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�e energy problem and limited capacity of batteries have been fundamental constraints in many wireless sensor network (WSN)
applications. For WSN, the wireless energy transmission technology based on magnetic resonance coupling is a promising energy
transmission technology. To reduce the cost and energy consumption during charging in mobile wireless rechargeable sensor
networks (MWRSNs), a cooperative mobile charging mechanism based on the Hamiltonian path is proposed in this paper. To
improve the charging task interval, we study the use of a mobile charger (MC) as a mobile sink node to collect the data in this
paper.�en, we used the sink and the charging sensors selected by theMC to construct the undirected complete graph. Finally, the
Euclidean distance between nodes is used as the edge weight and a Hamiltonian loop is found by using the improved
Clark–Wright (C-W) saving algorithm to solve the problem of charging a rechargeable sensor network. In addition to the energy
usage e�ciency (EUE) and the network lifetime, the average energy loss per unit time is considered as the evaluation index
according to the impact of the MC on the energy consumption during charging. �e simulation results show that the proposed
scheme increases the average network lifetime, decreases the average energy loss per unit time, and improves the EUE.

1. Introduction

WSNs have been applied in various monitoring applications,
including ambient air monitoring [1], forest �re detection
[2], electric networks [3], ecological environment moni-
toring [4], and medical health monitoring [5]. However, the
energy requirement was not �lled because of high compu-
tational resources, unreachable sensor nodes, and additional
maintenances [6]. Kurs et al. [7] proposed a coupling res-
onance method to charge remote targets wirelessly with high

e�ciency and demonstrated the feasibility of wireless
charging. �e wireless energy transmission technology has
the following advantages[8]:

Charging and charged instruments do not need to be
wired or connected
Charging direction is not �xed and does not need to be
in the visual range
Compared with other environments, the method to
obtain energy is predictable, stable, and controllable
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With the increasing development of wireless energy
transmission technology, research on wireless rechargeable
sensor networks (WRSNs) is gradually increasing. Recently,
WRSNs have been proposed, and multiple harvesting
techniques can be used to charge the batteries of the re-
chargeable sensor nodes.

MWRSN is amobile module added on the basis ofWRSN,
which attaches the MC and wireless sensor nodes to mobile
objects. A mobile rechargeable sensor network refers to the
active charging power node in a network, which can charge
wireless nodes for rechargeable sensor nodes by moving.
Compared with ordinary sensor networks, mobile re-
chargeable sensor networks have the following characteristics:

Rechargeability: the power of mobile rechargeable
sensor nodes can be supplemented. In theory, the
MWRSN can keep working permanently.
Mobility: the movement of the MC nodes and sensor
nodes makes the topology ofWSN change dynamically.
Limitation: in practical applications, the charging ca-
pacity of the MC is limited, which is reflected in the
limited moving speed, charging power, and total
energy.

*eoretically, the MWRSN can remain in permanent
operation. However, in practical applications, the charging
capacity of an MC is limited, which is manifested in limited
moving speed, charging power, and total energy. *erefore,
to realize the permanent existence of MWRSN, an MC is
required not only to dynamically adjust its mobile charging
mode according to the network state when charging task
requests occur but also to cooperate with wireless sensor
nodes to complete charging tasks efficiently.

At present, a number of studies have explored charging
strategies and algorithms for MWRSN, most of which fo-
cused on offline recharging. Offline charging is assumed that
the energy consumption rate of each sensor node is always
fixed. *e MC plans charging paths in advance according to
the energy consumption of nodes in the network in the
previous operation stage. During charging, MCmoves along
the planned paths periodically to replenish energy for sensor
nodes [9]. However, in practice, the energy consumption
rate of nodes is not fixed, and the energy consumption of
sensor nodes shows high dynamics and diversity affected by
the surrounding environment [10]. *erefore, if MC charges
according to the predetermined charging path and strategy
in offline charging, it will cause sensor node failure and
serious degradation of the performance of the charging
algorithm. To solve the problems of offline charging, some
researchers put forward the online charging mechanism. In
online charging, MCmakes the charging strategy in real time
and dynamically according to the actual residual energy of
the sensor nodes. Compared with offline charging, online
charging can better adapt to the energy needs and changes of
actual nodes. However, the design of an online charging
strategy has the following challenges:

Due to the dynamic change of node energy con-
sumption rate, it is challenging to plan the charging
path of MC dynamically in real time according to the

actual remaining energy status of nodes and timely
charge to avoid node failure.
*e charging response should be fair. When the
number of nodes requesting charging increases, the
failure rate of sensor nodes should be reduced as much
as possible.
In the charging process, the energy cost caused by MC
movement should be reduced as much as possible and
the energy carried by MC should be converted into
effective energy for sensor charging as much as
possible.

To solve these problems, in this paper, a stop-wait
collaborative charging algorithm based on a Hamiltonian
path is proposed in MWRSN. Compared with the existing
work, the innovation of this paper is as follows:

To improve the charging task interval, we study the use
of an MC as a mobile sink node to collect the data and
establish the optimum model of the stop position.
To improve the EUE of MWRSN, the charging sensor
node of the next round is considered as the current
charging task scheduling in this algorithm when the
power of MC is allowed.
To reduce the mobile path, an improved C-W saving
algorithm is used to establish the Hamiltonian charging
path according to the stop position of the mobile
charger and the location of charging sensor nodes and
sink.
To charge more sensors, the MC will not be fully
charged for all sensors. As the MC passes by the stop-
wait position, the stop-wait charging sensor node
moves to meet with the MC and be charged.

2. Related Works

2.1. Optimization Schemes of the MWRSN. Rechargeable
charging task scheduling problems for WSN have been
studied in [9–15]. According to the wireless energy trans-
mission technology, corresponding wireless sensor network
models and optimization problems have been proposed. By
solving the approximate optimal solution of the corre-
sponding optimization problem, the charging scheme of the
wireless charging node was obtained, which improves the
charging efficiency of the sensor network. Budgetary con-
straints for different expenditure categories have been
considered in [11]. *e problem of scheduling the minimum
number ofMCs was investigated to replenish energy from all
sensors in a WRSN. However, this method did not consider
the dynamic topology problem when mobile charging nodes
traverse sensor nodes in the network as data acquisition
devices to collect data. A path planning model for mobile
wireless charging equipment (WCE) based on multi-
objective optimization was proposed to replenish energy and
collect data in [12]. *e limited energy of WCE in WRSN
was considered to maximize the total energy utility of the
mobile WCE and minimize the average delay of data
transmission in this method. However, this method lacks
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charging task coordination mechanism, which affected the
charging utility and network energy consumption. To
maximize the utilization rate of the MC and reduce the
recharging delay, a cost-balanced mobile energy replen-
ishment strategy (CBMERS) was proposed in [13].
According to their remaining lifetime, the nodes are
assigned into groups to ensure that only nodes with lower
residual energy in each slot are recharged. To balance the
energy consumption between multiple MCs, the optimal
trajectory allocation scheme was obtained by taking the
moving distance and energy consumption as constraints.
However, charging requests have an unbalanced effect on
spatiotemporal constraints. To maximize the charging effi-
ciency, a mixed-integer optimization model for simulta-
neous charging scheduling and charging time allocation is
established in [14]. An offline algorithm was proposed to
solve the problem, and an online charging node insertion
algorithm was developed for real-time service. However, this
method was only suitable for real-time business scenarios
and not suitable for sparse networks. An efficient scheme for
energy replenishment of sensor nodes was proposed to
improve overall charging performance in [15]. *e optimal
trajectories for a given number of WCVs based on the
routing loads of the sensor nodes were designed to make the
network operational for a longer time. However, the rate of
energy consumption varies dynamically due to the uncer-
tainty of environmental conditions; therefore, a periodical
charging scheme was infeasible for complex and changeable
networks. In [16], a optimization problem with the target of
maximizing the ratio of MC’s vacation time over one entire
cycle time is proposed to improve channel utilization and
prolong network lifetime. However, this method did not
involve the dynamic topology of WRSN. *is method was
not suitable for a mobile network with a dynamic topology.
*en, an optimization problem was formulated to maximize
theMC’s vacation time over the rechargeable cycle. In [17], it
was assumed that an MC must charge a sensor to its full
energy capacity before moving to charge the next sensor and
that each sensor could be partially charged. To maximize the
sum of the sensor lifetimes and to minimize the travel
distance of the MC, two novel optimization problems of
scheduling an MC to charge a set of sensors were formu-
lated. Although this method increases the number of nodes
that an MC can serve, it also accelerates the scheduling
frequency as well as the energy consumption rate of the MC.

A power beacon (PB) andmultiple wireless powered user
nodes were considered static networks in [18]. All user nodes
assumed either a charge or work mode. A charge scheduling
scheme that achieved the system’s maximal energy efficiency
was proposed, and this scheme was extended to a two-tier
network architecture. An energy-efficient traveling path for
multiple MCs was designed in [19]. *is method divided the
whole network into many subregions to maximize the
benefit of multiple MCs. To find the charging points, the
charging radius based nearest neighbor approach was used
to improve the charging efficiency. However, different
sensors have different contributions in terms of the moni-
toring quality that was ignored in this method. Similar to the
study in [19], a novel fuzzy logic-based on-demand charging

scheduling scheme in WRSNs [20] was proposed to equally
distribute the workload to each MC. To recharge the nodes
with different energy consumption rates, the adaptive
threshold for charging requests was considered in this study.
To prolong the life of WSN and minimize the travel distance
of mobile chargers, a dynamic mobile charger scheduling
(DPMCS) scheme is proposed in the literature [21]. *e
node requests a charge before it runs out of energy and the
mobile charger charges it. *is scheme uses deep rein-
forcement learning to determine the schedule of the mobile
charger. It prolongs the life of WSN by reducing the number
of dead zone nodes andminimizing the travel distance of the
mobile charger. To maximize the network lifetime, a two-
phase lifetime-enhancing method (TLM) is proposed in
[22]. In the first phase, a multiobjective particle swarm
optimization (MOPSO) algorithm was proposed to relocate
useful mobile rechargeable sensor nodes at optimal locations
to meet the full target coverage. In the second phase, a
modified binary multiobjective evolutionary algorithm was
adopted to extend the network lifetime. However, these
methods did not consider the dynamic topology of anMC as
a data acquisition device. In [23–26], an MC was considered
a data collection device to obtain data information from the
sensor node when charging the sensor node. Based on this
concept, dynamic topology working modes in WRSN were
proposed. However, these methods lacked the coordination
mechanism of charging task, which affected the charging
utility and network energy consumption.

2.2. Cooperative Schemes of the MWRSN. Energy efficiency
remains a great challenge without collaboration. To increase
the survival rate of nodes in 3D underwater networks, a new
temporal and spatial collaborative charging algorithm with
multiple mobile charging ships and charging stations (mCS-
TS) was proposed in [27]. A concept of secondary charging
stations for mobile charging ships was designed to reduce
the traveling cost and improve charging efficiency. Simu-
lation results show the effectiveness of the proposed algo-
rithm. *is method has the problem of spatiotemporal
synchronization and lacks the cooperative collection
mechanism of MC. *e application of this method has
certain scenario limitations.

*e collaborative feature by forming a hierarchical
charging structure was proposed in [28]. *e authors dis-
tinguish the chargers into two groups: the hierarchically
lower MCs which charge sensor nodes and the hierarchically
higher special chargers (SCs) which charge MCs. Four
collaborative charging protocols were proposed to achieve
efficient charging and improve important network prop-
erties. However, this method does not consider the mobility
of nodes and the dynamic changes in network topology. It
will cause long moving paths and excessive energy con-
sumption during the next cycle of task coordination.

To solve the periodic charging of WSN, in [29], the
charging problem in WSN was modeled as a routing
problem of mobile charging nodes with time windows. *is
method transformed multiple routing problems into a single
routing problem and proposed a local optimization
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algorithm considering the collaboration between mobile
charging nodes. Simulation results showed that the proposed
algorithm had certain advantages in charging scheduling.
However, this method did not consider the dynamic to-
pology of anMC as a data acquisition device when traversing
sensor nodes in the network. In [30], a collaborative
scheduling algorithm was proposed for mobile charging
tasks, which allowed energy transfer between MCs. It was
demonstrated that this algorithm could cover an infinite
length of a one-dimensional (1D) wireless sensor network
under three assumptions. *en, the hypothesis was removed
one by one, and the method was extended to constrained
two-dimensional (2D) wireless sensor network scenarios.
Simulation results showed that this method could improve
the energy efficiency of charging. *is method lacks the
cooperative collection mechanism of MC, resulting in the
problems of short network lifetime and frequent charging
task scheduling. To reduce costs, a novel concept and an
optimal charging algorithm were introduced in [31]. It was
demonstrated that push-shuttle-back (PSB) could achieve
the minimum number of chargers and the optimal shuttling
distance in a 1D scenario with negligible energy loss. *e
algorithm extended the solution to 2D scenarios and in-
troduced a new circle-based scheme to improve charging
efficiency and reduce the number of chargers needed to serve
the sensor network. However, this method incurs high
overhead; the major drawback is the large traveling cost
because the MC needs to go back and forth between a
charging station and sensors. To adapt to large-scale WRSN,
a temporal-spatial charging scheduling algorithm was de-
veloped in [32]. *is method aimed to minimize the number
of dead nodes while maximizing energy efficiency to prolong
the network lifetime. A node deletion algorithm was de-
veloped to remove low-efficiency charging nodes. Simula-
tion results showed that this scheme could achieve
promising performance in charging throughput and effi-
ciency. However, this method fails to take into account the
heterogeneous energy consumption of the nodes which
should be given further consideration since it reduces the
EUE. In [33], according to the importance of the sensor node
(associated with the distance to the base station), the sensor
nodes were divided into two types: sensor nodes in ring 0
and sensor nodes in the outer ring. To improve the charging
efficiency, a novel charging model for wireless charging
vehicles (WCVs) was proposed to adopt different charging
strategies for different sensor nodes. To estimate the lifetime
of the network, a new metric named the normalized dead
time was proposed. *e simulation results indicated that the
performance of the WRSN could be improved. Due to the
limited energy resources of WRSNs, there will be resource
competition among nodes.

*e limitations of these algorithms need to further study
the collaborative charging scheduling problem of the
MWRSN. In this work, a stop-wait collaborative charging
algorithm is designed to improve the EUE of WSN. *e
charging sensor node of the next round is considered as the
current charging task scheduling. *e charging task interval
of the MC is used to select the sensors and determine the
charging sequence and stop-wait charging set. *e position

nearest to the stop-wait charging sensor node is selected as
the stop-wait position. As the MC passes by the stop-wait
position, the stop-wait charging sensor node moves to meet
with the MC and be charged. To charge more sensors, the
MC will not be fully charged for all sensors in our algorithm.
*e simulation results show that the stop-wait algorithm can
achieve a better EUE of WSN compared with DPMCS [21],
MUC [34], BNRS [35], and VN-MOAC [36] algorithms.
Compared with existing cooperative mobile recharge
schemes, our proposed algorithm contributes the following
improvements:

Considering the data collection of the MC, we first
present a novel optimal approach to determine the stop
position for the MC to collect data as a mobile sink
node after the charging scheduling task is completed.
Hence, the charging task interval can be extended.
*en, a cooperative recharge scheme based on a
Hamiltonian path is designed which utilizes the im-
proved C-W method for determining the charging of
the nodes by contemplating various network attributes.
*e charging sensor node of the next round is proposed
as the stop-wait charging sensor node of the current
round. *e aim is to avoid the MC having to charge
these nodes in the next round and reduce network
energy consumption.
Considering the limited power of the MC in the es-
tablishment of a mobile path, an incomplete charging
mode is proposed to improve the serviceability of the
MC. *e sensor node is charged according to the
maximum number of cycles that can be achieved be-
tween charging tasks.
*e proposed algorithm is evaluated through extensive
simulations and compared with four existing and
similar works in terms of EUE, average energy loss per
unit time, and average network lifetime.

*is paper is organized as follows: Section 2 presents
brief related works of charging schemes. Section 3 intro-
duces the assumptions, definitions, wireless rechargeable
sensor network model, and network energy consumption
model. Section 4 describes the algorithm of cooperative
recharging based on the Hamiltonian path in the MWRSN.
Simulation results and analyses of the algorithms are pre-
sented in Section 5. Finally, the conclusions are drawn in
Section 6.

3. System Model

3.1.WSNChargingModel. Assume S� {si, where i in 1, 2, . . .,
n} is the senor node set of WSN, and the location of mobile
wireless sensor node si is li � (xi, yi). *e communication
radius of sensor si is ri, and the average moving velocity of
sensor si is vi. *e energy consumption of each sensor in-
cludes the energy consumption of data transmission and the
movement of sensor nodes. *e battery capacity of si is bi,
and the average energy consumption rate of si is ei. *e
energy consumed by the sensor moving one unit distance is
em,i. *e maximum lifetime of si is τi and τi � bi/ei. *e
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charge cycles of sensor si are τc,i and τc,i � bi(1 − ω)/ei, where
ω is the low power indicator percentage of the sensor to
guarantee the normal work of sensor si. *e MC will re-
charge sensor siwhen the power is less than biω. Assume that
a low-power indicator percentage ω can ensure the
remaining survival time of sensor node biω/ei and will not
fail due to battery drainage before the MC task scheduling.

*e battery capacity of the MC is BC, and the average
moving velocity of the MC is vc. *e movement and wireless
charging of the MC share a battery charge, and the energy
consumption of moving per unit distance for the MC is ec.
*e sink node in this model serves as the base station data
service point as well as the energy source. Without loss of
generality, the sink is taken as the coordinate origin (0, 0).
*e MC starts to move from the sink node for the sensor
network charging task and will return to the sink node to
receive the charging service when the power is low. *e
charging efficiency of theMC and the sensor node is ηc. If the
power consumed by the MC to charge the sensor node is C,
then the power obtained by the sensor node is ηcC. *e
lifetime of the MWRSN Tl is the minimum lifetime of a
sensor in the set S and can be calculated in the following
formula:

Tl � min
i�1

n

τi( 􏼁

� min
i�1

n bi

ei

􏼠 􏼡.

(1)

*e lifetime of sensor si is τi, ei is the average energy
consumption rate of si, and n is the number of sensor nodes
in the WSN. Considering the actual situation, the charging
task interval of MC Tcti is defined based on the network
lifetime in this paper. If the power of sensor si is less than biω,
the MC will recharge sensor si. *erefore, the charging task
interval of MC, Tcti, is the time between the completion of
charging and the start of the next charging task in this paper.
*e charging task interval of MC Tcti is defined as follows:

Tcti � min
i�1

n

τc,i􏼐 􏼑

� min
i�1

n bi(1 − ω)

ei

􏼠 􏼡.

(2)

3.2. WSN Transmission Energy Consumption Model.
Here, we consider the radio model and the related pa-
rameters referenced in [34].*e energy consumption of each
sensor node sends a packet to the next forwarding node over
a distance rc, which is defined as follows:

ET(l, r) � leelec + lεfsr
2
c . (3)

*e energy consumption of each sensor node receives a
packet as shown in the following formula:

ER(l) � leelec, (4)

where l is the packet length, eelec is the energy consumption
of the electronic equipment of a bit, and εfs is the energy
consumption of the wireless antenna amplifier. *us, the
energy consumption of i to relay a packet one time is defined
as follows:

Ei � ET,i l, rc( 􏼁 + ER(l). (5)

3.3. WSN Mobile Energy Consumption Model. *e mobile
energy consumption model of mobile sensor nodes and the
MC are referred to in [37]. *e wireless sensor network
transmission energy consumption model is defined as
follows:

Em,c dm,c􏼐 􏼑 � dm,cec, (6)

Em,i dm,i􏼐 􏼑 � dm,iem,i, (7)

where Em,c(dm,c) is the mobile energy consumption of the
MC and ec is the energy consumption per unit distance
moved by the MC, where ec �mc gμc, mc is the mass of the
MC, g is the gravitational acceleration, and μc is the dynamic
friction factor between the MC and the ground. Em,i(dm,i) is
the mobile energy consumption of sensor si, and em,i is the
energy consumption per unit distance moved by sensor si,
where em �mm,igμm,i,mm,i is the mass of sensor si, and μm,i is
the dynamic friction factor between sensor si and the
ground.

3.4. @e MWRSN Evaluation Index. *e energy consump-
tion of WSN in a charging scheduling cycle contains the
energy obtained by the sensors, the moving energy con-
sumption of the MC and sensors, and the energy loss
consumed during charging.*e payload energy is the energy
obtained by the sensors and is defined as Epl. *e overhead
energy is the moving energy consumption of the MC and
sensors during charging and is defined as Eoh. *e EUE is
defined as follows:

EUE �
E

pl

E
pl

+ E
oh

􏼐 􏼑
. (8)

*e network lifetime is the time when the first node in
the wireless sensor network runs out of energy. *e average
network lifetime is the average lifetime of MWRSNwhen the
sensor network is randomly deployed for many times in the
case of the same battery capacity. *e average network
energy consumption per unit time is the ratio of wireless
transmission energy consumption of MWRSN to the same
charging task interval under multiple random deployments
of MWRSN. *e mobile energy consumption is the moving
energy consumption of the MC and mobile sensors. *e
average mobile energy consumption is the average moving
energy consumption of the MC and mobile sensors under
multiple random deployments of MWRSN. Charging task
scheduling times is the number of charging scheduling
performed by MC at the same battery capacity. Average
charging scheduling times are the average number of MC
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charging task scheduling times when the sensor network is
randomly deployed for many times in the case of the same
battery capacity.

To better evaluate the mobile sensor network charging
model, in addition to energy efficiency, network lifetime, and
energy consumption, the average moving loss per unit time
(AMUT) is introduced to evaluate the mobile energy cost of
the MWRSN charging task. In a charging task interval, the
moving energy consumption of a mobile rechargeable
sensor network Eme mainly includes the moving energy
consumption of the MC and sensor nodes. For the whole
MWRSN, the moving energy consumption Eme is the lower
the better. *e charging task interval Tcti of MWRSN is the
longer the better. *e AMUT is defined as follows:

AMUT �
E
me

Tcti

. (9)

3.5.Main Symbols in Section 3. *emain symbols in Section
3 are shown in Table 1.

4. Cooperative Mobile Recharge Method

*e cooperative mobile recharge method of MWRSN based
on the Hamiltonian path (STCI-TR) in this paper consists of
six parts: charging task scheduling request, determining stop
position of the MC, determining the charging sensor set,
determining stop-wait charging sensor set and stop-wait
position, establishing the Hamiltonian path, and cooperative
charging. *e flowchart of the STCI-TR algorithm is shown
in Figure 1.

4.1.Definitions andAssumptions. *e definitions used in the
cooperative mobile recharge method of MWRSN are as
follows:

*e network lifetime is the time when the first node in
the wireless sensor network runs out of energy [22]

*e charging task interval is the time from the be-
ginning of a charging task to the beginning of the next
charging task for the MC in the sensor network

*e stop position is the best location for the MC as a
mobile sink node to collect data in WRSN after the
charging scheduling task is completed by the MC

*e stop-wait position is the location where the MC and
the stop-wait charging sensor nodes meet to charge
during the process of the MC moving and charging
along the specified path

*e energy usage effectiveness is the ratio of the effective
energy obtained by WRSN to the total energy cost of
the MC and sensor nodes during the charging process
[30]

*e assumptions in the wireless rechargeable sensor
network model are as follows:

Assumption 1: the sensor node in the mobile re-
chargeable sensor network sends a 256 bit packet per
second for data transmission.
Assumption 2: the sink node and the MC are able to
obtain the geographic location (such as through Bei-
Dou, GPS positioning, or other positioning methods)
of all nodes in the wireless sensor network.
Assumption 3: the connectivity of the mobile re-
chargeable sensor network is at least 2 connections.
*is means that at least 2 nodes are deleted to destroy
the connectivity of the network.
Assumption 4: the coverage of the mobile rechargeable
sensor network is at least 2 times the coverage. *is
means that every point in the monitoring area can be
covered by at least 2 sensor nodes.
Assumption 5: after the low power prompt of the node
in MWRSN, the remaining lifetime of the node can
ensure that the MC will arrive at the node. Node failure
will not occur due to power exhaustion before charging.

4.2. Charging Task Scheduling Request. When the power of
sensor si is less than biω, sensor si will send the charging
request message (CRequest (i)) to the MC. After receiving
the message CRequest (i), the MC will collect the residual
power, geographical location, and low-power indicator
percentage of all sensors in the MWRSN. In practical ap-
plication, the power information of the sensor nodes
changes little in a short time. To reduce the unnecessary
energy, the sensor will carry its own information (including
residual power bi

′, geographical location li,, and low power
indicator percentage ω) when sending data to sink nodes.
*e maximum lifetime τi and residual lifetime τi

′ of sensor si
will be calculated by the MC according to this information.
Next, the MC determines its stopping position according to
the collected information.

4.3. Determining the Stop Position of the MC. *e stopping
position in this paper refers to the optimal position for the
MC to collect data as a mobile sink node after the charging
scheduling task is completed. To prolong the network
lifetime and reduce the overall energy consumption of the
network, after the charging is completed, the MC will move
to the stop position as mobile sink nodes for the data ac-
quisition task. *e MC will wait for the next round of
charging task scheduling at the stop position. *e new data
transmission path of the MWRSN will be planned according
to the movement of the MC and its position. *e stop
position of the MC will affect the lifetime and energy
consumption of wireless rechargeable sensor networks.
*erefore, it is a key point of this algorithm to determine the
appropriate stopping position.

4.3.1. Stop Position Problem of MC. Assume S� {si: 1, 2, . . .,
n} is the set of WSNs, and the location of mobile wireless
sensor node si is li � (xj, yj). *e nodes of the wireless re-
chargeable sensor network are divided into a service group
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of sink Ss and a service group of MC Sm. When sensor node
si,s is served by a sink, si,s ϵ Ss � {si,s: 1, 2, . . ., ns}, its data are
transferred to a sink node through one or more hops; then,
the decision variable Xi is 1; otherwise, it is 0. When sensor
node sj,mc is served by the MC, sj,mc ϵ Ss � {sj,mc: 1, 2, . . ., nmc},
its data are transferred to the MC through one or more hops;
then, the decision variable Xj is 1; otherwise, it is 0. Di,s and
Di,mc are the amount of data sent per unit time by sensor
nodes in the service group of the sink and service group of
the MC, respectively. ei,s and ej,mc are the unit energy
consumption of sensor nodes in the service group of the sink
and service group of the MC, respectively. bi,s

′ and bj,mc
′ are

the actual remaining power of the sensor nodes in the service
group of the sink and the service group of the MC, re-
spectively. di,s is the Euclidean distance from sensor node si,s
to the sink, and dj,mc is the Euclidean distance from sensor
node sj,mc to the MC.

To reduce energy consumption and prolong the net-
work lifetime, it is necessary for the MC to select the
location that has a long remaining lifetime and the min-
imum total distance from each node. *e objective
function of this problem is to minimize the total weighted
distance from the sink service group node to the sink (the
sum of the ratio of Euclidean distance di,s to remaining

lifetime of sensor si,s) and from the MC service group node
to the MC (the sum of the ratio of Euclidean distance dj,mc
to remaining lifetime of sensor sj,mc). *e sink node and
the MC can obtain the geographic location (Assumption 2)
of sensors in the wireless sensor network and the network
uses the GPSR (greedy perimeter stateless routing) pro-
tocol. So the sink node and MC can calculate the di,s and
dj,mc easily. Di,s and Di,mc can be obtained by the sink node
and the MC when they collect the data. *e sink node and
the MC know the geographic location of the sensor nodes
in the wireless sensor network and use the GPSR protocol.
According to the network topology, it is easy for the sink
node to evaluate and calculate the amount of data received
and forwarded by each sensor node.*erefore, ei,s and ej,mc
can be calculated by the sink node according to formulas
(3)–(5). *e problem model of the MC stop position is as
follows:

min 􏽘

ns

i�0

di,sXi,s

τi,s
′

+ 􏽘

nmc

j�0

dj,mcXj,mc

τj,mv
′

, (10)

s.t. 􏽘
n

i�1
Xi � ns, (11)

Table 1: Table of main symbols in Section 3.

Symbol Parameter
li Location of mobile wireless sensor node si
vi Average moving velocity of sensor si (m/s)
bi Battery capacity of si (J)
ei Average energy consumption rate (J/s)
em,i Energy consumption of si moving one unit distance (J/m)
τi Maximum lifetime of node si (s)
τc,i Charge cycles of sensor si (s)
Ω Low power indicator percentage of the sensors (%)
BC Battery capacity of the MC (KJ)
vc Average moving velocity of the MC (m/s)
ηc Charging efficiency of the MC and the sensor node (%)
Tl Lifetime of the MWRSN (s)
Tcti Charging task interval of the MC (s)
rc Communication radius (m)
L Packet length (bit)
ET (l, r) Energy consumption of each sensor node sends a packet to the next forwarding node over a distance rc (J)
ER (l) Energy consumption of each sensor node receives a packet (J)
Ei Energy consumption of i to relay a packet one time (J)
Di *e data size collected by the sensor node per unit time (bit/s)
eelec Energy consumption of the electronic equipment of l bit (nJ/bit)
εfs Energy consumption of the wireless antenna amplifier (pJ/bit)
Em,c (dm,c) Mobile energy consumption of the MC (J)
mcg Force of gravity in the MC (N)
ec Energy consumption per unit distance moved by the MC (J/m)
μc Dynamic friction factor between the MC and the ground
Em,i (dm,i) Mobile energy consumption of sensor si (J)
em,i Energy consumption per unit distance moved by sensor si (J/m)
mm,ig Force of gravity in sensor si (N)
μm,i Dynamic friction factor between sensor si and the ground
Epl Payload energy (the energy obtained by the sensors) (J)
Eoh Overhead energy (the moving energy consumption of the MC and sensors and the energy consumed loss during charging) (J)
Eme Moving energy consumption of the MWRSN (J)
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∑
n

j�1
Xj � nmc, (12)

ns + nmc � n, (13)

where ∑nsi�0 di,sXi,s/τi,s′ is the sum of the ratio of Euclidean
distance di,s to the remaining lifetime τi,s′ of sensor si,s and
τi,s′ � bi,s′/Di,sei,s. ∑

nmc
j�0 dj,mcXj,mc/τj,mv′ is the sum of the ratio

of Euclidean distance dj,mc to the remaining lifetime τi,mc′ of
sensor sj,mc, and τi,mc′ � bi,mc′/Di,mcei,mc.�e number of sensor
nodes in the service group of the sink is ns and the number of
sensor nodes in the service group of the MC is nmc. �e
number of nodes in the MWRSN is n. �e decision variables
Xi and Xj are de�ned as follows:

Xi �
1, if sensor si is served by Sink,

0, else.
{

Xj �
1, if sensor sj is served byMC,

0, else.
{

(14)

Constraint formula (11) is the sensor node served by the
sink node. Constraint formula (12) is the sensor node served
by the MC. Constraint formula (13) ensures that each sensor
node can only send data to the nearest sink node or MC, and
the sum of the two service group nodes is the number of
nodes in the MWRSN.

4.3.2. Solution of Stop Position Problem. To quickly obtain
the stopping position of the MC, the Newton method with
fast convergence is selected to solve the problem.�e speci�c
solution process is as follows:

Step 1: the MC selects the initial point. �e MC node
starts from the sink node at the beginning, and the
coordinate origin (taking the sink node as the coor-
dinate origin) is selected as the initial point. �e initial
point is de�ned as Lmc,0(x0, y0) and x0� y0� 0. �e
termination error is ε> 0 and let t� 0.
Step 2: the MC calculates the gradient vector. Let
f(Lmc,t) � ∑

ns
i�0 di,sXi,s/τi,s′ +∑

nmc
j�0 dj,mcXj,mc/τj,mv′. �e

gradient vector can be calculated as in formula (15). If
the magnitude of the gradient vector is less than the
termination error ‖∇f(Lmc,t)‖≤ ε, the iteration is
stopped and the position coordinate Lmc,t� (xt, yt) is
output. �en, the coordinate value is the stop position
Sp, and the algorithm ends. Otherwise, go to Step 3.
Step 3: the MC constructs Newtonian directions. MC
calculates [∇2f(Lmc,t)]− 1 and constructs Newtonian
directions Pt: Pt � − [∇2f(Lmc,t)]− 1∇f(Lmc,t).
Step 4: �nd the next iteration point. Let
Lmc,t+1� Lmc,t+Pt, t� t+ 1; return to Step 2.

∇f Lmc,k( ) �

∑
nmc

j

Dj,mcej,mc xk − xj,mc( )Xj,mc

bj,mc′
�����������������������
xk − xj,mc( )2 + yk − yj,mc( )2

√

∑
nmc

j

Dj,mcej,mc yk − yj,mc( )Xj,mc

bj,mc′
�����������������������
xk − xj,mc( )2 + yk − yj,mc( )2

√





. (15)

4.4. Determining the Charging Sensor Set. After the MC stop
position is determined, the MC calculates the charging task
interval Tcti according to its stop position and selects the
sensor node. First, the sink node collects information such as
the location, residual power, and battery capacity of sensors
in the MWRSN. �en, the MC predicts the data trans-
mission path and transmission energy consumption of the
sensor nodes according to the information collected by the
sink node. �e lifetime of the MWRSN Tl and charging task
interval Tcti can be calculated according to formulas (1) and
(2). Finally, according to the calculated charging task in-
terval Tcti, the MC selects the sensor node as the element in
the charging set SC of the current scheduling cycle. When
τi′ <Tcti, the remaining lifetime of sensor node si is less than
the charging task interval. �en, the node is added to the
charging sensor set Sc�<s1, s2, . . ., sq>.

After determining the charging sensor set Sc, the
charging quantity of each charging sensor node in the
current round of the charging task should be calculated by
the MC. To make the MC charge more sensor nodes, in this
model, theMC is not always fully charged when charging the
sensor node. �e charging task interval is considered,
and the charging power of sensor si is calculated based on
the number of charging task intervals that sensor node si

algorithm begin

Charging task scheduling request

Determining charging sensor set

Determining stop-wait charging sensor
set and stop-wait position

End of algorithm

Establishing Hamiltonian path

Cooperative charging

Yes

Determining stop position of MC

Is there a charging task
scheduling request?

No

Figure 1: Flowchart of the STCI-TR algorithm.
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can work at full charge. *e charging power of sensor si
is defined as bi,c and can be calculated in the following
formula:

bi,c � ⌊ τi

Tcti
⌋∗Tcti ∗ ei − bi

′, (16)

where bi
′ is the remaining battery power of sensor si and ei is

the average unit transmission energy consumption of sensor
si. ⌊τi/Tcti⌋ is the number of charging task intervals that
sensor node si can work at full charge.

4.5. Determining Stop-Wait Charging Sensor Set and Stop-
Wait Position

4.5.1. Establishing Complete Graph. A complete graph G
(Sink, Sc, Sp) is established by the MC. It is composed of the
sink node, charging sensor set Sc, and stopping position Sp.
In addition, any two points are connected by edges.*eMC
will construct the Hamiltonian path based on the estab-
lished complete graph. Initially, theMC starts from the sink
node and traverses the charging sensor set Sc �<s1, s2, . . .,
sq> to charge the sensor nodes. After the sensors are
charged by the MC, the MC will move to stop position Sp
as a mobile sink for data collection. *e mobile re-
chargeable sensor network performs routing planning
according to the location of sink nodes and the stop po-
sition of the MC.

4.5.2. Determining the Stop-Wait Charging Sensor Set.
After the charging sensor set Sc is determined, to be able to
charge more sensor nodes, the sensor nodes that need to be
charged in the next round are also added to this charging
task. According to the charging task interval, the MC selects
the nodes that need to be charged in the next round as the
stop-wait charging sensor nodes. When the survival time of
sensor node si meets Tcti< τi

′ < 2Tcti, the si node is added to
the stop-wait sensor charging set and the stop-wait charging
sensor set is determined to be S2,c �<s2,1, s2,2, . . ., s2,w>.

4.5.3. Determining the Stop-Wait Position. In this paper, the
stop-wait positions refer to the positions where the MC
and stop-wait charging sensor nodes meet to perform
cooperative charging during the mobile charging process
of the MC in the specified path. When the MC is moving, it
will evaluate the time to reach the stop-wait position
according to the moving speed of the MC and the distance
between the MC and the stop-wait position. *en, the MC
will send this information to the stop-wait charging sensor
nodes on the path. *e stop-wait charging sensor nodes
will move according to the received information. Finally,
the MC will meet with them at the stop-wait positions to
charge the stop-wait charging sensor nodes. To reduce
mobile energy consumption, it is important to determine
reasonable stop-wait positions. *e set of edges in

complete graph G(Sink, Sc, Sp) is defined as E(G) � (E1, E2,
. . ., E(q+1) (q+2)/2). Here, q is the number of charging sensor
nodes, and the number of edges in complete graph G(Sink,
Sc, Sp) is (q + 1) (q + 2)/2. *e stop-wait position is the
position with the shortest distance from the stop-wait
sensor node to the edge set E(G) of graph G(Sink, Sc, Sp).
*e shortest distance d(s2,i) from the stop-wait sensor
node s2,i to the edge set E(G) can be calculated as in the
following formula:

d s2,i􏼐 􏼑 � min
u�1

(q+2)(q+1)/2
d s2,i, Eu􏼐 􏼑, (17)

where Eu is an edge of E(G) and Eu ϵ E(G). *e shortest
distance from the stop-wait sensor node s2,i to the edge Eu is
defined as d(s2,i, Eu). *e vector algorithm is used to cal-
culate the shortest distance and determine the stop-wait
position. Because of the directionality of the vector, the
judgment of the direction can be obtained directly according
to its sign, which makes the calculation of the shortest
distance and the determination of the stop-wait position
easy to solve. Especially when the amount of data to be
calculated is large, this method has obvious advantages.
d(s2,i, Eu) can be calculated as follows:

d s2,i, Eu􏼐 􏼑 �

su− 1s2,i
������→􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, if ψ ≤ 0,

sus2,i
����→􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌, if ψ ≥ 1,

s2,pis2,i
�������→

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌, otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

*e d(s2,i, Eu) is described in Figure 1. *e unit vector in
the direction of su− 1su

�����→ is su− 1su
�����→/|su− 1su

�����→
|. (su− 1s2,i

������→
, su− 1su

�����→
) is

the inner product of two vectors, and
(su− 1s2,i

������→
, su− 1su

�����→
) � |su− 1s2,i

������→
| · |su− 1su

�����→
|cos θ, where θ is the

angle between the vectors su− 1s2,i
������→ and su− 1su

�����→ and |su− 1s2,i
������→

| and
|su− 1su
�����→

| are modules of vectors su− 1s2,i
������→ and su− 1su

�����→,
respectively.

*e length of su− 1s2,pi
��������→ is (su− 1s2,i

������→
· su− 1su

�����→
)/|su− 1su

�����→
|

� |su− 1s2,i
������→

| · |su− 1su
�����→

|cos θ/|su− 1su
�����→

|. *e projection vector of
su− 1s2,i
������→ in the su− 1s2,i

������→ direction is su− 1s2,pi
��������→, and s2, pi is the

projection point. *e shortest distance is calculated
according to the ratio ψ of the projection vector su− 1s2,i

������→ to the
vector su− 1su

�����→. *e ratio ψ can be calculated as
ψ � (su− 1s2,i

������→
· su− 1su

�����→
)/(su− 1su

�����→
· su− 1su
�����→

). In Figure 2(a), the
stop-wait position of the MC in the edge Eu is s2,pi when
0<ψ < 1. In Figure 2(b), the stop-wait position of the MC in
the edge Eu is su when ψ ≥ 1. In Figure 2(c), the stop-wait
position of the MC in the edge Eu is su− 1 when ψ ≤ 0.

4.5.4. Charging Quantity of Stop-Wait Charging Sensors.
*e mobile energy consumption of the stop-wait charging
sensor nodes is considered in the cooperative charging and
the charging quantity of the stop-wait charging sensor node
s2,i can be calculated by the MC as follows:
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b2,i,c �

⌊
τ2,i
Tctil
⌋ ∗Tcti ∗ e2,i − b2,i′ + 2 d s2,i( )ec,2,i,

if ⌊
τ2,i
Tctil
⌋Tctie2,i + 2 d s2,i( )ec,2,i ≤ b2,i,

b2,i − b2,i′ + d s2,i( )ec,2,i, else.




(19)

�e mobile energy consumption of the stop-wait sensor
node s2,imoving from its location to the stop-wait position is
d(s2,i)ec,2,i, where ec,2,i is the energy consumption per unit
distance of sensor node s2,i. ⌊τ2,i/Tcti⌋ is the number of
charging task intervals that sensor node s2,i can work at full
charge. When the stop-wait charging sensor nodes s2,i and
the MC meet at the stop-wait position, the MC will sup-
plement this part of the mobile energy to the stop-wait
charging sensor node.

4.5.5. Updating the Stop-Wait Charging Sensor Set. To avoid
invalid charging of the stop-wait charge sensor nodes, when
the stop-wait charging sensor node occurs as follows, it will
be removed from the set of stop-wait charging sensors.

�e power of the stop-wait charging sensor node
cannot reach the stop-wait position, that is d(s2,i)
ec,2,i> b2,i′
�e moving energy consumption of the stop-wait
sensor is greater than its charging capacity, that is,
2∗ d(s2,i)ec,2,i> b2,i,c
�e lifetime of the stop-wait charging sensor node
returning to the original position after charging is less
than 2Tcti, that is, ⌊τi/Tcti⌋ ∗Tcti∗ e2,i+ 2d(s2,i)ec,2,i> b2,i

If the stop-wait charging sensor node has the above-
mentioned situation, the MC will remove it from the set of
stop-wait charging sensors and its corresponding stop-wait
position.

4.6. Establishing the Hamiltonian Path. �e mobile energy
consumption of the stop-wait sensor s2,i and the MC are
de�ned as the weight of the edges in the complete graph
G(Sink, Sc, Sp). �e two charging sensors are de�ned as si, sj,
si, sj ∈ Sc, and i≠ j. �e weight of edge (si, sj) is de�ned as
Dh(si, sj)� d(si,sj)ec+ d(s2,i)ec,2,i. Here, d(si,sj) is the Euclidean
distance between si and sj. d(s2,i) is the moving distance of
the stop-wait charging sensor s2,i from the original position

to the stop-wait position. ec is the mobile energy con-
sumption per unit distance of the MC, and ec,2,i is the mobile
energy consumption per unit distance of the stop-wait
charging sensor s2,i.

According to graph G(Sink, Sc, Sp) and the weights of
edges in the graph, the path is selected to minimize the total
energy consumption.�e essence of this problem is to �nd a
Hamiltonian path with minimum weight in an undirected
complete graph with weights, which is a NP complete
problem. �e proof of a NP complete problem is as follows.

Theorem 1. �e mobile stop-wait charging path problem of
MC in MWRSN is a NP complete problem.

Proof: To prove that the mobile stop-wait charging path
problem of MC in MWRSN is NP, we �rst prove that a
special case of the problem is a NP complete problem. �e
special case of constructing the mobile stop-wait charging
path problem is as follows.

�e distance Dh(si,sj) between each charging sensor and
sink and stop position Sp is known. MC should start from
the location of the sink node to q charging sensor nodes to
charge them, go to stop position Sp to collect data as sink
node, and return to the starting node after completion.

If charging nodes, sink node, and stop position Sp are
de�ned as cities, MC is de�ned as traveling salesman. �e
distanceDh(si, sj) between each charging sensor and sink and
stop position Sp is de�ned as the distance between cities.
�en, the special case is equivalent to the traveling salesman
problem (TSP). TSP is a NP complete problem, so this
special case is a NP complete problem.�erefore, the mobile
stop-wait charging path problem is a NP complete problem.

Due to the imbalance of data transmission tasks inWSN,
the number of sensor nodes that need to be charged in each
round is smaller than that of the whole network. A simple,
practical, and suitable small-scale C-W saving algorithm is
selected to solve the Hamiltonian path in this paper. �is
algorithm was proposed by Clarke and Wright to solve the
traveling salesman problem, but it does not consider various
constraints. �erefore, it is necessary to consider the energy
consumption of the MC and power parameters to improve
the C-W algorithm to solve the Hamiltonian path problem
of mobile charging.

Let V(G)� (s0, s1, s2, . . ., sq) be the set of vertices in graph
G(Sink, Sc, Sp), where s0 is the sink node. �e saving value
between any two vertices is CS(si, sj)�Dh(s0, si) +Dh(s0, sj) −
Dh(si, sj), where si, sj ∈ Sc and i≠ j. �e larger the CS(si, sj) is,

su-1 θ

s2,i

s2,pi
su

(a)

su-1 θ
su

s2,i

s2,pi

(b)

s2,i

θ
susu-1

s2,pi

(c)

Figure 2: �e shortest distance from the stop-wait sensor nodes2,i to the edge set Eu: (a) the shortest distance d(s2,i, E(u)) when 0<ψ < 1;
(b) the shortest distance d(s2,i, E(u)) when ψ > 1; (c) �e shortest distance d(s2,i, E(u)) when ψ ≤ 0.
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the greater the reduction in the total cost of connecting si and
sj is. When constructing the path, it is sorted in descending
order according to the size of CS(si, sj). *e specific steps of
establishing the Hamiltonian path of MC based on the C-W
algorithm are as follows:

Step 1: the saving value CS(si, sj) is calculated and sorted
in descending order according to the size of CS(si, sj).
Step 2: determine whether sensor nodes si and sj cor-
responding to the maximum edge of CS(si, sj) in the
sequence satisfy the following conditions.
If sensor nodes si and sj are not on the established path,
then si and sj can be connected. After connecting, the
path is <s0⟶ si⟶ sj⟶ s0> and turns to Step 3.
If sensor nodes si and sj are on the established path but
not the inner point in the line (which means that the
node is not directly connected to source point s0), then
connect them and turn to Step 3.
If the sensor nodes si and sj are on the established path
and all not inner points on the line, then connect them
and turn to Step 3.
If the sensor nodes si and sj are on the established path
but not the inner point on the line, then do not connect
them and turn to Step 4.
Step 3:*e summobile energy consumption to traverse
the connected path is calculated by MC Sum(Eoh

G,c,m),
and the sum energy of the sensor nodes needs to be
charged in the path Sum(bG,c). If
Sum(Eoh

G,c,m) + Sum(bG,c)>P′ (which means that the
remaining power of MC P′ is insufficient to complete
the charging of this path), the MC removes the path
from sensor node si to other nodes.*en, turn to Step 5;
otherwise, turn to Step 4.
Step 4:*eMC removes the path from sensor node si to
other nodes. When all the paths of charging sensors are
removed, the complete Hamiltonian path is obtained
and the algorithm terminates. Otherwise, the MC se-
lects the node with the maximum saving value from the
path of sensor nodes not removed and turns to Step 2.
Step 5:When the remaining power of theMC is enough
to reach the sink node, the MC connects the sink node
to the next path node of sensor node si. When the
remaining power of the MC cannot reach the sink
node, the MC removes sensor node si and the previous
path node of sensor node si is selected to connect with
the sink node. *en, the MC replenishes the power at
the sink node, and after electricity replenishment is
completed, the MC establishes the complete graph
composed of the sink node, the stop position, and the
remaining unconnected nodes. Return to Step 1 and
reestablish the Hamiltonian path. □

4.7. Cooperative Charging. According to the established
Hamiltonian path, the MC moves along edges E1 �<s0, s1>,
E2 �<s1, s2>, . . ., Eq �<sq− 1, sq>, Eq+1 �<sq, s0>. In the be-
ginning, the MC starts from the sink (s0) node, and when

there is a stop-wait position at edge E1, the MC stops at this
position and meets with stop-wait charging sensor nodes s2,1
to charge. After charging the stop-wait charging sensor
nodes s2,c, the MC moves to the position of charging sensor
node s1 and charges s1. *e MC will traverse the edges
E(G)� (E1, E2, . . ., Eq+1) and charge the sensor node.

To save charging scheduling time, according to the
position and moving speed of the MC, the time to reach the
stop-wait position is calculated by the stop-wait charging
sensor s2,i of S2,c. *e stop-wait charging sensor s2,i adjusted
its moving speed to ensure that it reached the stop-wait
position at the same time as the MC. *en, the stop-wait
sensor nodes meet with the MC at the stop-wait position to
charge the sensor nodes. *is method can save the mobile
energy consumption of the MC and improve the charging
efficiency. Finally, after the MC charges the stop-wait sensor
nodes in the path, the stop-wait charging sensor nodes will
return to their original positions. *e MC continues to
traverse the path of the Hamiltonian loop and charge the
sensor nodes.

*e MC and stop charging sensor nodes will send their
location information to their neighbor sensor nodes during
the mobile charging process. When the neighboring sensor
nodes receive the location information, they will share it
with other sensor nodes. *e sensor nodes in the network
reconstruct the network topology according to the location
of the MC, stop-wait charging sensor nodes, and sink nodes.
When the MC completes the charging task, they will return
to the stop position and wait for the next round of charging
task scheduling. At this point, the MC will perform col-
laborative data collection as a sink node, and the collected
data will be transmitted by 4G or 5G technology to the sink
node or Data center. *e MC will also send its location
information to its neighboring sensor nodes. *e sensor
nodes in the network replan their routing paths according to
the location of the sink node and the MC to reduce the
excessively long path from some nodes to sink nodes, thus
reducing network energy consumption.

4.8. Algorithm Description and Analysis. *e description of
the MWRSN charging task coordination algorithm based on
the Hamiltonian path is shown in Algorithm 1.

Table 2 shows a comparison of the time complexity using
the DPMCS [21], MUC [34], BNRS [35], VN-MOAC [36],
and STCI-TR algorithms. *e nt is defined as the number of
time steps in each episode and nm is the number of episodes.

*e time complexity of the STCI-TR algorithm is O(n2).
*e number of charging sensors q and the stop-wait
charging sensor w are the problem size. *e time complexity
of the shortest distance d(s2,i)with the number of sensors q is
T(q)� (q+ 2) (q+ 1)/2. *e time complexity to compute the
saving value CS(si, sj) with the number of sensors q and the
stop-wait charging sensor w is T(q+w)� 3(q+w+ 1)2. So
the time complexity of the algorithm is O(n2).

*e algorithm example is shown in Figure 3. In the
power grid substation field, the substation inspection robots
are used for condition monitoring of electrical equipment.
*e mobile vehicle can be integrated with data collection
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equipment and the energy transmitter as MC to charge these
substation inspection robots. �e sink node is used for data
aggregation and transfer the data to the substation moni-
toring center. MC also can replenish the power at the sink
node.

We assumed that there are 12 substation inspection
robots as mobile rechargeable sensor nodes (s1, s2, . . ., s12)
deployed in a two-dimensional scene, and the MC starts
from the position of the sink node and charges the sensor
node. At the beginning of the algorithm, we assumed that the
power of sensor node s1 is lower than the low power in-
dicator percentage ω, and the charging task request infor-
mationCRequest is sent to theMC. After theMC receives the
charging task request, the MC collects the remaining power
bi′, position information li,, and the percentage of power.
�en, MC calculates the charging cycle τi and the actual
lifetime τi′ of the sensor node.

�e MC determines its stop position (1)Sp in the �rst
round. �e MC determines the charging sensor set and
selects the charging sensor set (1)Sc� (s1, s2, s3, s4, s5) in this
example. �e MC determines the stop-wait charging sensor
set and corresponding stop-wait position. �e selected stop-

wait set is (1)S2,c� (s6, s7, s8) and corresponding stop-wait
positions are s2,p6, s2,p7, s2,p8. �e Hamiltonian path
<Sink⟶ s1⟶ s2⟶ s3⟶ s4⟶ s5⟶ (1)Sp⟶ Sink> is
established.

�e MC moves to charge the sensor nodes. �e MC
moves along edges E1�<s0, s1>, E2�<s1, s2>, E3�<s2, s3>,
E4�<s3, s4>, E5�<s4, s5>, E6�<s5, (1)Sp>, and E7�<(1)Sp,

(1) �e sensor node si initializes the IDi, li and vi
(2) Initial network topology of the MWRSN
(3) while (∃bi′/bi<ω) do
(4) �e sensor node si send charging request message (CRequest)
(5) MC calculates Tcti and Tl according to bi′, li, ω after receiving CRequest
(6) MC calculates its stop position (xsp0, ysp0)
(7) MC calculates Tcti and Tl according to its stop position
(8) for (i� 1, i++, i≤n) do
(9) if (τi′ <Tl) do
(10) �e si is added to set Sc�<s1, s2, . . ., sq> by MC, where q≤ n
(11) MC calculates the charging power of the sensors in set Sc
(12) end if
(13) if ( Tl< τi′ < 2∗Tl) do
(14) MC establishes the G(Sp, Sc, Sink) and determines the set S2,c
(15) MC determines stop-wait position, and charging power of S2,c
(16) end if
(17) end for
(18) MC establishes the Hamiltonian path according to section E of the part III
(19) MC moves along edge E1�<s0, s1>, E2�<s1, s2>, . . ., Eq�<sq− 1, sq>, Eq+1�<sq, s0>
(20) if (�ere are stop-wait positions in edge E1)then
(21) Stop-wait sensor s2,i meets with MC for cooperative charging
(22) After the s2,i is charged, it will return to its original positions
(23) end if
(24) After MC completes charging task, it will return to stop position
(25) end while

ALGORITHM 1: �e MWRSN charging task cooperative algorithm based on the Hamiltonian path (STCI-TR).

Table 2: Simulation parameters.

Algorithm Maximum problem size Time complexity
MUC 6.5n2 + 23.5n+ 9 O(n2)
BNRS 5n2 + 12n+ 3 O(n2)
DPMCS 8nt∗ nm+ 2nm+ 2 O(n2)
VN-MOAC n+ n2∗ lg n2 O(n2 lg n2)
STCI-TR 3.5n2 + 13.5n+ 5 O(n2)
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s12s8
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charging task scheduling

MC moving path

Figure 3: Schematic diagram of the STCI-TR algorithm example.
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s0>. In the initial stage, the MC starts from sink node (s0) to
s1, and there is no stop-wait position in E1. *e MC moves
directly to s2, and there is stop-wait position s2,p6 in E2.*en,
the MC moves to s2,p6 and meets this position with sensor
S2,1 to charge. When sensor S2,1 is charged by the MC, the
MCwill continue to move until the charging of sensor nodes
in Sc and S2,c is completed. Finally, the MC moves along
E6 �<s5, (1)Sp> to stop position (1)Sp for data collection.

4.9.Main Symbols in Section 4. *emain symbols in Section
4 are shown in Table 3.

5. Simulation Results and Analysis

In this section, the proposed algorithms are validated by
comparing their performances with other mobile recharge
schemes in terms of the EUE, network lifetime, and average
moving loss per unit time. *ere is a sink node to collect the

information and an MC to charge the sensors in the
MWRSN. Simulink in MATLAB 2012 is used to test the
algorithm performances. *e performance of DPMCS [21],
MUC [34], BNRS [35], VN-MOAC [36], and STCI-TR al-
gorithms are compared by simulation. *e DPMCS con-
siders the dynamic topology of WSN and uses deep
reinforcement learning to determine the schedule of the
mobile charger. In BNRS, the moving path of MCs along
power banks is optimized so that every power bank can be
recharged before falling below a critical threshold. To im-
prove the operation time of the nodes, the energy quota of
each node is calculated based on its energy consumption
level. *e directed coverage subsets with the largest charging
gain in WSN are first searched in MUC. *en, the charging
anchor points are determined according to the directed
coverage subset and the charger movement path is planned.
Finally, the constraints of mobile charger energy and
charging cycle are considered and the charging time is
optimized. In VN-MOAC, charging requirements and data

Table 3: Table of main symbols in Section 4.

Symbol Parameter
Ss Service group of the sink
Sm Service group of the MC
si,s Sensor node is served by the sink node
sj,mc Sensor node is served by the MC
Xj Decision variable (0 or 1)
Di,s Amount of data sent per unit time by si,s in the Ss (bit/s)
Di,mc Amount of data sent per unit time by sj,mc in the Sm (bit/s)
ei,s *e unit energy consumption of sensors in the Ss (J/s)
ej,mc *e unit energy consumption of sensors in the Ss(J/s)
bi,s
′ *e actual remaining power of sensor nodes in the Ss(J)

bj,mc
′ *e actual remaining power of sensor nodes in the Sm (J)

di,s Euclidean distance from sensor node si,s to the sink (m)
dj,mc Euclidean distance from sensor node sj,mc to the MC (m)
τi,s
′ Remaining lifetime of sensor si,s (s)

τi,mc
′ Remaining lifetime of sensor sj,mc (s)

ns *e number of sensor nodes in the Ss
nmc *e number of sensor nodes in the Sm
Lmc,0 *e initial point of the MC (0, 0)
Lmc,t *e location of the MC after iterative t-round
Sp *e MC stop position
Sc *e charging set
bi,c *e charging power of sensor si
G Complete graph G (Sink, Sc, Sp) established by MC
S2,c *e stop-wait sensor charging set, (s2,i ϵ S2,c)
E(G) *e set of edges in complete graph G (Sink, Sc, Sp)
Q *e number of charging sensor nodes
d(s2,i) *e shortest distance from the s2,i to the edge set E(G)
d(s2,i, Eu) *e shortest distance from the s2,i to the edge Eu
Θ *e angle between the vectors su− 1s2,i

������→ and su− 1su
�����→

Ψ *e ratio of the projection vector su− 1s2,i
������→ to su− 1su

�����→

b2,i,c *e charging quantity of the stop-wait charging sensor node s2,i
ec,2,i *e energy consumption per unit distance of sensor node s2,i
Dh(si, sj) *e weight of edge (si, sj)
V(G) *e set of vertices in graph G(Sink, Sc, Sp)
CS(si, sj) *e saving value between vertices si and sj
Sum(Eoh

G,c,m) *e sum mobile energy consumption to traverse the connected path
Sum(bG,c) *e sum energy of the sensors needs to be charged in path
P′ *e remaining power of MC
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collecting are taken into consideration simultaneously. A
one-to-many charging and data collecting model for MC is
established with two optimization objectives, maximizing
the total energy utilization andminimizing the average delay
of data collecting.

5.1. Simulation Parameters. In the communication simu-
lation, the transmission rate of the ZigBee 802.15.4 protocol
is selected in our simulation model. �e detailed simulation
parameters are shown in Table 4.

�e maximum data transmission rate of this protocol is
250 kbps. �e median value (128 kbps) is selected as the
simulation parameter. �e packet length of ZigBee 802.15.4
protocol ranges from 128 bit to 127 byte. �e packet length
of the sensor in the simulation is lp� 256 bit. Literature [38]
proposed an algorithm to generate the uni�ed dataset for the
general and some speci�c applications system models in
WSNs. �e results produced by the proposed algorithm
re¬ect the pseudorandomness. �erefore, the standard
datasets in [38] are used to evaluate our methods and the
comparison algorithms. �e routing protocol is greedy
perimeter stateless routing (GPSR). Fifty sensor nodes are
randomly deployed in a 400× 400m area. �ese nodes are
subject to a uniform random distribution; that is, the
horizontal and vertical coordinates of 50 sensor nodes
corresponding to two groups of uniformly distributed
random numbers (50 for each group) are generated in
0–400m, and then, the deployment position is determined.
�e moving speed of the sensors and MC is 2m/s according
to [34]. We consider the communication energy parameters
referenced in [39]. �e communication energy parameters
are set as eelec� 50 μJ/bit and εfs� 10 nJ/bit. �e communi-
cation radius is rc,i� 50m. �e initial energy of the sensor is
set bi� 1000 J, and the battery capacity of the MC is set
BC� 80KJ according to [36]. �e mass of MC is set
mc� 1.5 kg, and the mass of sensor si is set mm,i� 0.2 kg. �e
dynamic friction factor is set μc� μm,i� 0.47 according to
[40]. �e moving energy consumption of the sensor node
es� 0.92 J/m can be calculated according to formula (6). �e
moving energy consumption of the MC ec� 6.91 J/m can be
calculated according to formula (7).

5.2. EUE Analysis of the Algorithm. Figure 4 shows a com-
parison of the EUE with di®erent numbers of sensors using
the DPMCS, MUC, BNRS [35], VN-MOAC, and STCI-TR
algorithms.

In Figure 4, the EUE of nodes decreases little with the
increase in the number of nodes. �is is because the energy
consumption increase caused by the movement of the MC
during charging accounts for a small proportion of the total
energy consumption. �e STCI-TR algorithm takes the MC
as a sink node for collaborative collection, which improves
the network lifetime. �erefore, the EUE of STCI-TR is
17.56% higher than that of MUC and 8.07% higher than that
of BNRS. �e charging sensor node of the next round is
considered in the STCI-TR algorithm for the current
charging task scheduling. It avoids the MC charging the
node in the next round and reduces the mobile energy
consumption ofMC. So the EUE of STCI-TR is 4.84% higher
than that of DPMCS and 2.94% higher than that of VN-
MOAC.

Table 4: Simulation parameters.

Symbol Parameter Value
rt,i Transmission rate of sensor si 128 kbps
rc,i Communication radius of sensor si 50m
lp Packet length of the sensor 256 bit
eelec Energy consumption of the electronic equipment of l bit 50 nJ/bit
εfs Energy consumption of the wireless antenna ampli�er 10 pJ/bit
mc �e mass of MC 1.5 kg
g Gravitational acceleration 9.8m/s2

μc Dynamic friction factor between the MC and the ground 0.7
ec Energy consumption per unit distance moved by the MC 6.91 J/m
mm,i �e mass of sensor si 0.2 kg
μm,i Dynamic friction factor between the MC and the ground 0.47
em,i Energy consumption per unit distance moved by sensor si 0.92 J/m
BC Battery capacity of the MC (kJ) 80 kJ
bi Initial power of all of the sensors 1000 J
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Figure 4: Comparison of the EUE with di®erent numbers of sensor
nodes.
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Figure 5 shows a comparison of the EUE with di®erent
battery capacities of sensors using theMUC, BNRS, DPMCS,
VN-MOAC, and STCI-TR algorithms. �e EUEs of the
nodes are all improved with di®erent battery capacities of the
sensor. With the increase in the battery capacity of sensor
nodes, the energy of the MC primary charge scheduling is
increased. However, the energy consumption caused by the
movement does not increase at this time. So the EUEs are
improved. �e STCI-TR algorithm takes the MC as a sink
node for collaborative collection and considers the charging
sensor node of the next round for the current charging task
scheduling. It reduces the network transmission energy
consumption and mobile energy consumption of MC.
�erefore, the EUE of STCI-TR is 28.54% higher than that of
MCU and 14.87% higher than that of BNRS. �e scheduling
times of the MC are reduced, and the mobile energy con-
sumption is reduced at the same time. So the EUE of STCI-
TR is 6.33% higher than that of DPMCS and 4.84% higher
than that of VN-MOAC.

Figure 6 shows the comparison of the EUE with di®erent
mobile energy consumption of the MC using the MUC,
BNRS, DPMCS, VN-MOAC, and STCI-TR algorithms. �e
EUEs of all methods decrease with increasing MC mobile
energy consumption. �is is because the energy con-
sumption increase caused by the movement of the MC
during charging accounts for a large proportion of the total
energy consumption. So the EUEs are decreased. �e STCI-
TR algorithm takes the MC as a sink node for a collaborative
collection. It reduces the network transmission energy
consumption. �erefore, the EUE of STCI-TR is 38.76%
higher than that of MUC and 18.64% higher than that of
BNRS. �e STCI-TR algorithm considers the charging
sensor node of the next round for the current charging task
scheduling. �is method can reduce the mobile energy

consumption of MC and the MC scheduling times at the
same time. So the EUE of STCI-TR is 9.83% higher than that
of DPMCS and 7.05% higher than that of VN-MOAC.

Figure 7 shows the comparison of EUE with di®erent
charging e�ciencies using the MUC, BNRS, DPMCS, VN-
MOAC, and STCI-TR algorithms.

In Figure 7, the EUE of nodes is improved with in-
creasing charging e�ciency. �is is because the charging
energy consumption of the MC during charging is reduced
with increasing charging e�ciency. However, the network
transmission energy consumption and the energy con-
sumption caused by the movement do not increase at this
time. So the EUEs are improved. �e STCI-TR algorithm
takes the MC as a sink node for a collaborative collection. It
reduces the network transmission energy consumption.
�erefore, the EUE of STCI-TR is 19.56% higher than that of
MUC and 14.62% higher than that of BNRS. �e STCI-TR
algorithm considers the charging sensor node of the next
round for the current charging task scheduling.�is method
can reduce the mobile energy consumption of MC and the
MC scheduling times at the same time.�erefore, the EUE of
STCI-TR is 5.04% higher than that of DPMCS and 2.78%
higher than that of VN-MOAC.

5.3. Network Lifetime Analysis of the Algorithm. Figure 8
shows the comparison of network lifetimes with di®erent
numbers of sensor nodes using the MUC, BNRS, DPMCS,
VN-MOAC, and STCI-TR algorithms. According to the
simulation parameter settings in Table 4 and the trans-
mission energy consumption model of the wireless sensor
network in Section 3.3, the lifetime of a single sensor node
without moving and one-hop data transmission is ap-
proximately 3.125×107 s. In Figure 8, the network lifetimes
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Figure 6: Comparison of EUE with di®erent mobile energy
consumptions of MC.
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of all methods decrease as the number of sensor nodes
increases. �is is because the energy consumption of the
sensor nodes closest to the sink is increasing and reduces the
network lifetime. �e STCI-TR algorithm takes the MC as a
sink node for a collaborative collection. It reduces the
network transmission energy consumption. �e STCI-TR
can improve the network lifetime and charging task interval.
�e MC is not considered a sink node for collaborative
collection in MCU and BNRS. So they have the same net-
work lifetime. �e network lifetime of STCI-TR is 13.08%
higher than that of BNRS and MCU.�e DPMCS algorithm
considers the MC as a sink node to collect the data in the
charging process. However, the charging process is shorter
than the whole network lifetime and less improved than VN-
MOAC and DPMCS. �erefore, the network lifetime of
STCI-TR is 10.28% higher than that of DPMCS and 7.04%
higher than that of VN-MOAC.

5.4. Average Network Energy Consumption per Unit Time.
Figure 9 shows a comparison of the average network energy
consumption per unit time with di®erent numbers of sensor
nodes using the MUC, BNRS, DPMCS, VN-MOAC, and
STCI-TR algorithms. �e average network energy con-
sumption per unit time of all methods is improved as the
number of sensor nodes increases. �is is because the path
from some sensor nodes to sink is increasing, and it in-
creases the average network energy consumption per unit
time. �e STCI-TR algorithm takes the MC as a sink node
for a collaborative collection. After the charging and the
completion of charging, the route planning is carried out
again. It reduces the path length from some sensor nodes to
sink and MC and the network transmission energy con-
sumption. �e MC is not considered a sink node for col-
laborative collection in BNRS and MCU, so they have the

same average network energy consumption per unit time.
�e average network energy consumption per unit time of
STCI-TR is 6.73% lower than that of BNRS and MCU. �e
DPMCS and VN-MOAC algorithms consider MC as a sink
node to collect the data in the charging process. However,
the MC is not used as a sink node for collaborative collection
in DPMCS and VN-MOAC after charging scheduling. �e
STCI-TR algorithm reduces the length of the route path
from some sensor nodes to sink and MC before the next
round of charging task scheduling requests. So the reduced
network energy consumption of DPMCS and VN-MOAC is
less than that of STCI-TR. �erefore, the average network
energy consumption per unit time of STCI-TR is 2.68%
lower than that of VN-MOAC and 4.76% lower than that of
DPMCS.

5.5.AverageMovementLossperUnitTime. Figure 10 shows a
comparison of the average moving loss per unit time with
di®erent numbers of sensor nodes using MUC, BNRS,
DPMCS, VN-MOAC, and STCI-TR algorithms.�e average
moving loss per unit time of all methods increases as the
number of sensor nodes increases.�is is because the mobile
energy consumption caused by the MC charging is in-
creasing, and the average mobile loss per unit time is also
increasing. �e STCI-TR algorithm takes the MC as a sink
node for collaborative collection, which improves the net-
work lifetime and reduces the MC scheduling times and
average moving loss per unit time at the same time. �e MC
is not considered a sink node for collaborative collection in
MUC and BNRS. �is causes the transmission path of some
sensor nodes to be too long and increases the network
transmission energy consumption. It increases the MC
scheduling frequency and average moving loss per unit time.
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�e average moving loss per unit time of STCI-TR is 26.74%
lower than that of MCU and 16.96% lower than that of
BNRS. �e DPMCS and VN-MOAC algorithms consider
MC as a sink node to collect the data in the charging process.
However, the charging process is shorter than the whole
network lifetime. �e network transmission energy con-
sumption of DPMCS and VN-MOAC is less reduced than
STCI-TR. �e STCI-TR algorithm also considers the
charging sensor node of the next round for the current
charging task scheduling. It can also reduce the mobile
energy consumption of MC and the MC scheduling times at
the same time. �erefore, the average moving loss per unit
time of STCI-TR is 9.95% lower than that of DPMCS and
6.87% lower than that of VN-MOAC.

5.6. AverageMobile Energy Consumption. Figure 11 shows a
comparison of the average mobile energy consumption with
di®erent numbers of sensor nodes using MUC, BNRS,
DPMCS, VN-MOAC, and STCI-TR algorithms.

�e average mobile energy consumption of all methods
increases as the number of sensor nodes increases. As the
number of nodes increases, the number of nodes that need to
be charged by MC for each charging schedule also increases.
So the moving distance of MC becomes longer and mobile
energy consumption caused by the MC is increasing. �e
STCI-TR algorithm considers the charging sensor node of
the next round (the stop-wait sensor nodes) for the current
charging task scheduling. In the next round, the number of
nodes that need to be charged by MC will be reduced.
�erefore, the average mobile energy consumption of STCI-
TR is lower than that of MCU, BNRS, DPMCS, and VN-
MOAC.

5.7. Average Charging Task Scheduling Times. Figure 12
shows a comparison of the average charging task schedul-
ing times with di®erent numbers of sensor nodes using
MUC, BNRS, DPMCS, VN-MOAC, and STCI-TR algo-
rithms. According to the simulation parameter settings in
Table 3, the charging task interval of these algorithms is
2.0×106 s (it is the average value of the simulation with 50
sensor nodes).�e average charging task scheduling times of
all methods decrease as the number of sensor nodes

×10-4

0

1

2

A
ve

ra
ge

 m
ov

in
g 

lo
ss

 p
er

 u
ni

t t
im

e (
J/s

)

10 15 20 25 30 35 40 45 505
The number of sensors

STCI-TR
DPMCS
BNRS

MUC
VN-MOAC

Figure 10: Comparison of average moving loss per unit time with
di®erent numbers of nodes.

STCI-TR
DPMCS
BNRS

MUC
VN-MOAC

20 30 40 5010
The number of sensors 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Th
e a

ve
ra

ge
 m

ob
ile

 en
er

gy
 co

ns
um

pt
io

n 
(K

Jo
ul

es
)

Figure 11: Comparison of average mobile energy consumption
with di®erent numbers of nodes.

×10-4

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

A
ve

ra
ge

 u
ni

t e
ne

rg
y 

co
ns

um
pt

io
n 

(J
/s

)

10 15 20 25 30 35 40 45 505
The number of sensors

STCI-TR
DPMCS
BNRS

MUC
VN-MOAC

Figure 9: Comparison of average network energy consumption
with di®erent numbers of nodes.

Mathematical Problems in Engineering 17



increases. As the number of nodes increases, the mobile
energy consumption caused by the MCmoving is increasing
and the average network energy consumption is also in-
creasing. �e STCI-TR algorithm takes the MC as a sink
node for a collaborative collection. It reduces the network
transmission energy consumption. �e MC is not consid-
ered a sink node for collaborative collection in MCU and
BNRS. So the average charging task scheduling times of
STCI-TR is 7.52% higher than that of MCU and 6.81%
higher than that of BNRS.

�eDPMCS and VN-MOAC algorithms considerMC as
a sink node to collect the data in the charging process.
However, the charging process is shorter than the whole
network lifetime. �e network transmission energy con-
sumption of DPMCS and VN-MOAC is less reduced than
STCI-TR. �e STCI-TR algorithm considers the charging
sensor node of the next round (the stop-wait sensor nodes)
for the current charging task scheduling. In the next round,
the number of nodes that need to be charged by MC will be
reduced and can also reduce the mobile energy consumption
of MC. �erefore, the average charging task scheduling
times of STCI-TR is 4.73% higher than that of DPMCS and
2.52% higher than that of VN-MOAC.

5.8. Total Travelled Path. Figure 13 shows a comparison of
the total travelled path with di®erent numbers of sensor
nodes using MUC, BNRS, DPMCS, VN-MOAC, and STCI-
TR algorithms. �e total travelled path of all methods in-
creases as the number of sensor nodes increases. As the
number of nodes increases, the number of nodes that need to
be charged by MC for each charging schedule also increases.
So the moving distance of MC becomes longer and the total
travelled path caused by the MC is increasing. �e STCI-TR
algorithm considers the charging sensor node of the next

round (the stop-wait sensor nodes) for the current charging
task scheduling. In the next round, the number of nodes that
need to be charged by MC will be reduced. �erefore, the
total travelled path of STCI-TR is lower than that of MCU,
BNRS, DPMCS, and VN-MOAC.

5.9. Average Remaining Energy. Figure 14 shows a com-
parison of the average remaining energy with di®erent
numbers of sensor nodes using MUC, BNRS, DPMCS, VN-
MOAC, and STCI-TR algorithms. �e average remaining
energy of all methods decreases as the number of sensor
nodes increases. As the number of nodes increases, the
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Figure 12: Comparison of average charging task scheduling times
with di®erent numbers of nodes.
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Figure 14: Comparison of average remaining energy with di®erent
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number of nodes that need to be charged by MC for each
charging schedule also increases. So the travelled path of MC
becomes longer and the power of MC uses for charging
sensors is reduced. *e STCI-TR algorithm takes the MC as
a sink node for a collaborative collection. After the charging
and the completion of charging, the route planning is carried
out again. It reduces the path length from some sensor nodes
to sink and MC and the network transmission energy
consumption. *erefore, the mobile energy consumption of
MC and the stop-wait sensor nodes can be at the same time.
*e average remaining energy of STCI-TR is higher than
that of MCU, BNRS, DPMCS, and VN-MOAC.

6. Conclusions

A charging task coordination algorithm based on the
Hamiltonian path for MWRSN is proposed to improve the
EUE. *is algorithm considers the cooperation of an MC
and the next round of charging sensor nodes. In this paper,
the MC is considered a mobile sink node to determine the
stop position, and the charging task interval of the MC is
determined. According to the charging task interval, the next
round of the charging sensor node is taken as the stop-wait
charging sensor node of the current round, and its stop-wait
position is determined. In this way, the next round of
charging by the MC node is avoided, and the mobile energy
consumption of the MC in the next round of charging tasks
is reduced. Simulation results show that the proposed al-
gorithm can improve charging efficiency and network
lifetime and reduce network energy consumption and av-
erage moving loss per unit time. However, the proposed
charging task coordination algorithm needs more control
information.*e time complexity of the STCI-TR algorithm
is still high for the MC and sink nodes. Multiple MCs are not
considered in our work. Currently, the proposed method is
not suitable for the large-scale network. In future research,
collaborative charging between sensors will be considered to
improve EUE. In addition, to improve the scalability and
adapt to the application of large-scale sensor networks, the
multiple sinks and MCs will be considered for cooperative
charging. *e decomposition of large-scale charging areas is
the focus of our future research. *e large-scale charging
areas will be divided into several small subcharging areas
according to the number of MC. An MC is responsible for
charging the sensors in a subcharging area and our method
in this paper can be used in this scenario. *e charging
cooperation among multiple MCs and between sensors will
be considered in the future research. Another possible di-
rection for future work is the 3D mobile charging of the
MWRSN.

Data Availability

*e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

*e authors declare that there are no conflicts of interest.

Authors’ Contributions

*e authors have read the manuscript and approved its
submission.

Acknowledgments

*is work was partly supported by the National Natural
Science Foundation of China (Grant No. 62002180), Natural
Science Foundation of Henan Province (Grant No.
202300410301), General Project of Humanities and Social
Sciences Research of Henan Institutions of Higher Learning
(Grant No. 2021-ZZJH-262), the Scientific and Technolog-
ical Project in Henan Province of China (Grant Nos.
202102210362, 212102310481, 222102320369, and
212102210169), the PhD Projects in Nanyang Normal
University (Grant No. 18025), the Key Scientific Research
Projects of Colleges and Universities in Henan Province
(Grant Nos. 21A520033 and 22A520037), the Laboratory
Opening Project of Nanyang Normal University (Grant No.
SYKF2021029), and Open Project of Key Laboratory of
Grain Information Processing and Control of theMinistry of
Education (Grant No. KFJJ-2020-114).

References

[1] H. Li, Y. Yang, X. Qiu, Z. Gao, and G. Ma, “Gravitation-based
3-D redeployment schemes for the mobile sensors and sink in
gas leakage monitoring,” IEEE Access, vol. 5, pp. 8545–8558,
2017.

[2] F. Cui, “Deployment and integration of smart sensors with
IoT devices detecting fire disasters in huge forest environ-
ment,” Computer Communications, vol. 150, no. 15,
pp. 818–827, 2020.

[3] R. Hemalatha, R. Prakash, and C. Sivapragash, “Analysis on
energy consumption in smart grid WSN using path operator
calculus centrality based HSA-PSO algorithm,” Soft Com-
puting, vol. 24, no. 14, Article ID 10783, 2020.

[4] Z. Libo, H. Tian, and G. Chunyun, “Wireless multimedia
sensor network for rape disease detections,” EURASIP Journal
onWireless Communications and Networking, vol. 2019, no. 1,
p. 159, 2019.

[5] A. B. Hayani and H. Ilhan, “Image transmission over decode
and forward based cooperative wireless multimedia sensor
networks for Rayleigh fading channels in medical internet of
things (MioT) for remote health-care and health communi-
cation monitoring,” Journal of Medical Imaging and Health
Informatics, vol. 10, no. 1, pp. 160–168, 2020.

[6] D. P. Kumar, T. Amgoth, and C. S. R. Annavarapu, “Machine
learning algorithms for wireless sensor networks: a survey,”
Information Fusion, vol. 49, no. 2019, pp. 1–25, 2019.

[7] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher,
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