention mechanism, which made the features
extracted by the network contain rich resolution and
semantic information, and the proposed method proved to
be suitable for multiscale ship detection. A receptive
pyramid network extraction strategy and attention
mechanism are also proved to be effective in the ship
detection task, but the processing efficiency is low due to
the complex model structure [64]. Although the CNN-based
detection algorithms can automatically capture the features
of ships, the detection performance of these existing
methods still needs to be improved. In this paper, the
proposed ImYOLOv4 integrates the CAM block with
BiFPN module as the feature pyramid structure to better
complete the fusion operations for multiscale ship detection,
and the salient feature maps will not make the deep CNN
features disappear. The details of ImYOLOv4 model are
introduced in Section 3.
III.  Methodology
The proposed method will be described in detail in this
section. First, the overall framework of ImYOLOv4 is
introduced. Afterwards, the mechanism of every key module
will be explained. Other strategy validated efficient for
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detection such as K-means clustering for anchor box will be
described at last.

A. Overall Framework
The overall scheme of the proposed method and the network
architecture of ImYOLOv4 are illustrated in Figure 1. Firstly,
the resized input image (taking 416 as an example) is send
into the TAM to perform denoising operations. Next, we
adopt CSPDarknet53 [36] as the backbone to extract feature
maps at three different branches. Then, the multiscale feature
maps are feed into FPN structure to obtain fused features.
Specifically, the outputs (P3, P4, and P5) of CSPDarknet53
are transported to the ImBiFPN module to generate
corresponding salient feature maps (P3’, P4’, and P5’). In
ImBiFPN module, we apply up-sampling and down-
sampling operations by the factor of 2 and merge the feature
maps of same spatial resolution via concatenation, given to
the fact that different inputs should have different weights,
we design the CAM_Concat Unit by using CAM to obtain
channel-wise coefficient tensor while concatenating. In the
end, the decoupled head with two parallel branches is used to
predict a 3D tensor detection result of bounding box, object,
and classifications. The whole detection pipeline of
ImYOLOv4 is in a single network, so it can be optimized
end-to-end directly.

B. Thresholding Attention Module
The radar receives echo signals from ground, including
ground-based clutter and detection targets because of its
unique imaging technique. As a coherent imaging system,
SAR inevitably generates speckle noises from the complex
backgrounds, resulting in the missing detection of weak ship
targets. Besides, the metal materials and the superstructure of
the ships usually produce strong backscatters which will
reshape the ship appearances in the SAR images and interfere
with the detection process. Figure 2(a) and 2(b) show the
noises mentioned above respectively.

Figure 2. Complex backgrounds and strong backscatters
disturb the detection of ships.

Considering the adverse effect of these noises, we
design an embedded TAM block to perform denoising in the
image-level. In TAM block, we integrate the thresholding
algorithm and attention mechanism to automatically learn a
set of thresholding which can be used to transform the near-
zero to zero for signal reconstruction. Compared with the
traditional SAR feature enhancement methods, TAM does
not require high expertise in signal process and its

lightweight architecture has additional advantage of lower
computational complexity and memory consumption.

As for a SAR image obtained by radar system, it can be
decomposed as follows:

Y X N  (1)
where X is the considered scene, N is noise matrix of the
same size as X which denotes the difference between the
reconstructed image and real scene. Considering the sparsity
of SAR image, we can recover the considered scene by
dealing with the following optimization problem:
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the optimization problem can be solved by iterative
thresholding algorithm, however, the number of iterations
has a great impact on the sparsity and precision of the
considered scene. Inspired by LeakyReLu [65] activation
function, we would like to optimize the function by equation
(3):
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where μ is the thresholding used to filter the noises, α gives
us a non-zero gradient so that useful negative features can be
well preserved.

Figure 3 illustrates the detailed architecture of TAM
block which is designed upon the transformation mapping
between the input X ∈ RC H W  and its reconstruction

feature map X


∈ RC H W  . We adopt the channel attention
module to generate a channel-wise thresholding tensor μ∈

1 1RC  . Specifically, we first squeeze the input along the
spatial dimension H×W by using both average pooling and
max pooling operations to obtain two channel tensors of

1 1RC  , then, we merge the two tensors via element-wise
summation and forward the output s to a network which
consists of two fully connected (FC) layers. To reduce the
complexity of TAM, the activation size of the first FC layer
is set to / 1 1RC r  , where r is the reduction ratio. A sigmoid
function is also employed at the end of network as a simple
gating mechanism to get a scaled output tensor z of (0,1).
Finally, to prevent the thresholding from being neither
negative nor too large, we obtain the product μ by element-
wise multiplication from the scaled tensor z and the global
information tensor s. Therefore, the thresholding is expressed
as:
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Figure 3. The architecture of TAM.

C. Feature Pyramid Network
For deep learning-based detection methods, FPN [66] plays
an important role in solving the multiscale problems and acts
as a feature extractor with the consideration of the low-level
high-resolution and high-level low-resolution semantic
meaning. In general, more intensive sampling can get more
detailed features, while more sparse sampling can more
clearly reflect the overall trend. Fusing features of different
scales can capture ample semantic information which help
improve the accuracy of ship detection.

After the multiscale feature maps are extracted by
CSPDarknet53 network, we forward them to the ImBiFPN
structure to complete the fusion operations for salient feature
maps. As depicted at the left-bottom of Figure 1, there are
two main data flows in ImBiFPN, the bottom-up down-
sampling and top-down up-sampling pathways. And the
CAM_Concat Unit completes the feature fusion of the same
spatial resolution. In the process of concatenating, we apply
CAM block to automatically learn the channel-wise attention
coefficients which denote the significant degree of different
inputs. As shown in Figure 4, we first squeeze the
concatenated feature map along the spatial dimension H×W
by using max pooling operation to focus on what is important
in the given input. Then, two FC layers and a simple gating
mechanism via sigmoid function are employed to obtain the
final channel attention map Xc. Finally, we also add a
residual input for the consideration of preventing the problem
of gradient-vanishing. After element-wise multiplication and
summation operations, we generate the refined output Xo of
CAM block:

XXXXXX cmo  (5)

Figure 4. Structure of CAM block.

In summary, there are two differences between BiFPN
and our ImBiFPN. The one is that the input of ImBiFPN is 3-
level multiscale feature maps obtained by CSPDarknet53
network, while the input of BiFPN is 5-level features, the
same goes for the output of both FPN structures. The second
is that we design a weights generator by using CAM block to
assign the different importance of inputs while concatenating.
These improvements reduce the network parameters while
maintain the BiFPN performance.

D. Decoupled Head
In object detection, the conflict between classification and
regression tasks is a well-known problem. The two different
tasks which share almost the same parameters in YOLO head
could hurt the detection process. This is inspired by the
nature insight that for one instance, the features in some
salient area may have rich information for classification,
while these around the boundary may be good at bounding
box regression. Based on that case, we design a decoupled
head with two branches to solve the object functions from
different spatial dimensions. As depicted at the right-bottom
of Figure 1, we first use a convolutional layer with kernel
size 1×1 to perform the dimension reduction. Then, in the up
branch, a two-layer fully connected network is employed to
obtain the classification-specific output Cls. While in the
down branch, two shared 3×3 convolution and two 1×1
convolution operations are used to obtain the regression-
specific outputs Reg and Obj. Finally, the outputs of two
branches are merged into a tensor for the task of ship
prediction.

E. K-Means Clustering
Anchor box mechanism for object detection was proposed to
solve the problem of multitarget in one predicted box and has
been used in many detectors. There are 9 predefined anchor
boxes in our method for different scale detection. K-means
clustering is adopted on the overall SSDD data to
automatically find the prior boxes. Most ships in SAR
images are small and weak targets, which occupy few pixels
and have lower contrast. If we use the standard Euclidean
distance of the conventional K-means algorithm, the
bounding boxes with larger scale generate more error than
the smaller scale boxes, which will lead to missed detections
of small and sparse ships. What we want in the final
detection are the priors that will lead to high intersection over
union (IoU) scores, thus, the distance metric in this paper can
be expressed as:
d(anchor box, cluster centroid)=1-CIoU(anchor box, cluster

centroid) (6)
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where d(anchor box,cluster centroid) is the new distance
metric that needs to be minimized, and CIoU(anchor
box,cluster centroid) means the CIoU [67] values of the
anchor box and different cluster centroids. The specific size
of anchor boxes for three scales are shown in Table 1. The

optimal cluster centroids obtained by K-means are
significantly different than previous hand-picked anchor
boxes and have better performance for both precision and
recall on SAR ship detection.

Table 1 Detailed information of scaled anchor boxes

Feature layer Size Anchor boxes Number

Feature map-13 13×13 (69,34), (73,61), (89,100) 13×13×3

Feature map-26 26×26 (39,27), (42,99), (52,47) 26×26×3

Feature map-52 52×52 (12,16), (21,45), (34,55) 52×52×3

IV.  Dataset and Implementation Settings

A. Dataset
The dataset used in this paper is a SAR dataset for ship
detection published by the Digital Earth Laboratory of the
Aerospace Information Research Institute, Chinese Academy
of Sciences. SSDD is generated from 102 Gaofen-3 [68]
images and 108 Sentinel-1 [69] images. As for Gaofen-3, the
resolution of these images involves 3m, 5m, 8m and 10m
with Strip-Map (UFS), Fine Strip-Map 1 (FSI), Full
Polarization 1 (QPSI), Full Polarization 2 (QPSII) and Fine
Strip-Map 2 (FSII) imaging mode, respectively. The
Sentinel-1 imaging modes include S3 Strip-Map (SM), S6
SM and IW-mode.

The SSDD has 43819 ship chips and 59535 ship targets
in total. The pixel of each image is 256×256. The ship targets
are marked in a similar format to Pascal VOC [70]. The
statistical distribution of the ship size over the SSDD is
presented in Table 2, where “Size”, “Min” and “Max” mean
ship pixels, minimum ship size and maximum ship size,
respectively. “Number” represents the total number of ships,
“Percentage” denotes the percentage of the ship in whole
ship targets.

From Table 2 and Figure 5, we can see that the dataset
has the following characteristics. Firstly, there are multiscale
SAR ships in these chips, and the size conversion range is
large. Small ships and medium ships account for a large
proportion of whole targets. Secondly, there are complex
backgrounds in the ship chips. Some of ships are on the open
sea, some in the port. All of these have brought difficulties to
ship detection, and put forward higher requirements for the
performance of ship detection. In the experiment, we split the
training, validation and testing set randomly according to rate
of 7:2:1. The training set and the validation set are used for
training models and the testing set is used for testing models.

Table 2 Statistical distribution of the ship size

Size Min
(Pixel)

Max
(Pixel) Number Percentage

Small
Ship 4×6 32×32 35695 59.96%

Medium
Ship 32×32 96×96 23660 39.74%

Large
Ship 96×96 207×109 180 0.30%

Figure 5. Samples of ship chips. (a), (b), (c) and (d) are from
Gaofen-3 images. (e), (f), (g) and (h) are from Sentinel-1
images.

B. Evaluation Metrics
In order to quantitatively evaluate the detection performance
of ImYOLOv4, we adopt four widely used criteria, namely,
precision, recall, mAP (mean Average Precision) and F1
score. The precision measures the value of detections that are
true positives and the recall measures the value of positives
over the number of ground truths.

TPprecision
TP FP




(7)

TPrecall
TP FN




(8)

where TP, FP and FN represent the number of true positives,
false positives and false negatives.

As for detection, a higher precision and a higher recall
are both expected. However, the two metrics are a pair of
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contradictory indicators. It means that a higher precision will
result in a lower recall and a higher recall will result in a
lower precision. F1 score is then used which can
comprehensively combine precision and recall. A higher F1
score indicate a more ideal detection performance. F1 score
is defined based on the harmonic average of precision and
recall:

1 2 precision recallF
precision recall


 


(9)

Precision, recall and F1 score are all calculated based on
the single point threshold. AP can solve the limitations of
single point threshold and get an indicator that reflects the
global performance. AP is obtained by the integral of the
precision over the interval from recall=0 to recall=1, that is,
the area under the precision-recall (PR) curve.

1

0
( )AP P R dR  (10)

C. Implementation Settings
All experiments are implemented using the deep learning
framework Pytorch and executed on a PC with TITAN XP
GPU (11G memory), the PC operating system is Ubuntu
16.04. At the beginning of network training, we use the
parameters pre-trained on ImageNet to initialize the network.
Then, we utilize the end-to-end training strategy to train our
model, in which the gradient descent algorithm is used to
fine-tine the network weights. The weight decay and
momentum are set to be 0.0001 and 0.9. The reduction
parameter r and α used for gradient preserved in TAM block
are set to 16 and 0.1 which will be explained in the following
experiments. Smooth-L1 [36] Loss function is applied to
calculate classification loss and a total of 2k iterations are
performed for training our ImYLOLv4 model.

V.  Experiments and Results

A. Performance of TAM
In this section, we first examine the impact of parameters r
and α and select the best combination of parameters for TAM
module. The parameter r is designed to decrease the
calculation complexity of the fully connected layers and α
guarantees that most neurons won’t be dead during the
training process. We measure the AP50 (IoU=0.5) and AP75
(IoU=0.75) in the case of different parameter values and list
the results in Table 3 and Table 4. As we can see from the
results, adding the parameters brings the improvements in
both AP50 and AP75 compared with condition when r = 1
and α = 0. And we can find out that the combination of r = 16
and α = 0.1 obtains the best detection precision. The
reduction parameter r avoids overfitting caused by too many
training parameters to a certain extent, and α expands the
values of the activation function in the part of less than the
thresholding -μ, which further demonstrates that avoiding
neurons being dead is more important than obtaining sparsity.

Table 3 AP50 with different parameter values of TAM
AP50(%) r=1 r=2 r=4 r=8 r=16 r=32

α = 0 91.24 91.29 91.81 91.96 92.67 91.92

α = 0.05 93.43 93.77 93.96 94.00 94.12 93.87

α = 0.1 93.38 93.57 93.95 94.07 94.16 94.03

α = 0.15 93.20 93.80 93.82 93.89 94.08 93.74

α = 0.2 92.78 93.19 93.28 93.57 93.92 93.46

α = 0.25 92.52 93.10 93.27 93.53 93.76 93.22

Table 4 AP75 with different parameter values of TAM
AP75(%) r=1 r=2 r=4 r=8 r=16 r=32

α = 0 57.24 57.59 57.91 57.96 57.97 56.92

α = 0.05 57.43 57.82 58.04 58.04 58.11 57.97

α = 0.1 57.68 57.87 58.05 58.17 58.19 58.03

α = 0.15 57.33 57.50 57.72 58.09 58.11 57.73

α = 0.2 57.18 57.39 57.71 58.00 58.02 57.46

α = 0.25 56.82 57.14 57.47 57.58 57.76 57.29
To verify the effectiveness of TAM, we conduct

experiments comparing the detection performance between
YOLOv4, ImYOLOv4 without TAM (DeTImYOLOv4) and
ImYOLOv4. For a fair comparison, we set the other hyper-
parameters consistent in the experiments. And the results are
displayed in Table 5. As we can see from the results, adding
the TAM block brings 3.18%, 0.05, 2.29% and 8.15%
increment in AP50, F1 score, precision and recall versus
DeTImYOLOv4, and outperforms YOLOv4 by 0.47%, 0.01,
2.00% and 1.00% in AP50, F1 score, precision and recall,
respectively. When IoU is set to 0.75, adding the TAM block
brings 9.49%, 0.05, 7.60% and 3.47% increment in AP75, F1
score, precision and recall versus DeTImYOLOv4, and
outperforms YOLOv4 by 7.77%, 0.03, 6.08% and 0.81% in
AP75, F1 score, precision and recall, respectively.
Specifically, we present some denoising results of
ImYOLOv4 to further demonstrate the validity of TAM. We
visualize the spatial response of the input and output feature
map of TAM block by heatmap where the blue color denotes
low spatial response, and the red indicates a high response.
We resize the heatmaps to the same size of the SAR image
and the results are shown in Figure 6. By comparing Figure
6(b), (e), and Figure 6(c), (f), we can see that the complex
background triggers very low response and the irrelative
information brought by background can be effectively
suppressed because of TAM. While the noises are suppressed,
ImYOLOv4 can focus on and extract more discriminative
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features of targets, which is very helpful for the ship
detection.

In addition, as shown in Table 5, we also compare our
TAM with some state-of-the-art attention modules, such as
ECA [71], BAM [72] and CBAM [73]. We replace the TAM
block with attention modules while keeping other subnets
consistent to ImYOLOv4. By analyzing the results, TAM
and ECA obtain better performance than the other two

modules, this is mainly because that BAM and CBAM are
proposed based on optical images and irrelative spatial
feature would be falsely enhanced for SAR images. The
TAM block can adaptively learn the channel-wise
thresholding according to the global information of the image,
and the experiment results demonstrate its suitability for SAR
ship detection task.

Table 5 Comparison results with other attention modules

Method
IoU=0.5 IoU=0.75

Precision Recall F1 AP50 Precision Recall F1 AP75

YOLOv4 91.54% 89.95% 0.91 93.69% 62.56% 61.48% 0.62 50.42%

DeTImYOLOv4 91.25% 82.80% 0.87 90.98% 61.04% 58.82% 0.60 48.70%

ImYOLOv4 93.54% 90.95% 0.92 94.16% 68.64% 62.29% 0.65 58.19%

DeTImYOLOv4+ECA 92.16% 88.89% 0.90 91.06% 66.87% 62.17% 0.64 55.53%

DeTImYOLOv4+BAM 91.08% 60.60% 0.73 84.19% 56.24% 48.29% 0.52 40.33%

DeTImYOLOv4+CBAM 91.17% 66.35% 0.77 84.38% 55.38% 46.29% 0.50 38.24%

Figure 6. Visualization of the intermediate features. (a), (d)
are the input SAR images. (b), (e) denote the heatmaps of the
input images, and (c), (f) denote the corresponding heatmap
outputs of TAM.

B. Performance of FPN
We also conduct an experiment to validate the performance
of FPN. FPN from YOLOv3 (YOLOv3FPN), PANet [36],
BiFPN are embedded into ImYOLOv4 as substitutions of
FPN respectively. YOLOv3FPN simply contains an up-
sampling pathway for fusing the features at different
resolutions. PANet is originally applied in the field of image
segmentation, which increases a down-sampling pathway on
the basis of YOLOv3FPN. BiFPN introduces a weighted
feature fusion strategy to better balance the feature
information of different resolutions. The comparison results
are listed in Table 6. As it is seen in Table 6, different feature
fusion methods bring different detection performance. And
our FPN and BiFPN achieve better performance for salient
feature extraction which contributes to ship detection. Apart
from the precision, we also evaluate the models by the
running speed. Unlike BiFPN, our FPN uses CAM block as
the weights generator, and the improvement makes our FPN
achieve better accuracy and efficiency trade-offs.

Table 6 Performance of different FPNs

Method
IoU=0.5 IoU=0.75

FPS
AP50 Precision Recall AP75 Precision Recall

ImYOLOv4+YOLOv3FPN 92.83% 92.42% 87.96% 51.82% 64.96% 60.16% 57

ImYOLOv4+PANet 93.76% 92.48% 88.14% 58.15% 66.92% 60.12% 48

ImYOLOv4+BiFPN 94.05% 93.55% 88.06% 58.02% 66.56% 61.37% 36

ImYOLOv4 94.16% 93.54% 90.95% 58.19% 68.64% 62.29% 42
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C. Performance of Decoupled Head
In this part of experiments, we design several variants of
decoupled head and make comparison to the YOLO head
baseline. The variants are described as follows:

1) YOLO-Head (baseline): The coupled head is widely
used in YOLO series detectors, the classification and
regression tasks are solved by the single network.

2) Decoupled-Head (ours): The head splits the
classification and regression on a fully connected head and a
convolution head respectively.

3) Decoupled-Conv-FC-Head: The head splits the
classification and regression on a convolution head and a
fully connected head respectively.

4) Decoupled-FC-Head: Double fully connected heads
which have the same structure as the up branch of our
Decoupled-Head.

5) Decoupled-Conv-Head: Double convolutional
heads which have the same structure as the down branch of
out Decoupled-Head.

The comparison results between the variants are listed
in Table 7. From the results, we can observe that decoupled
head has a better performance than the single network
baseline for ship detection, this is mainly because that
classification and regression focus on the different problems,
and different branches used for different tasks are conducive
to the improvement of performance. This significant
observation motivates us to rethink the architecture of the
decoupled head. By comparing the variants of decoupled
head, we can conclude that the fully connected head is more
suitable for classification while the convolutional head has
more advantage on the task of regression.

Table 7 Performance of decoupled head

Method
IoU=0.5 IoU=0.75

AP50 Precision Recall AP75 Precision Recall

YOLO-Head (baseline) 92.93% 91.72% 88.69% 51.52% 61.46% 45.76%

Decoupled-Head (ours) 94.16% 93.54% 90.95% 58.19% 68.64% 62.29%

Decoupled-Conv-FC-Head 91.87% 92.55% 88.46% 50.42% 62.56% 61.48%

Decoupled-FC-Head 91.67% 91.74% 87.45% 50.24% 58.93% 54.78%

Decoupled-Conv-Head 91.20% 91.85% 89.91% 52.88% 60.53% 55.76%

D. Comparison with State-of-the-Art Methods
In this section, we compare our ImYOLOv4 model with
some state-of-the-art object detection models on SSDD,
including RetinaNet, CenterNet [74], YOLOv3, YOLOv4,

and Faster-RCNN. The experimental results are displayed in
Table 8, and Figure 7 shows the precision-recall curves of all
the detectors.

Table 8 Detection results of detectors

Method
IoU=0.5 IoU=0.75

FPS
AP50 APL APM APS AP75 APL APM APS

RetinaNet 85.70% 81.27% 96.20% 85.58% 41.52% 39.59% 64.18% 40.25% 39

Faster-RCNN 83.80% 63.53% 94.57% 69.23% 21.83% 40.01% 42.06% 5.59% 16

CenterNet 84.19% 15.68% 89.46% 79.74% 32.91% 4.23% 44.77% 26.14% 78

YOLOv3 90.98% 61.79% 95.96% 90.72% 48.15% 21.18% 62.65% 39.25% 61

YOLOv4 93.69% 74.80% 96.42% 91.28% 50.42% 25.64% 64.67% 40.00% 50

ImYOLOv4 94.16% 83.64% 96.95% 93.33% 58.19% 42.49% 68.19% 50.24% 42

As shown in Table 8, our ImYOLOv4 model
outperforms one-stage detector RetinaNet by 8.46% AP50
and 16.67% AP75, YOLOv3 by 3.18% AP50 and 10.04%
AP75, and YOLOv4 by 0.47% AP50 and 7.77% AP75,
respectively. Compared with two-stage detector Faster-

RCNN, ImYOLOv4 achieves 10.36% AP50 and 36.36%
AP75 increments. Moreover, our model surpasses anchor-
free detector CenterNet by 9.97% AP50 and 25.28% AP75.
In addition, as reflected by Figure 7, our method possesses a
higher precision and recall curve than the state-of-the-art
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methods, which further shows the superiority of ImYOLOv4
over the others. When it comes to the running speed, our
ImYOLOv4 is slower than CenterNet, YOLOv3, and
YOLOv4 with 42 fps, but it is faster than RetinaNet and

Faster-RCNN. In short, ImYOLOv4 achieves the better
trade-off between detection accuracy and running speed, and
we believe that the efficiency and simplicity of our method
will benefit ship detection applications in the future research.

Figure 7. Precision-recall curves of detectors. (a)-(f) denotes ImYOLOv4, YOLOv4, YOLOv3, RetinaNet, CenterNet, and
Faster-RCNN, respectively.

To further demonstrate the effectiveness in dealing with
multiscale ship detection of ImYOLOv4, we divide the
SSDD into three sub-datasets according to Table 2 and
calculate evaluation metrics APL, APM. APS for large,
medium, and small objects, respectively. From the results
shown in Table 8, we can find out that the models present
different detection abilities for multiscale ships. This is
mainly because that the shapes of the ships in SSDD have a
relatively extreme aspect ratio, and with the deepening of the
network layers, the features of ships become weak, especially
small-sized ships, so the detection accuracy is hard to
guarantee. Moreover, to achieve a better performance, the
models should take into account the effect of the complex
backgrounds and noises. We embed TAM block to perform
denoising operations and design the FPN structure to extract
salient feature maps of small ships, which ensure the
effectiveness of detecting small ships in front of complex
backgrounds.

E. Analysis on Missing Ships and False Alarms
To show the detection performance of ImYOLOv4 vividly,
we test it in some typical SAR images and the detection
results are displayed in Figure 8. The different environment
conditions include quiet sea, sea with waves, inshore land,

backscatters noises and small ship cluster. And the rectangle
box with different color represents different detection result,
the rectangle with green, red, blue, and yellow color denotes
the ground truth, detection target of detectors, false alarm and
missing target, respectively. In Figure 8, (a) is the original
SAR image and (b) represents the ground truth. (c)-(h)
denotes the detection results of RetinaNet, Faster-RCNN,
CenterNet, YOLOv3, YOLOv4, and ImYOLOv4,
respectively. It is clear that our ImYOLOv4 model can
distinguishes the ship targets better than the state-of-the-art
methods even though the interference of complicated
conditions. Although our method achieves excellent
performance on SSDD, a few missing ships and false alarms
still exist. As shown in the first and third column of (h) row,
non-ship object is recognized as ship target due to similar
features, and some ships are detected as one target because of
their close distance. For missing ships, non-NMS [75] may
improve the performance by adjusting the scores of other
detection boxes so that close targets are not eliminated in the
process. And sea-land semantic segmentation method [76]
could serve as a supplement in image preprocessing which
will benefit for the false alarms.

VI.  Conclusion
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In this paper, we propose a one-stage ship detector named
improved YOLOv4 (ImYOLOv4) based on attention
mechanism for accurate ship detection in SAR images. First, to
achieve high accuracy of ship detection, we adopt YOLOv4 as
the basic framework and apply CSPDarknet53 to extract
multiscale feature maps. Then, the TAM module is designed
based on attention mechanism to enhance the representational
power of the network by dynamic feature denoising and
recalibration. In addition, we construct a new FPN structure

which combines the meaningful semantic information to solve
with the problem of multiscale ship detection. Finally, we
design a decoupled head with two branches to solve the
conflict between classification and regression tasks. Extensive
experimental results demonstrate that ImYOLOv4 has a
promising performance on detecting ships in SAR images,
while achieving a fast speed. We hope this report could help
scholars get better experiences in future researches.
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Figure 8. Detection results of detectors.
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