
1 
 

Hierarchical control of visually-guided movements in a 3D-printed robot arm  

Adam Matić1*, Pavle Valerjev2 and Alex Gomez-Marin1 

1 Behavior of Organisms Laboratory, Instituto de Neurociencias CSIC-UMH, Alicante, Spain 
2 Department of Psychology, University of Zadar, Zadar, Croatia 
* Correspondence to: adam.matic@gmail.com 
 
 

Abstract. The control architecture guiding simple movements such as reaching toward a visual 

target remains an open problem. The nervous system needs to integrate different sensory 

modalities and coordinate multiple degrees of freedom in the human arm to achieve that goal. The 

challenge increases due to noise and transport delays in neural signals, nonlinear and fatigable 

muscles as actuators, and unpredictable environmental disturbances. Here we examined the 

capabilities of a previously proposed hierarchical feedback control model (Powers 1999, 2008), so 

far only tested in silico. We built a robot arm system with four degrees of freedom, including a visual 

system for locating the planar position of the hand, joint angle proprioception, and pressure 

sensing in one point of contact. We subjected the robot to various human-inspired reaching and 

tracking tasks and found features of biological movement, such as isochrony and bell-shaped 

velocity profiles in straight-line movements, and the speed-curvature power law in curved 

movements. These behavioral properties emerge without trajectory planning or explicit 

optimization algorithms. We then applied static structural perturbations to the robot: we blocked 

the wrist joint, tilted the writing surface, extended the hand with a tool, and rotated the visual 

system. For all of them, we found that the arm in machina adapts its behavior without being 

reprogrammed. In sum, while limited in speed and precision (by the nature of the do-it-yourself 

inexpensive components we used to build the robot from scratch), when faced with the noise, 

delays, nonlinearities, and unpredictable disturbances of the real world, the embodied control 

architecture shown here balances biological realism with design simplicity. 
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1. INTRODUCTION 

Pointing and reaching toward visual targets are nearly effortless human behaviors. However, an 

explanation of these processes at levels of detail and abstraction that would allow us to build 

equally capable artificial systems or to treat common disorders in hand and arm control remains 

elusive. An understanding of such simple motor behaviors should follow from a broader theory 

of sensorimotor control, while being consistent with the anatomical structure of the underlying 

system. Such an understanding would provide insights into the origin of laws, invariances, and 

principles in the behavior of organisms. 

The anatomical structure of the nervous system, together with the behavioral analysis of organisms 

under different conditions and upon different perturbations, suggests that biological control is 

hierarchical. One of the earliest hypotheses on the hierarchical nature of the nervous system was 

proposed by John Hughlins Jackson (1884, 1958), discussing the possible evolutionary 

development of the nervous system in layers (see also Prescott et al, 1999). In turn, 

neurophysiologist Nikolai Bernstein proposed a hierarchical organization of neural structures 

underlying movement, where each layer performs a specific function, increasing in abstraction as 

one ascends the hierarchy (see Profeta and Turvey, 2017). Arguments for the existence of hierarchy 

of control can also be made from the comparative evolutionary history of the nervous system 

(Cisek, 2019) and from early development in primates (Plooij and van de Rijt-Plooij, 1990).  

However, some findings in spinalized preparations blur the line between the capabilities of 

different levels in motor control. Cats with a transected spinal cord or cats in a decerebrate 

preparation can learn to walk on a treadmill (Whelan, 1996); decerebrate ferrets can learn new 

locomotion trajectories (Lou and Bloedel, 1988, 1992); rats with lesions in the motor cortex can 

still move in stable, predictable, non-perturbing environments, but not if the environment is 

rapidly changing (Lopez, 2016). Those experiments show the existence of independent “lower 

levels” in the spinal cord, capable of relatively complex behaviors on its own, despite normally 

operating in accord with the higher levels. Therefore, while the consensus seems to be that 

biological control is hierarchical, it is still unclear what the function of each particular level is, their 

limits and relationship, or even why there is a hierarchy at all. 

Hierarchical architectures have been used in robotics, famously by Brooks in the subsumption 

architecture (Brooks, 1986). More recently, Merel et al (2019) listed core advantages of hierarchical 

control appearing in both biological and engineered systems. Hierarchies allow for modularization 

and simplification of individual controllers and training procedures. Each subsystem can deal with 

only a part of the incoming sensory information, and, having partial autonomy, can be trained 
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separately with cost functions and performance requirements distinct from the task objective. In 

contrast, a “flat” non-hierarchical controller would receive and process all the sensory information, 

directly calculating the behavioral output. Such an arrangement would make the control algorithm 

both complex and complicated, require extensive training, and result in rather incomprehensible 

information flows. Thus, at least from an engineering perspective, hierarchical architectures can 

be very beneficial for adaptive behavioral control. 

A prominent normative approach to behavior is optimal feedback control (Todorov and Jordan, 

2002a; Scott, 2004, 2012; Shadmehr and Krakauer 2008), which predicts many of the features of 

human movement and corrects a long-standing bias against the importance of sensory feedback 

in online movement (e.g. Flash and Hogan, 1985; Uno et al. 1989). However, this theoretical 

framework does not necessarily suggest a neural substrate for implementation of the proposed 

control algorithms. In fact, it is still debated whether some features of the optimal feedback control 

architecture, such as internal forward and inverse models, are computationally necessary, and 

whether they can be found in the brain or not (Loeb, 2012; McNamee and Wolpert, 2019; Hadjiosif 

et al 2021). Briefly, forward models estimate the current state from a copy of the motor command 

and the delayed sensory signals, while the inverse models (also called controllers) provide a motor 

command that will achieve the desired state given the current state and an inverted model of the 

plant (Wolpert and Kawato, 1998). The theory does not explicitly address the hierarchical structure 

of motor control or the role of sensory feedback in subcortical levels and the spinal cord. 

Exploring the computational principles that underlie eye-hand coordination and synergistic control 

in pointing and reaching, William T. Powers designed a series of distinct models of arm control. 

The first one (Powers, 1999) contained a model of muscles, a binocular vision control layer, and 

an arm controlled via three degrees of freedom (DOF). The organization of this control system 

follows roughly the anatomical hierarchical organization of the spinal and some supra-spinal neural 

structures involved in human motor control and arm coordination. The second model (Powers, 

2008) consisted of a 14 DOF arm with more fidelity in arm segment lengths and joint movement 

limits, but it lacks the muscle model. These models were built by cascading multiple layers of 

simple proportional and proportional-derivative feedback loops with low-pass filtering. Using 

hierarchically arranged controllers provides the benefit of avoiding the unfeasible complications 

of calculations of inverse models, estimates of load properties, and even inverse kinematics. 

However, the behavioral capabilities of such simple but powerful models have not been assessed 

beyond the ideal world of numerical simulations. Our aim here is to test the in silico idea in machina, 

namely, to run those arm simulations in a robot arm; to cloth virtual software with actual hardware, 
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thus assessing not only the feasibility of the proposal, but its biological realism in the context of 

human movement. 

Why is this necessary and important? As with many simulations, Powers’ arm models contain 

idealized representations of the nervous system, the body, and the environment. To name a few: 

there is no friction, no noise, no long transport delays (although there are some delays), no contact 

forces, etc. These idealizations are acceptable for initial testing and demonstration of principles, 

but as argued by Barbara Webb (2001), models of biological structures should be tested in terms 

of real problems faced by real organisms in the real world. Additionally, as claimed by Brooks 

(1992), there is a near certainty that programs which work well on simulated robots completely fail 

in real robots because of the differences between simulated and real-world sensing and actuation. 

Moreover, designing and building robots that work decently can generate insights about the 

function of structures in the nervous system that produce analogous behaviors in living organisms 

(Floreano et al, 2014; Marimoto and Kawato, 2015).  

In sum, following this approach, in the present work we adapted and implemented the proposed 

hierarchical control architecture (Powers, 1999; 2008) to a 4 DOF robot arm in order to examine 

its theoretical capabilities in the real world (dealing with noise, delays, nonlinearities, and 

unpredictable environmental disturbances), as well as to generate insights about human control in 

basic task such as reaching or tracking. In the first part of the manuscript, we show that several 

fundamental invariant properties found in human hand trajectories — isochrony, bell-shaped 

velocity profiles and the speed-curvature power law—are also found in the robot arm trajectories 

without planning or optimization. In the second part, we demonstrate the motor equivalence 

phenomenon, whereby the robot arm can still perform reaching and tracking movements with a 

blocked wrist, without learning or being reprogrammed. We also show spontaneous behavioral 

adaptation to a tilt of the writing surface, to a rotation of the visual field with respect to the arm 

segments, and to the extension of the robot “hand” with a tool. We conclude by discussing the 

limitations of both the robot and its control architecture, specifically in the light of modeling 

fidelity and potentially higher/lower levels of control. 
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2. METHODS 

2.1. Hardware: The robot arm 

We designed and 3D-printed robot arm segments and its rotating base in PLA plastics. Several 

pictures of the arm and its diagram are shown in Figure 1. The robot has four degrees of freedom: 

shoulder rotation angle, shoulder pitch, elbow pitch, and wrist pitch. They are all actuated via 

motors M0–M3. The location of the shoulder pitch joint is 4cm above the base level. The upper 

and lower arms are both 12cm in length, while the hand spans 10cm from the wrist joint to the 

hand tip. Each joint has a geared DC motor as the actuator and a potentiometer as a sensor to 

estimate the joint angle and angular velocity. The motors and gear trains come from servos (two 

HobbyKing 15298 in base and shoulder joints, Futaba S3003 in the elbow, and an N20 DC motor 

in the wrist). All the electronics and control circuits were removed from the servo motors and 

replaced by custom control software on the microcontroller. The potentiometers on the gear 

output shaft were kept to measure the angular position of the joints. The microcontroller used was 

Teensy 3.1, with a Cortex-M4 processor working at 96Mhz (3.3V logic). It was programmed in 

C++ in Arduino IDE 1.8.6. It outputs four pulse-width modulated (PWM) signals to two 

TB6612FNG dual H-bridge 1A motor drivers, each connected to two motors and a 9V 1A power 

supply, limited to 5V in software. The sampling rate for angle potentiometers and control signal 

calculation rate on the microcontroller was 200Hz. 

To detect and measure the marker position, we used a generic webcam with a resolution of 640 x 

480px and a maximum frame rate of 30Hz. The camera was placed at a height of ~40 cm from 

the writing surface using a 3D printed stand, pointed down toward the marker on the tip of the 

hand, covering the area of 26 x 19.5 cm, slightly smaller than the graphics tablet active area size. 

The image from the camera was used to construct two controlled variables, the x and y position 

of the marker, and formed the basis of visual controlled loops.  

To measure pen angle and pressure, we used a graphics tablet Wacom Intuos Pro Paper PTH-860, 

with an active surface of 30.7cm x 21.3 cm, at a spatial resolution of 0.08mm. The sampling rate 

of the tablet was 120 samples per second. However, we used 30 samples per second for pen 

pressure and pen angle control in order to be synchronized with the visual control loops that were 

limited by the temporal resolution of the camera to 30Hz. The position of the pen as measured by 

the tablet itself was not used in arm control. 

The PC we used for recording and visual processing had an Intel i5 processor, 8GB of RAM, and 

runs on Windows 10 OS.  
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We initially designed and placed pressure sensors on the hand of the robot, using three linear 

sliding potentiometers measuring the stretch of an elastic rubber band when the hand is pressing 

on a surface (visible on the hand in Figure 1). One sensor was placed at the tip of the hand, and 

two on the base. The sum of travel of all three potentiometers was therefore directly related to the 

pressure of the palm on a surface, and the difference between the front potentiometer and two 

back potentiometers was related to the pressure difference and tilt of the hand. The Wacom 

graphics tablet also reports the pressure of the pen on the tablet and the angle of pen tilt, and these 

readings proved to be more reliable than our custom sensors and were used in control loops. 

 

Figure 1. The robot arm system design and implementation. (A) Side view showing the body of the robot, 

enclosed microcontroller, electronic pen and tablet. (B) Diagram of the robot arm in perspective view with arm 

segments L0 – L3, motors M0 - M3, camera, tablet, pen and marker of tip position. (C) Photo of the experimental 

setup, including the top camera. (D) Top view photo (camera’s viewpoint), the green circle is used by the visual system 

as the marker of hand tip position. (E) Diagram of the robot from the top view. 
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2.2. Software: The control architecture 

Controlled variables in the lower level of the robot arm (Figure 2A, blue level) are functions of 

proprioceptively sensed joint angles and stored arms segments lengths calculated by forward 

kinematics: the x coordinate of the hand tip in proprioceptive space (xp); the height of the hand 

tip or z coordinate in proprioceptive space; reach (R), the distance from the base to the hand tip; 

and δ (delta), the angle of the hand to the x-y plane. These variables were the input to a 

proportional-derivative (PD) controller with a low-pass filter in controller output, following:  

(1)     𝑜 = 𝐾𝑝(𝑖𝑟𝑒𝑓 − 𝑖) − 𝐾𝑣
𝑑𝑖

𝑑𝑡
        

(2)     
𝑑𝑦

𝑑𝑡
=  

𝑜−𝑦

𝑡𝑐
 

where (1) is the controller equation with controlled (measured) variable i, reference input iref, output 

o, the derivative of the controlled variable di/dt, proportional gain Kp, and derivative gain Kv. 

Equation (2) models the low-pass filter with input o and output y, and tc the open-loop time 

constant of the low pass filter.  

The information available to the systems, other than measured variables, included stored arm 

segment lengths and equations of forward kinematics. Forward kinematics in the input functions 

were the computationally most complicated part of the lower levels. The outputs xo, Ro, zo and 𝛿o 

of the lower level low-pass filters are summed to PWM commands to motor drivers (see Figure 

2A, diagram of lower-level systems). Position in x dimension of the hand tip in kinesthetic space 

(xp) is controlled by activating the shoulder rotation motor M0. This configuration limits the work 

area of the arm to less than 180° in the upper half-plane (y>0). Reach R is the distance between 

the base of the robot and the tip of the hand. It is controlled by simultaneously activating shoulder 

(M1), elbow (M2) and wrist (M3) motors, with the elbow being activated in the opposite angular 

direction from the other two. Height z of the hand tip is controlled by moving the shoulder motor 

M1. Angle delta between the hand and the x-y plane is controlled by moving the wrist motor M3.  

All the variables are controlled simultaneously.  

For instance, if correcting the height variable creates an error in 𝛿 angle, it will be treated as a 

disturbance to the 𝛿 angle control system and will be corrected simultaneously to the height error. 

Joint angles are not calculated before starting the movement as in traditional inverse kinematics. 

Joint motors move until all the errors are reduced. These calculations are performed on the 

microcontroller (Teensy 3.1, 96Mhz) at 200Hz. 
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Variables controlled at the top level are x and y positions of the marker in visual space, pen pressure 

and pen angle (Figure 2B). These control systems are implemented on the PC in Python. The 

image processing algorithm uses the OpenCV library to find the location of a green marker placed 

on the tip of the hand of the robot (Figure 2B). Signal transport delays in visual loops are 

approximately 180-190ms. The location of the marker is reported in pixels, and it is compared to 

the reference determined by the experimenter. Each variable is sampled or calculated at 

approximately 30Hz, determined by the sampling rate of the camera. 

We first tuned the lower-level, proprioceptive loops. The tuning procedure started with setting 

proportional and derivative gains to zero, and the time-constant of the low pass filter to a low 

value. Next, we increased the proportional gain until oscillations appeared after step references, 

and then increasing the derivative gain until the oscillations would stop. If the precision were not 

high enough, then we would increase the time constant and retune the proportional and derivative 

gains to a higher value, trading bandwidth for precision and stability. The time constant tc of the 

low-pass filters was 80ms for all the controllers at the lower level. For tuning the higher levels, we 

applied step references and aimed for a critically damped response using the same trial and error 

procedure as described. The PD controllers at the higher level are identical to lower-level 

controllers expressed in equations (1) and (2). They differ only in parameters. Loop gains and 

open-loop time constants are much larger in higher-level loops in order to achieve stability and 

precision in conditions of large loop delays and noise from the marker location finding algorithm.  

2.3. Data analysis 

Robot hand trajectories were extracted from the camera-recorded positions and estimated hand 

marker locations. We did not use the position of the pen on the tablet since the position of the 

hand-tip marker was not identical to the position of the pen. The experimental signals were 

smoothed with low pass second-order Butterworth filter, with the cutoff frequency specified for 

each analysis, in order to tame the relatively high levels of noise, aiming for the preservation of 

position and velocity profiles, and taking into account the speed of arm movement. Trajectories 

of the computational model were not smoothed. 
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Figure 2. Control diagrams of the robot arm system. (A) Block diagram of two levels of feedback loops, high level 

(yellow) and low level (blue). There are four high-level controlled variables: position of the marker in x and y 

dimensions in the visual field, angle of the pen to the tablet, and pressure of the pen to the tablet. The references are supplied 

by the experimenter. The outputs from top-level loops are references for the lower-level loops controlling 

proprioceptive variables: xp, the x coordinate of the hand tip in proprioceptive space; reach, the distance from the 

shoulder base to the hand tip; z as the height of the hand tip; and delta (δ) as the angle between the x-y plane and the 

hand. All controllers are proportional-derivative (PD) with a low-pass filter (LPF) in controller output. (B) Diagrams 

showing the geometric definitions of variables in the block diagram, the visual space and a diagram of the pen angle 

and pressure variables. 
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3. RESULTS 

Beyond computer simulations and blackboard mathematics, we studied an “embodied control 

architecture” in the real world (aka, our robot arm) to see how it can deal with tasks commonly 

performed by humans and other primates, while adaptively managing noise, delays, nonlinearities, 

unpredictable disturbances, and perturbations.  

Having built the robot arm hardware from scratch and having implemented the hierarchical 

control algorithms as described above, our main goal was two-fold: first, to examine the behavior 

of the system in its own right, and second, to compare the behavioral features of the robot arm to 

known properties and invariances of human arm movement. 

3.1. Task I: straight movements in a reaching task 

The first test is a reaching paradigm similar to the center out reaching task (Figure 3A) often used 

in primate and human movement research (e.g. Cisek and Kalaska, 2002). We applied the step 

reference signal simultaneously to x and y visual tracking loops. There was no central stopping 

point: for one size of the task, there were 10 movements in each direction, done in sequence, for 

a total of 40 movements, with a 5-second pause on the endpoints. The task was repeated 4 times 

with different lengths of movement at 4cm, 8cm, 12 cm, and 16cm (Figure 3B). We did not 

randomize the movement directions, since the robot did not have any learning capabilities that 

might have influenced the reaction time or movement trajectories. 

 

We found that the robot performs straight movements across different lengths and different 

directions in approximately the same time: 1.45 seconds (Figure 3C). For the shortest movements 

(4cm) there was a deviation of 50ms from the average duration of longer length movements. The 

speed profile (Figure 3D) was roughly bell-shaped with a shorter rise and longer fall segment and 

scaled with the length of movement. In all movements, the maximum speed was achieved at 

approximately the same time after the reference step (peak at 0.33s, Figure 3D), except in the 

shortest movement of 4cm, where the peak of maximum speed was 70ms later than the average 

of the other movements. Robot trajectory data were low-pass filtered using a second-order 

Butterworth filter with a cutoff at 3Hz. 
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Figure 3. In reaching to a visual reference, the robot arm shows isochrony and bell-shaped speed profiles. 

(A) Task diagram. The reference jumps between points A1 and A2, with a pause of 5 seconds at each point. Then 

repeats the same pattern at points B1 and B2, C1 and C2, and D1 and D2. (B) Marker position data for four different 

sizes of the reference step. (C) Marker position in visual space calculated as the distance from the previous marker 

position. The marker reaches 95% of the distance to the reference after a step in about 1.45 seconds, regardless of the 

distance or direction traveled. (D) Speed calculated from the same data shows a bell-shaped profile, scaled in height 

to step distance. The position data in plots B and C and was low-pass filtered with a 2nd order Butterworth filter with 

a cutoff at 15Hz, while the speed data filter had a cutoff at 5Hz. 

 

3.2.  Task II: curved movements in a tracking task 

Producing elliptic traces or drawings in humans in a fast and fluid manner results in a speed-

curvature relationship known as the 2/3 speed-curvature power law (or 1/3 power law, depending 

on the variables used), first described by Lacquaniti and colleagues (1983). In the second task, we 

tested the production of curved movements. We used a continuously moving reference point, and 

we report on the situation where the reference moved at a constant speed along an elliptic path. 

An elliptic trajectory with a constant tangential speed is a non-power law trajectory (β≈0, r2≈0); 

the x and y components are not pure sinusoids, but also contain higher frequency components. In 

the low frequencies, the speed of the robot was close to the reference speed, but at higher 
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frequencies, the speed of the robot was not constant and had a sinusoidal profile and a lower 

average than the reference speed. At the highest frequency of input (f = 0.826Hz, speed ≈ 

406mm/s), the output trajectory followed a speed-curvature power law with an exponent of β ≈ -

1/3 and r2 = 0.78. (Figure 4C).  

This seems to support the hypothesis that the power law is a consequence of the physical 

limitations of the human arm, and not a planned invariance. However, the size of the drawn shape 

was smaller than the reference shape because both x and y components of the reference are 

attenuated in the output. To further probe the question of the origin of reaching and tracking 

invariances, and to minimize the effect of noise, we created and fitted a model of visual loop 

behavior.                                                 

Figure 4. The emergence of the speed-curvature power law at high speed. (A) Reference and robot positions. 

When the reference speed is low, the position of the robot hand tip marker in visual space matches the speed of the 

reference. At higher speeds, there is a magnitude attenuation – the ellipse shape is smaller. (B) Plot of reference and 

robot speeds. At low speed, the robot speed matches the reference. When the reference speed is high, the speed of 

the robot is lower and oscillates, even though the input speed is constant. (C) Oscillations in robot speed for the 

highest speed input are regular and correlated with local curvature of movement, following the speed-curvature power 

law with the exponent of β≈-1/3 and r2=0.78. The reference speed is constant (400mm/s), and there is no power law 

(β≈0, r2≈0). In all the plots colors indicate speed, as shown in the color bar on the right. Position data was smoothed 

with a 2nd order Butterworth filter with a 3Hz cutoff. 

 

3.3. In silico modeling and characterization of the in machina system 

The system controlling the visual y variable (Figure 5A) is nonlinear because increasing reach 

affects the y position differently depending on the angle of rotation of the base (α). The three 

motors involved in changing reach (Fig. 5A) are different in power and mechanical linkage; they 
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have a different effect on changes in reach depending on the position they are in. Despite nonlinear 

elements, the behavior of high-level visual loops can be described fairly well by a set of linear 

second-order equations, modeled in the block diagram (Figure 5B), the free-body diagram 

(Figure 5C), and equations: 

𝑒𝑡 = 𝑦𝑟𝑒𝑓
𝑡−𝑑

− 𝑦𝑡−𝑑  

𝑦̈𝑡 =
𝑘

𝑚
𝑒𝑡 −

𝑏

𝑚
𝑦̇𝑡   

where t is time, e is position error, yref the position reference, y position, d is loop transport delay. 

The values of the coefficients used are k/m=40, b/m=27.5, and d=0.185s, which were found by 

fitting the behavior of the model to the behavior of the robot in the step reference task with a 

12cm step distance. The best fit values indicate a slightly overdamped second-order system. We 

modeled the x and y control loops as independent systems with equal parameters. 

This model is analogous to a mass-spring-damper system (Figure 5C) with a movable equilibrium 

position and a pure delay element. The approach trajectory of the marker on the hand of the robot 

to the visual reference in the step-reference task is similar or analogous to the approach trajectory 

of an object of mass m on a spring with stiffness k and damping b toward its equilibrium position 

yref, where the displacement of the equilibrium position happens after a delay of d seconds. The 

spring constant is an analog of the visual gain or sensitivity to error; the damping coefficient b is 

an analog of the combined effect of visual velocity gain (damping term in the visual PD controller), 

gains at the proprioceptive level, and friction between the pen and the tablet; the mass in the mass-

spring-damper system is an analog of the combined contribution of the mass of the robot arm, 

time constants in the visual loops and inertia of electromotors; and the delay is the total duration 

of the travel of the signal around the visual loop, combining camera latency, frame rate and 

transmission delays of the serial protocol between the PC and the microcontroller. 

We examined the behavior of the robot in response to sinusoid inputs across a range of frequencies 

(0.008 Hz, 0.083 Hz, 0.413 Hz, 0.826 Hz). We applied input as the visual reference signals and 

measured the output as the position of the marker in the visual field over time. We calculated the 

relation of output amplitude Aout to input amplitude as 20 log10 (Aout/Ain) for the Bode magnitude 

plot, and we calculated the phase difference between the input and output sinusoids for the phase 

plot. We then interpolated the plot using the second-order mass-spring-damper model (Figures 

5D & 5E, model interpolation in red, experimental values in blue). 

Looking at the Bode plot (Figures 5D & 5E), we can see that the system is stable for all input 

frequencies. At the gain crossover frequency of approximately 0.1Hz, the system has a large phase 
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margin of about 160°, and at the phase crossover frequency at approximately 1Hz the magnitude 

attenuation is 11dB, which satisfies the stability criterion of having both the phase and gain margins 

positive. The bandwidth is limited by the large transport and processing delays in the visual loops, 

approximated at 185ms. The delays cause a phase shift that takes an increasingly longer part of the 

sine period with the increase in frequency and are compensated by low pass filtering the controller 

output (see Equations 1 and 2 in Methods section).   

We repeated the step-reference task with the model (Figures 5F & 5G). The duration of 

movement is isochronous across different distances: it takes the same amount of time, 1.47s, to 

cross 95% of the distance to the reference. The speeds are bell-shaped and scaled with distance, 

but they all reach a peak after 0.37s, replicating very nearly the behavior of the robot arm.  

Finally, in the ellipse tracking task (Figures 5 H & 5I) at the highest frequency of 0.826Hz of 

input, the model replicated the size of the robot trajectory, and also the properties of the speed 

profile. Even when the reference speed was constant, at this frequency, the speed profile of the 

model was sinusoidal. Model trajectory followed a speed-curvature power law with the exponent 

β=0.40, r2=0.98.  

Model trajectories in panels (Figure 5D to 5I) were produced by a model with the same, constant 

coefficients, simulated with a time step of 5ms and Euler integration. Model trajectories were not 

low-pass filtered. 
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Figure 5. The behavior of visual feedback loops can be represented by a second-order model. (A) Diagram of 

the elements in the control of the position of the hand in visual space in y dimension, including the lower-level control 

of reach distance. (B) Block diagram of the model with variables, parameters, and functions. (C) Free body diagram 

of a mechanical setup analogous to the model mass on a spring with damping. (D) Bode magnitude plot shows how 

the amplitude of output signals at high frequencies is attenuated in relation to the input signals. (E) Bode phase plot 

showing the frequency-dependent phase difference between the input and the output. The model reproduces the 

frequency-dependent properties of the robot’s visual loop. (F) The model produces a similar pattern of isochronous 

movement independent of distance in the step reference task; as well as (G) bell-shaped speed profiles in the same 

task (H) The model produces an ellipse smaller than the reference ellipse, similar to the robot, due to attenuation of 

high-frequency inputs. The frequency of the input here is 0.826Hz, and the attenuation is approximately 9.5dB. (I) In 

the same task, the speed of the model follows the same sinusoidal pattern as the speed of the robot, even with the 

constant speed of the reference. Model trajectory was not smoothed in any of the plots. 

3.4. Task III: Adaptation upon blocking the robot arm’s wrist joint 

The hallmark of biological motor control is robustness to perturbations. In further testing of the 

robot arm, we applied different perturbations to the controlled variables, keeping them constant 

for the duration of the task and not changing any of the parameters in the controllers or other 

parts of the software of the robot.  We blocked the wrist, tilted the writing tablet, added a tool that 

extended the arm, and rotated the visual field. 

In this trial, we blocked the wrist joint and compared the performance of the robot in visual 

tracking tasks to the performance in normal operation where the wrist was moving. Without any 

changes to the code or parameters of the control systems, the robot arm performed the tasks even 

with the wrist blocked. In normal operation, the variable reach (Figure 6A & 6B) is affected by 

three motors – in the shoulder (M1), elbow (M2), and wrist (M3). The time-plot of the variables 

in normal operation in the step reference task (Figure 6D) shows joint angles that illustrate how 

all three motors contribute to the movement. When the wrist is blocked, reach is maintained at 

the same desired value as in the normal situation. However, reach is not affected by three motors, 

but only by two: the elbow and shoulder motor automatically pick up or compensate for the work 

normally done by the wrist motor because their activation is proportional to the reach error.  

The block diagram shows the flow of information in the reach synergy (Figure 6B). We can 

describe the system using the terminology of Latash (2008) or Latash and colleagues (2007): the 

performance variable is reach, and it is maintained at its reference level ye by varying elemental 

variables – activations o1, o2 and o3, of motors M1, M2 and M3, respectively. The activations are 

calculated by weighting the output Ro of the controller, and summing the signals with outputs from 

other systems, here control of height z and wrist angle δ. These sums (o1, o2 and o3) are used as 
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activations of motors, as pulse-width-modulated signals from the microcontroller to the motor 

driver chip. 

 

Figure 6. Blocking the wrist is compensated by the reach synergy. (A) Geometric definition of reach - the distance 

from shoulder base to the tip of the hand, and locations of joint motors. (B) Block diagram of computational and 

physical processes in the reach synergy, with marked performance and elemental variables. (C) Diagram of the normal 

and blocked wrist setup. In the normal setup, the wrist moves freely, keeping the hand parallel to the tablet (and the 

pen perpendicular). In the blocked-wrist setup, the motor of the wrist is not powered, and the wrist is locked at ~180° 

to the forearm. (D) Segment of a reaching task with a step reference, comparing the normal and blocked-wrist 

situation. With the wrist blocked, reach is nearly identical to reach in the normal situation, but shoulder and elbow 

motors are activated more to compensate. Shoulder and especially elbow angle show differences in both situations. 

3.5. Task IV: Further perturbations: tilting the world, using tools, rotating point-of-view 

We applied static disturbances or perturbations to controlled variables either directly or indirectly 

to examine the adaptiveness and robustness of the robot control architecture. In the normal 

condition, without additional perturbations, (Figure 7A) the writing tablet is horizontal, the wrist 

is mobile, the marker is on the tip of the hand of the robot, and the visual coordinate system is 

roughly aligned with the proprioception coordinate system. The angle of the pen to the tablet is 

sensed and maintained at 0 degrees (pen is perpendicular) by moving the wrist, and the pressure 

of the pen to the tablet is sensed and maintained at or near 50%. 

In the tilted tablet condition (Figure 7B), the end of the tablet distal to the robot was lifted to an 

angle of 30°. This perturbation challenged the pen pressure and pen angle control systems because 
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the pressure control system needs to continuously modify the height of the hand in order to keep 

the pressure at 50% and still move toward the reference in the visual space. The pen angle control 

system needs to modify the wrist angle so that the pen is always orthogonal to the tablet surface. 

The plots of pen angle and pressure show that those variables were maintained near their reference 

values despite the perturbation, with somewhat more error than in the normal condition. 

In the tool use task (Figure 7C), we added a 12cm long plastic piece to the tip of the arm and 

moved the marker forward to the end of the plastic piece, creating a situation resembling tool use, 

as now the tip of the ‘tool’ was tracking the reference. We moved the camera about 12cm forward 

to keep the workspace in the visual field. The robot performed the task without learning or 

reprogramming visual transformations. In the next task, we rotated the visual field by 30° (Figure 

7D) by rotating the camera and keeping the robot in place. This amount of rotation is near the 

limits of performance – the robot performed the task with higher amounts of error, visible on the 

patterns (red) on the plot. 

The perturbations summary plot shows the average absolute error as the average distance of the 

hand marker from the reference in all perturbation tests across different tasks. The error grows 

with distance or the size of the step in the step-reference task. In pseudorandom tracking, the error 

grows with ‘difficulty’, where more difficult tasks have a higher magnitude of high-frequency 

signals. In the ellipse tracking task, the error grows with frequency or with the speed of the 

reference. Thus, our robot arm is highly robust to external perturbations, akin to human 

movement. 
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Figure 7. Diagrams of perturbation conditions and a plot of tracking performance in different tasks. (A) the 

normal condition diagram and plots of pen angle and pressure from a pseudorandom tracking task, reference in red 

and measured variable in blue. (B) The tablet is tilted 30°, distal part is lifted, plots show the pen angle and pressure 

in a pseudorandom tracking task, reference in red and measured variable in blue. (C) Diagram of the tool use task, a 

12cm plastic piece is attached to the hand of the robot, and the maker placed on the end. (D) Diagram of the camera 

rotation task; the camera is rotated by 30° when compared to the ‘normal’ conditions. (E) Diagram of the blocked 

wrist. (F) Average distance (absolute error) between the marker and the reference in the visual space, across different 

conditions and tracking tasks. Bellow the plot are robot trajectories for each perturbation condition and task. 
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4. DISCUSSION 

We have demonstrated how and explained why a custom-made robot arm (Figure 1) with a 

hierarchical control architecture (Figure 2) based on simulations by Powers (1999, 2008) displays 

basic features characteristic of biological movement. Being robust to noise and delays, the robot’s 

behavior complies with isochrony and displays bell-shaped velocity profiles in a reaching task 

(Figure 3). In tracking a moving target, the robot complies with the so-called speed-curvature 

power law of human movement at high speeds (Figure 4).  

We must acknowledge that the proposed control architecture does not fully explain the production 

of reaching and tracking trajectories since (i) the reaching trajectories of the robot are isochronous 

for different reach distances, while humans may change the reaching duration according to speed 

or accuracy demands of the task (Fitts 1954); and (ii) the tracking of elliptic reference trajectories 

does not recapitulate the geometrical trace or exact speed profile of the reference, with the 

amplitude of movement falling with frequency, and the shape reducing in size. 

However, it is clear that the hierarchical organization of such a control system affords a lot of 

flexibility to the robot arm even without learning algorithms or online optimization. Moreover, we 

have demonstrated adaptive behavior to structural perturbations such blocking the robot’s wrist 

(Figure 6) and to environmental configuration disturbances such as tilting the writing tablet, 

extending the hand with a tool, or rotating the visual field (Figure 7). The main reason for such a 

robust behavioral emergence seems to be the choice of the controlled variables and the hierarchical 

arrangement of their control systems. We further discuss these findings below. 

4.1. Frequency response and stability despite noise and delays 

The frequency response of the robot’s visually guided behavior (Figure 3) shows how the arm 

behaves in response to input signals of different frequencies, where the “input” is the reference or 

setpoint input to the hand tip position in the visual space, and the “response” is the hand tip 

position in visual space. We can see that the system is stable for inputs of any frequency because 

both the phase and gain margins are positive. The system has a slightly overdamped second-order 

response (simplified model of the robot arm discussed later in more detail), and it acts as a low 

pass filter with the gain crossover frequency of approximately 0.08–0.1 Hz. This means that 

magnitudes of all input signals above this frequency will be attenuated.  

Long transport delays are often cited as the main reason for relatively complex delay-compensation 

schemes such as forward models (e.g. Miall and Wolpert, 1993; Kawato, 1999; Desmurget and 

Grafton, 2000). However, we show that an alternative, simpler scheme might work. Delays in 
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feedback loops cause a frequency-dependent phase shift so that at high frequencies of input, the 

phase shift might cause the actuator action to add to the error, creating positive feedback as 

opposed to negative feedback where the error is reduced, which may cause instability and 

oscillation. Transport delays in the human visuo-manual loops in tracking pseudorandom targets 

are approximated at 100–150ms (Viviani et al 1987, Parker et al, 2017). Visual loops of the present 

robot also contain large signal transport delays, 180-200ms, that come from camera latency and 

refresh rate, as well as serial protocol communication delays between the microcontroller and the 

PC. A forward model, given the efference copy of the motor command, estimates the state of the 

arm at current time, instead of waiting for the delayed feedback signals.  

Here we show that stability can be achieved more simply by reducing the bandwidth of the system 

—trading the bandwidth for stability—using low pass filter elements in the outputs of controllers 

(Figure 2). This maintains the visual loop gain high when the input frequency is low and reduces 

the effective gain for high-frequency inputs to avoid positive feedback (Powers, 2008). 

Additionally, the ‘real world’ is highly unpredictable, and various disturbances acting on the arm 

would invalidate any prediction made by the forward model that takes only the motor command 

into account. The present architecture avoids the problem by always using feedback signals, 

affected by both motor action and environmental disturbances, as representations or parameters 

in calculation of actual state. 

The robot arm is still capable of producing movements with high peak speed (Figure 3), while 

movements with both a short duration and a high peak speed might be produced if the movement 

was stopped by an obstacle. This might be a mechanism involved in fast, short movements of 

human hands in e.g. pressing piano keys. 

Most of the effects of sensory noise in the high-gain visual level systems seem to be averaged over 

time by the low-pass filter and do not affect the movement, especially at low speed, and don’t 

require additional compensation mechanisms. In the lower levels, sensory noise does not affect 

movement because the gains are low.  

4.2. Isochrony, bell-shaped velocity, and the speed-curvature power law 

In humans, isochrony was found in drawing figures of different sizes (Viviani and McCullom, 

1983; Viviani and Flash, 1995). It was also found in macaques in natural settings (Sartori et al, 

2013), but not consistently in laboratory settings (Castiello and Dadda, 2018). In the Fitts tapping 

task, the time of movement is related to the so-called index of difficulty, and isochrony is present 

not for all movements, but for tasks of the same index of difficulty (Guiard, 2009). The tapping 
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task illustrates the speed-accuracy tradeoff: the faster we move, the less accurate our movements 

will be. Then, in order to preserve accuracy, presumably, when aiming for smaller targets, we slow 

down our movements.  

We have also found that the robot performs isochronously all movements in the step-reference 

task, regardless of travel distance or direction (Figure 3). There were no accuracy requirements, 

but we found that increasing the frequency and speed in the ellipse tracking task decreased the 

accuracy, suggesting a speed-accuracy tradeoff in the movement of the robot. This tradeoff seems 

to be caused by several factors: (i) the low-pass filtering properties of the arm, resulting from its 

inertia, relatively low power of the actuators and also explicit low-pass filter elements, and (ii) the 

increased influence of lower-level nonlinearities and control system interactions on the behavior 

of the robot because the errors on the lower levels were not corrected fast enough.  

In humans, during rapid straight-line hand movements, the speed profile is not constant. The 

movement starts slow, accelerates to a point, then decelerates to a stop, forming a bell shape over 

time or distance. Some researchers report symmetrical bell shapes where the peak speed is in the 

middle of the movement (Flash and Hogan, 1985), and some report less symmetrical profiles 

(Soechting, 1984). In the step-reference task, we found that the speed profiles are bell-shaped, 

asymmetrical with a short acceleration phase and longer deceleration, and with the maximum speed 

scaled with the extent of the movement (Figure 3). We interpret this speed profile emerging as a 

consequence of programming visual level loops as proportional-derivative controllers. Since there 

was no trajectory planning or online optimization, our results show that it is possible to achieve 

such profiles with a simpler control architecture. 

The speed-curvature power law with a two-thirds coefficient is observed in rapid elliptical 

movement in humans. This phenomenon can be roughly described as movement at lower speed 

in areas of high curvature and relatively higher speed in areas of low curvature (Viviani and 

Terzuolo 1982, Lacquaniti et al. 1983). The production of a power law trajectory is not obligatory 

in principle because the hand might take many of the infinite possible trajectories along the same 

path. However, the set of possible trajectories is limited by the physical properties of the hand and 

the environment. For instance, the hand will never move instantaneously from point A to point 

B, as there is a limit to the force produced by muscles.  

Remarkably, when the robot was tracking a high-frequency elliptic reference, we found the speed-

curvature power law in the measured movement, even when it was not present in the reference 

input. This result is consistent with the optimization of jerk in the movement planning phase 

(Viviani & Flash, 1995; Huh & Sejnowski, 2015). However, in our case we would be getting an 
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optimal jerk trajectory “for free”, again without an explicit optimization algorithm. This result 

shows that the speed-curvature power law can be achieved without explicitly optimizing jerk or 

smoothness either in the planning phase or online. 

However, the robot did not accurately follow the path component of the reference. It then seems 

that the emergence of the power law comes from the failure of the robot to accurately follow the 

high-frequency non-power law position reference, which is interesting. This also seems to be a 

consequence of low-pass filtering the reference signal by the robot arm system. The position 

references in x and y dimensions have high-frequency components that get filtered out, leaving 

single-frequency sinusoid fundamentals, conforming to the aforementioned power law. Similar 

results were obtained in simulations by Gribble and Ostry (1996) and Schaal and Sternad (2001) 

where low-pass filtering non-power-law input signals produced power law trajectories. 

Related to this result, several studies with human participants have shown that it is difficult to 

accurately track targets that don’t follow the speed-curvature power law (Viviani, 1988; Viviani, 

Campadelli, & Mounoud, 1987; Viviani & Mounoud, 1990). However, the subjects did accurately 

follow the path component of the trajectory and the rhythm of the target. We further discuss 

possible mechanisms in the section “higher levels”. 

4.3. A second order simple model accounts for the robot’s behavioral features 

Human behavior in tracking pseudorandom targets can be accurately modeled by a first-order 

model with three constant parameters (see review in Parker et al. 2020). The step-response and 

frequency response in humans is also modeled by second-order models, bang-bang control, surge 

control, or the Crossover model (compared in Müller et al, 2017) with various tradeoffs in 

simplicity and accuracy of modeling. 

Here, in turn, we modeled the behavior of the robot itself with a second-order system, a mass on 

a spring with damping, with three constant parameters (Figure 5). Once the parameters were 

estimated, the model closely reproduced robot position and velocity in visual space in the 

frequency response task, in the step-reference task, and in tracking elliptic references. The model 

displayed isochrony and bell-shaped speed profiles in the step-reference reaching task and the 

power law in the ellipse tracking task (Figure 5). 

The fact that the model captures all these features of robot behavior with just three parameters is 

surprising given the multi-level control architecture, the nonlinearities in the lower levels, and 

differences in motors in each joint. This finding points to an interesting property of hierarchical 

systems: higher-order loops may appear as linear systems regardless of non-linearities at lower 
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levels. Higher levels provide reference signals to the lower-level systems, so the lower systems are 

part of the ‘plant’ from the perspective of the higher systems. A certain range of variations and 

nonlinearities in the plant will be hidden in the behavior of the high-level loop.  

If the system for tracking a visual target appears to higher levels of the brain just like the robot 

arm visual control systems appear to us as experimenters, movement control might be relatively 

simple for the higher brain structures. As postulated by Viviani and Mounoud (1990), all voluntary 

movement might be a special case of pursuit tracking, where the only difference from conventional 

tracking is that the target is internal. The hypothetical higher-level system would only need to 

specify the virtual target, which is identical to the position reference. 

4.4. Higher levels of control 

In optimal feedback control theory, as well as in industrial robotics control, the solution to the 

problem of producing a trajectory might involve forward or inverse models, online optimization 

with a changing horizon, and similar schemes. Those methods are very powerful, especially when 

coupled with modern computers, precise actuators, and relatively noise-free environments. 

However, from an academic perspective, they are criticized for not being empirically refutable or 

biologically plausible (Scott, 2012; Feldman 2015; Powers 2008). In the framework of hierarchical 

perceptual control (Powers 1973), higher levels should be controlling variables more abstract than 

lower levels, and also work more slowly having a larger time constant and longer transport delays.  

One hypothesis arising from the straight and curved movements of the robot arm is that the 

present architecture is missing higher levels of control. In the present architecture, the visual 

position references are set by the experimenter. A hypothetical higher level would be taking the 

role of the experimenter and would attempt to control or maintain a high-level variable at a desired 

value by using the position reference as the manipulated variable (much like the current visual 

position control loops manipulate references to proprioceptive variables to bring visual position 

to the desired value). The visual position reference would not necessarily be always equal to the 

produced visual position. 

Harris and Wolpert (1998) show that minimizing the variance of the hand trajectory from the 

desired path over a set of movements (accuracy) for a given speed, or minimizing the speed for a 

given desired accuracy, reproduced the bell-shaped speed profiles and the 2/3 power law. Their 

result was achieved in the framework of planning an optimal trajectory and executing it in an open-

loop manner; however, we propose that their cost functions for speed and accuracy might be 
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treated as explicit higher-order controlled variables that set visual position references. This would 

amount to independent control of path accuracy and average speed. 

Alternatively, elliptic or straight-line movement can be produced rhythmically. There is some 

evidence that control of movement amplitude and frequency are developed independently. For 

instance, 5-year-old children occasionally produce sinusoidal movements that match the amplitude 

but not the frequency of the target, while other children match the frequency but not the amplitude 

(Mounoud et aI., 1985). This might suggest a closed-loop pattern generator, similar to a phase-

locked loop, that produces a patterned reference for the position control system (see Matic & 

Gomez-Marin 2019). More research is needed to further elucidate these questions. 

4.5. Controlled variables in a hierarchy explain adaptivity to perturbations 

The ability of humans and animals to achieve the same task outcome using different motor means 

has been termed as the phenomenon of motor equivalence. The problem it poses to motor control 

theories is the apparent rapid selection of correct-enough means from the space of all possible 

means. While motor synergies and hierarchical control are proposed as the solution for the 

problem (Bernstein, 1967), the concept of synergy in motor control literature is defined in many 

different ways (see review by Bruton and O’Dwyer, 2018). Our reach control system fits the 

definition of Latash et al (2007), and we termed it the reach synergy.  

To probe the system, we blocked the wrist of the robot and put it through the same battery of 

tests as in the normal condition: the step reference reaching task and tracking pseudorandom and 

elliptic targets. Without any reprogramming or autonomous learning algorithms, the robot still 

performed the task with similar performance to the normal condition (Figure 6), with the 

exception of pen angle not being controlled (as the pen was fixed perpendicularly to the hand, and 

the wrist was blocked). Wrist blocking was also modeled in the DIRECT model (Bullock et al., 

1993) where they argued that fast adaptations to losing a degree of freedom probably exclude 

complex planning as a relevant mechanism as it would take too much time, and the same effect 

can be achieved by simpler schemes. Our result seems to be consistent with the minimum intervention 

principle (Todorov and Jordan, 2002b) where the task-level variable of reaching toward a goal is 

maintained, and the variability caused by blocking the wrist is taken up by task-irrelevant variables 

of elbow and shoulder joint angles. The minimum intervention principle may emerge from an 

online movement optimization algorithm, however, here we achieve the same result without 

optimization, by having a flexible control hierarchy. 
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Maintaining pen pressure and angle are indeed important skills in handwriting. Measures of quality 

of control have been linked, for instance, to dysgraphia as a diagnostic criterion (Mekyska et al 

2017). Modeling contact forces in model-based control and optimal feedback control is still an 

open problem. Control systems for pen pressure and pen angle were implemented for this robot 

as slow, but precise systems in the higher level.  We tested these two control systems by tilting the 

graphics tablet by 30° and keeping the reference for the pen angle toward the tablet at 0° and the 

reference for pressure at 50%. Next, the robot performed the battery of tracking tests (Figure 7), 

and we found the performance close to the normal condition. The robot automatically adjusted 

the height of the tip of the hand and the angle of the wrist in order to maintain the angle and 

pressure references. In this case, we can see that precise pressure control is crucial for maintaining 

the pen on the tablet, similarly to human handwriting.  

The visual coordinate system was “retina-based” in the sense that the two-dimensional visual field 

recorded by the camera was the working space of the robot. It was somewhat primitive, as it could 

only find the location of a green marker in two dimensions. However, it was robust to 

perturbations. The robot arm and the camera, and their respective proprioceptive and visual 

coordinate systems were only roughly aligned to begin with, and this was sufficient for normal 

operation. In the first test, we extended the arm with a 12 cm long piece of plastic and put a marker 

on the tip of the plastic instead of the tip of the hand, simulating writing with a longer pen or 

reaching with a stick. The visual system had no information about the size of the stick, or for that 

matter, the size of the robot arm or the configuration of its angles, but only the location of the 

marker. This was sufficient to enable the robot to track the reference with this ‘tool’.  

In the second test, we rotated the camera by 30°.  This made the relationship between visual 

location proprioceptive location variables more nonlinear than in normal operation. The 

performance in this test was somewhat worse than in normal condition (Figure 7), but the tasks 

were still successfully performed: in the step-reference condition, the hand tip reached the 

reference position and settled at that position, and in target tracking, the hand tip followed the 

reference signal in a similar manner to the normal situation. 

These perturbations to the visual system do not greatly affect performance because there are no 

explicit coordinate transformations between the visual and kinesthetic loops. All transformations 

are implicit: the higher levels tell the lower levels to ‘move until the higher-level reference state is 

achieved’. Moving in approximately the right direction seemed to be enough. As discussed, most 

nonlinearities in the lower levels were absorbed by the high-gain higher-level control systems, at 

least in the low frequency, low-speed movement. 
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The geometric and kinematic definitions of controlled variables used in the arm were selected and 

adapted to fit with this specific robot arm, largely based on the previous computer simulations. 

While we suspect similar variables might be found in human arm control, we have no direct 

evidence to support the claim. Following the performance of the robot arm in this study, we 

suggest that an architecture featuring hierarchical arrangement of controlled variables might be a 

plausible solution for biological arm control. 

4.6. Limitations and perspectives 

A limitation of the present study is the lack of direct literal comparison of robot behavior to human 

behavior in the same tasks, and instead comparing invariances and trends. The mechanical and 

sensory properties of the arm were not on par with the human sensory-motor system to allow such 

a comparison. With the aim of creating a higher fidelity model of a visually, tactually, and 

proprioceptively controlled human arm, the improvements would make the arm slightly faster and 

the sensors more numerous, but maybe not more precise. The improvements would not remove 

transport delays or noise, because those properties are present in biological arm control systems. 

Mechanically, backlash in the geartrain of the motors (also known as slop or play) seems to be a 

major obstacle for human-like movement, as it puts a hard limit on the precision and bandwidth 

of the system that cannot be improved by higher quality sensors. With all the nonlinearities, 

slowness, and fatigability in human muscles, human joints are backlash-free. Therefore, a higher 

fidelity model should put an emphasis on removing the backlash from the joints, perhaps by 

tendon-driven actuators. 

The visual system of the present robot is a crude approximation of the human visual system’s 

object detection in two dimensions. Accurate modeling of visual delays should be maintained, but 

the resolution and refresh rate could be improved, as well as adding stereo vision for three-

dimensional localization. Improvements in the same direction could be made to proprioceptive 

and haptic sensory systems. In sum, such improved systems would allow testing hypotheses of 

lower, spinal-level sensorimotor loops, and their interaction with higher-level visual or 

proprioceptive loops, multi-sensory integration etc. 

Additionally, as in studies of human movement, the results are influenced by low-pass filtering the 

data in the analysis stage, and should be taken with some reserve. 
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4.7. Conclusion 

This research has shown that in a robot arm system with a hierarchical control architecture based 

on simulations by Powers (1999, 2008) several features characteristic of biological movement 

naturally emerge. The robot is robust to noise, delays and some nonlinearities. We found isochrony 

and bell-shaped velocity profiles in straight reaching movements and the speed-curvature power 

law in the fast drawing of ellipses. We showed how they can be achieved without trajectory 

planning, learning or online optimization. We also showed that a hierarchy of controlled variables 

can produce a motor equivalence phenomenon, where the robot performs the same visual task 

either with the wrist freely moving or with the wrist blocked. The system also adapts to different 

angles of the graphics tablet tilt by relying on pressure and pen angle control. Moreover, the system 

adapts to extending the arm with a tool, and to rotations of the visual field. Overall, we have 

demonstrated that our 4 DOF robot arm recapitulates important features of human movement 

and therefore presents an appealing platform upon which to build and test further models of 

adaptive behavior, while providing insight into feasible mechanisms of human arm control. 
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