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Next generation wireless networks are expected to be extremely complex due to their massive heterogeneity in terms of the types
of network architectures they incorporate, the types and numbers of smart IoT devices they serve, and the types of emerging
applications they support. In such large-scale and heterogeneous networks (HetNets), radio resource allocation and management
(RRAM) becomes one of the major challenges encountered during system design and deployment. In this context, emerging Deep
Reinforcement Learning (DRL) techniques are expected to be one of the main enabling technologies to address the RRAM in future
wireless HetNets. In this paper, we conduct a systematic in-depth, and comprehensive survey of the applications of DRL techniques
in RRAM for next generation wireless networks. Towards this, we first overview the existing traditional RRAM methods and identify
their limitations that motivate the use of DRL techniques in RRAM. Then, we provide a comprehensive review of the most widely
used DRL algorithms to address RRAM problems, including the value- and policy-based algorithms. The advantages, limitations,
and use-cases for each algorithm are provided. We then conduct a comprehensive and in-depth literature review and classify existing
related works based on both the radio resources they are addressing and the type of wireless networks they are investigating. To
this end, we carefully identify the types of DRL algorithms utilized in each related work, the elements of these algorithms, and
the main findings of each related work. Finally, we highlight important open challenges and provide insights into several future
research directions in the context of DRL-based RRAM. This survey is intentionally designed to guide and stimulate more research
endeavors towards building efficient and fine-grained DRL-based RRAM schemes for future wireless networks.

Index Terms—Radio Resource Allocation and Management, Deep Reinforcement Learning, Next Generation Wireless Networks,
HetNets, Power, Bandwidth, Rate, Access Control.

I. INTRODUCTION

RADIO resource allocation and management (RRAM) is
regarded as one of the essential challenges encountered

in modern wireless communication networks [1]. Nowadays,
modern wireless networks are becoming more heterogeneous
and complex in terms of the types of emerging radio access
networks (RANs) they integrate, the explosive number and
types of smart devices they serve, and the types of disruptive
applications and services they support [2], [3]. It is envisaged
that future networks will integrate land, air, space, and deep-
sea wireless networks into a single network to meet the strin-
gent requirements of a fully-connected world vision [4], [5],
as shown in Fig. 1. This will ensure ubiquitous connectivity
for user devices with enhanced quality of service (QoS) in
terms of coverage, reliability, and throughput. In addition,
future user devices will also witness an unprecedented increase
in their numbers and types of data-hungry applications they
require/support [3], [6]. It is expected that by 2023, the number
of user networked devices and connections, including smart-
phones, tablets, wearable devices, and sensors, will reach 29.3
billion [6], and generate a data rate exceeding 50 trillion GB
[1]. All these trends will exacerbate the burdens during system
design, planning, deployment, operation, and management.
In particular, RRAM will become crucial in such complex
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and large-scale networks in order to guarantee an enhanced
communications experience.

RRAM plays a pivotal role during infrastructure plan-
ning, implementation, and resource optimization of modern
wireless networks. Efficient RRAM solutions will guarantee
enhanced network connectivity, increased system efficiency,
and reduced energy consumption. The performance of wireless
networks heavily relies on two aspects. First, how network
radio resources are being utilized, managed, and orchestrated,
including transmit power control, spectrum channel alloca-
tions, and user access control. Second, how efficiently the
system can react to the rapid changes of network dynamics,
including wireless channel statistics, users mobility patterns,
instantaneous radio resources availability, and variability in
traffic loads. Efficient RRAM techniques must efficiently and
dynamically account for such design aspects in order to ensure
high network QoS and enhanced users’ Quality of Experience
(QoE).

Deep reinforcement learning (DRL) is a branch of artificial
intelligence (AI) that enables network entities, such as base
stations, user devices, edge servers, gateways, and access
points, to continuously interact with the environment to make
autonomous control decisions [7]–[14]. DRL Techniques have
attracted considerable research recently and demonstrated effi-
cient performance in addressing complex wireless optimization
problems, including RRAM problems. Therefore, experts ex-
pect DRL methods to be one of the main enabling technologies
for future wireless networks due to their ability to overcome
the limitations of traditional RRAM techniques [2], [15].
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Fig. 1. A pictorial illustration of next generation wireless networks characterized by their massive heterogeneity in terms of RANs infrastructures, types and
numbers of user devices served, and types of applications and services supported.

A. Motivations of the Paper

The main motivations of this work stem from three aspects.
First, the paramount importance of allocating radio resources
in future wireless networks. Second, the limitations and short-
comings of existing state-of-the-art RRAM techniques. Third,
the robustness of Deep reinforcement techniques in alleviating
these limitations and providing efficient performance in the
context of RRAM. Here we elaborate more on each aspect.

1) Importance of RRAM in Modern Wireless Networks
The explosive growth in the number and types of mod-

ern smart devices, such as smartphones/tablets and wearable
devices, has led to the emergence of disruptive wireless
communications and networking technologies, such as 5G
NR cellular networks, IoT networks, personal (or wireless
body area networks), device-to-device (D2D) communications,
holographic imaging and haptic communications, and vehicu-
lar networks [3], [4], [16]–[23]. Such networks are envisaged
to meet the stringent requirements of the emerging applica-
tions and services via supporting high data rates, coverage,
and connectivity with significant enhancements in reliability,
reduction in latency, and mitigation of energy consumption.

However, achieving this goal in such large-scale, versatile,
and complex wireless networks is quite challenging, as it re-
quires a judicious allocation and management of the networks’
limited radio resources [24], [25]. In particular, efficient and
more advanced RRAM solutions must be developed to balance
the tradeoff between enhancing network performance while
guaranteeing an efficient utilization of radio resources. Fur-

thermore, efficient RRAM solutions must also strike and in-
telligent tradeoff between optimizing network radio resources
and satisfying users’ QoE. For example, RRAM techniques
must jointly enhance network spectral efficiency (SE), energy
efficiency (EE), and throughput while mitigating interference,
reducing latency, and enhancing rate for user devices.

Efficient and advanced RRAM schemes can considerably
enhance the system’s SE compared to the traditional tech-
niques by relying on the advanced channel and/or source
coding methods. RRAM is essential in broadcast wireless
networks covering wide geographical areas as well as in
modern cellular communication networks comprised of several
adjacent and dense access points (APs) that typically share and
reuse the same radio frequencies.

From a cost point of view, the deployment of wireless APs
and sites, e.g., base stations (BSs), including the real estate
costs, planning, maintenance, and energy, is the most critical
aspect alongside with the frequency license fees. Hence, the
goal of RRAM is maximizing the network’s SE in terms
of bits/sec/Hz/area unit or Erlang/MHz/site, under some con-
straints related to user fairness. For instance, the service grade
must meet a minimum acceptable level of QoS, including
the coverage of certain geographical areas while mitigating
network outages caused by interference, noise, large-scale
fading (due to path losses and shadowing), and small-scale
fading (due to multi-path). The service grade also depends on
blocking caused by admission control, scheduling errors, or
inability to meet certain QoS demands of edge devices (EDs).
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2) Where Do Traditional RRAM Techniques Fail?
Future wireless communication networks are complex due

to their large-scale, versatile, and heterogeneous nature. To
optimally allocate and manage radio resources in such net-
works, we typically formulate RRAM as complex optimization
problems. The objective of such problems is to achieve a
particular goal, such as maximizing network sum-rate, SE, and
EE, given the available radio resources and QoS requirements
of user devices. Unfortunately, the massive heterogeneity na-
ture of modern networks poses tremendous challenges during
the process of formulating optimization problems as well
as applying conventional techniques to solve them, such as
optimization, heuristic, and game theory algorithms.

The large-scale nature of next generation networks makes
it quite difficult to formulate RRAM optimization problems
that are often intractable non-convex. Also, conventional tech-
niques used to solve the RRAM problems require complete
or quasi-complete knowledge of the wireless environment,
including accurate channel models and real-time channel state
information (CSI). However, obtaining such information in a
real-time fashion in these large-scale networks is quite difficult
or even impossible. Furthermore, conventional techniques are
often computationally-expensive and incur considerable timing
overhead. This renders them inefficient for most emerging
time-sensitive applications, such as autonomous vehicles and
robotics.

Moreover, game theory-based techniques are unsuitable for
future heterogeneous networks (HetNets) as such techniques
are devised for homogeneous players. Also, the explosive
number of network APs and user devices will create extra
burdens on game theory-based techniques. In particular, net-
work players, such as BSs, APs, and user devices, need to
exchange a tremendous amount of data and signaling. This will
induce unmanageable overhead that largely increases delay,
computation, and energy/memory consumption of network
elements.

3) How Can DRL Overcome these Challenges and Provide
Efficient RRAM Solutions?

Emerging artificial intelligence (AI) techniques, such as
deep reinforcement learning (DRL), have shown efficient
performance in addressing various issues in modern wireless
communication networks, including solving complex RRAM
optimization problems [7]–[15]. In the context of RRAM,
DRL methods are mainly used as an alternative to overcome
the shortcomings and limitations of the conventional RRAM
techniques discussed above. In particular, DRL techniques can
solve complex network RRAM optimization problems and
take judicious control decisions with only limited information
about the network statistics. They achieve this by enabling
network entities, such as BSs, RAN’s APs, edge servers (ESs),
gateways nodes, and user devices, to make intelligent and
autonomous control decisions, such as RRAM, user associa-
tion, and RAN’s selection, in order to achieve various network
goals such as sum-rate maximization, reliability enhancement,
delay reduction, and SE/EE maximization. In addition, DRL
techniques are model-free that enable different network entities
to learn optimal policies about the network, such as RRAM
and user association, based on their continuous interactions

with the wireless environment, without knowing the exact
channel models or other network statistics a-priori. These
appealing features make DRL methods one of the main key
enabling technologies to address the RRAM issue in modern
wireless communication networks [2], [3].

B. Related Work

There is a limited number of surveys that focus on the
role of DRL in RRAM. Existing related surveys are listed
in Table 1. The table also summarizes the topics covered in
these surveys along with a mapping to the relevant sections of
this paper and a categorical discussion of the improvements
and value-added in this paper relative to these surveys. In
general, as reported in Table 1, these published surveys still
have several research gaps that are addressed in this survey.
We summarize them as follows.
• Some of the existing surveys focus on DRL applications

in wireless communications and networking in general,
without paying much attention to RRAM [10], [15]. For
example, existing surveys cover topics related to DRL
enabling technologies, use-cases, architectures, security,
scheduling, clustering and data aggregation, traffic man-
agement, etc.

• Some of the published surveys focus on RRAM for wire-
less networks using ML and/or DL techniques without
paying much attention to DRL techniques [1], [24], [26],
[27]. For example, they consider ML techniques such as
convolutional neural networks (CNN), recurrent neural
networks (RNN), supervised learning, Bayesian learn-
ing, K-means clustering, Principal Component Analysis
(PCA), etc.

• Even the surveys that address DRL for RRAM in wireless
networks focus on specific wireless network types or
applications [8], [9], [11], [12], [28], missing some of
the recent research, not providing an adequate overview
of the most widely used DRL algorithms for RRAM
[12], or not covering the RRAM in-depth, but, rather,
just covering a limited number of radio resources.

Hence, the role of this paper to fill these research gaps
and overcome these shortcomings. In particular, we provide a
comprehensive survey on the application of DRL techniques in
RRAM for next generation wireless communication networks.
We have carefully cited up-to-date surveys and related research
works. We should emphasize here that the scope of this paper
is focused only on radio (or communication) resources, and
no computation resources are included during the study and
analysis. Fig. 2 shows the radio resources or issues addressed
in this survey. However, computation resource aspects such
as offloading, storage, task scheduling, caching, etc., can be
found in other studies such as [29]–[33] and the references
therein.

C. Paper Contributions

The main contributions of this paper are summarized as
follows.

1) We provide a detailed discussion on the state-of-the-
art techniques used for RRAM in wireless networks,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2022.3153226, IEEE Open
Journal of the Communications Society

4

TABLE I
RELATIONSHIP BETWEEN THIS SURVEY AND EXISTING SURVEYS ON DRL-BASED RRAM FOR WIRELESS NETWORKS.

Paper Summary of the survey’s contributions Related contents
in this paper Value added in this paper

Luong et al.
[15]

Applications of DRL in communications and
networking

Section III/IV Particularly focus on DRL usage for RRAM and enhanced list
of papers

Hussain et
al. [1]

ML- and DL-based resource management
mechanisms in cellular wireless and IoT net-
works

Sections II/IV In-depth and holistic coverage of DRL algorithms used for
RRAM, intensive review of existing papers related to DRL for
RRAM, and the coverage of more types of wireless networks

Lin et al.
[34]

Applications of AI approaches in resource man-
agement, such as spectrum, computing, and
caching.

Section V Particularly focus on DRL methods, including more radio
resources, and intensive literature review

Liang et al.
[24]

DL-Based resource allocation with application
to vehicular networks

Sections II/IV Focus on DRL techniques for RRAM, in-depth literature re-
view, and including various types of modern wireless networks

Chen et al.
[26]

Applications of ML algorithms in solving wire-
less networking problems

NA Focus on applications of DRL in solving RRAM wireless
problems, and coverage of more wireless networks

Gupta et al.
[10]

General research and simulation tools used for
DRL

Section III Specifically focus on DRL algorithms along with the related
research conducted in the context of RRAM

Du et al. [11] Investigates how to achieve green DRL for ra-
dio resource management via energy allocation
based on architecture and algorithm innovations

Section IV Further extend to more radio resources and more modern
wireless networks

Pham et al.
[35]

A layered-based classification of resource man-
agement techniques in Wireless Access Net-
works

Section II A holistic study of conventional and emerging ML-based tech-
niques for RRAM applied to modern wireless networks and
including more radio resources

Arulkumaran
et al. [36],
Zhang et al.
[37]

Overview of DRL approaches in general, in-
cluding applications and models

Section III Focus on DRL approaches utilized in RRAM for wireless
networks, and also provide detailed literature review

Zappone et
al. [27]

Motivations, applications, visions, and case
studies for the usage of DL techniques in wire-
less communication networks

NA Particularly focusing on DRL techniques for wireless commu-
nication networks in the context of RRAM

Lee et al. [8] DRL-based resource management schemes for
5G HetNets in energy harvesting, network slic-
ing, cognitive HetNets, coordinated multi-point
transmission, and big data

Section III In-depth analysis of DRL methods used for RRAM including;
DRL algorithms, types of wireless networks, types of radio
resources investigated, and extensive literature review

Qian et al.
[12]

Applications of RL and DRL in three technolo-
gies: mobile edge computing, software defined
network, and network virtualization in 5G

NA Focus on DRL applications for RRAM in cellular and other
emerging wireless networks

Khorasgani
et al. [28]

Key limitations and challenges in using DRL to
address the problem of dynamic dispatching in
the mining industry

Section IV Extend the investigation to include various wireless networks
with an extensive focus on radio resources

Xu et al. [38] A comprehensive survey on resource allocation
for 5G HetNets, including current research,
future trends, and research challenges

Section II Particularly focus on DRL algorithms, focus only on radio
resources, and the converge of more types of wireless networks

including their types, shortcomings, and limitations that
led to the adoption of DRL solutions.

2) We identify the most widely used DRL techniques
utilized in RRAM of wireless networks and provide
a comprehensive overview of them. The advantages,
features, and limitations of each technique are discussed.
Hence, the reader is provided with an in-depth knowl-
edge of which DRL techniques should be leveraged for
each RRAM problem under investigation.

3) We conduct an extensive and up-to-date literature review
and classify the papers as reported in the literature based
on the type of radio resources they address (as shown in
Fig. 2) and the types of wireless networks, applications,
and services they consider (as shown in Fig. 3). Specifi-
cally, for each paper reviewed, we identify the problem it
addresses, type of wireless network it investigates, type
of DRL model(s) it implements, main elements of the
DRL models (i.e., agent, state space, action space, and
reward function), and its main findings. This provides
the reader with in-depth technical knowledge of how to
efficiently engineer DRL models for RRAM problems

in wireless communications.
4) Based on the papers reviewed in this survey, we outline

and identify some of the existing challenges and pro-
vide deep insights into some promising future research
directions in the context of using DRL for RRAM in
wireless networks.

Fig. 4 shows the percentage of the related works, classified
based on the types of radio resources discussed in each paper,
Fig. 4 (a), and based on the types of wireless networks studied
in each paper, Fig. 4 (b). This survey is designed by carefully
following the review protocol illustrated in Fig. 5. Since this
survey mainly focuses on deep reinforcement learning for
RRAM in wireless networks, we included the following terms
during the search stage along with ”AND/OR” combinations
of them; ”deep reinforcement learning,” ”DRL,” ”resource
allocation,” ”resource management,” ”power,” ”spectrum,”
”bandwidth,” ”access control,” ”user association,” ”network
selection,” ”cell selection,” ”rate control,” ”joint resources,”
”wireless networks,” ”satellite networks,” ”cellular networks,”
and ”Heterogeneous networks.” The number of papers found
and the databases searched are detailed in Fig. 5. The inclusion
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Fig. 2. Classification based on radio resources (or issues) addressed in the
papers.

criteria are papers that address the use of DRL techniques
to manage and allocate the radio resources shown in Fig.
2 for the wireless networks shown in Fig. 3. The exclusion
criteria are papers that: 1) address computation resources, e.g.,
task offloading, storage, scheduling, etc., 2) use conventional
RRAM approaches, i.e., not using DRL techniques, 3) use
ML/DL techniques, or 4) address non-wireless networks, e.g.,
wired networks, optical networks, etc. In Fig. 5, the number of
papers excluded after a detailed check of the body is 71, which
are directly related to our survey but not influential or do not
clearly identify the types of DRL algorithms used, elements
of DRL models (i.e., agents, state space, action space, and
reward function), type of wireless networks covered, and/or
not well written.

In general, the research questions that this survey aims
to address are stated as follows. How can DRL techniques
be implemented to address the RRAM problems in modern
wireless networks? What are the performance advantages
achieved when using DRL tools compared to the state-of-the-
art RRAM approaches? What are the most effective and widely
used DRL algorithms to address the RRAM problems, and
how can they be implemented? What are the most important
and influential papers that present DRL-based solutions for
RRAM in next generation wireless networks? What are the
challenges and possible research directions that stem from the
reviewed papers in the context of using DRL for RRAM in
wireless networks? The retrieved papers shown in Fig. 5, i.e.,
the 76 papers, are selected carefully to help with answering
these questions, as we will elaborate in the next sections.

It is observed from Fig. 4 (a) that the majority of related
works are on the Spectrum and Access Control radio resources,
followed by both the Power radio resource and Joint radio
resources. Also, as shown in Fig. 4 (b), the related works on
the IoT and Other Emerging Wireless Networks have received
more attention than the other wireless network types, followed
by the Cellular Networks.

The rest of this paper is organized as follows. Table II lists
the acronyms used in this paper and their definitions. Section II
discusses existing RRAM techniques, including conventional
methods and DRL-based methods. The definitions, types, and

Fig. 3. Classification based on networks types covered in the papers.

Fig. 4. Percentages of related work based on (a) types of radio resources
covered and (b) types of networks and application investigated. RA: resource
allocation, WNs: wireless networks.

Fig. 5. The review protocol followed in this survey.

limitations of existing techniques are discussed. Also, the
advantages of employing DRL techniques for RRAM are
explained. Section III provides an overview of the DRL tech-
niques widely employed for RRAM, including their types and
architectures. In-depth classifications of the existing research
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TABLE II
LIST OF ACRONYMS USED AND THEIR DEFINITIONS.

Acronym Definition Acronym Definition Acronym Definition
4G Fourth Generation mobile system GAN Generative Adversarial Network RAT Radio Access Technology
5G Fifth Generation mobile system HetNets Heterogeneous Networks RB Resource Block
6G Sixth Generation mobile system HSR High-Speed Railway RF Radio Frequency

A2C advantage actor-critic IAB Integrated Access and Backhaul RIS Reconfigurable Intelligent Surface
A3C Asynchronous Actor Critic Algorithm IIoT Industrial Internet of Things RL Reinforcement Learning

ADMM Alternating Direction Method of Multipliers IoT Internet of Things RNC Radio Network Controller
AI Artificial Intelligence KPI Key Performance Indicator RRA Radio Resource Allocation
AP Access Point LEO Low Earth Satellite RRAM Radio Resource Allocation and Management

BBU Base-Band Unit LTE Long-Term Evolution RRH Remote Radio Head
BS Base Station M2M Machine-to-Machine RSU Road Side Unit

C-RAN Cloud Radio Access Network MADRL Multi-Agent Deep Reinforcement Learning SE Spectral Efficiency
CRN Cognitive Radio Network MCA Multi-Channel Access SINR Signal to Interference plus Noise Ratio
CSI Channel State Information MCC Mission-critical communication SIoT Satellite Internet of Things

CUAV Cognitive Unmanned Aerial Vehicle MDP Markov Decision Process SNR Signal to Noise Ratio
CV2X Cellular Vehicular Communication MeNB Macro eNodeB SU Secondary User
D2D Device-to-Device ML Machine Learning TD Time Difference

D3QN Dueling Double Deep Q-Network mmWave Millimeter Wave TDD Time Division Duplex
DDPG Deep Deterministic Policy Gradient NE Nash Equilibrium UAV Unmanned Aerial Vehicles
DDQN Double Deep Q-Network NOMA Non-Orthogonal Multiple Access UDN Ultra-Dense Network

DL Deep Learning NTNs Non-Terrestrial Networks UE User End
DNN Deep Neural Network OFDM Orthogonal Frequency Division Multiplexing V2I Vehicle to Infrastructure
DPG Deterministic Policy Gradient OMA Orthogonal Multiple Access V2V Vehicle to Vehicle
DQN Deep Q-Network OU Ornstein–Uhlenbeck V2X Vehicle to Everything
DRL Deep Reinforcement Learning PED Patient Edge Device VANETs Vehicular Ad Hoc Networks
DSA Dynamic Spectrum Access PPO Proximal Policy Optimization VLC Visible Light Communication
DT Digital Twin PU Primary User WLAN Wireless Local Area Network
EE Energy Efficiency QoE Quality of Experience WMMSE Weighted Minimum Mean Square Error
FL Federated Learning QoS Quality of Service WSN Wireless Sensor Network
FP Fractional Programming RAN Radio Access Network XAI Explainable AI

works is provided in Section IV. Existing papers are classified
based on the radio resources and the network types they cover.
Section V provides key open challenges, lessons learned, and
some insights for future research directions. Finally, Section
VI concludes the paper. The organization of the paper is
pictorially illustrated in Fig. 6.

II. RADIO RESOURCE ALLOCATION AND MANAGEMENT
TECHNIQUES

In this section, we define the main radio resources of
interest and provide a summary of the conventional techniques
and tools used for RRAM in wireless networks. Also, the
limitations of these conventional techniques that motivate the
use of DRL solutions will be highlighted. Then we discuss
how DRL techniques can be efficient alternatives to these
traditional approaches.

A. Radio Resources: Definitions and Types (or Issues)

In general, allocation and management of wireless network
resources include radio (i.e., communication) and computation
resources. This paper focuses only on the RRAM issue. This
involves strategies and algorithms used to control and manage
wireless network parameters and resources, such as transmit
power, spectrum allocation, user association/assignment, rate
control, access control, etc. The main goal of wireless net-
works, in general, is to utilize and manage these available
radio resources as efficiently as possible to provide enhanced
network QoS, such as enhanced data rate, SE, EE, reliability,
connectivity, and coverage while meeting users’ QoS demands.

Efficient RRAM schemes can considerably enhance the
system’s SE compared to the traditional techniques relying
on advanced channel and/or source coding methods. For
example, future wireless networks are expected to cover

broad geographical areas with ultra-dense network (UDN)
deployments. In these UDNs, a massive number of adjacent
APs typically require sharing communication resources, such
as radio frequencies and channels, to utilize resources and
enhance network QoS. RRAM would be essential in such
UDN-based network deployments [38].

The most crucial radio resources or issues that play a fun-
damental role in controlling wireless networks’ performance
are summarized below.

• Power resource: which is one of the most critical is-
sues in the RRAM of modern HetNets. Transmit power
allocation in the downlink/uplink from/to network APs,
such as BSs and edge servers (ESs), is essential to
guarantee a satisfactory QoS for communication links.
Power control is essential from two perspectives; physi-
cal limitations and communication links. Practically, the
maximum power is limited by the capability of APs’
power amplifiers or government regulation. Hence, it is
common to incorporate the limited power resource as
a constraint during the design and implementation of
HetNets. On the other hand, power control is also needed
to guarantee enhanced networks’ QoS and user devices’
QoE. For example, in large-scale and UDNs such as the
mmWave and THz band systems [2], [3], [39], signal at-
tenuation due to path losses must be accounted for during
power budget analysis. Also, the coverage of BSs’ cells
and the inter-and intra-cell interference issues become
crucial, which are mainly determined by the transmit
power level. Hence, developing adaptive and fine-grained
power allocation and interference management strategies
is essential to address such challenges.

• Spectrum resource and access control: this is also
another main issue in the RRAM of modern HetNets.
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Fig. 6. Organization of the paper.

User devices must be allocated frequency channels to
start transmitting/receiving data with acceptable SNR.
Existing wireless networks, such as the sub 6 GHz,
suffer from a severe bandwidth shortage which is even
exacerbated with the explosive increase in the number of
user devices [6]. Fortunately, the mmWave and emerging
THz bands can considerably overcome this shortcoming
by providing an extra 3.25 GHz and 10-100 GHz band-
width, respectively [40]. It is also expected that future
user devices will be equipped with advanced capabilities
that enable them to aggregate all these three frequency
bands, i.e., the sub 6GHz, mmWave, and THz, to support
future technologies and services [41]. However, allocating
and managing the radio channels of these frequency
bands across multi-RAN to a massive number of user
devices mandate developing advanced signal processing
techniques. Unfortunately, such techniques require perfect
knowledge of network statistics and CSI, which is quite
difficult or even impossible due to the large-scale and
massive heterogeneity of modern HetNets. Hence, it is
expected that future HetNets will integrate DRL methods
with signal processing techniques to overcome this issue.

• User association: with the ever-increase in the number

of IoT smart devices and the varying QoS demands
of emerging applications, it becomes necessary to en-
sure reliable network hyper-connectivity to these devices
[2], [39]. User association defines which BS(s), RAN’s
AP(s), or edge server(s) that each user device must
connect/associate to/with to guarantee its QoS demands.
Taking into consideration the multi-RAN and multi-
connectivity nature of modern HetNets [3], it is expected
that future devices will be equipped with SDR capabilities
that enable them to support multi-association/assignment
to multiple RANs simultaneously [41]. Based on users’
QoS demands, devices can operate in a multi-mode or
multi-homing fashion. In the multi-mode fashion, each
device will be associated with a single RAN AP at
a time [41], [42] in a traditional fashion. Whereas in
the multi-homing fashion, devices can be associated
with multiple RAN APs simultaneously to aggregate
RANs’ radio resources. Achieving such a goal, however,
is also another challenging issue. Obtaining real-time
information on the network statistics, such as CSI, traffic
load, RANs occupancy, and user devices’ QoS demands,
requires unmanageable and intolerable overhead. Hence,
DRL techniques can be adopted in such a scenario to
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TABLE III
EXISTING SURVEYS ON RESOURCE ALLOCATION AND MANAGEMENT

FOR WIRELESS NETWORKS AND SYSTEMS USING CONVENTIONAL
APPROACHES

Paper Types of wireless networks and systems studied
[45]–[47] Cognitive radio networks (CRNs)
[38], [48]–[51] Wireless HetNets
[52] M2M communication networks
[53]–[56] OFDM systems
[57] MIMO-OFDM systems
[58], [59] D2D communication networks
[60] UAV communications
[61], [62] Vehicular communications (V2X)
[63] Railway communications

Value added in
this paper

Focus on the applications of DRL techniques
for RRAM in next generation wireless networks,
such as cellular HomNets, IoT networks, satellite
networks, multi-RATs networks, HetNet, etc.

dynamically learn the channel and perform autonomous
user association/assignment decisions.

• Rate control: often, the main objective of RRAM is to
maximize the QoS of HetNets in terms of network sum-
rate or SE. This is typically achieved by formulating
complex wireless network optimization problems and
deriving their solutions subjected to available network
radio resources while respecting the data rate demands
of user devices. However, accurate solutions for such
problems require full knowledge of wireless channel gain,
including the large-scale and small-scale fading [43].
Obtaining such knowledge in real-time is quite difficult,
especially in modern HetNets, due to their rapid increase
in the underlying RANs/user devices and the type of
applications. Moreover, multi-RANs data rate aggregation
has also been proposed recently [41], [44] to support the
multi-Gbps data rate requirements of the emerging appli-
cations. Hence, it becomes imperative to develop efficient
schemes that enable rate aggregation while having limited
knowledge of channels. DRL methods can be employed
to achieve this goal [41], [42], [44].

B. Conventional RRAM Techniques

In this subsection, we overview the state-of-the-art ap-
proaches and tools used for RRAM in modern HetNets.
RRAM techniques can be classified into two broad categories
based on their adaptivity to the wireless environment: static
and dynamic approaches. Each of which can be further
classified based on various criteria, such as centralized or
distributed, instantaneous or ergodic, optimal or sub-optimal,
single-cell or multi-cell, cooperative or non-cooperative, in
addition to different combinations of these variants. In this
paper, we discuss the general features of the static and dynamic
techniques along with their types.

RRAM has been one of the major research interests in
wireless networks using conventional approaches. It has been
extensively surveyed for various wireless networks and sys-
tems. Table III lists some of the existing surveys for resource
allocation and management using conventional methods along
with the types of wireless networks and systems they study.

1) Static Techniques

Static approaches are designed based on a priori statistical
information and cannot adapt to wireless network parameters,
such as traffic load, users’ mobility pattern, channel condi-
tions/quality, network spectrum occupancy, and users’ QoS
demands. These techniques are simple; however, they suffer
from several shortcomings, such as severe under-utilization of
radio resources, increased network outage, reduced network
throughput, and poor network QoS.

Static RRAM techniques are employed in several traditional
networks, such as cellular networks and WLANs. Examples of
static RRAM techniques include circuit-mode communication
using frequency division multiple access (FDMA) and time
division multiple access (TDMA) schemes and fixed radio re-
source allocation, such as fixed power and channel allocation.

2) Dynamic Techniques

On the contrary, dynamic or adaptive RRAM approaches
are more efficient as they can dynamically adjust the network
radio resources to accurately track variations in propagation
conditions and user QoS requirements.

Dynamic RRAM schemes are widely utilized in designing
modern HetNets. They have shown efficient results in reduc-
ing the expensive manual network planning and achieving
tighter radio resource utilization, which will lead to enhanced
network efficiency. Some RRAM schemes are centralized,
where several BSs, ESs, APs, and network gateways are con-
trolled by a central Radio Network Controller (RNC). Others
are distributed, either autonomous algorithms implemented
in user devices, BSs, or ESs or coordinated by exchang-
ing information among these network entities. Examples of
dynamic RRAM schemes include power control algorithms,
spectrum/channel allocation algorithms, multi-access control
schemes, traffic/link adaptation algorithms, channel-dependent
scheduling schemes, and cognitive radio approaches.

In dynamic RRAM, we typically formulate the RRAM as
complex optimization problems. The main objective of such
problems is maximizing/minimizing some utility/cost func-
tions, e.g., network sum-rate, EE, and SE, while constraining
the available network’s radio resources. The state-of-the-art
approaches to solve these RRAM optimization problems are
heuristic-based, optimization-based, and game theory-based
approaches. Such approaches employ advanced algorithms to
solve the RRAM problem either optimally or sub-optimally.

a) Heuristic-Based Techniques

These techniques allocate radio resources sub-optimally and
without any performance guarantee. They are typically used
to provide approximate and sub-optimal solutions in cases
the solution of the formulated optimization problem is quite
complex or intractable. Modern wireless systems such as
4G LTE implement some types of greedy heuristics [64].
Examples of heuristic algorithms include the recursive branch-
and-bound state-space search algorithm [65] and alpha-beta
search algorithm [66].
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b) Optimization-Based Techniques

Typically, most of the RRAM optimization problems in mod-
ern HetNets are non-convex (e.g., continuous power alloca-
tion) [67], combinatorial (e.g., user association and channel
access) [24], or mixed-integer nonlinear programming (MINP)
(e.g., combined of continuous- and discrete-type problems)
[41]. Many algorithms have been developed to systematically
solve such problems and find either the global optimum
solution or sub-optimal solution, e.g., [24], [68]–[71] . Such
algorithms include, fractional programming (FP) [67], [72],
Weighted Minimum Mean Square Error (WMMSE) [67], [72],
evolutionary algorithms (e.g., particle swarm optimization
(PSO) [73], [74], genetic algorithm [75], [76], ant/bee colony
optimization algorithm [77], [78]), among others. These algo-
rithms are extremely computationally-extensive and typically
executed in a central RNC with full and real-time information
about network statistics and CSI.

c) Game Theory-Based Methods

Game theory techniques are used for distributed RRAM in
modern HetNets when network entities (i.e., players) cooperate
or compete on radio resources. Such techniques have shown
efficient results, and they are widely used as tools to model
complex wireless optimization problems in a decentralized
fashion [1]. In particular, the RRAM problem is formulated as
a cooperative or non-cooperative game/optimization problem
between network entities (e.g., BSs, RANs’ APs, and user
devices). In cooperative game techniques, players collabora-
tively solve the underlying RRAM game using heuristic- or
optimization-based techniques to achieve a specific network
goal (e.g., sum-rate or SE/EE maximization). However, in
non-cooperative game techniques, players try to solve the
RRAM game in a greedy and non-collaborative fashion in
order to achieve their own goal (e.g., to satisfy their own QoS
demands). The main goal of most game theory algorithms is
to find the Nash Equilibrium (NE) solution for the underlying
RRAM problem.

C. Limitation of Conventional RRAM Techniques

Unfortunately, all these state-of-the-art approaches will en-
counter severe limitations in future HetNets, which mainly
motivate the usage of DRL in RRAM. Here we summarize
the main limitations, and the interested reader can also refer
to [1].

• Most of these approaches require complete or quasi-
complete knowledge of the wireless environment, includ-
ing accurate channel models and real-time CSI. However,
obtaining such accurate information in future HetNets is
quite difficult or even impossible due to the large-scale,
ultra-dense, and massive heterogeneity of the system.

• These approaches are generally not scalable, as they
encounter several challenges when the number of user
devices becomes very large or when used in UDNs.
The main reason is that the optimization space becomes
prohibitively large to cater to the whole network, which

will lead to a significant increase in computational com-
plexity when finding optimal solutions. With the large-
scale and massive heterogeneity of future networks, it
becomes essential to engineer and devise more effi-
cient and practical implementations from a computation
performance perspective. Also, it becomes challenging
in many scenarios to mathematically formulate RRAM
optimization problems, or we may end up with non-
well-defined or even intractable optimization problems.
These cases are encountered for many reasons, including
the uncertain nature of wireless channels, network traffic
load, and users’ mobility patterns. Hence, new innovative
RRAM solutions must be developed to address such chal-
lenges. In this context, the data-driven AI-based RRAM
techniques are feasible alternatives, and they have shown
efficient adaptivity when applied on dynamic HetNets.

• Such approaches are heavily system-dependent and will
not be accurate for rapidly varying environments. They
need, however, reconfiguration to reflect the new system
settings. Unfortunately, modern HetNets need to support
highly dynamic systems characterized by massive rapid-
ity, such as vehicular and railway networks. This renders
conventional methods impractical for such scenarios.

• Most of these methods are computationally expensive
and incur considerable timing overhead. This renders
them inefficient for most emerging time-sensitive appli-
cations, e.g., autonomous vehicles/drones applications.
Also, the computational complexity of these methods
proportionally increases with the increase in network size,
making them unscalable and unsuitable for modern large-
scale networks. Furthermore, since most conventional
algorithms are computationally expensive, they can be
implemented only in sophisticated infrastructures with
high computational capabilities, such as supercomputers
and servers. Hence, tiny and self-powered user devices
will not support them.

• RRAM optimization problems in HetNets are generally
complex and non-convex [41]. Hence, leveraging conven-
tional optimization algorithms to solve them will likely
result in local optimal solutions rather than global ones.
This case is regularly encountered in wireless optimiza-
tion problems, which have too many local optima.

• Game theory-based techniques are unsuitable for net-
works characterized by massive heterogeneity in sys-
tem architecture and user devices. In particular, NE
solutions are obtained by assuming that all players are
homogeneous, have statistically equal capabilities, and
have complete network information. Unfortunately, this
is not the case in modern HetNets, in which network
entities are massively heterogeneous in terms of physical,
communication, and computational capabilities.

• Finally, the complexity of game theory-based techniques
and the amount of information exchanged between coop-
erating/competing players is proportional to the number
of playing nodes. Unfortunately, future HetNets will
be prohibitively large-scale in terms of the number of
network APs and user devices [2], [6]. Hence, such tech-
niques will fail. In particular, exchanging and updating
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the tremendous amount of data and signaling among
the massive number of players will create extra and
unmanageable overhead as well as a drastic increase in
delay, computation, and energy/memory consumption of
network players.

D. Advantages of Using DRL-Based Techniques for RRAM

Emerging AI tools, such as ML, DL, and DRL methods,
have been recently used to effectively address various prob-
lems and challenges in different areas of wireless communi-
cations and networking, including RRAM [1], [8], [13], [15],
[24], [26], [27], [79], [80]. Next generation wireless networks
will generate a tremendous amount of data related to network
statistics, such as user traffic, channel occupancy, channel
quality, etc. AI algorithms can leverage this data to develop
automated and fine-grained schemes to optimize network
radio resources. This paper is solely dedicated to providing
a comprehensive survey on DRL applications for RRAM in
modern wireless networks. However, the applications of ML
and DL techniques in various wireless networks fields can be
found in [1], [24], [26], [27], [81] and the references therein.

DRL is an advanced data-driven AI technique that combines
neural networks (NNs) with traditional reinforcement learning
(RL). It is mainly utilized to enhance the learning rate of RL
algorithms and address wireless communication and network-
ing problems having high dimensionality [8], [9], [36], [37].
DRL techniques have gained considerable fame lately to their
superiority in making judicious control decisions in uncertain
environments like the wireless channels. They enable various
network components such as BSs, RAT APs, edge servers
(ESs), gateways nodes, and user devices to make autonomous
and local decisions, such as RRAM, RATs selection, caching,
and offloading, that achieve the objectives of various wire-
less networks, including sum-rate maximization and SE/EE
maximization. Since traditional approaches will not be able
to address the RRAM issue of future wireless networks, DRL
methods have been proposed lately to be alternative solutions.
In particular, DRL techniques are appealing for next generation
communication networks due to the following distinct features.

First, they enable network controllers to solve complex
network optimization problems, including RRAM and other
wireless control problems, with only limited information about
the wireless networks. Second, DRL methods enable network
entities (e.g., BSs, RAT APs, ESs, gateways nodes, and user
devices) to act as agents (i.e., decision-makers) to learn and
build knowledge about the wireless environment. This is
achieved by learning optimal policies, such as radio resource
allocation, RATs selection, and scheduling decisions, based
on continuous interaction between agents and the wireless
environment, without knowing the accurate channel models or
statistics of the underlying systems a-priori. DRL algorithms
employ the data collected during the continuous interaction
with the environment as a training data-set to train their
models. Once DRL agents learned the optimal policies, they
can be deployed in an online fashion to make intelligent and
autonomous decisions based on local observations made on
the wireless environment.

DRL techniques provide efficient solutions from both the
network and user devices’ points of view to overcome the
problems of the conventional RRAM approaches. By em-
ploying DRL techniques, various network entities are enabled
to learn wireless environments in order to optimize system
configuration. Networks entities will be able to optimally
and autonomously allocate the optimal transmitting power to
mitigate signals interference and reduce energy consumption.
For this purpose, advanced DRL techniques such as the deep
deterministic policy gradient (DDPG) method and its variants
can be utilized. On the other hand, DRL can also enable
smart devices to autonomously access the radio channels. For
this purpose, deep Q-network (DQN) and its variants can be
leveraged. The wireless channels are extremely stochastic due
to, e.g., the rapid mobility of user devices and channel objects.
Hence, accurate and real-time knowledge of channel state
information (CSI) becomes quite difficult, and DRL techniques
can be efficiently used to learn wireless channel statistics.

Finally, spectrum prediction and forecasting is also another
promising field enabled by DRL techniques. Emerging DL
models, such as recurrent neural networks (RNNs) and con-
volutional neural networks (CNNs), can be integrated with
DRL to add the ”prediction” capability to the DRL algorithms.
Also, conventional optimization techniques do not incorporate
the context, and hence they cannot adapt and react according
to the sudden variations and changes in the wireless envi-
ronments. Therefore, such conventional approaches will result
in unreliable and poor resource management and utilization.
DRL techniques can, however, dynamically adapt and learn the
context of wireless environments, which makes their RRAM
solutions more accurate and reliable.

To sum up, DRL techniques are required in RRAM prob-
lems in four main scenarios; when there is insufficient knowl-
edge about the statistics of the wireless networks, accurate
mathematical models do not exist, inference information is
required to be incorporated into the decision process, or a
mathematical model exists, but applying conventional algo-
rithms is not possible. In general, most of the RRAM problems
in modern wireless networks fall under the above scenarios.
The main reason is the large-scale and massive heterogeneity
nature of networks in terms of types and numbers of un-
derlying infrastructures, user devices, and QoS demands of
applications.

All the aforementioned unique features of DRL techniques
make them one of the leading AI-based enabling technologies
that can be leveraged to address the RRAM in future wireless
communication networks [2], [3].

III. OVERVIEW OF DRL TECHNIQUES USED FOR RRAM

In this section, we briefly review the foundations of DRL,
such as the Markov Decision Process (MDP), and show how
RRAM problems can be modeled as MDPs. Fig. 7 shows
a detailed taxonomy of existing DRL techniques/algorithms.
Reviewing all these techniques is beyond the scope of this
paper, and we rather focus on the most widely used ones in
the literature to address RRAM problems. Interested readers,
however, can refer to [7], [15] for a thorough review of the
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Fig. 7. Taxonomy of all DRL algorithms [37]. Algorithms colored in blue
are covered in Section III.

remaining algorithms. Furthermore, we briefly review other
emerging technologies used for RRAM problems, such as
multi-agent DRL models. Hence, this section is deliberately
designed to provide the reader with adequate knowledge of
the basics, advantages, limitations, and use-cases of the most
widely used DRL techniques employed in the RRAM field.

Table IV lists the most widely used DRL tech-
niques/algorithms in RRAM of modern wireless networks.
Note that all of them are model-free learning algorithms,
which means that the agent does not build a model of the
wireless environment or reward; instead, it directly maps states
to the corresponding actions.

Depending on the dimensionality of the RRAM problem,
we can select the most appropriate DRL algorithm that fits the
problem settings. For example, RRAM problems could have
discrete action space, such as channel access, user association,
RAN assignment, etc., or could have continuous action space,
such as power allocation and continuous spectrum allocation.

A. The Markov Decision Process (MDP)

Under the uncertain and stochastic environments of modern
HetNets, the problem of RRAM, or any decision-making prob-
lem including control problems, are typically modeled by the
so-called Markov Decision Process (MDP). It provides a math-
ematical framework for modeling decision-making problems
whose outcome is random and controlled by a decision-maker,
aka agent. The MDP also has another variant, called partially
observable MDP (POMDP), which models decision-making
problems in partially observable wireless environments.

The general practice in RRAM is to formulate the radio
resource allocation (RRA) as an optimization problem whose
objective is to maximize/minimize some network utility/cost
function while constraining on the available network radio
resources and optional QoS demands of user devices. How-
ever, as we discussed in Section II, tremendous challenges
are encountered during formulating such problems or/and even

during solving them, which renders conventional approaches
inapplicable. Hence, RL/DRL techniques are utilized instead.

In order to apply DRL to solve RRA problems, we need first
to convert the formulated optimization problem into the MDP
framework. The resultant MDP-based model must contain
seven elements: the agent(s), environment, action space A,
state space S , instantaneous reward function r, a transition
probability p, and policy π, as shown in Fig. 8. The MDP is
represented mathematically by the tuple (S, A, p, r).

In RRAM problems, the dynamicity of the agent’s learning
process according to the MDP framework is shown in Fig.
8. At time t, the agent observes a state st from the state
space S. The state space should contain useful and effective
information about the wireless environment, such as available
radio resources, SNR, the number of user devices, and required
QoS. Then, the agent takes action at from the action space
A such as the RRA and RAN assignment. The taken action
must achieve network utility goal, such as sum-rate/SE/EE
maximization. Then the state moves to a new state st+1 with
a transition probability p, and the agent receives a feedback
numerical instantaneous reward rt, which quantifies the quality
of the taken action. This interaction, i.e., (st, at, rt, st+1),
between the agent and wireless environment repeatedly con-
tinues, and the agent will utilize the received reward to adjust
its strategy until it learns the optimal policy π∗. The agent’s
policy π defines the mapping from states to the corresponding
actions S → A , i.e., at = π(st). Typically, we define
the long-term reward as the expected accumulated discounted
instantaneous reward over the time horizon T , which is given
by R = E

[∑T
t=1 γrt(st, π(st))

]
. The parameter 0 ≤ γ ≤ 1 is

the discounted factor, which trades-off between instantaneous
and future rewards. The main goal of the agent in MDP is
to obtain π∗ (i.e., allocating optimal radio resources) that
maximizes the long-term reward, i.e., π∗ = max

π
R.

Next, we discuss the most widely used DRL algorithms
to handle MDP problems, i.e., RRAM problems. As shown
in Fig. 7, these algorithms belong to two main families of
methods; the value-based and the policy-based methods.

B. Value-Based Algorithms

This family of methods is used to estimate the value
function of the agent. This value function is then utilized to
implicitly and greedily obtain the optimal policy. Two value
functions exists; the value function V π(s) and the state-action
function Q(st, at). Both represent the expected accumulated
discounted rewards received when taking action at (in state st
for V π(s)) (or at pair (st, at) for Q(st, at)) and then following
the policy π thereafter. These functions are important as they
represent the link between the MDP mathematical formulation
and the DRL formulation, and they are given by [7]:

V π(s) = E

[ ∞∑
t=0

γtrt(st, at, st+1)|at ∼ π(.|st), s0 = s

]
,
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TABLE IV
LIST OF THE MODEL-FREE DRL ALGORITHMS THAT ARE WIDELY USED IN RRAM FOR MODERN WIRELESS NETWORKS.

Family Algorithm Action Space Policy Type
Q-Learning Discrete (also discrete state space)

DQN Discrete
Double DQN DiscreteValue-Based
Dueling DQN Discrete

Off

REINFORCE Discrete & Continuous On
A2C-A3C Discrete & Continuous OnPolicy-Based

DDPG Continuous Off

Fig. 8. Framework of DRL models [15].

Qπ(s, a) = E
[ ∞∑
t=0

γtrt(st, at, st+1)|

at ∼ π(.|st), s0 = s, a0 = a
]
.

The optimal value function V ∗(s) and state-action function
Q∗(s, a) are obtained by solving the following Bellman equa-
tions [7], [15]:

V ∗(s) = max
at

[
rt(st, at) + γEπV ∗(st+1)

]
,

Q∗(s, a) = rt(st, at) + γEπ
[

max
at+1

Q∗(st+1, at+1)

]
.

Recall that the main goal of MDP is to obtain the op-
timal policy π∗ (i.e., mapping states to optimum actions),
which is given by π∗ = argmax

π
R = argmax

π
=

E
[∑T

t=1 γrt(st, π(st))
]
. Hence, the optimal actions can be

obtained to be the ones that maximize the above value
functions, and the optimal policy will be the one that maxi-
mizes these values functions [7]. In particular, the Q-function
Qπ(s, a) is commonly used, and the problem of obtaining
the optimal policy becomes π∗(s) = argmax

a
Qπ
∗
(st, at).

The ultimate goal of all the value-based DRL algorithm is
to approximate this function as discussed next.

1) Q-Learning Technique
In RL, Q-learning is one of the most widely used algorithms

to address MDPs. It obtains the optimal values of the Q-
function iteratively using the following Bellman equation:

Q(st, at) = Q(st, at)+

αt

[
rt(st, at) + γmax

at+1

Q(st+1, at+1)−Q(st, at)

]
where αt is the learning rate that defines how much the new
information contributes to the existing Q-value. The main idea
of this Bellman rule relies on finding the Temporal Difference
(TD) between the current Q-value (Q(st, at)) and the pre-
dicted Q-value (rt(st, at) + γmax

at+1

Q(st+1, at+1)−Q(st, at)).

The Q-learning algorithm uses this rule to construct a table of
all possible Q values for each stat-action pair. The algorithm
terminates when we reach a certain number of iterations or
when all Q-values have converged. In such a case, the optimal
policy will determine the optimal action to take at each state
such that Qπ

∗
(st, at) is maximized for all states in the state

space, i.e., π∗ = argmax
at+1

Qπ
∗
(st, at).

However, the Q-learning algorithm has many limitations
when applied for RRAM in modern HetNets. First, it is
applicable only to problems with low dimensionality of both
state and action spaces, making it unscalable. Second, it is ap-
plicable only on RRAM with discrete state and action spaces,
such as channel access and RANs assignment. If, however,
they are applied to problems with continuous action spaces,
e.g., power allocation, the action space must be digitized. This
renders them inaccurate due to quantization error.

2) Deep Q Network (DQN) Technique
Since the Q-learning algorithm relies on building a table for

the Q values, it will fail to obtain the optimal policy when the
state and action spaces become prohibitively large. This case
is commonly encountered in the RRAM problems of modern
HetNets. To overcome this issue, the DQN algorithm has
been developed, which inherits the advantages of Q-learning
and DL techniques. The main idea is to replace the table in
the Q-learning algorithms with a DNN that approximates the
Q values, i.e., Q(st, at|θ), where θ represents the training
parameters (i.e., weights) of the DNN. Fig. 9 shows the DQN
architecture. The replay memory is denoted by D, and it is
mainly used to break the correlation between the training
samples, i.e., (st, at, rt, st+1), by making them independently
and identically distributed i.i.d. During the learning process of
the policy, we store the training transitions generated during
the interaction with wireless environment in D. The DQN’s
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agent will then randomly select minibatch transition samples
of from D to train its DNN. To enhance the DQN model’s
stability, the target Q network is used, whose weights θ

′
will

be periodically updated to track those of the main Q network.
Since the DQN algorithm is mainly used to learn the optimal

policy, i.e., π∗ = argmax
a

Qπ
∗
(st, at), the optimal Q-function

is derived from the following iterative Bellman equation:

Q(st, at) = rt(st, at) + γmax
at+1

Q(st+1, at),

and the DQN algorithm is then optimized by iteratively
updating θ to minimize the following Bellman loss function;

L(θt) = Est,at,rt,st+1∈D

[
rt(st, at)+

γmax
at+1

Q(st+1, at|θ
′
)−Q(st, at|θ)

]2
.

The DQN algorithm is applicable to a wide variety of
RRAM problems, specifically for problems characterized by
their discrete action space. As we will elaborate in-depth
in Section IV, the DQN technique can be used efficiently
for channel allocation, access control, spectrum access, user
association, and RANs assignment. The DQN algorithm can
also be used for RRAM problems with continuous action
space, such as power control, by discretizing the action space.
However, such a methodology makes DQN vulnerable to
serious quantization error that may considerably deteriorate its
accuracy. There are also other limitations in the basic DQN,
and various DRL algorithms have been proposed to overcome
them, as we discuss in the following sections.

3) Double DQN Algorithm
The Double DQN technique has been proposed in [82] to

enhance the basic DQN algorithm. The DQN algorithm tends
to overestimate the Q values, which can degrade the training
process and lead to suboptimal policies. The overestimation
results from the fact that the same training transitions are
utilized in selecting and evaluating an action in the Bellman
equation. As a solution, the authors in [82] propose to use
two Q value functions, one for selecting the best action and
the other to evaluate the best action. The action selection is
still based on the online weights θ, while the second weights
parameters θ

′
are used to evaluate the value of this policy. So,

as in the conventional Q learning, the value of the policy is
still estimated based on the current Q values. The weights θ

′

are updated via switching between θ and θ
′
.

The target Q values are derived from the following modified
Bellman equation [82]:

Q(st, at) = rt(st, at) + γQ(st+1, argmax
at+1

Q(st+1, at|θt), θ
′

t),

and the Double DQN algorithm uses the following modified
Bellman loss function to update its weights;

L(θt) = Est,at,rt,st+1∈D[rt(st, at)+

γQ(st+1, argmax
at+1

Q(st+1, at|θt), θ
′

t)−Q(st, at|θt)]2.

Fig. 9. Illustration of the DQN architecture.

The Double DQN algorithm is also widely used in RRAM
problems, as we will discuss in the next section. Although this
algorithm has advantages over the basic DQN algorithm, they
both share the same shortcomings.

4) Dueling DQN Algorithm
This algorithm is another enhancement to the basic DQN

algorithm [83]. Recall that the goal of the network is to
estimate the Q values, i.e., Q(st, at). This function can be
divided into two terms; the state-value function V (s), which
tells the importance of being in a particular state, and the
action-value function (or the advantage function) A(s, a),
which tells the importance of selecting a particular action
among all available actions. Hence, the Q value function can
be written as Q(s, a) = V (s) + A(s, a). The authors in [83]
utilized this concept and suggested having two independent
paths of fully-connected layers instead of having only a single
path as the case in the basic DQN. One path will estimate
V (s), and the other will estimate A(s, a). The two paths will
eventually be combined to produce a single output, which is
Q(s, a). Here, the loss function is obtained similar to the DQN
and Double DQN algorithms.

C. Policy-Based Algorithm

The policy-based techniques are part of the policy gradient
family of methods. They provide an alternative way to solve
MDP problems having high dimensionality and continuous
action spaces. Recall that the main idea of the value-based
methods discussed before is to find the state-action value
function Q(s, a). This function is defined as the expected total
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discounted reward received by taking a particular action from
the state. If these Q values are known, the optimal policy is
obtained by selecting actions that maximize the Q values in
each state. However, in environments with continuous action
spaces, such as power control in wireless systems, the Q
function cannot be obtained as it is impossible to conduct a
full search in a continuous action space to obtain the optimal
action. Hence, value-based methods are inaccurate for such
problems, and the policy-based methods are applied instead.

In policy-based approaches [7], [84], we avoid calculating
Q values and directly obtain the optimal policy πθ(a|s) that
maximizes the agent’s expected accumulated reward J , i.e.,
J(θ) = Eπθ [

∑∞
t=0 γ

trt(st, at)]. The policy gradient ap-
proaches learn the optimal weights θ∗ via performing gradient
ascent on the function J . In particular, the policy gradients
are derived from trajectories obtained via the current policy,
such that in each gradient update the agent interacts with the
environment to collect new and fresh trajectories, and this is
why policy-gradient methods are called on-policy algorithms.

1) REINFORCE Algorithm
The main idea of this algorithm is to increase the prob-

abilities of good actions and reduce the probabilities of bad
ones. The REINFORCE algorithm differs from the Q learning
methods in three aspects. First, REINFORCE algorithm does
not need a replay buffer D during training as it belongs to the
on-policy family, which requires only fresh training transitions.
Although this enhances its convergence speed, it needs more
interaction with the environment. Second, the REINFORCE
algorithm implicitly performs the exploration process, as it
depends on the probabilities returned by the network, which
incorporate uniform random agent behavior. Third, no target
network is required in the REINFORCE method as the Q
values are obtained from the experiences in the environment.

The disadvantage of the REINFORCE algorithm is that it
suffers from high variance, meaning that any small shift in the
return leads to a different policy. This limitation motivated the
actor-critic algorithms.

2) Actor-Critic Algorithm
The actor-critic methods are mainly developed to enhance

the convergence speed and stability (i.e., reducing the vari-
ance) of the policy-gradient method. Like the policy-based
methods, it utilizes the accumulated discounted reward J to
obtain the gradient of policy OJ , which provides the direction
that enhances the policy. This algorithm learns a critic to
reduce the variance of gradient estimates since it utilizes
various samples, whereas the REINFORCE algorithm utilizes
only a single sample trajectory.

To select the best action in any state, the total discount
reward of the action is used, i.e., Q(s, a). The total reward can
be decomposed into state-value function V (s) and advantage
function A(s, a), i.e., as Q(s, a) = V (s)+A(s, a). So, another
DNN is utilized to estimate V (s), which is trained based on
the Bellman equation. The estimated V (s) is then leveraged to
obtain the policy gradient and update the policy network such
that the probabilities of actions with good advantage values
are increased. Hence, the actor is the policy network π(a|s)
that takes actions by returning the probability distribution of
actions, while the critic network evaluates the quality of the

taken actions, V (s). This algorithm is also called the advantage
actor-critic method (A2C).

In the A2C algorithm, the weights of actor network θπ and
critic network θv are updated using the accumulated policy
gradients ∂θπ and value gradients ∂θv, respectively, to move in
the direction of the policy gradients and the opposite direction
of the value gradients.

3) A3C Algorithm
The asynchronous advantage actor-critic (A3C) algorithm

is an extension of the basic A2C [85]. This algorithm is
used to solve the high variance issue in gradients that results
in non-optimal policies. A3C algorithm conducts a paral-
lel implementation of the actor-critic algorithm, where the
actor and critic share the network layers. A global NN is
trained to output action probabilities and an estimate of the
advantage function A(st, at|θπ, θv) given by

∑k−1
i=0 γ

irt+1 +
γkV (st+k|θv) − V (st|θv), where k depends on the state and
upper-bounded by the maximum number of time steps.

Several parallel actor learners are instantiated with copies
of both the environment and global NN weights. Each learner
independently interacts with its environment and gathers train-
ing transitions to derive the gradients with respect to its NN
weights. Learners will then propagate their gradients to the
global NN to update its weights. This mechanism ensures a
periodic update of the global model with diverse transitions
from each learner.

4) Deep Deterministic Policy Gradient (DDPG) Algorithm
DDPG is one of the most widely used DRL techniques in

addressing RRAM problems for wireless networks character-
ized by their high dimensionality and continuous action space
[86]. DDPG algorithm belongs to the actor-critic family, and it
combines both Q-learning and policy gradients algorithms. It
consists of actor and critic networks. The actor network takes
the state as its input, and it outputs the exact ”deterministic”
action, not probability distribution over actions as in the actor-
critic algorithm. Whereas the critic is a Q-value network that
takes both the state and action as inputs, and it outputs the
Q-value as a single output.

The deterministic policy gradient (DPG) algorithm is pro-
posed in [87] to overcome the limitation caused by the max
operator in the Q-learning algorithm, i.e., max

at+1

Q(st+1, at).

It simultaneously learns both the Q-function and the policy.
In particular, the DPG algorithm has a parameterized actor
function µ(s|θµ) with weights θ, which learns the determin-
istic policy that gives the optimal action corresponding to
max
at+1

Q(st+1, at). The critic Q(s, a) is leaned via minimizing

the Bellman loss function as in the Q-learning algorithm.
The learning process of the actor policy is updated using

gradient ascent with respect to θµ in order to solve the
objective given by the following chain rule [87]:

J(θ) = Es∈D
[
Q(s, µ(s|θµ))

]
,

OθµJ = Es∈D
[
OaQ(s, a|θQ)|s=st,a=µ(st)Oθµµ(s|θ

µ)|s=st
]
.

The DDPG algorithm proposed in [86] is built based on the
DPG algorithm, where both the policy and critic are DNNs,
as shown in Fig. 10. The DDPG algorithm creates a copy of
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Fig. 10. Illustration of the DDPG actor-critic architecture [88].

both the actor and critic networks, Q
′
(s, a|θQ

′

) and µ
′
(s|θµ

′

),
respectively, to compute the target values. The weights of
these target networks, θQ

′

and θµ
′

, are then updated to slowly
track the weight of the learned network to provide more stable
training using θ

′ ← τθ + (1 − τ)θ′ with τ � 1. The critic
network is updated to minimize the following Bellman loss;

L(θQ) = Est,at,rt,st+1∈D

[(
rt(st, at)+

γmax
at+1

Q(st+1, µ(st+1|θπ
′

)|θQ
′

)−Q(st, at|θQ)
)2
]
.

Note that the DDPG algorithm is off-policy, which means that
we use a replay buffer D to store training transitions.

The exploration-exploitation issue is addressed by adding
the Ornstein–Uhlenbeck (OU) process or some Gaussian noise
N to the action selected by the policy, i.e., µ(st|θµt )+εN [86].

D. Other DRL Algorithms

The DRL algorithms discussed above are the commonly
used approaches to address the problem of RRAM in wireless
networks, as we will discuss in the next section. Although
there are several other algorithms, they are rarely utilized for
such types of problems. Therefore, they are not included in this
article. However, generally speaking, all the other variants are
mainly developed to enhance the performance of the basic
algorithms discussed above. For completeness, this section
highlights some of these variants for the interested reader.

Other variants of the value-based algorithms are developed
to enhance the performance of vanilla DQN algorithm in terms
of stability, convergence speed, implementation complexity,
sample/learning efficiency, etc. Such variants include priori-
tized experience replay DQN [89], distributed prioritized ex-
perience replay DQN [90], distributional DQN [91], Rainbow
DQN [92], and recurrent DQN [93].

For the policy-based algorithms, several algorithms are
envisioned to enhance the overestimation issue, such as the
Twin Delayed DDPG (TD3) [94], enhance stability and ro-
bustness, such as the Soft Actor-Critic (SAC) [95], and to
enhance stability, convergence, and sample efficiency, such as
the distributed distributional DDPG (D4PG) [96].

E. Multi-Agent DRL Algorithms

Multi-agent DRL (MADRL) is a natural generalization of
the single-agent DRL that allows multiple agents to concur-
rently learn optimal RRAM policies based on their interactions
with the environment and with each other. These agents can
either be deployed cooperatively, in which all agents interact
with each other to learn the same global policy, or non-
cooperatively, in which each agent learns its own policy.
MADRL provides several performance advantages over the
single-agent case regarding the quality of the learned policies,
convergence speed, etc. However, it encounters several chal-
lenges such as scalability, partial observability, and agents’
non-stationarity. Nguyen et al. [97] provide a survey on
MADRL systems and their applications. Different methods are
reviewed along with their advantages and disadvantages. In
[98], the authors provide a selective overview of the theories
and algorithms for MARL.

MADRL is widely employed in addressing various RRAM
problems in modern wireless networks. The authors in [14]
provide an overview of the MADRL algorithms and highlight
their applications in future wireless networks. The learning
frameworks in MADRL are also investigated. The application
of MARL in solving problems for vehicular networks is
studied in [99]. In [100], an overview of the evolution of
cooperative MARL algorithms is presented with an emphasis
on distributed optimization.

Most of the RRAM problems in modern HetNets are of a
multi-agent nature [14]. Network entities such as user devices,
BSs, and APs can act as cooperative/non-cooperative multi-
agents to learn optimal RRA policies and solve complex
network optimization problems. For example, channel access
control may be formulated as a MADRL problem in which
each user device represents a learning agent that senses the
radio channels and coordinates with other agents to avoid
collisions. Next, we discuss how RRAM problems in HetNets
are formulated and solved using these algorithms.

IV. DRL-BASED RESOURCE ALLOCATION AND
MANAGEMENT FOR FUTURE HETEROGENEOUS

NETWORKS

This section provides an extensive and in-depth review
of the related works for RRAM using DRL techniques. We
classify them based on the radio resources (or issues) they
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investigate as well as based on the wireless network types
they cover, as shown in Figs. 2 and 3, respectively. It must
be noted that this survey is dedicated to only the application
of DRL algorithms for radio resources, i.e., no computation
resources are covered, which can be found in [15].

DRL algorithms enable various network entities to effi-
ciently learn the wireless networks, which allows them to
make optimal control decisions that achieve some network
utility function. For example, DRL methods can be deployed
to maximize network sum-rate, minimize network energy
consumption, or enhance spectral efficiency. In this section,
we review the applications of DRL methods in the follow-
ing RRAM issues: power allocation, spectrum allocation and
access control, rate control, and the joint use of these radio
resources.

A. DRL for Power Allocation

Energy-efficient communication is one of the main objec-
tives of modern wireless networks. It is achieved via efficient
power allocation to ensure high QoS, better coverage, and
enhanced data rate, as shown in Fig. 11. Power allocation is
mainly involved in vital network operations such as modula-
tion and coding schemes, path loss compensation, interference
management, etc. On the other hand, almost all modern user
devices and IoT sensors are battery-powered with very limited
battery capacity and charging capabilities. Hence, designing
energy-efficient resource allocation schemes, protocols, and
algorithms becomes fundamental in dynamic wireless network
environments.

Several conventional approaches have been applied for
power allocation and management. Most of them rely on
solving power-constrained optimization problems, such as FP
algorithm [72] and WMMSE algorithm [101]. These ap-
proaches are iterative and model-driven, which means that they
need a mathematically tractable and accurate model. They are
typically executed in a centralized fashion in which a network
controller has full CSI. In such a mechanism, BSs, wireless
APs, and/or user devices require to wait until the centralized
controller’s iterations converge and send the outcome back
over backhaul links. However, as discussed in Section II, such
approaches become impractical due to the large-scale nature
of modern wireless networks and the difficulty in obtaining
accurate and instantaneous CSI. Hence, DRL techniques are
used instead due to their superiority in obtaining optimal
power allocation policies based on limited CSI.

1) In Cellular Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the power allocation problem in
cellular, cellular IoT, and wireless homogeneous networks
(HomNets) depicted in Fig. 3.

Power allocation in small-cell multi-user cellular systems
is fundamental to increase system performance while re-
ducing inter-cell interference. In [102], the authors propose
single- and multi-agent actor-critic DRL methods to tackle the
problem of downlink sum-rate maximization through power
allocation in multi-cell, multi-user cellular networks. In their
model, the agents are the base stations (BSs), whose state

Fig. 11. Importance of power allocation in modern wireless communication
networks.

space is continuous and comprises network CSI and the
transmit power allocation by previous BSs. The action space
is continuous, representing the power allocation, while the
reward function is the cellular network sum SE. Experimental
results demonstrate that their proposed DRL-based method
can both achieve higher SE than conventional optimization
algorithms, such as fractional programming (FP) and weighted
minimum mean-squared error (WMMSE), while performing
two times faster than these conventional methods.

On the same context, the authors in [103] address the power
allocation issue by building on their initial investigation in
[104]. A multi-agent DQN-based DRL algorithm is proposed
in which each BS-user link is considered as an agent. The state
space is continuous, comprised of a logarithmic normalized
interferer, the link’s corresponding downlink rate, and the
transmitting power. The action space is discrete, corresponding
to the downlink power allocation, while the reward is contin-
uous, which is a function of the downlink data rate of the
communication link. Experimental results indicate that their
proposed DQN outperforms benchmark algorithms such as
FP, WMMSE, random power allocation, and maximum power
allocation in terms of achievable averaged sum-rate and the
convergence time when considering different user densities.

A pioneer work is presented in [105], in which the authors
design a multi-agent DQN and DDPG-based DRL frame-
work to address the problem of power allocation in Het-
Nets. A centralized-training-distributed-execution algorithm is
designed in which the APs are the agents, each of which
implements a local DNN. The state space of each local DNN
is continuous, representing the local state information, while
the local action space is continuous, representing the transmit
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power. Then, multiple-actor-shared-critic method (MASC) is
proposed to separately train each of these local DNN in an
online fashion. The main idea is that the MASC training
method is composed of multiple actor DNNs and a shared
critic DNN. An actor DNN is first established in the core
network for each local DNN, and the structure of each actor
DNN is the same as the corresponding local DNN. Then, a
shared critic DNN is established in the core network for these
actor DNNs. Historical global information is provided into the
critic DNN, and the output of the critic DNN will evaluate
whether the output power of each actor DNN is optimal or
not from a global view. The reward function is continuous,
representing the data rate between each AP and its associated
user. Simulation results show that their proposed algorithm
outperforms the WMMSE and FP algorithms in terms of both
convergence rate and computational complexity.

Similar to the work in [105], the authors in [106] address
the problem of sum-rate maximization via continuous power
allocation in wireless mobile networks based on a distributive
multi-agent DDPG algorithm. Unlike authors’ previous work
in [107], which was based on the DQN technique, the authors
extended their work to leverage the unique advantages of the
DDPG algorithm when addressing problems with continuous
state space nature. Particularly, in [105], the agents are each
transmitter (e.g., mobile devices, links, etc.) whose state is
a combination of three feature groups; the local information,
interfering neighbors, and interfered neighbors feature groups.
Each agent’s action is to choose the transmit power level, while
the reward is a function of the sum-rate maximization problem.
Simulation results show that their proposed method gives
better performance results than the conventional FP methods
and comparable results with the WMMSE methods.

D2D underlying cellular communication has emerged as
one of the main enabling technologies for modern wireless
networks. Establishing communication links in such highly
dynamic environments is an essential issue. In this context, the
authors in [108] present a centralized multi-agent DQN-based
DRL algorithm to address the problem of power allocation of
D2D cellular communication in a time-varying environment.
The agents are the D2D transmitters, whose state space is
continuous, comprised of the SINR and channel gain of
users. The action space is discrete, representing the transmit
power of each D2D user, while the reward is a function of
system throughput. Simulation results show that their proposed
algorithm outperforms the traditional RL methods in terms of
network capacity and user’s achieved QoS.

5G UDNs are characterized by their high vulnerability
to inter-cell interference, which can be greatly reduced via
judicious power management. Towards this, Saeidian et al.
[109] propose a data-driven approach based on a multi-agent
DQN algorithm to tackle the downlink power control in dense
5G cellular networks. The agents are the BSs, whose state
space is continuous, comprised of path-gain, SINR, downlink
rate, and downlink power. The action space is discrete, repre-
senting the downlink power, while the reward is a function of
the network-wide harmonic-mean of throughput. Simulation
results indicate that their approach can improve data rates
at the cell edge while ensuring a reduced transmitted power

compared to the baseline fixed power allocation approaches.
Non-orthogonal multiple access (NOMA) technology has

recently emerged as an efficient tool to enhance the QoS and
EE of millimeter-wave (mmWave) communication systems by
enhancing the power level of received signals. The authors in
[110] propose a multi-agent DQN-based DRL framework to
optimize the EE in downlink full-duplex cooperative NOMA
of mmWave UDNs. The agents are the relay near users, whose
state space is continuous, consisting of information related to
wireless environment and channel, the user’s battery capacity,
energy power transfer coefficient, self-interference cancella-
tion residue coefficient, and the buffer size of nearby relay
users. The action space is to specify the required user pairing
between the near relay user group and edge user group, along
with the pre-processing of EE power allocation. The reward is
a function of the EE of the mmWave network. Experimental
results are compared with a conventional centralized iteration
algorithm, which demonstrate both the superiority of their
proposed algorithm in terms of the convergence speed and
the efficiency to provide near-optimal results.

DRL methods have also been investigated for beamforming
design in cellular networks. The authors in [111] propose a
single-agent DDPG-based model to address the problem of
SE maximization via hybrid beamforming design in mmWave
MIMO cellular systems. The action space is continuous,
comprised of the digital beamformer and analog combiner.
The state space is also continuous representing the digital
beamformer and analog combiner at the previous time step.
The reward is a continuous function defined in terms of
network SE. Simulation results show the efficiency of their
proposed model in terms of SE, bit error rate, and computation
time.

2) In IoT and Other Emerging Wireless Networks
In the following paragraphs, we review works that utilize

DRL algorithms to address the power allocation issue in IoT
and other emerging wireless networks shown in Fig. 2.

Developing efficient spectrum sharing schemes is regarded
as one of the main persistent objectives and challenges in
CRNs. In [112], the authors propose a non-cooperative single-
agent DQN-based DRL scheme to address the problem of
spectrum sharing via power control in CRNs. In their model,
the agent is the SU, whose action space is discrete, corre-
sponding to selecting the transmit power from a pre-defined
power set. The state space is discrete, defined by four parts;
the transmit power of PU and SU, the path loss between PU
and a sensor that measures the RSS, the path loss between
the SU and a sensor that measures the RSS, and some
Gaussian random variable. The reward is a discrete function
defined by the achieved SINR level and the minimum SINR
requirements of both PU and SU. Simulation results show that
their proposed algorithm is robust against random variation in
state observations, and the SU interacts with PU efficiently
until they reach a state in which both users successfully
transmit their own data.

In another interesting work in [25], the authors present a
non-cooperative multi-agent algorithm to address the problem
of power allocation in D2D underlying communication net-
works based on three DQNs, namely, DQN, Double DQN,
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and Dueling DQN. The agents are the D2D transmitters in
each D2D pair, whose state space is discrete, comprised of
the level of the interference indicator function. The action
space is discrete, representing the set of transmitting power
levels, while the reward is a function of the system EE.
Simulation results show the ability of their DQN-based models
to provide energy-efficient power allocation for the underlying
D2D network.

UAV IoT networks are attracting considerable attention
recently due to their ability to provide enhanced QoS com-
munication in harsh and vital environments. However, power
management is one of the key challenges in such networks. In
this context, the authors in [113] address the problem of down-
link power control in ultra-dense UAV networks with the aim
of maximizing the network’s EE. A multi-agent DQN-based
DRL model is proposed in which the agents are the UAVs in
the network. The state space is continuous, representing the
remaining energy of the UAV and the interference caused by
neighboring UAVs. The action space is discrete, representing
the set of possible discrete transmit power values, while the
reward function is the EE of the UAV network. Simulation
results are compared with Q-learning and random algorithms,
which show the superiority of their proposed scheme in terms
of both the convergence speed and EE.

In the same context for multi-UAV wireless networks, the
authors in [114] propose a multi-agent DDPG-based DRL
to address the problem of joint trajectory design and power
allocation. In their scheme, the agents are the UAVs, whose
state space is a discrete binary indicator function representing
whether the QoS of the user ends (UEs) are satisfied or not.
The action space is also discrete, corresponding to selecting
UAVs’ trajectory and transmission power. The reward is a
continuous function defined by the joint trajectory design and
power allocation as well as the number of UEs covered by the
UAVs. Simulation results show that the proposed algorithm
achieves higher network utility and capacity than the other
optimization methods in wireless UAV networks with reduced
computational complexity.

Another interesting work [107] proposes a multi-agent
DQN-based DRL method to study the problem of transmit
power control in wireless networks. The agents are the trans-
mitters whose state space is continuous, consisting of three
main feature groups; local information, interfering neighbors,
and interfered neighbors. The action space is discrete corre-
sponds to discrete power levels, while the reward is a function
of the weighted sum-rate of the whole network. Experimental
results demonstrate that the proposed distributed algorithm
provides comparable and even better performance results to
the state-of-the-art optimization-based algorithms available in
the literature.

High-speed railway (HSR) systems are one of the emerg-
ing IoT applications for next-generation wireless networks.
Such systems are characterized by their rapid variations in
the wireless environment, which mandate the development
of light-weighted RRAM solutions. As a response to this,
Xu et al. [88] propose a multi-agent DDPG-based DRL
model to address the problem of sum-rate maximization via
power allocation in hybrid beamforming-based mmWave HSR

systems. In their approach, each mobile relay (MR) acts as
an agent. The action space is continuous, corresponding to
the transmit power level of each MR agent. Also, the state
space is continuous, defined by; each MR own signal channel,
local observation information of each MR, i.e., beamforming
design, each MR achievable rate, and each MR transmit power
in the last time step. The reward function is continuous,
defined by the achievable sum-rate of the network. Simulation
results demonstrate that the SE of their proposed algorithm
is comparable to the full digital beamforming scheme, and it
outperforms conventional approaches such as maximum power
allocation, random power allocation, DQN, and FP.

Federated deep reinforcement learning (FDRL) is an emerg-
ing AI paradigm that integrates FD and DRL methods. FDRL
can be utilized as an efficient technique to enhance the RRAM
solutions in large-scale distributed systems. As an example, an
interesting approach is proposed in [115], in which the authors
propose a cooperative multi-agent actor-critic-based FDRL
framework for distributed wireless networks. The authors
particularly address the problem of energy/spectrum efficiency
maximization via distributed power allocation for network
edge users. In their proposed model, the agents are the edge
users, whose action space is continuous, defined as the power
allocation strategies. The state space is continuous, defined by
the allocated transmit power, the SINR on the assigned RBs,
and the reward of the previous training time step. The system is
defined in terms of a local continuous cost function expressed
in terms of SINR, power, path loss, and environmental noise.
Using simulation results, the authors demonstrate that their
proposed framework achieves better performance accuracy
in terms of power allocation than other approaches such as
greedy, non-cooperation power allocation, and traditional FL.

3) In Satellite Networks
In the following paragraphs, we review works that employ

DRL techniques to address the power allocation issue in
satellite networks as well as emerging satellite IoT systems.

Managing downlink transmit power in satellite networks is
also one of the major persistent challenges. To this end, the
authors in [116] extended their work in [117] and present a
single-agent Proximal Policy Optimization (PPO)-based DRL
model to solve the problem of power allocation in multi-beam
satellite systems. In their model, the agent is the processing en-
gine that allocates power within the satellite, whose state space
is continuous, comprises the set of demand requirements per
beam, and the optimal power allocations for the two previous
time steps. The action space is continuous, representing the
allocation of the power for each beam, while the reward is a
function of both the link data rate achieved by the beam and
the power set of the agent. Experimental results demonstrate
the robustness of their proposed DRL algorithm in dynamic
power resource allocation for multi-beam satellite systems.

NOMA technique has shown efficient results in improving
the performance of terrestrial mmWave cellular systems [118].
This has motivated the use of NOMA for satellite communica-
tion systems. However, managing the radio resources in such
a system becomes an imperative issue. In this context, Yan
et al. [119] conducted a pioneer work to study the problem
of power allocation for NOMA-enabled SIoT using a single-
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agent DQN-based DRL scheme. In their system, the agent
is the satellite, whose action space is discrete, corresponding
to selecting the power allocation coefficient for each NOMA
user. The state space is continuous, consisting of the average
SNR, link budget, and delay-QoS requirements of NOMA
users, while the reward is discrete, which is a function of
the effective capacity of each NOMA user. Experimental
results demonstrate that their proposed DRL-based power
allocation scheme can produce optimal/near-optimal actions,
and it provides superior performance to both the fixed power
allocation strategies and OMA scheme.

4) In Multi-RAT Networks
Multi-RAT wireless HetNets is one of the main enabling

technologies for modern wireless systems, including 6G net-
works [3]. In HetNets, several RATs with different operating
characteristics coexist to enhance network coverage and relia-
bility while providing enhanced QoE to users. The underlying
RATs have non-overlapping radio resources; therefore, there
would not be typically interference in the network.

Since a stand-alone network with a single RAT would not
be able to support the stringent QoS requirements of emerging
disruptive applications, modern user devices are equipped with
advanced capabilities that enable them to aggregate various
radio resources to boost their QoE. Modern user devices can
operate in a multi-mode scenario, in which each user device
can be connected to a single RAT at any time. Alternatively,
user devices can operate in a multi-homing scenario such
that they can be connected simultaneously to various RATs
to aggregate their radio resources, such as bandwidth and
data rate. Multi-RAT networks include the coexistence of
RATs, such as the licensed band networks, unlicensed bands
networks, hybrid systems, and any combination of the wireless
networks that are shown in Fig. 3.

Visible Light Communication (VLC) is a promising RAT
that can support multi-Gbps of data rates over wireless links
[120]. It is mainly developed for indoor applications; how-
ever, it is gaining considerable attention lately for outdoor
applications as well [121]. This has motivated researchers
to propose solutions that integrate VLC with conventional
radio systems to boost data rates. Managing radio resources
in these integrated systems, however, becomes a challenge.
In this context, in [42], the authors propose a multi-agent Q-
learning-based two-time scale scheme to address the power
allocation issue for multi-Homing hybrid RF/VLC networks.
In their technique, the agents are the RF and VLC APs,
whose action space is discrete, corresponding to selecting the
downlink power level that ensures the QoS’s satisfaction of
the multi-homing users. The state space is discrete, which is
a function of users’ achievable and target rates from the RF
and VLC APs. The reward is also discrete, which is a function
of the achieved and target rates from all RF and VLC APs.
Experimental results demonstrate that not only the users’ target
rates are satisfied, but also the ability of their algorithm to
adapt to the network’s dynamics.

For the same network settings as in [42], Ciftler et al.
[44] propose a DRL-based scheme to enhance the results
and overcome the shortcomings. While the work in [42] was
based on the vanilla Q-learning algorithm, the work in [44]

has shown the advantages of utilizing the DQN algorithm to
improve the convergence rate and accuracy. In particular, the
authors in [44] propose a non-cooperative multi-agent DQN-
based algorithm to address the problem of power allocation
in hybrid RF/VLC networks. The agents are the RF and VLC
APs whose action space is discrete, representing the transmit
power. The state space is continuous, comprised of the actual
and target rates, while the reward function is continuous and is
a function of target rate band, target rate, and actual rate. Using
simulation results, the authors demonstrate that the DQN-
based algorithm converges with a rate of 96.1% compared with
the Q-learning-based algorithm’s convergence rate of 72.3%.

Findings and Lessons Learned

In this section, we review the applications of DRL techniques
for power allocation and management in modern wireless
networks. The reviewed papers are summarized in Table V. We
observe that various DRL techniques can efficiently solve the
power allocation optimization problems in diversified wireless
network scenarios, and their performance outperforms the
state-of-the-art heuristic approaches. Besides, as we discussed
in the previous paragraphs, DRL methods can provide com-
parable results to the conventional centralized optimization-
based approaches that have full knowledge of the wireless
environments as reported in [106], or even better results as
reported in [105]. Moreover, note that the main motivations
of using DRL techniques in all the papers presented in
this subsection are the complexity of the formulated power
allocation problems, the limited information about network
dynamics and CSI, and the difficulty in applying conventional
methods to solve the formulated power allocation problems.

We also observe that most of the papers implement multi-
agent DRL interactions, and the value-based DRL algorithms,
such as DQN and Q-learning, are utilized more than the
policy-based counterparts. However, since the power allocation
problem falls in the continuous action space, the use of value-
based algorithms to address these types of problems makes
the learned policies vulnerable to discretization errors that
degrade the accuracy and reliability of the learned models.
Hence, the emerging policy-based algorithms, such as DDPG
and actor-critic, have received more attention lately, and they
have shown more accurate and reliable results compared to
the value-based counterparts with additional complexity, as
discussed in [88], [102], [105], [106]. In addition, we observe
that the definition of the state space and the reward function
for the RRAM problems must be deliberately engineered as
they play a crucial role in the convergence and accuracy of the
learned policies. For policy-based power allocation algorithms,
it is more convenient to define the reward as a continuous
function since the learning process depends on taking its
derivative, which is not necessarily the case with the value-
based algorithms.

It is also observed that DRL-based power allocation al-
gorithms can be deployed in a centralized and distributed
fashion, depending on the deployment scenario. Distributed
scenarios provide more accurate and reliable policies than
centralized ones at the expense of added complexity and
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signaling overhead, especially as the number of agents in-
creases. Therefore, the tradeoff between the centralized and
distributed policies heavily depends on the scenario under
investigation. For example, it is preferable to deploy DRL
models in a distributed fashion to address the power allocation
problem for time-sensitive applications. However, for ultra-
reliable applications, it is preferable to adopt centralized DRL
deployment. Moreover, most of the papers consider the rate
maximization, SE, and EE as key performance metrics (e.g.,
[88], [102], [110]). However, other KPI metrics must be
considered as well during the design of DRL frameworks, such
as latency, reliability, and coverage, especially for emerging
real-time and time-sensitive IoT applications.

We also observe from Table V that both the cellular Hom-
Nets and emerging IoT wireless networks gain more attention
than satellite and multi-RAT networks that still in their early
stages and require more in-depth investigation.

B. DRL for Spectrum Allocation and Access Control
One of the significant challenges in modern wireless

communication networks that still needs more investigation
is spectrum management and access control. In this context,
DRL techniques have attracted considerable research interest
recently due to their robustness in making optimal decisions
in dynamic and stochastic environments. This section presents
the related works to the applications of DRL algorithms
for radio spectrum allocation in modern wireless networks.
This includes issues, such as dynamic network access, user
association or cell selection, spectrum access or channels
selection/assignment, and the joint of any of these issues, as
shown in Fig. 3.

In modern wireless networks, a massive number of user
devices may request to access the wireless channel simultane-
ously. This may drastically overload and congest the channel,
causing communication failure and unreliable QoS. Hence,
efficient communication schemes and protocols must be devel-
oped to address this issue in channel access via employing var-
ious access scheduling and prioritization techniques. RRAM
for modern wireless networks requires considering dynamic
load balancing and access management methods to support
the massive capacity and connectivity requirements of the
future wireless networks while utilizing their radio resources
efficiently. DRL methods have been used recently to address
these issues, and they have demonstrated efficient results in
the context of massive channel access.

On the other hand, user devices in cellular networks are
required to associate or be assigned to BS(s) or network AP(s)
to get a service. The association process could be symmetric,
i.e., both uplink and downlink are from the same BS/AP, or
it may be asymmetric in which the uplink and downlink may
associate to different BSs/APs. This association or cell selec-
tion process must be carefully addressed as it strongly affects
the allocation of network radio resources. Unfortunately, such
types of problems are typically non-convex and combinatorial
[41] and need accurate network information to obtain the
optimal solution. In this context, DRL techniques have also
shown efficient results in addressing user association and cell
selection issues for modern wireless networks.

1) In Cellular Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the spectrum and access control
problem in cellular networks depicted in Fig. 2.

Users-BSs association and bandwidth allocation in UAV-
assisted cellular networks are also among the main emerging
challenges. Towards this end, interesting work is proposed in
[122] based on the multi-agent DQN model to address the joint
user association, spectrum allocation, and content caching in
an LTE network consisting of UAVs serving ground users. In
their model, the agents are the UAVs, which have storage units
and have the ability to cached contents in LTE-BSs. These
UAV agents can access the licensed as well as the unlicensed
spectrum bands, and a remote cloud-based server is used to
control them. The licensed cellular spectrum band is used in
the transmissions from the cloud to the UAVs. Each UAV agent
has to obtain 1) its user association, 2) bandwidth assignment
indicators in the licensed spectrum band, 3) time slot indicators
in the unlicensed spectrum band, and 4) content that the users
request. The input of the DQL is the other agents’ actions (the
UAV-user association schemes), and the output is the set of
users that the UAV can handle. Simulation results demonstrate
that their proposed DQL strategy enhances the number of users
up to 50% compared to the standard Q-learning strategy.

Based on their initial work in [123], the authors in [124]
propose a multi-agent Dueling Double DQN (D3QN)-based
DRL model to handle the joint BS and channel selections in
macro and femto BS networks sharing a set of radio channels.
In their scheme, the agents are the UEs, whose state space is
a discrete binary vector that shows whether UEs’ SINR higher
than the minimum QoS requirement or not. The action space
is discrete, corresponding to the BS and channel association.
The reward function is discrete in which the UE agent will
receive a utility as a reward if the QoS is met; otherwise,
it will receive a negative value for the reward. Simulation
results demonstrate that their proposed strategy outperforms
the standard Q-learning strategy in terms of generalization,
system capacity, and convergence speed.

The problem of user association in cellular IoT networks
is studied in an interesting work in [125]. The goal is to
assign IoT devices to particular cellular users to maximize
the sum-rate of the IoT network. Two single-agent DQN
DRL algorithms are proposed; the first one utilizes global
information to make decisions for all IoT devices at one time,
while the other algorithm uses local information to make a
distributed decision for only a single IoT device at one time.
In their model, the BS acts as the agent whose state space is
continuous, consisting of both historical CSI and interference
information. The action space is discrete, representing both
all possible association schemes of the network and the
individual association for only a single IoT device. The reward
function of the first DQN algorithm is the sum-rate of all
IoT devices, while for the second DQN includes both the
current transmission rate of IoT devices and the interference
with other IoT devices. Experimental results demonstrate that
their proposed DRL framework both scalable and achieves
performance comparable to the optimal user association policy.

Emerging integrated access and backhaul (IAB) cellular
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TABLE V
A SUMMARY LIST OF PAPERS RELATED TO DRL FOR POWER ALLOCATION.

Learning AlgorithmNetwork Type Ref. Radio Resource (or Issues Addressed) Mode Algorithm

C
el

lu
la

r
N

et
w

or
ks

Multi-cell cellular Khan et al. [102] Downlink power allocation Single- & multi-agent Actor-critic
Cellular networks Meng et al. [103] Downlink power allocation multi-agent DQN
HetNets Zhang et al. [105] Power control multi-agent DQN & DDPG
Wireless mobile networks Nasir et al. [106] Continuous power control Multi-agent DDPG
D2D cellular Bi et al. [108] Power allocation multi-agent DQN
Dense 5G cellular Saeidian et al. [109] Downlink power control Multi-agent DQN
NOMA mmWave UDNs Zhang et al. [110] EE power allocation Multi-agent DQN
mmWave MIMO Cellular Wang et al. [111] Hybrid beamforming design Single-agent DDPG

E
m

er
gi

ng
Io

T
N

et
s CRNs Li et al. [112] Power control Single-agent DQN

D2D networks Nguyen et al. [25] Power allocation multi-agent DQN, DDQN, & Dueling DQN
Ultra-dense UAV Li et al. [113] Downlink power control Multi-agent DQN
Multi-UAV Zhao et al. [114] Power allocation Multi-agent DDPG
Wireless Networks Nasir et al. [107] Transmit power control Multi-agent DQN
mmWave HSR systems Xu et al. [88] Power allocation Multi-agent DDPG
Distributed networks Yan et al. [115] Distributed power allocation Multi-agent Actor-critic

Sa
te

lli
te Multi-beam satellites Luis et al. [116] Power allocation Single-agent PPO

NOMA-enabled SIoT Yan et al. [119] Power allocation Single-agent DQN

M
ul

ti-
R

A
T Hybrid RF/VLC networks Kong et al. [42] Power allocation Multi-agent Q-learning

Hybrid RF/VLC networks Ciftler et al. [44] Power allocation multi-agent DQN

networks are characterized by their dynamic environment and
large-scale deployment. In another interesting work in [126],
the authors study the problem of spectrum allocation in the
IAB networks. The problem is first formulated as a non-convex
mix-integer and non-linear programming, and then a DRL
framework based on single-agent Double DQN and actor-critic
algorithms is proposed to solve it. In their model, the agent is
a center-located controller or distributed UE. The state space
is discrete, indicating the status of UEs’ QoS, and the action
space is discrete, corresponding to the allocation matrix for
the donor BS and IAB nodes. The reward function is modeled
to optimize the proportional fairness allocation of the network.
Experimental results demonstrate that their framework has
promising results compared to other conventional spectrum
allocation policies.

The problem of load balancing in large-scale and dynamic
wireless networks is also another important issue. In this
context, the authors in [127] present a multi-agent Q-learning-
based algorithm to address the problem of user association
for load balancing in cellular vehicular networks. In their
scheme, the agents are the BSs, whose action space is discrete,
representing the associations with the network’s vehicles. The
state space is a hybrid (continuous and discrete), consist-
ing of the service resources and its service demands, SINR
matrix, and association matrix. The reward is a continuous
function defined through the association and SINR matrices.
The main advantage of this paper is that the performance
of their proposed algorithm is evaluated using experiments
on real-field taxi movements. The authors show that their
approach provides higher quality load balancing compared to
conventional association methods.

Most recently, Zheng et al. [128] propose a single agent
actor-critic-based DRL algorithm to address the problem of
channel assignment for the emerging hybrid NOMA-based 5G

cellular networks. The agent is the BS, whose action space is
discrete, corresponding to assigning channels for users. The
state space is a hybrid (continuous and discrete) comprised
of three elements; the CSI matrix, achieved users’ data rate
in the previous time slot, and the assigned channels in the
previous time slot. The reward is a discrete function defined
in terms of users’ SE, the number of channels that use NOMA
for transmission, and the number of users whose data rate
is zero. Simulation results demonstrate that their proposed
method outperforms some conventional approaches, such as
greedy, random, match theory-based, and Genetic Algorithms,
in terms of both network SE and sum-rate.

The problem of spectrum management in wireless DSA is
addressed in [129] based on distributed multi-agent DQN.
In their approach, the agents are each DSA user, whose
action space is discrete, corresponding to the transmit power
change for each channel. The state space is discrete, defined
as the transmit power on wireless channels. The reward is a
continuous function defined by the SE and the penalty caused
by the interference to PUs. Experimental results show that
their proposed model with echo state network-based DQN
achieves a higher reward with both achievable data rate and
PU protections.

Antenna selection is widely used for physical layer security
in multi-antenna-based cellular networks. In this context, the
authors in [130] propose a single-agent DQN algorithm to
predict the optimal transmit antenna in the MIMO wiretap
channel. The state space is discrete, defined in terms of the
security capacity and maximum SNR of the MIMO wiretap
channel. The action space is discrete, corresponds to selecting
the transmit antenna. The reward function is discrete, defined
in terms of the achieved SNR at the antenna. Experimental
results demonstrate that their proposed algorithm proactively
predicts the optimal antenna while reducing the secrecy outage
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probability of MIMO wiretap system compared to the support
vector machine and conventional approaches.

2) In IoT and Other Emerging Wireless Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the spectrum and access control
problem in IoT and emerging wireless networks illustrated in
Fig. 2.

IoT sensor networks are characterized by their high dy-
namicity, which necessitates efficient channel access for the
connecting nodes. In [131], the authors build on their initial
work in [132] and propose a single-agent DQN-based DRL
scheme to tackle the problem of dynamic channel access
for IoT sensor networks. In their scheme, the agent is the
sensor, and its action is discrete, corresponding to selecting
one channel to transmit its packets at each time slot. The
state space is discrete, which is a combination of rewards
and actions in the previous time slots. The reward function
is also discrete, which is ”+1” if the selected channel is in
low interference in such case a successful transmission occurs;
otherwise, the reward is ”-1” in such case the selected channel
is in high interference, and a transmission failure occurs.
Simulation results show that their proposed scheme achieves
an average reward of 4.4 compared to 4.5 obtained using the
conventional myopic policy [133], which needs a compact
knowledge of the transition matrix of the system.

Energy consumption is considered one of the persistent
challenges for emerging wireless sensor networks. In this
context, an interesting work is proposed in [134] in which
the authors develop a single-agent DQN-based DRL model
to address the channel selection in energy harvesting-based
IoT sensor networks. In that work, the agent is one BS,
which controls the channel assignments for energy harvesting-
enabled sensors. The problem of the agent is to predict the
battery level of the sensors and to assign channels to sensors
such that the total rate is maximized. The DQL model used to
solve this problem has two long-short-term-memory (LSTM)
neural network (NN) layers, one for predicting the sensor’s
battery state and one for obtaining channel access policy
based on the predicted states obtained from the first layer. The
agent’s action is all the available sensors that require to access
the channels. The state contains the history of channel access
scheduling, true and predicted battery information history and
the current sensor’s CSI. Simulation results show that the total
rates obtained using the DQL scheme are 6.8 kbps compared
to 7 kbps obtained from the optimal scheme rate.

Managing spectrum allocation is one of the main objectives
in cognitive radio networks (CRNs). The main idea is to
efficiently utilize the available spectrum via enabling SUs to
use the spectrum resources when the PUs are inactive. The
authors in [135] propose a multi-agent DQN-based model
to address the cooperative spectrum sensing issue in CRNs.
In their scheme, the agents are the SUs whose action is
discrete, corresponding to sensing the spectrum for possible
transmission without interfering with the PUs. The state space
is discrete, and it is comprised of four elements representing
cases when the spectrum is sensed as occupied, the spectrum
is not sensed in a particular time slot, the spectrum is sensed
as idle, and one of the other SUs broadcast the sensing result

first. The reward function is the binary indicator, which is
”+1” if the spectrum is sensed as idle and ”0” otherwise.
Simulation results show that their proposed algorithm has a
faster convergence speed and better reward performance than
the conventional Q-learning algorithm.

For the same network in [135], the authors in [136] extend
the work and propose a multi-agent DQN-based DRL scheme
to address the problem of dynamic joint spectrum access
and mode selection (SAMS) in CRNs. The agents are the
secondary users (SUs) whose action space is discrete, cor-
responding to selecting the access channel and access mode.
The state space of each SU agent is discrete, comprised of
the action taken by the mth SU agent, the ACKs of all SUs
agents, and the ACK of the mth SU agent. The reward function
is discrete, which is ”1” if the action selection process is
successful; otherwise, there is a collision, and the agent will
receive a ”0” reward. Simulation results demonstrate that their
proposed DQN algorithm provides comparable results to the
Max benchmark after the model’s convergence.

Xu et al. [137] propose a single-agent DQN and DDQN-
based DRL approaches to address the problem of dynamic
spectrum access in wireless networks. In their model, the agent
is a wireless node (e.g., a user) whose action is discrete,
corresponding to sensing the discrete frequency channel for
possible data transmission. The state space is discrete, defining
if the channel is occupied or idle at time slot t. The reward
function is discrete, which is ranging from 0 to 100 for
successful transmission; otherwise, the reward is ”-10” if the
channel state is occupied and the user transmission fails. It
is shown using simulation results that both DQN and DDQN
can learn different nodes’ communication patterns and achieve
near-optimal performance without prior knowledge of system
dynamics.

Allocating spectrum resources is also a major challenge
in vehicular IoT networks. Based on their initial work in
[138], the authors in [139] propose a distributed single- and
multi-agent DQN-based DRL schemes to address the spectrum
sharing problem in V2X networks. In their proposed system,
multiple V2V links reuse the frequency spectrum preoccupied
with V2I links. The agents are the V2V links whose action
space is discrete, corresponding to spectrum sub-band and
power selection. Each agent’s local observation space includes
local channel information (such as its own signal channel gain,
interference channels from other V2V transmitters, interfer-
ence channel from its own transmitter to the BS, and the
interference channel from all V2I transmitters), the remaining
V2V payload, and the remaining time budget. The reward is
continuous, which is a function of both the instantaneous sum
capacity of all V2I links and the effective V2V transmission
rate until the payload is delivered. Experimental results show
that the agents cooperatively learn a policy that enables them
to simultaneously improve the sum capacity of V2I links and
payload delivery rate of V2V links. The authors also show that
their proposed models for the single-agent and multi-agent
settings provide very close performance to the conventional
exhaustive search.

Multi-sensor network is an emerging technology that is
expected to play a key role in future wireless networks.
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In this context, the authors in [140] propose a single-agent
DQN model to address the joint channel access and packet
forwarding in a multi-sensor scenario. In the proposed scheme,
one sensor is the agent, which acts as a relay to forward
packets arriving from its surrounding sensors to the sink. The
agent has a buffer to store arriving packets. The agent’s action
is to choose channels for the packet forwarding, the packets
transmitted on these channels, and a modulation scheme at
each time slot to maximize its utility (defined as the ratio of
the transmitted packets number to the transmit power). The
state is the combination of the buffer and channel states. The
input of the DQL model is the state, while the output is the
corresponding action selection. Simulation results demonstrate
that the proposed DQL scheme enhances system utility (i.e.,
0.63) compared to the conventional random action selection
scheme (i.e., 0.37).

One of the major challenges in mmWave wireless net-
works is establishing radio links and coping with the high
vulnerability of intermittent communication. This issue is even
exacerbated in mmWave V2X due to the high mobility of
vehicles. Towards this end, Khan et al. [141] propose a multi-
agent A3C-based DRL to address the problem of vehicle-cell
association in mmWave V2X networks. The agents are the
RSUs whose action is discrete, corresponding to determining
the optimal vehicle-RSU association for RSU. The state space
is a hybrid (discrete and continuous) defined in terms of the
last channel observations, rate threshold violation indicator,
and experienced data rate of vehicles. The reward function
is continuous, defined in terms of the average rate per vehicle
and threshold rate. Using experimental results, it is shown that
their proposed algorithm achieves around 15% sum-rate gains
and a 20% reduction in vehicular user outages compared to
baseline approaches.

The problem of dynamic spectrum access in CRNs is
investigated in [142] through combining DRL and evolutionary
game theory. In particular, uncooperative multi-agent DQN is
considered in which the agents are the SUs whose action is
discrete, corresponding to selecting the access channel. The
state space is discrete, which includes two main parts; the
channel selected by the agent and the utility obtained after
transmission on the selected channel. The reward function is
defined in terms of evolutionary game theory. Simulation re-
sults indicate the performance enhancement of their proposed
algorithm over the case without learning in terms of average
system capacity.

Another interesting work is presented in [143] in which the
authors propose a multi-agent DQN-based DRL algorithm to
address the problem of optimum multi-user access control in
Non-Terrestrial Networks (NTNs). In their model, UEs are
the independent agents that report their experiences and local
observations to a centralized trainer controller located at the
backhaul network. The latter will then utilize the collected
experiences to update the global DQN parameter. The agent’s
state space is continuous, comprised of the connected NT-BS
of UEs at the previous time slots, the RSS of UEs, the number
of connected UEs of each NT-BS, and the transmission rate of
UEs. The action space is discrete, representing the binary in-
dicator functions of UEs, while the reward is a function of the

transmission rate of UEs. Experimental performance results
show that their proposed scheme is efficient in addressing the
fundamental issues in the deployment of NTNs infrastructure,
and it outperforms the traditional algorithms in terms of both
the data rate and the number of handovers.

The integration of various DRL algorithms to improve the
efficiency and accuracy of the learned RRAM policies has
shown promising results lately. In this context, Tomovic et al.
[144] propose an interesting single-agent DRL model based
on the integration of Double deep Q-learning architecture and
RNN to address the problem of DSA in multi-channel wireless
networks. In particular, the agent is the SU node, whose action
space is discrete, representing the selection of a channel for
sensing. The state space is also discrete, comprised of a history
of the binary observations and history of taken actions. The
reward function is a discrete binary function, which is ”1” if
the observation is ”1” and ”0” otherwise. Simulation results
show that their proposed method is able to find a near-optimal
policy in a smaller number of iterations, and it can support a
wide range of communication environment conditions.

In other work in [145], the authors propose both a single-
agent and multi-agent deep actor-critic DRL-based framework
for dynamic multi-channel access in wireless networks. In their
system, the agents are the users whose action space is discrete,
corresponding to selecting a channel. The observation space
is also discrete, which is defined based on the status of the
channel and collision status. The reward function is discrete,
which is ”+1” if the selected channel is good; otherwise, it
is ”-1”. Using simulation results, the authors show that their
proposed actor-critic framework outperforms the DQN-based
algorithm, random access, and the optimal policy when there
is full knowledge of the channel dynamics.

The problem of DSA for the CRN is studied in [146] based
on an uncoordinated and distributed multi-agent DQN model.
The agents are CRs, whose action is discrete, representing
the possible transmit powers. The state space is discrete,
reflecting whether the limits for DSA are being met or not,
depending on the relative throughput change at all the primary
network links. The reward is also discrete, which is a function
of the throughput of the links and the environment’s state.
Experimental results reveal that their proposed scheme finds
policies that yield performance within 3% of an exhaustive
search solution, and it finds the optimal policy in nearly 70%
of cases.

Industrial IoT (IIoT) has emerged recently as an innova-
tive networking ecosystem that facilitates data collection and
exchange in order to improve network efficiency, productiv-
ity, and other economic benefits [147]. RRAM in such a
sophisticated paradigm is also a challenge that needs more
investigation. The work in [148] can be considered to be a
pioneer in which the authors propose a solution for spectrum
resource management for IIoT networks, with the goal of
enabling spectrum sharing between different kinds of UEs.
In particular, a single-agent DQN algorithm is proposed in
which the agent is the BS. The action space is discrete,
which corresponds to the allocation of spectrum resources
for all UEs. The observation space is a hybrid (continuous
and discrete) consisting of four elements; the current action
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(i.e., the allocation of spectrum resources), the data priority
of type I UEs, the buffer length of type II UE, and the
communication status of the first type of UEs. The reward
function is continuous, defined to address their optimization
problem. It is divided into four objectives; 1) maximizing the
spectrum resource utilization; 2) quickly transmitting the high-
priority data; 3) meeting the threshold rate requirement of the
first type of UEs; 4) ensuring that the second type of UEs
completes the transmission in time. Using simulation results,
it is demonstrated that their proposed algorithm achieves better
network performance with a faster convergence rate compared
with other algorithms.

Most recently in [149], the authors propose a multi-agent
Double DQN-based DRL model to address the problem of
DSA in distributed wireless networks. In particular, they de-
sign a channel access scheme to maximize channel throughput
regarding fair channel access. The agents in their scheme are
the users. The action space is discrete, which is ”0” if the user
does not attempt to transmit packets during the current time
slot, and it is ”1” if it has attempted to transmit. The state
space is discrete, consisting of four main elements; each user
action taken on the current time slot, channel capacity (which
could be negative, positive, or zero), a binary acknowledgment
signal showing if the user transmits successfully or not, and
a parameter that enables each user to estimate other users’
situations. The reward is a discrete binary function that takes
the value of ”1” if the user transmits successfully; otherwise,
it is ”0” meaning that the user transmitted with collision.
It is shown using simulation results that their scheme can
maximize the total throughput while trying to make fair
resource allocation among users. Also, it is shown that their
proposed scheme outperforms the conventional Slotted-Aloha
scheme in terms of sum-throughput.

Vehicular ad hoc networks (VANETs) are one of the promis-
ing networks for next generation wireless networks, where net-
works are formed and information is relayed among vehicles.
Wang et al. [150] address the problem of DSA in VANETs,
by proposing an interesting scheme that combines multi-hop
forwarding via vehicles and DSA. The optimal DSA policy
is defined to be the joint maximization of channel utilization
and minimization of the packet loss rate. A multi-agent DRL
network structure is presented that combines RNN and DQN
for learning the time-varying process of the system. In their
scheme, each user acts as an agent whose action space is
discrete, corresponding to choosing a channel for transmission
at time slot t. The state space is discrete, composed of three
components; a binary transmission condition η, which is ”1” if
the transmission is successful and ”0” otherwise, the channel
selection action, and the channel status indicator after each
dynamic access process. The reward is a discrete binary
function, which takes a positive value if η = 1, otherwise
it takes the value of ”0”. Simulation results show that their
proposed scheme: 1) reduces the packet loss rate from 0.8 to
around 0.1, 2) outperforms Slotted-Aloha and DQN in terms
of reducing collision probability and channel idle probability
by about 60%, and 3) enhances the transmission success rate
by around 20%.

Due to their ability to improve communication in harsh en-

vironments, UAV networks have gained considerable research
lately [151]. For example, most recently in [152], the authors
propose efficient multi-agent DRL-based schemes to address
the problem of joint cooperative spectrum sensing and channel
access in clustered cognitive UAV (CUAV) communication
networks. Three algorithms are proposed: 1) a time slot multi-
round revisit exhaustive search based on virtual controller
(VC-EXH), 2) a Q-learning based on independent learner (IL-
Q), and 3) a DQN based on independent learner (IL-DQN).
The agents are the CUAVs in the network. The action space
of any CUAV agent is a discrete function defined by the steps
that this agent moves clockwise in time slot t relative to the
channel selected in time slot t−1 on the PU channel ring. The
state space is a discrete set consisting of two main elements:
1) the number of CUAVs agents that have selected a particular
channel to sense and access in the previous time slot and 2) a
binary indicator function that shows the occupancy status of
a particular channel in the previous time slot. The reward is a
discrete function defined in terms of spectrum sensing, channel
access, utility, and cost. Experimental results show that all the
three algorithms proposed show efficient results in terms of
convergence speed and the enhancement of utilization of idle
spectrum resources.

An interesting work is conducted in [153] in which the
authors propose a multi-agent deep recurrent Q-network-based
model to address the problem of DSA in dynamic heteroge-
neous environments with partial observations. In their work,
the authors consider a case-study with multiple heterogeneous
PUs sharing multiple independent radio channels. The agents
are the SUs, whose action space is discrete, corresponding to
deciding whether to transmit in a particular band or wait during
the next time slot. The state space is discrete, representing
whether the channels are occupied, idle, or unknown. The
reward function is discrete, represented by two values; 100
per channel for successful transmission and -50 per channel for
collision. Using simulation results, the authors show that their
proposed algorithm handles various dynamic communication
environments, and its performance outperforms the myopic
conventional methods and is very close to the optimization-
based approaches that have a full observation of the environ-
ment.

3) In Satellite Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the spectrum and access control
problem in satellite networks and emerging satellite IoT sys-
tems.

The work in [154] proposes a single-agent DQN-based DRL
algorithm that considers the problem of channel assignment
in multi-beam satellite systems. In their scheme, the agent
is the satellite, whose action is discrete, including an index
that indicates the channel that the newly arrived user has
occupied. The agent’s reward is discrete, which contains a
positive value if the service is satisfied, and a negative value
if the service is not satisfied or blocked. The state space is
also discrete, which comprises three elements; the current
users, the current channel assignment matrix, and a list of
the new user arrivals. Experimental results demonstrate that
their proposed scheme decreases the blocking probability and
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improves the carried traffic up to 24.4% as well as enhances
the spectrum efficiency compared to the conventional fixed
channel assignment approach.

In the same context, the authors in [155] propose a single-
agent DQN-based DRL algorithm to address the problem of
dynamic channel allocation in multi-beam satellite systems.
In particular, an image-like tensor formulation on the system
environments is considered in order to extract traffic spatial
and temporal features. The agent in their model is the satellite,
whose action space is discrete, corresponding to determining
the resource allocation schemes. The state space is continuous,
consisting of two elements; the system resource allocation
state and the users’ service request state. The reward function
is discrete, which is defined in terms of the optimization
objective function.

SIoT has emerged lately as a promising wireless system
that provides global satellite IoT services with reliable and
ubiquitous coverage. Recently, the work in [156] can be
considered to be a pioneer in which the authors propose a
single-agent DQN-based approach for energy-efficient channel
allocation in SIoT. The agent in their model is the LEO
satellite, whose action space is discrete, corresponding to
mapping from newly coming node tasks to channels to be
allocated. The state space is discrete, including information
about user tasks, such as the size and location of tasks. The
reward is continuous, which is divided into two normalized
reward function components; the power efficiency reward and
the normalized value of the service blocking rate. Both of these
reward components are functions of power set up by the agent,
the optimal power decided by the location of the beam, and the
number of served nodes. Experimental results demonstrate that
their proposed algorithm saves energy consumption of around
67.86% compared to some conventional approaches.

In the same context, the authors in [157] propose a central-
ized single-agent DQN-based scheme to address the problem
of dynamic channel allocation in SIoT. The agent in their
model is the satellite, whose action is discrete, corresponding
to selecting which sensors to allocate channels to. The state
space is discrete, comprised of three parts; the number of tasks
in each time step, the bandwidth that a sensor node requires,
and the duration of a new task. The reward is continuous,
which is a function of the duration of data transmission for the
sensor. Using simulation results, it is shown that their proposed
algorithm both provides higher transmission success rates and
reduces data transmission latency by at least 87.4% compared
to the conventional channel allocation algorithms.

An interesting work is reported by Zheng et al. [158] in
which the authors propose a single-agent Q-learning-based RL
model to address the problem of combination allocation of
fixed channel pre-allocation and dynamic channel scheduling
in a network architecture of LEO satellites that utilizes a
centralized resource pool. In their model, the satellite serves as
an agent whose action is discrete, corresponding to assigning
channels to users. The state space is discrete, defined by the
channel assignment of users in each beam. The reward is
continuous, which is a function of the user’s supply-demand
ratio. Experimental results demonstrate that their proposed
approach enhances the system supply-demand ratio by 14%

and 18% compared to the static channel allocation and the
Lagrange algorithm channel allocation methods, respectively.

4) In Multi-RAT Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the spectrum and access control
problem in multi-RAT HetNets. This includes the coexistence
of various variants of the wireless networks shown in Fig. 2.

Managing the spectrum bands in unlicenced cellular net-
works is also another persistent challenge. In this context,
the authors in [159] present a multi-agent DQN-based model
that jointly tackles the dynamic channel selection and inter-
ference management in Small Base Stations (SBSs) cellular
networks that share a set of unlicensed channels in Long
Term Evolution (LTE) networks. In the proposed scheme,
the SBSs are the agents who choose one of the available
channels for transmitting packets in each time slot. The agent’s
action is channel access and channel selection probability.
The DQL input includes the channels’ traffic history of both
the SBSs and Wireless Local Area Networks (WLAN), while
the output is the agent’s predicted action vectors. Simulation
results reveal that their proposed DQL strategy enhances the
average data rate by up to 28% compared to the conventional
Q-learning scheme.

For the same network settings in [159], the authors in
[160] propose a single-agent DQN-based model to tackle the
dynamic spectrum allocation for multiple users that share a set
of K channels. In their scheme, the agent is the user whose
action is either choosing a channel with a particular attempt
probability or selecting not to transmit. The agent’s state
includes the history of the actions of the agent and its current
observations. The DQL model input is the previous actions
along with their observations, while the output is the Q-values
corresponding to the actions. Simulation results demonstrate
that their proposed DQL strategy achieves a double data rate
compared to the state-of-the-art Slotted-Aloha scheme.

The integration of cellular networks and indoor networks
has also shown efficient results in enhancing the QoS of
wireless communication in terms of coverage and data rate.
Towards this end, Wang et al. [161] propose an efficient single-
agent prediction-DDPG-based DRL algorithm to study the
problem of the dynamic multichannel access (MCA) for the
hybrid long-term evolution and wireless local area network
(LTE-WLAN) aggregation in dynamic HetNets. The agent is
the central BS controller, whose state space is continuous,
consisting of both the channels’ service rates and the users’
requirement rates. The action space, on the other hand, is dis-
crete, representing the users’ index. Two reward functions are
provided; online traffic real reward and online traffic prediction
reward, each of which are functions of users’ requirements,
channels’ supplies, degree of system fluctuation, the relative
resource utilization, and the quality of user experience. Using
simulation results, the authors demonstrate the efficiency of
the proposed prediction-DDPG model in solving the dynamic
MCA problem compared to conventional methods.

Another interesting work in [162], the authors investigate
the joint allocation of the spectrum, computing, and storing
resources in multi-access edge computing (MEC)-based vehic-
ular networks. In particular, the authors propose multi-agent
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DDPG-based DRL algorithms to address the problem in a
hierarchical fashion considering a network comprised of macro
eNodeB (MeNB) and Wi-Fi APs. The agents are the controller
installed at MEC servers. The agents’ action space is discrete
including the spectrum slicing ratio set, spectrum allocation
fraction sets for the MeNB and for each Wi-Fi AP, computing
resource allocation fraction, and storing resource allocation
fraction. The state space is discrete representing information
of the vehicles within the coverage area of the MEC server,
including vehicles’ number, x-y coordinates, moving state,
position, and task information. The reward function is discrete,
defined in terms of the delay requirement, and requested
storing resources required to guarantee the QoS demands of
an offloaded task. Provided experimental results reveal that
their proposed schemes achieve high QoS satisfaction ratios
compared with the random assignment techniques.

The integration of various cellular wireless networks is also
one of the main enabling technologies for the next generation
wireless networks. Recently in [163], the authors propose an
efficient single-agent DQN algorithm based on Monte Carlo
Tree Search (MCTS) to address the problem of dynamic
spectrum sharing between 4G LTE and 5G NR systems. In
particular, the authors used the MuZero algorithm to enable a
proactive BW split between 4G LTE and 5G NR. The agent is
a controller located at the network core, whose action space is
discrete, corresponding to a horizontal line splitting the BW to
both 4G LTE and 5G NR. The state space is discrete, defined
by five elements: 1) an indicator if the user is an NR user or
not, 2) the number of bits in the user’s buffer, 3) an indicator
of whether the user is configured with multimedia broadcast
single frequency network (MBSFN) or not, 4) the number of
bits that can be transmitted for the user in a given subframe,
and 5) the number of bits that will arrive for each user in the
future subframes. The reward function is a continuous function
defined as a summation of the exponential of the delayed
packet per user. Experimental results show that their proposed
scheme provides comparable performance to the state-of-the-
art optimal solutions.

Findings and Lessons Learned

This section reviews the applications of DRL for dynamic
spectrum allocation and access control in modern wireless
networks. These types of radio resources are inherently cou-
pled with user association, network/RAT selection, dynamic
multi-channel access, and DSA. Table VI summarizes the
reviewed papers in this section. In general, the application of
DRL for spectrum allocation and access control problems has
received considerable attention lately. We observe that most
DRL algorithms, when deployed for non-IoT networks, are im-
plemented in centralized fashions at network controllers, such
as BSs, RSUs, and satellites [125], [141], [154]. This is done
to utilize the controllers’ powerful and advanced hardware
capabilities in collecting network information and designing
cross-layer policies. Hence, we observe that DRL models are
deployed as a single-agent at the network controllers [148].
On the contrary, DRL provides a flexible tool in diversified
IoT networks and systems, conventionally involving dynamic

system modeling and multi-agent interactions, such as CRNs
and distributed systems. Also, note that the main motivations
of using DRL techniques in almost all the papers presented in
this subsection are the complexity of the formulated spectrum
allocation and access control problems, the inability to obtain
accurate CSI, and the inadequacy of conventional methods to
solve the formulated problems.

In addition, the management of such types of radio re-
sources falls in general in the discrete action space. There-
fore, the value-based algorithms are utilized more than the
policy-based ones, and they have shown efficient results, as
we discussed in the surveyed papers. We also observe that
embedding prediction-based DRL algorithms, such as RNN,
with the conventional DNN models has shown efficient results
in enabling DRL to perform a proactive spectrum prediction.
Such integrated models have been seen in [144], [150], [153]
and we expect that they will attract more attention in the future.
In addition, it is always preferable to utilize the DQN-based
algorithms to the Q-learning algorithm as they provide better
performance in terms of convergence speed and accuracy of
the learned policies. Moreover, as is the case with the other
DRL models, the definitions of the state space and reward
function are crucial, and they must provide representative and
rich information about the system and environment to the agent
in order to learn efficient and reliable RRAM policies.

We also observe from Table VI that the use of DRL
techniques for IoT and emerging wireless networks receives
more attention than other wireless networks, especially for the
cognitive radio-based systems as in [152].

The exponential increase in smart IoT devices mandates
making autonomous decisions locally, especially for delay-
sensitive IoT applications and services. In this context, we
anticipate that the research on spectrum allocation and access
control using distributed multi-agent DRL algorithms for fu-
ture IoT networks will attract more attention as in [139], [141],
[150], [152]

C. DRL for Rate Control

This refers to the adaptive rate control in the uplink and
downlink of wireless networks. With the explosive increase
in the number of user devices and the emergence of massive
types of data-hungry applications [3], it becomes essential to
keep high network KPIs in terms of data rates and users’ QoE.
Adaptive rate control schemes must ensure satisfactory QoS
in highly dynamic and unpredictable wireless environments.
In this context, DRL techniques can be efficiently deployed to
solve adaptive rate control problems instead of conventional
approaches that possess high complexity and heavily rely on
accurate network information and instantaneous CSI.

In the following paragraphs, we review works that employ
DRL algorithms to address the rate control issue in cellular
networks.

5G network slicing is a technique based on the network
virtualization concept that enables dividing the single network
connections into multiple unique virtual connections to pro-
vide various radio resources to various types of traffic. Liu
et al. [165] conduct a pioneer DRL-based work to address
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TABLE VI
A SUMMARY LIST OF PAPERS RELATED TO DRL FOR SPECTRUM ALLOCATION AND ACCESS CONTROL.

Learning AlgorithmNetwork Type Ref. Radio Resource (or Issues Addressed) Mode Algorithm

C
el

lu
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r
N

et
w

or
ks

UAV-assisted LTE Chen et al. [122] Joint user association, spectrum allocation, & content caching Multi-agent DQN
Macro & femto BS Zhao et al. [123], [124] Joint BS & channel selections Multi-agent Dueling DDQN
Cellular IoT Zhang et al. [125] User association Single-agent DQN
IAB cellular Lei et al. [126] Dynamic spectrum allocation Single-agent DDQN & actor-critic
CV2X Li et al. [127] User association Multi-agent Q-learning
Hybrid NOMA-based 5G Zheng et al. [128] Dynamic spectrum allocation Single-agent actor-critic
Wireless DSA Song et al. [129] Dynamic spectrum allocation Multi-agent DQN
MIMO systems Hu et al. [130] Transmit antenna selection Single-agent DQN

Io
T

&
O

th
er

E
m

er
gi

ng
W

ir
el

es
s

N
et

w
or

ks

IoT sensor networks Wang et al. [131], [132], [164] Dynamic multi-channel access Single-agent DQN
Energy harvesting-based IoT sensors Chu et al. [134] Dynamic spectrum allocation Single-agent DQN
CRNs Zhang et al. [135] Dynamic multi-channel access Multi-agent DQN
CRNs Yang et al. [136] Joint spectrum access & mode selection Multi-agent DQN
Wireless networks Xu et al. [137] DSA Single-agent DQN & DDQN
V2X Liang et al. [138], [139] Dynamic spectrum sharing Single-& multi-agent DQN
Multi-sensor scenario Zhu et al. [140] Joint channel access & packet forwarding Single-agent DQN
mmWave V2X Khan et al. [141] User association Multi-agent A3C
CRNs Yang et al. [142] DSA Multi-agent DQN
NTNs Cao et al. [143] Dynamic multi-channel access Multi-agent DQN
Multi-channel wireless networks Tomovic et al. [144] DSA Single-agent RNN-base DDQN
Wireless networks Zhong et al. [145] Dynamic multi-channel access Single-& multi-agent actor-critic
CRNs Tondwalkar et al. [146] DSA Multi-agent DQN
IIoT networks Shi et al. [148] Dynamic spectrum sharing Single-agent DQN
Distributed wireless networks Janiar et al. [149] DSA Multi-agent DDQN
VANETs Wang et al. [150] DSA Multi-agent RNN-based DQN
CUAV Jiang et al. [152] Joint spectrum sensing & channel access Multi-agent DQN
Heterogeneous environments Xu et al. [153] DSA Multi-agent RNN-based DQN

Sa
te

lli
te

N
et

s Multi-beam satellite systems Liu et al. [154] Dynamic spectrum allocation Single-agent DQN
Multi-beam satellite systems Hu et al. [155] Dynamic spectrum allocation Single-agent DQN
SIoT Zhao et al. [156] Dynamic spectrum allocation Single-agent DQN
SIoT Liu et al. [157] Dynamic spectrum allocation Single-agent DQN
LEO satellites Zheng et al. [158] Joint channel pre-allocation & dynamic channel scheduling Single-agent Q-learning

M
ul

ti-
R

A
T Small BSs cellular Challita et al. [159] Joint dynamic channel selection & interference management Multi-agent DQN

Small BSs cellular Naparstek et al. [160] Dynamic spectrum allocation Single-agent DQN
LTE-WLAN HetNets Wang et al. [161] Dynamic multi-channel access Single-agent prediction-DDPG
MEC-based V2X Peng et al. [162] Joint allocation of spectrum, computing, & storing Multi-agent DDPG
4G LTE and 5G NR systems Challita et al. [163] Dynamic spectrum sharing Single-agent DQN

the problem of network resource allocation, in terms of rate,
for 5G network slices. The problem is decomposed into a
master-slave, and a multi-agent DDPG-based DRL scheme is
then proposed to solve it. The agents are located in every
network slice, whose action space is continuous, defining the
resource allocation to users in the network slice. The state
space is continuous and has two main parts; the first one
shows how much utility the user obtained compared to its
minimum utility requirement, while the second part shows
the auxiliary and dual variables from the master problem.
The reward is a continuous function defined in terms of
utility, utility requirements, and auxiliary and dual variables.
Simulation results demonstrate that their proposed algorithm
outperforms the baseline approaches and gives a near-optimal
solution.

High mobility networks are characterized by their rapid
variations that render link establishment a major issue. In
this context, the authors in [166] propose an interesting work
using a single-agent DQN-based DRL algorithm to address
the problem of dynamic uplink/downlink radio resources al-
location in terms of network capacity in high mobility 5G
HetNets. Their proposed algorithm is based on the Time
Division Duplex (TDD) configuration in which the agent is
the BS, whose action space is discrete, corresponding to the
configurations of TDD sub-frame allocation at the BS. The
state space is discrete, comprised of different kinds of fea-
tures of the BS, including uplink/downlink occupancy, buffer
occupancy, and channel condition of all uplinks/downlinks to
the BS. The reward is discrete, defined as a function of the
uplink and downlink channel utility, which mainly depends

on channel occupancy with chosen TDD configuration. Using
experimental results, the authors show that their proposed
algorithm achieves performance improvement in terms of both
network throughput and packet loss rate, compared to some
conventional TDD resource allocation algorithms.

Findings and Lessons Learned

This section reviews the use of DRL techniques for adaptive
rate control in next generation wireless networks. In general,
there is limited research that is solely dedicated to addressing
the rate radio resource issue. We consider [165] and [166] as
pioneer works in this type of RRAM. Most of the research
in the literature is dedicated to video streaming applications,
and the paper [15] highlighted some of them. However, as we
discussed in the previous sections, the data rate control issue
is typically addressed via controlling other radio resources
such as power, user association, and spectrum. In addition,
the adaptive rate control is typically addressed as a joint
optimization with other radio resources, as we will elaborate
in the next section, e.g., as in [167], [168].

We also observe that DRL-based solutions for cellular
networks receive more attention than other wireless networks,
and there is a lack of research on adaptive rate control for
IoT and satellite networks. This also deserves more in-depth
investigation and analysis.

D. DRL for Joint RRAM

Due to the massive complexity and large-scale nature of
modern wireless networks, it becomes necessary to design
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efficient schemes that account for the joint radio resources.
In many scenarios, the design problem in wireless networks
might end up with competing objectives. For example, in
UDNs, increasing the power level is beneficial in combating
path loss and enhancing the received signal quality. However,
this might cause serious interference to the neighboring user
devices and BSs. Hence, the joint design of power level
control and interference management becomes mandatory.
Conventional approaches for solving joint RRAM problems
require complete and instantaneous knowledge about network
statistics, such as traffic load, channel quality, and radio
resources availability. However, obtaining such information
is not possible in such large-scale networks. In this context,
DRL techniques can be adopted to learn system dynamics and
communication context to overcome the limited knowledge of
wireless parameters.

This section intensively reviews the most important and
influential works that implement DRL algorithms for the
problem of joint RRAM in modern wireless networks. Par-
ticularly, we present related works that jointly optimize the
radio resources shown in Fig. 2, such as power allocation,
spectrum resources, user association, dynamic channel access,
cell selection, etc.

1) In Cellular Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the joint RRAM issue in cellular
networks shown in Fig. 2.

Cellular vehicular communication (CV2X) is regarded as
one of the main enabling technologies for next generation
wireless networks. RRAM in such networks has received
significant momentum using conventional methods, and they
are now gaining notable attention using DRL methods. For
example, an interesting work is reported in [169], in which the
authors study the problem of joint optimization of transmis-
sion mode selection and resource allocation for CV2X. They
propose single-agent settings in which DQN and federated
learning (FL) models are integrated to improve the model’s
robustness. The agent in their model is each V2V pair. The
action space is discrete, representing the resource block (RB)
allocation, communication mode selection, and transmit power
level of the V2V transmitter. The state space is a hybrid
(continuous and discrete) consisting of five main parts; the
received interference power at the V2V receiver and the BS
on each RB at the previous subframe, the number of selected
neighbors on each RB at the previous subframe, the large-scale
channel gains from the V2V transmitter to its corresponding
V2V receiver and the BS, current load, and remaining time
to meet the latency threshold. The reward is a continuous
function defined in terms of the sum-capacity of vehicular
UEs as well as the QoS requirements of both vehicular UEs
and V2V pairs. Using experimental results, the authors show
that their proposed two-timescale federated DRL algorithm
outperforms other decentralized baselines.

RRAM in small cell networks is one of the ongoing
challenges for cellular operators. Towards this end, Jang et al.
[170] propose a multi-agent DQN-based algorithm to address
the problem of sum-rate maximization via a joint optimization
of resource allocation and power control in small cell wireless

networks. The agents in their proposed model are the small cell
BSs, whose action space is discrete, corresponding to selecting
the resource allocation and power control of small BS on RB.
The state space is continuous, including all the CSI that the
small BS collects on RB, such as local CSI, local CSI at the
transmitter, etc. The reward is a continuous function expressed
by the average sum-rate of its own serving users and the
other small BSs. Experimental results show that their proposed
approach both outperforms the conventional algorithms under
the same CSI assumptions and provides a flexible tradeoff
between the amount of CSI and the achievable sum-rate.

In the same context, another interesting work is presented
in [171] in which the authors propose a model-driven multi-
agent Double DQN-based framework for resource allocation
in UDNs. In particular, They first develop a DNN-based opti-
mization framework comprised of a series of ADMM iterative
procedures that uses the CSI as the learned weights. Then,
channel information absent Q-learning resource allocation
algorithm is presented to train the DNN-based optimization
scheme without massive labeling data, where the EE, SE,
and fairness are jointly optimized. The agents are each D2D
transmitter, whose action space is discrete, corresponding to
selecting a subcarrier and corresponding transmission power.
The state space is a hybrid (continuous and discrete) consisting
of two parts; user association information and interference
power. The reward function is continuous, comprised of two
components; the network EE and the fairness of service
quality, which is expressed by the variance of throughput
between authorized users. Using experimental results, it is
demonstrated that their proposed algorithm has a rapid con-
vergence speed, well characterizes the extent of optimization
objective with partial CSI, and outperforms other existing
resource allocation algorithms.

D2D-enabled cellular networks are also one of the key
enabling technologies for next generation cellular systems.
RRAM in such networks is one major concern, especially for
mmWave-based cellular networks, as the D2D links require
frequent link re-establishment to combat the high blockage
rate. The authors in [172] propose a multi-agent Double DQN-
based scheme to address the problem of joint subcarrier as-
signment and power allocation in D2D underlying 5G cellular
networks. The agents in their model are the D2D pairs, whose
action space is discrete, corresponding to determining the
transmit power allocation on the available subcarriers. The
state space is a hybrid (continuous and discrete), comprised of
four components: 1) local information (including the previous
transmit power, previous SE achieved by transmitters, channel
gain, and SINR), 2) the interference that each agent causes at
the BS side, 3) the interference received from agent’s interfer-
ing neighbors and the SE achieved by agent’s neighbors, and
4) the interference that each agent causes to its neighbors. The
reward is a continuous function comprised of three elements:
1) the SE achieved by each agent, 2) the SE degradation of
the agent’s interfered neighbors, and 3) the penalty due to the
interference generated at the BS. Experimental results show
that their proposed algorithm outperforms both the exhaustive
and random subcarrier and even power (RSEP) assignment
methods in terms of SE of D2D pairs.
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Mission-Critical Communications (MCC) is an emerging
service in the next generation wireless networks. It is envi-
sioned to enable First Responders, such as firefighters and
emergency medical personnel, to replace conventional radio
with advanced communication capabilities available to next
generation smartphones and IoT devices. Most recently, a
pioneer work is conducted by Wang et al. [173] in which
the authors propose a multi-agent DQN-based DRL scheme
to address the problem of spectrum allocation and power
control for MCC in 5G networks. In MCC, multiple D2D
users reuse non-orthogonal wireless resources of cellular users
without BS in order to enhance the network’s reliability.
The paper aims to help the D2D users autonomously select
the channel and allocate power to maximize system capacity
and SE while minimizing interference to cellular users. The
agents are the D2D transmitters whose action space is discrete,
corresponding to channel and power level selection. The state
space is discrete, defined in a three-dimensional matrix, which
includes information on the channel state of uses, the state of
power level, and the number of the D2D pairs. The reward
function is discrete, defined in terms of the total system
capacity and constraints. Simulation results show that their
proposed learning approach significantly improves spectrum
allocation and power control compared to traditional methods.

RRAM in OFDM-based systems is also one of the main
challenging issues. In this context, the authors in [174] propose
a multi-agent DQN-based model to address the problem of
joint user association and power control in OFDMA-based
wireless HetNet. The agents are the UEs, whose action space
is discrete, corresponding to jointly associate with the BS
and determine the transmit power. The state space is discrete,
which is defined by the situation of all UEs association with
BS and power control. The reward function is continuous,
which is defined in terms of the sum-EE of all UEs. Using
simulation results, it is shown that their proposed method
outperforms the Q-learning method in terms of convergence
and EE.

Another interesting work is reported in [175] in which the
authors propose a single-agent DQN-based DRL model to
address the problem of joint optimization of user association,
resource allocation, and power allocation in HetNets. The
agent is the BS, whose action is discrete, corresponding to
power allocation to users. The state space is discrete, defined
by the channel gain matrix and the set of users association. The
reward function is continuous, defined by the utility function of
users’ achieved data rate. Using simulation results, the authors
show that their proposed algorithm outperforms some of the
existing methods in terms of SE and convergence speed.

2) In IoT and Other Emerging Wireless Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the joint RRAM issue in IoT and
emerging wireless networks depicted in Fig. 2.

For the same system settings in [106], [107], the authors in
[67] extended their work and propose a multi-agent DDPG-
based DRL framework to address the problem of the joint
spectrum and power allocation in wireless networks. Two
DRL-based algorithms are proposed, which are executed and
trained simultaneously in two layers in order to jointly op-

timize the discrete subband selection and continuous power
allocation. The agent in their approach is each transmitter.
In the top layer, the action space of all agents is discrete,
representing the discrete subband selection, while the bottom
layer has a continuous action space corresponding to the trans-
mit power allocation. The state space is a hybrid (continuous
and discrete), containing information on achieved SE, transmit
power, sub-band selection, rank, and downlink channel gain.
The reward is shared by both layers, which is a continuous
function defined in terms of the externality of agents to inter-
ference and the spectral efficiency. Using experimental results,
the authors show that their proposed framework outperforms
the conventional fractional programming algorithm.

Based on their initial work in [176], the authors in [177]
extended their work and propose a distributed multi-agent
DQN-based DRL scheme to address the problem of joint
channel selection and power control in D2D networks. The
agents in their model are the D2D pairs, whose action space
is discrete, corresponding to selecting a channel and a transmit
power. The state space of each agent is a hybrid (continuous
and discrete) which contains three sets of information; local
information, non-local information from the agent’s receiver-
neighbor set, and non-local information from the agent’s
transmitter-neighbor set. The reward function of each agent is
continuous, which is decomposed into the following elements;
its own received signal power, its own total received SINR,
its interference caused to transmitter-neighbors, the received
signal power, and the total received SINR of transmitter-
neighbors. Using simulation results, it is shown that the
performance of their scheme closely approaches that of the
FP-based algorithm even without knowing the instantaneous
global CSI.

In [178], the authors extended their previous works in [179],
[180] and present a distributed multi-agent DQN-based model
to address the problem of joint sub-band selection and power
level control in V2V communication networks. Their proposed
model is applicable to both unicast and broadcast scenarios.
The agents are the V2V link or vehicles whose action space is
discrete, corresponding to the selection of the frequency band
and transmission power level that generate small interference
to all V2V and V2I links while ensuring enough resources
to meet latency constraints. The state space is continuous,
containing the following information; the CSI of the V2I link,
the received interference signal strength in the previous time
slot, the channel indices selected by neighbors in the previous
time slot, the remaining load for transmission, and the time left
before violating the latency constraint. The reward function
is continuous, consisting of three components; the capacity
of V2I links, the capacity of V2V links, and the latency
constraint. Using experimental results, it is shown that agents
learn to satisfy the latency constraints on V2V links while
minimizing the interference to V2I communications.

Another pioneering work is reported in [181] in which the
authors propose a single-agent Double DQN-based DRL to
address the problem of joint channel selection and power
allocation with network slicing in CRNs. Their study aims to
provide high SE and QoS for cognitive users. The agent is the
overall CRN, whose action space is discrete, corresponding
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to the channel selection and power allocation of SUs. The
state space is continuous, defined by the SINR of the PU.
The reward function is continuous, which is a function of
the system SE, user QoS, interference temperature, and the
interference temperature threshold. Experimental results show
that their proposed algorithm improves the SE and QoS and
provides faster convergence and more stable performance than
the Q-learning and DQN algorithms.

NOMA-based systems are characterized by their ability to
provide enhanced QoS in cellular networks. However, allocat-
ing radio resources in such systems is quite challenging. In this
context, the problem of joint subcarrier assignment and power
allocation in an uplink multi-user 5G-based NOMA systems is
addressed in [182]. A multi-agent two-step DRL algorithm is
proposed; the first step employs the DQN algorithm to output
the optimum subcarrier assignment policy, while the second
step employs the DDPG algorithm to dynamically allocate
the transmit power for the network’s users. The agent is a
controller located at the BS, whose action space is a hybrid
(discrete and continuous), corresponding to the subcarrier
assignment decisions and power allocation decisions. The state
space is continuous, which is defined by the users’ channel
gains at each subcarrier. The reward function is defined as the
sum EE of the NOMA system. Experimental results show that
their proposed algorithm provides better EE than the fixed and
DQN-based power allocation schemes.

Unlike the work in [182], a pioneer work is reported in
[183] in which the authors propose a multi-agent DDPG-
based model to address the problem of joint power and
spectrum allocation in NOMA-based V2X networks. In par-
ticular, the authors are looking to maximize the sum-rate of
V2I communications. The agents are the V2V communication
links. The state space is discrete, defined by a set of actions
performed by V2I and V2V communication links. The set
includes the transmit power of both V2I and V2V links
as well as the spectrum multiplexing factor of both V2V
and V2V links. The state space is continuous, defined by
five parts; the local channel gain information of each V2V
link, interference channels from other V2V communication
links, interference channel from each link’s own transmitter
to the BS, interference channel from all V2I transmitters,
and the state of queue length in the buffer of each V2V
transmitter. The reward function is continuous, defined by
the achieved sum-rate of V2I communication links and the
delivery probability of V2V communication links. Compared
with both the DQN algorithm and random resource allocation
scheme, simulation results show that their proposed algorithm
outperforms both of them in terms of maximizing the sum-
rate of V2I communication links while meeting the latency
and reliability requirements of V2V communications.

On the other hand, another interesting work is conducted
by Munaye et al. [168] in which they propose a multi-
agent DQN-based DRL model to address the problem of joint
radio resources of bandwidth, throughput, and power in UAV-
assisted IoT networks. The agents are the UAVs, whose action
space is discrete, corresponding to jointly selecting channel
allocation of bandwidth, throughput, and power. The state
space is discrete, comprising three components; the air-to-

ground channel used by users, the rate of power consumption,
and the interference. The reward is a discrete function, defined
in terms of throughput, power allocation, bandwidth, and
SINR levels. Simulation results show that their proposed
algorithm outperforms other algorithms in terms of accuracy,
convergence speed, and error.

Reconfigurable intelligent surface (RIS) technology has
emerged recently as one of the main technologies for future
wireless networks [187]. RISs employ many passive reflecting
elements with controllable phase shifts and negligible power
consumption, which provide a favorable wireless propagation
environment for transmitted signals. In particular, RISs can
be used to overcome blockage by providing virtual LoS links
between transmitters and receivers, interference cancellation,
and physical layer security [187], [188]. However, RISs en-
counter massive challenges related to environment uncertainty
and real-time channel estimation issues [187], [188]. Hence,
DRL approaches have attracted considerable research lately
as efficient tools to assist the RIS technology. In this context,
the authors in [184] provide an interesting work based on the
multi-agent dueling DQN model to address the problem of
power minimization in UAV-RIS-based multi-cell HetNets. In
particular, they proposed to solve their problem in two stages.
The first stage employs dueling DQN to solve the problem
of UAVs’ trajectories/velocities, RISs’ phase control, and
subcarrier allocations for microwave band. The second stage
employs alternating methods to solve active beamforming and
subcarrier allocation for mmWave. The agents are the UAV-
RISs, whose state space is continuous defined by the trajectory
of the UAV-RISs and all channel gains, i.e., from the BS
to the RISs, RISs to users, and smallcell BSs to users. The
action space is discrete, defined by the possible direction
and speeds of the UAVs, RISs’ phase shifts, and association
indicator. The reward function is continuous defined in terms
of power consumption. Simulation results show that their
proposed algorithm reduces the transmit power consumption
by 6 dBm compared to other baseline methods.

3) In Multi-RAT Networks
In the following paragraphs, we review works that employ

DRL algorithms to address the joint RRAM problem in multi-
RAT HetNets. This includes the coexistence of various variants
of the wireless networks as illustrated in Fig. 2.

Integrating RF and VLC RATs is a promising solution to
enhance networks’ QoS. Towards this, recently in [185], the
authors present a multi-agent DQN-based algorithm to address
the problem of joint optimization of bandwidth, power, and
user association in hybrid RF/VLC systems. The APs are the
agents whose action is discrete, representing the bandwidth,
association function, and power level. The state space is
discrete, which is a function of the problem constraints such as
system bandwidth, association function, and power levels. The
reward is discrete, which is a function of the rates delivered
by the APs. Experimental results show that their algorithms
improve the achievable sum-rate and number of iterations for
convergence by 10% and 54% compared to that obtained using
conventional optimization approaches.

Another interesting work is proposed recently by Alwarafy
et al. in [41]. The authors propose a hierarchical multi-agent
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TABLE VII
SUMMARY OF THE RELATED WORKS THAT ADDRESS THE JOINT RRAM.

Learning AlgorithmNetwork Type Ref. Types of Joint Radio Resources (or Issues Addressed) Mode Algorithm

C
el

lu
la

r
N

et
w

or
ks

CV2X Zhang et al. [169] Transmission mode selection & resource allocation Single-agent DQN
Small cell networks Jang et al. [170] Resource allocation & power control Multi-agent DQN
UDNs Liao et al. [171] Subcarrier selection & transmission power Multi-agent DDQN
D2D underlying 5G cellular Zhang et al. [172] Subcarrier assignment & power allocation Multi-agent DDQN
Mission-critical in 5G Wang et al. [173] Spectrum allocation & power control Multi-agent DQN
OFDMA-based networks Ding et al. [174] User association & power control Multi-agent DQN
HetNets Cellular Zhang et al. [175] User association, resource allocation, & power allocation Single-agent DQN

E
m

er
gi

ng
Io

T
N

et
s Wireless networks Nasir et al. [67] Spectrum & power allocation Multi-agent DDPG

D2D networks Tan et al. [177] Channel selection & power control Multi-agent DQN
V2V networks Ye et al. [178] Sub-band selection & power level control Multi-agent DQN
CRNs Yuan et al. [181] Channel selection & power allocation Single-agent DDQN
5G-based NOMA systems Zhang et al. [182] Subcarrier assignment & power allocation Multi-agent DQN & DDPG
NOMA-based V2X networks Xu et al. [183] Spectrum & power allocation Multi-agent DDPG
UAV-assisted IoT networks Munaye et al. [168] Bandwidth, throughput, & power Multi-agent DQN
UAV-RIS-based HetNets khalili et al. [184] UAVs’ trajectories, RISs’ phase shifts, & subcarrier allocations Multi-agent Dueling DQN

M
ul

ti-
R

A
T

Hybrid RF/VLC systems Shrivastava et al. [185] Bandwidth, power, & user association Multi-agent DQN

Multi-RAT HetNets Alwarafy et al. [41] RAT selection & power control Single& multi-agent DQN & DDPG
mmWave mobile hybrid access Huang et al. [186] Spectrum & power resource allocation Single-agent DQN
Heterogeneous health systems Chkirbene et al. [167] RAT selection, data split control, & compression ratio control Single-agent DDPG

DQN and DDPG-based algorithm to address the problem
of sum-rate maximization in multi-RAT multi-connectivity
wireless HetNets. The authors addressed the problem of
multi-RATs assignment and continuous power allocation that
maximize the network sum rate. In their model, single and
multi-agents are proposed. The edge server acts as a single
agent employed by DQN, while RATs APs behave as multi-
agents employed by DDPG. For the single-agent DQN model,
the action space is discrete, corresponding to the RATs-EDs
assigning process. The state space of the DQN is continuous,
comprised of the link gains and the required data rates of
users. The reward function of the DQN agent is continuous,
defined by the difference between the achieved rate and the
required rate by users. For the multi-agent DDPG models, the
action space is continuous, representing the power allocation
of each RAT AP agent. The state space is a hybrid (continuous
and discrete) consisting of four elements: the RATs-EDs as-
signment process performed by the DQN agent, the minimum
data rate of users, the gains of the links, and the achieved
data rate. Experimental results show that their algorithm’s
performance is approximately 98.1% and 95.6% compared to
the conventional CVXPY solver that assumes full knowledge
of the wireless environment.

Hybrid access networks are a special architecture for broad-
band access networks where different types of access networks
are integrated to improve bandwidth. Huang et al. [186]
propose a single-agent DQN model to address the problem
of delay minimization via joint spectrum and power resource
allocation in mmWave mobile hybrid access network. The
agent is located in the roadside BS, whose action space
is discrete, corresponding to allocating spectrum and power
resources for data. The state space is discrete, consisting of
information about the current power and spectrum of the
resource pool, required spectrum and power, and the number of
spectrum and power levels. The reward signal is a continuous
function defined in terms of queueing delay and the resource
length required for each data. Using simulation results, it

is shown that their proposed model guarantees the URLLC
delay constraint when the load does not exceed 130%, which
outperforms other conventional methods such as random and
greedy algorithms.

Healthcare systems are one of the main services in next
generation wireless systems. Unlike the work in [41], a pioneer
work is presented in [167] to address the problem of network
selection with the aim of optimizing medical data delivery over
heterogeneous health systems. In particular, an optimization
problem is formulated in which the network selection problem
is integrated with adaptive compression to minimize network
energy consumption and latency while meeting applications’
QoS requirements. A single-agent DDPG-based DRL model is
proposed to solve it. The agent is a centralized entity that can
access all radio access networks (RANs) information and Pa-
tient Edge Node (PEN) data running in the core network. The
action space is discrete, corresponding to the joint selection of
data split over the existing RANs and the adequate compres-
sion ratio. The state space is a hybrid (continuous and discrete)
defined by two elements: the fraction of time that the PENs
should use over a particular RAN and the PEN investigated in
the current timestamp. The reward is a continuous function,
which is defined in terms of: the fraction of data of PEN that
will be transferred through RAN, the energy consumed by
PEN to transfer bits over RAN, distortion, expected latency of
RANs, the monetary cost of PENs to use RANs, the resource
share, the fraction of time that the PENs should use over a
particular, and the data rate. Simulation results demonstrate
that their proposed scheme outperforms the greedy techniques
in terms of minimizing energy consumption and latency while
satisfying different PENs requirements.

Findings and Lessons Learned

This section reviews the use of DRL methods for joint radio
resources of power, spectrum, access control, user association,
and rate. Table VII summarizes the reviewed papers in this sec-
tion. We observe that DRL tools can be efficiently deployed to
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address different types of joint radio resources for diversified
network scenarios. The results obtained using DRL models are
better than the heuristic methods [168], [183] and comparable
to the state-of-the-art optimization approaches [67], [177].
Also, note that the main motivations of using DRL techniques
in addressing the joint radio resources problems presented
in this subsection are the complexity of these formulated
problems, the limited information about system dynamics and
CSI, and the difficulty in applying traditional RRAM methods
to solve such problems.

We also observe that multi-agent DRL deployment based
on value-based algorithms receives more attention than policy-
based algorithms. The reason is that users tend to have more
control over their channel selection, data control, and transmis-
sion mode selection, and hence we find a more popular im-
plementation of DRL agents at local IoT devices. In addition,
the integration of value-based and policy-based algorithms for
joint RRAM is also an interesting concept that requires more
investigation, especially for multi-agent deployment scenar-
ios. In particular, depending on the type of radio resources
under investigation, resources with continuous nature such
as power typically implement policy-based algorithms, while
resources with discreet nature such as channel allocation and
user association typically implement value-based algorithms.
Simultaneous dealing with continuous and discrete types of
radio resources may integrate both the policy- and value-based
DRL algorithms to learn a global policy as in [41], [182], or
even adopting the value-based algorithms as in, e.g., [172],
[174], [185] with an expense of added quantization error.

We also observe that DRL methods for cellular networks as
well as IoT wireless networks gain more attention than multi-
RAT networks, particularly for D2D and V2V communica-
tions. In addition, there is a lack of research on applications
of DRL for emerging IoT applications, such as healthcare
systems as investigated recently in [167], which is also a
promising field that requires more attention. Furthermore, we
observe a lack of research on DRL applications for joint
RRAM in satellite networks, which also deserves more in-
depth investigation.

V. OPEN CHALLENGES AND FUTURE RESEARCH
DIRECTIONS

Throughout the previous section, we have demonstrated
the superiority of DRL algorithms over traditional methods
in addressing complex RRAM problems for modern wireless
networks. However, there are still several challenges and open
issues that either not explored yet or need further explo-
ration. This section provides highlights these open challenges
and provides insights on future research directions in the
context of DRL-based RRAM for next generation wireless
networks. Table VIII summarizes the advantages and disadvan-
tages/shortcomings of DRL methods when applied for RRAM
in next generation wireless networks.

1) Open Challenges
a) Centralized vs. Decentralized RRAM Techniques

Future wireless networks are characterized mainly by their
massive heterogeneity in wireless RANs, the number of user

devices, and types of applications. Centralized DRL-based
RRAM schemes are efficient in guaranteeing enhanced net-
work QoS and fairness in allocating radio resources. They
also ensure that RRAM optimization problems will not get
stuck in local minima due to their holistic view of the sys-
tem. However, formulating and solving RRAM optimization
problems become tough tasks in such large-scale HetNets.
Hence, centralized DRL-based RRAM solutions are typically
unscalable. This motivates distributed multi-agent DRL-based
algorithms that enable edge devices to make resource alloca-
tion decisions locally. Stochastic Game-based DRL algorithms
are one promising research direction in this context [14].
However, the rapid increase in the number of edge devices
(players) makes information exchange in such networks un-
manageable. Also, the partial observability of agents might
lead to suboptimal RRAM policies. Therefore, it is an open
challenge to develop DRL-assisted algorithms that optimally
balance between the centralization and distribution issue in
RRAM. A possible solution is to develop hybrid ecosystems
that implement some DRL models at the network’s edge, e.g.,
at the ESs or user devices, instead of deploying all DRL
algorithms on a centralized network.

b) Dimensionality of State Space in HetNets

In modern wireless HetNets, service requirements and network
conditions are rapidly changing. Hence, single-agent DRL
algorithms must be designed to capture and respond to these
fast network changes. To this end, it is required to reduce
the state space and action space during the learning process,
which inevitably degrades the quality of the learned policies.
The existence of multi-agents and their interactions will also
complicate the agents’ environment and prohibitively increase
the dimensionality of state space, which will slow down the
learning algorithms. A possible solution to this issue is to
split the large state spaces into smaller ones through state-
space decomposition. The idea is to use smaller DNNs to
learn the dynamics of the decomposed sub-state spaces, while
another DNN considers the relatively less frequent interactions
between the different sub-state spaces [189]. This approach
enables us to distribute computation and accelerate agents’
training.

c) Reliability of Training Dataset

Although the DRL-based solutions for RRAM we reviewed
previously demonstrate efficient performance results, almost
all the models are developed based on simulated training and
testing datasets. The simulated dataset is typically produced
based on some stochastic models, which provide simplified
versions of practical systems and greatly ignore hidden system
patterns. This methodology greatly weakens the reliability
of the developed policies as their performance on practical
networks would be skeptical. Hence, it is imperative to develop
more effective and reliable approaches that generate precise
simulation datasets and capture practical system settings as
much as possible. This ensures high reliability and confidence
during the training and testing modes of the developed RRAM
policies. Developing such approaches is still a challenge due
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TABLE VIII
ADVANTAGES AND DISADVANTAGES/SHORTCOMINGS OF DRL METHODS WHEN APPLIED FOR RRAM PROBLEMS IN NEXT GENERATION HETNETS.

Advantages Disadvantages/Shortcomings
- Can solve complex RRAM optimization problems relying on limited
network information

- The prohibitive high dimensionality of state and action spaces

- Enable network entities to learn efficient RRAM policies for wireless
environment

- The high sensitivity to DNNs’ hyperparameters

- Can be deployed online to make autonomous decisions based on
local observations of network

- The system dependency of learned DRL policies

- Can overcome limitations of conventional RRAM methods - The need to continuously train and update DRL models
- Can be equipped with prediction capabilities to enable RRAM
forecasting

- Hard to beat well-designed algorithms if domain knowledge
exists

- Used when accurate RRAM mathematical models do not exist

to the large-scale nature and rapid variations of future wireless
environments.

On the other hand, the DRL models are sensitive to any
change in the input data. Any minor changes in the input data
will cause considerable change in the models’ output. This
mainly deteriorates the reliability of DRL algorithms, espe-
cially when deployed for modern IoT applications that require
ultra-reliability, such as remote surgery or any other mission-
critical IoT applications. Hence, ensuring high reliability for
DRL models is a challenging issue. A possible solution to
such issues is to exploit real-field measurement data collected
from various cellular and IoT wireless scenarios to train and
test the DRL-based RRAM models. This will increase the
reliability of the learned policies and also enables DRL model
generalization.

d) Engineering of DRL Models for RRAM

Since DRL employs DNNs as function approximators for
the reward functions, DRL models will inherit some of the
challenges that exist in the DNN world. For example, it is
still quite challenging to optimize the DNN hyperparameters,
such as the type of DNNs used (e.g., convolutional, fully
connected, or RNN), the number of hidden layers, the number
of neurons per hidden layer, the learning rate, batch size, etc.
DRL models suffer from high sensitivity to these hyperpa-
rameters. This challenge is even exacerbated in multi-agent
settings as all agents share the same radio resources and must
converge simultaneously to some policies. A possible solution
is to implement some optimization techniques from the deep
learning field, such as grid and random search methods, to
find the optimal configuration of these hyperparameters [190].

On the other hand, the engineering of DRL parameters
such as state space and reward function is challenging for
RRAM. The state space must be engineered to capture useful
and representative information about the wireless environment,
such as the available radio resources, users’ QoS requirements,
channel quality, etc. Such information is crucial and heavily
defines the learning and convergence behaviors of DRL agents.
Again, the presence of multi-agents will even make it more
challenging, as discussed in [14]. Also, since DRL models are
reward-driven learning algorithms, the design of the reward
function is also essential to guide the agent during the policy-
learning stage. Formulating reward functions that capture the
network objective and account for the available radio resources
is also challenging.

e) System Dependency of DRL Models

DRL models are system-dependent as they are trained and
tested for specific wireless environments and networks. There-
fore, they provide effective results when employed to solve
specific types of problems for which they are trained. However,
if there would be a significant change in the characteristics of
the wireless environment or the nature of the RRAM problem,
such as network topology and available radio resources, the
DRL model must be retrained as the old model is no longer
reflecting the new training experiences. In modern wireless
HetNets, such cases are frequently encountered, especially
with real-time applications or in highly dynamic environments.
In such a case, it becomes quite challenging for DRL agents
to update and retrain their DNNs with rapidly changing input
information from the HetNet environment [1]. A possible
solution is to design DRL-based RRAM models in a manner
that supports generalization via transfer learning and meta-
learning. Multi-tasks DRL approaches [191], [192] are effi-
cient frameworks to support these aspects.

On the other hand, if domain knowledge is available or
easy to obtain, it becomes hard for the DRL algorithms to
beat the well-designed algorithms based on the full domain
knowledge. This fact has been observed and reported in the
surveyed papers in Section IV.

f) Continuous Training of DRL Models

DRL algorithms require big datasets to train their models,
which is typically associated with a high cost [15]. The net-
work system pays this cost during the information collection
process due to, e.g., the high delays, extra overhead, and
energy consumption. The emergence of a large number of
real-time applications and services has even increased this
training cost. In this context, DRL models require to be
continuously retrained with fresh data collected from the
wireless environment to be up-to-date and ensure accurate
and long-term control decisions. It is not practical to conduct
manual retraining of the models in such large-scale HetNets
settings. Also, manually monitoring and updating DRL models
in multi-agent scenarios becomes an expensive task. Therefore,
continuous retraining can solve this issue, in which a dedicated
autonomous system is employed to continuously assess and
retrain old DRL models.
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g) Context of RRAM

The implementation of DRL algorithms basically depends
on the use-cases. The context and deployment scenarios in
which RRAM is required must be considered during the
development of DRL models. For example, RRAM in health-
sector IoT applications is different from the environmental
IoT applications counterparts. Due to the high sensitivity of
data in the health-sector applications, extra data pre-processing
must be performed, including data compression and encryption
[167]. This will directly affect the number of radio resources
to be allocated for such applications. Hence, DRL models
must be aware of the context aspect of applications, which
is considered another challenge. A possible solution is to
develop context-aware DRL models that are able to learn
context variables in an unsupervised manner and adapt the
policy to the existing context, e.g., as in [193].

h) Competing Objective Design of DRL Models

Next generation wireless networks are expected to provide
enhanced system QoS in terms of high data rate, high EE/SE,
and reduced latency in order to support the emerging IoT vital
applications. Depending on the deployment scenario, formu-
lating multi-objective RRAM optimization problems usually
ends with many competing objectives and/or constraints. For
instance, in cellular UDNs, high resource utilization of, e.g.,
power allocation or channel may cause severe interference.
Also, for IoT applications such as vehicular communications,
we require to ensure ultra-reliable and low-latency communi-
cation links, which are usually competing objectives. There-
fore, developing multi-objective DRL-based RRAM models
that accommodate these competing requirements is still a
persisting challenge. For example, frameworks to facilitate
the development of multi-agent algorithms similar to those
presented in [194] can be adopted for RRAM problems.

2) Future Research Directions
a) DRL with Explainable AI (XDRL) for RRAM

Explainable AI (XDRL) has recently emerged as an efficient
technology to improve the performance of DRL models. It
is mainly envisioned to unlock the ”black-box” nature of
conventional ML approaches and provide interpretability and
explainability for DRL models [195]. In particular, XDRL
explains the reasons behind certain predictions made by DRL
models (or ML models in general) by fully understanding the
precise working principle of these models. Hence, ensuring
trust, reliability, and transparency in the DRL algorithms’
policy development and decision-making processes. The re-
search on XDRL technologies in wireless communication is
still at its initial stages, and there are still some key issues for
future research in the context of RRAM for next generation
wireless networks [196]. For example, DRL models can get
stuck easily into local optimal solutions when utilized to solve
complex RRAM problems. This issue can be significantly
avoided with the help of XDRL. Fortunately, the heterogeneity
of information in modern wireless HetNets will significantly
help to achieve the interpretation for DRL algorithms. In
this context, developing RRAM schemes for wireless Het-

Nets, through entity recognition, Shapley value-based meth-
ods, entity-relationship extraction, and representation learning
(e.g., Hindsight Experience Replay, Hierarchical DRL, and
self-attention) makes the DRL models’ interpretation more
reliable, accurate, and intuitive, which is a promising research
direction.

b) Integrating DRL and Blockchain Techniques

Blockchain-based RRAM has emerged recently as one of the
promising enabling technologies for future wireless HetNets
[3]. It has gained considerable momentum lately due to its
ability to provide intelligent, secure, and highly efficient
distributed resource sharing and management. The integra-
tion of DRL with Blockchain is also an interesting research
direction, as in [197]–[199]. For example, DRL algorithms
can be distributively deployed within participants or within
the centralized spectrum-access systems to facilitate spectrum
auctions and transactions [199]. Also, DRL can be utilized to
ensure efficiency of the consensus process, enhance energy-
efficient resource allocation, and reduce computation overhead
in Blockchain-enabled wireless networks [200]. In addition,
many of the auction’s winner-determination problems in future
wireless HetNets are expected to be extremely complex and
intractable due to the massive increase in the number of
participants, e.g., bidders and sellers. Hence, DRL algorithms
are efficient tools that can be utilized to solve such types of
problems.

c) Federated DRL (FDRL)-Based RRAM

Federated learning (FL) framework is envisioned mainly to
preserve data privacy in ML algorithms [201]–[203]. In FL,
ML algorithms are locally distributed at the wireless network
edge, and the data is processed locally and not shared globally.
The local ML models are then utilized for training a central-
ized global model. In this context, the federated DRL learning
(FDRL) scheme can be leveraged when many user devices
require making autonomous decisions locally. In such a case,
DRL agents do not exchange their local observations, and also,
not necessarily all agents receive reward signals [204].

Developing fine-grained policies in DRL becomes challeng-
ing when the state space is small and the training dataset
is very limited [205]. In FDRL, the direct exchange of data
between agents is not possible as this will preach the privacy
promise of FL scheme. Instead, local DRL models can be
developed and trained for agents with the help of other agents
while preserving users’ data privacy, as in [206]. Hence,
developing algorithms and schemes that guarantee data and
models privacy during both information sharing and models
updating is an interesting research direction.

FDRL framework can also be exploited in the RRAM of
modern HetNets. For example, it can be deployed for solving
complex wireless network optimization problems, such as
power control in cellular UDNs. In this context, FDRL can
ensure a global solution for optimization problems without
sharing information between BSs; each BS solves its optimiza-
tion problem locally and shares the results with neighboring
BSs. Also, FDRL can be adapted in distributed optimization
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TABLE IX
SUMMARY OF CHALLENGES AND FUTURE RESEARCH DIRECTIONS IN THE CONTEXT OF USING DRL FOR RRAM IN

FUTURE WIRELESS NETWORKS.

Developing DRL-based algorithms that optimally balance the centralization and distribution issue of RRAM in future large-scale
massive HetNets.
Reducing the dimensionality of state space in distributed MADRL algorithms during the learning process without slowing down
or degrading the quality of learned RRAM policies.
Developing more effective and reliable training approaches that generate accurate simulation datasets and capture practical system
settings.
Optimizing DRL models’ hyperparameters, especially in MADRL scenarios, and engineering the state space and reward functions
to capture representative information about system dynamics.
Designing agile DRL algorithms that can quickly update and retrain the DNNs in response to the rapid change of input information
from the highly dynamic HetNet environment.
Performing continuous retraining for the DRL models, especially MADRL, with fresh data in future large-scale and rapidly
changing wireless environments.O

pe
n

C
ha

lle
ng

es

Developing DRL models that are aware of the context aspect and use cases of various emerging applications.
Developing DRL algorithms that accommodate competing multi-objectives relevant to emerging applications.
Developing efficient and reliable DRL algorithms for RRAM in next-generation HetNets based on the XAI concept through, e.g.,
entity recognition, entity-relationship extraction, and representation learning.
Developing DRL-based Blockchain techniques to address the problem of distributed resource sharing and management for future
HetNets, e.g., to facilitate spectrum auctions and transactions, solving the problem of auction’s winner-determination, etc.
Developing FDRL algorithms that ensure global solutions for complex RRAM optimization problems while guaranteeing data
and models privacy during information sharing and models updating.
Developing DRL models to achieve intelligent load balancing in future self-sustaining (or self-organization) HetNets.
Developing light-weighted and agile networked MADRL algorithms that enable cooperation between agents with different
heterogeneous reward functions and adapt to environments with rapid mobility.
Developing ultra-reliable RRAM schemes by integrating DRL algorithms and GANs techniques to support emerging IoT
applications with high-reliability demands.

Fu
tu

re
R

es
ea

rc
h

D
ir

ec
tio

ns

Developing end-to-end DRL-based algorithms that jointly optimize the configuration of RIS systems, i.e., elements’ phases and
amplitudes, and radio resources of networks, e.g., downlink transmit power.
Developing DRL algorithms to address various RRAM problems in wireless digital twin networks, e.g., the DT placement and
migration problems.

settings, such as user association and channel access, to ensure
optimal global solutions.

d) DRL-Based Load Balancing for Self-Sustaining Net-
works

Load balancing in modern wireless UDNs is another promising
research direction. The objective is to balance the wireless
networks by moving some users from the heavily congested
BSs to uncongested ones, thus improving BSs utilization
and providing enhanced QoS provisioning. Although the load
balancing field has been heavily investigated in the literature
using conventional resource management approaches, as in
[207]–[209], there still a research gap in applying DRL for
such a field. In this context, DRL can be adopted to realize the
self-sustaining (or self-organization) vision of next generation
wireless networks [3]. Hence, developing single/multi-agent
DRL models to achieve intelligent load balancing in future
HetNets, is a possible research direction.

e) MADRL Algorithms in Support of Massive Heterogene-
ity and Mobility

Load balancing in modern wireless UDNs is another promising
research direction. The objective is to balance the wireless
networks by moving some users from the heavily congested
BSs to uncongested ones, thus improving BSs utilization
and providing enhanced QoS provisioning. Although the load
balancing field has been heavily investigated in the literature
using conventional resource management approaches, as in
[207]–[209], there still a research gap in applying DRL for
such a field. In this context, DRL can be adopted to realize the

self-sustaining (or self-organization) vision of next generation
wireless networks [3]. Hence, developing single/multi-agent
DRL models to achieve intelligent load balancing in future
HetNets, is a possible research direction. Such models must be
agile to network dynamics, including varying users’ mobility
patterns and network resources availability.

f) DRL-Based RRAM with Generative Adversarial Net-
works (GANs) for RRAM

Ensuring the reliability of DRL algorithms is one of the major
challenges and objectives in DRL-based RRAM methods. In
many real-life scenarios, we may require to deploy DRL
models to allocate resources in vital systems requiring ultra-
reliability, such as IoT healthcare applications [167]. In this
context, there are proposals on Generative Adversarial Net-
works (GANs), which have emerged recently as an effective
technique to enhance the reliability of DRL algorithms [210].

In practice, the shortage of realistic training datasets re-
quired to train DRL models and learn optimal policies is a
challenging issue. To overcome this, GANs are utilized, which
generate large amounts of realistic datasets synthetically by
expanding the available limited amounts of real-time datasets.
From a DRL perspective, GANs-generated synthetic data
is more effective and reliable than traditional augmentation
methods [79]. This is because DRL agents will be exposed to
various extreme challenging and practical situations by merg-
ing the realistic and synthetic data, enabling DRL models to
be trained on unpredicted and rare events. Another advantage
of GAN over traditional data augmentation methods is that it
eliminates dataset biases in the synthetic data, which greatly
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enhances the quality of the generated data and leads to more
reliability in DRL models’ training and learning processes.

In general, the research in the GANs-based DRL methods
for RRAM is still in its early stages, and we believe that it
will take further pace in the future. For example, developing
experienced DRL-based algorithms for URLL communication
using GANs in which DRL models are pre-trained based on a
mix of real and synthetic data is a promising research direction
as in [211].

g) DRL for RRAM in RIS-Assisted Wireless Networks

Reconfigurable Intelligent Surfaces (RIS) have emerged re-
cently as an innovative technology to enhance the QoS of
future wireless networks [212], [213]. RISs can be deployed
in cellular networks as passive reflecting elements to pro-
vide near line-of-sight communication links to users, hence
enhancing communication reliability, increasing throughput,
and reducing latency [214], [215]. Deploying RIS to assist
cellular communication, however, requires judicious RRAM
schemes to optimize network performance. This research field
is still nascent, and there is much to do for future research and
investigation, especially in the context of DRL-based RRAM
techniques. Towards this, it is required to develop end-to-end
DRL-based algorithms that jointly optimize the configuration
of the RIS system, i.e., elements’ phases and amplitudes,
and radio resources of BSs. For instance, designing DRL
models that intelligently and optimally allocate the downlink
BSs’ transmit power and/or BSs’ beamforming configuration
from one side and the amplitude and phase shifts of the RIS
elements on the other side is a promising research direction,
as in [43]. We also believe that the currently ongoing research
in RIS-assisted wireless networks, e.g., [43], [216]–[218] will
be cornerstones.

h) DRL for RRAM in Wireless Digital Twin Networks

Digital twin (DT) has recently emerged as a promising tech-
nology for future wireless networks [219]. DT is a virtual
representation of the components and dynamics of a given
physical system, which is envisioned to bridge the connection
gap between physical systems and digital spaces. The digital
replicas of physical systems, such as user devices, BSs, and
machines, are constructed at the server based on historical
data and real-time running status. DT utilizes tools from
ML, data analytics, and multiphysics simulation to study and
analyze the dynamics of physical systems. Therefore, DT
enables system monitoring, real-time interaction, and reliable
communication between physical systems and digital space
in order to optimize the operation of physical systems [220].
With these promising features, DT is getting considerable
interest recently in enhancing the performance of wireless
communication networks for applications, such as computa-
tion offloading, content caching, and RRAM. For example, a
promising research direction is to develop DRL algorithms to
address various problems in wireless DT networks, such as the
DT placement and migration problems [221], in capturing the
dynamics of UAV-based networks [222], in blockchain-based
networks to enhance network security and users privacy [223].

Table IX summarizes the open challenges and future re-
search directions provided in this section.

VI. CONCLUSION

This paper presents a comprehensive survey on the ap-
plications of DRL techniques in RRAM for next generation
wireless HetNets. We thoroughly review the conventional
approaches for RRAM, including their types, advantages,
and limitations. We then illustrate how the emerging DRL
approaches can overcome these shortcomings to enable DRL-
based RRAM. After that, we illustrate how the RRAM op-
timization problems can be formulated as an MDP before
solving them using DRL techniques. Furthermore, we conduct
an extensive overview of the most efficient DRL algorithms
that are widely leveraged in addressing RRAM problems,
including the value- and policy-based algorithms. The ad-
vantages, limitations, and use-cases for each algorithm are
provided. We then conduct a comprehensive and in-depth
literature review and classified the existing related works based
on both the radio resources they are addressing and the type
of wireless networks they are considering. To this end, the
types of DRL models developed in these related works and
their main elements are carefully identified. Finally, we outline
important open challenges and provide insights into future
research directions in the context of DRL-based RRAM.
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