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Abstract

Motivation: The scalable design of safe guide RNA sequences for CRISPR gene editing depends on the
computational “scoring” of DNA locations that may be edited. As there is no widely accepted benchmark
dataset to compare scoring models, we present a curated “TrueOT” dataset that contains thoroughly
validated datapoints to best reflect the properties of in vivo editing. Many existing models are trained
on data from high throughput assays. We hypothesize that such models may suboptimally transfer to
the low throughput data in TrueOT due to fundamental biological differences between proxy assays and
in vivo behavior. We developed new Siamese convolutional neural networks, trained them on a proxy
dataset, and compared their performance against existing models on TrueOT.
Results: Our simplest model with a single convolutional and pooling layer surprisingly exhibits state-of-
the-art performance on TrueOT. Adding subsequent layers improves performance on the proxy dataset
while compromising performance on TrueOT. We demonstrate that model complexity can only improve
performance on TrueOT if transfer learning techniques are employed. These results suggest an urgent
need for the CRISPR community to agree upon a benchmark dataset such as TrueOT and highlight that
various sources of CRISPR data cannot be assumed to be equivalent.
Availability and Implementation: Our code base and datasets are available on GitHub at
github.com/baolab-rice/CRISPR OT scoring.

1 Introduction

CRISPR-Cas9 systems are engineered for site- and sequence-specific genome editing [1, 2]. The S. pyogenes
Cas9 (SpCas9) system is the most common variant and typically requires a 20-base guide RNA (gRNA)
that targets a DNA sequence upstream of a Protospacer Adjacent Motif (PAM) sequence of “NGG” [3, 4].
The relatively high efficiency of SpCas9 systems and ease of construction in performing gene editing have
led to a revolution in life sciences and medicine. However, unintended editing at “off-target” (OT) DNA
sites is a major concern for gene editing applications [3]. The hybridization of the gRNA to target DNA
tolerates imperfect sequence homology which causes OT activity [5–7]. The resulting double strand breaks
(DSBs) can induce undesired mutations that vary gene expression levels or even disrupt genes, and multiple
DSBs can result in chromosomal rearrangement or severe DNA damage [8,9]. Therefore, rational designs of
gRNAs with minimal OT activity are critical for both scientific studies and safe therapeutic applications of
CRISPR-Cas9 systems.

As experimentally screening target DNA sites for potential OT activity is tedious and expensive, com-
putational techniques are critical to scalably evaluate gRNA designs [10]. This evaluation has three phases
for a given gRNA: screening for potential OTs across the whole genome, scoring the list of targets, and
aggregating the scores into an overall gRNA quality metric [11]. In this work, we focus on scoring. Scoring
models initially used hypotheses on relevant sequence features that affect editing activity [12–15]. Increased
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availability of CRISPR gene-editing data has enabled machine learning (ML) to directly learn relevant fea-
tures from data [16]. Given a gRNA-target sequence pair as input, models predict a label that is either
binary for classification (predicting whether a gRNA edits a target site) [17–19] or continuous for regression
(predicting editing efficiency) [11, 20]. With few exceptions [19, 20], most scoring algorithms focus only on
mismatches between the gRNA and target sequences without accounting for bulges. However, CRISPR-Cas9
systems are able to generate DSBs at sites with bulges in both in vitro and in vivo settings among multiple
cell types [6, 21,22].

Training a ML scoring model capable of assessing gRNA-target pairs with bulges is essential, but the
available datasets are fundamentally limited. Ideally, datasets would label pairs based on the gRNA’s
tendency to edit the target site in vivo, but such validation is painstaking. Whole-genome sequencing is
limited by the sequencing depth and is generally unable to detect OT sites with less than 5% editing efficiency
[23–25]. Therefore, many ML approaches rely on datasets generated by genome-wide high throughput
methods based on proxies such as the insertion rate of a double-stranded DNA tag (GUIDE-seq [26]) or the
cleavage rate in vitro (CIRCLE-seq [27], CHANGE-seq [22]) and in vivo (DISCOVER-seq [28], HTGTS [29]).
Unfortunately, recent studies have shown that proxy assays have low concordance among each other and
with validated in vivo editing [22, 30]. Perhaps due to this variable performance between assays, there is
no gold standard benchmark dataset on which to compare scoring models despite the pervasive use of such
benchmarks in other applications of ML. A carefully selected benchmark is urgently needed to avoid biased
progressing in the field of ML applications to CRISPR [31].

Therefore, our first contribution is the curation of a novel benchmark “TrueOT” dataset. TrueOT con-
tains 1903 binary-labeled datapoints that were thoroughly validated by mutation rates in vivo. We argue
that in vivo editing prediction on gRNAs that are not seen during model training is the best performance
metric for any scoring model. The use of proxy datasets to train models implicitly assumes that interactions
between gRNAs and DNA are independent of the setting. Our second contribution is the unraveling of this
assumption through the evaluation of a suite of Siamese convolutional neural networks. As we will discuss,
this architecture is particularly helpful for testing the assumption of dataset equivalence through the lens of
transfer learning. We trained these networks on a “Proxy Dataset” and found that our “S1C” model with a
single large convolutional and pooling layer achieved state-of-the-art generalization to TrueOT among bulge-
capable models. Only Elevation [11] and predictCRISPR [18], models that only account for mismatches and
require equal-length gRNA-target pairs, performed better on the relevant subsets of TrueOT. We found that
more complex Siamese models could improve performance on the Proxy Dataset while compromising gener-
alization to TrueOT. A core principle of transfer learning with neural networks is that initial convolutional
layers capture features that generalize well between datasets while deeper layers must be retuned accordingly
on a portion of the target dataset [32]. We believe this framework explains our results.

Our core thesis is that if TrueOT is an acceptable benchmark dataset, then future efforts in scoring
model development must consider applying transfer learning principles of ML to account for the underlying
gap between proxy assays and in vivo editing behavior. TrueOT currently contains too few datapoints to
train deep networks on directly. Still, we perform a preliminary demonstration of transfer learning through
a novel dimensionality reduction on the output of our S1C to enable the tuning of a much smaller network.
Our TrueOT benchmark and Siamese models serve as potent starting points for continued research into this
problem. As more data is added to TrueOT, the efficacy of transfer learning will naturally improve along
with the confidence in the safety of designed gRNAs.

2 Methods

2.1 Dataset Curation

2.1.1 TrueOT

Currently, no assay enables direct genome-wide measurement of CRISPR-induced DNA sequence alteration
with high sensitivity and throughput, significantly limiting the size of TrueOT. We defined three criteria for
the inclusion of experimental data in TrueOT: (1) the experiments were performed in living cells, retaining
the information that is missing from in vitro settings; (2) the OT editing efficiencies were evaluated by
directly measuring the target sequence mutation rate, the common standard in clinical settings; (3) the OTs
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have a chromosomal position provided by original studies or a unique chromosomal position that can be
retrieved in the reference genome using COSMID [13]. This filtering results in 1903 unique datapoints with
36 unique gRNAs from 11 different studies. Ten studies’ datapoints were experimentally validated through
next-generation sequencing of PCR amplicons [9, 22, 33–40]. We positively labeled gRNA-target pairs with
an editing rate greater than 0.1%, a commonly accepted threshold for deeming OTs. Although some scoring
models use continuously valued editing efficiency for regression, we suggest that in evaluating potential
OTs, any degree of editing may be dangerous and should be flagged accordingly. One study experimentally
validated datapoints by T7 Endonuclease I for which we used the original study’s labels [5]. In determining
which datapoints have bulges, we used the original studies’ alignment information to avoid adding a source
of variability (Fig. S1). Among the 280 positive OTs in TrueOT, 10 had bulges, highlighting the need for
bulge-aware scoring models. For further details on the included studies, see Table S1.

In our uploaded dataset (Table S2), we decided to keep all 1903 available datapoints that were performed
in unique studies or unique experimental conditions. For example, five of the gRNAs appeared in two
studies [5,35] that used different cell types which results in some datapoints in TrueOT with the same gRNA-
target pair. Notably, these datapoints do not always have the same label, reflecting commonly observed
cell-type dependencies in gene editing [41]. In model evaluation, we filtered for the 1841 unique triplets of
{gRNA, target, label}. By doing so, we focus on the aggregate ability of models to make predictions on
sequence information alone and reduce any ambiguous gRNA-target pairs to one instance of each a positive
and negative label. Table 1 includes this duplicate removal in its description of TrueOT.

2.1.2 Proxy Dataset

For training our models, we combined a dataset from a recent review [42] and the training set from CRISTA
[20]. The former includes datapoints from several publications but lacks datapoints with bulges, motivating
the inclusion of the latter. We excluded datapoints with gRNAs in TrueOT from this combined dataset,
ensuring that our models’ performance on TrueOT reflects their ability to make in vivo editing predictions
on unseen gRNAs. After this filtering, our Proxy Dataset has 3505 remaining datapoints from proxy assays,
predominantly GUIDE-SEQ and HTGTS.

2.2 Pairwise Comparisons

In addition to several rule-based models [6,10,13–15,43], we chose the following recent ML models for their
high performance as evaluated by a recent review [42]: CRISTA [20], Elevation [11], predictCRISPR [18],
CNN std [17]. We also include CRISPR-NET [19], a recently developed bulge-aware scoring model. To
evaluate the published models on TrueOT, we do not have the luxury of retroactively removing datapoints
in the original training sets that contain gRNAs in TrueOT. Instead of retraining existing models on new
datasets, we evaluated the performance of the published models on subsets of TrueOT involving gRNAs
that were not used in the training of the original model. We also filtered datapoints for which the model
cannot produce an output such as a bulge-containing datapoint with a mismatch-only algorithm. Table 1
clarifies this process for the ML baselines. Most rule-based techniques were restricted to the 1614 datapoints
without DNA-RNA bulges except COSMID. which can tolerate up to one bulge, allowing its evaluation on
1814/1841 datapoints.

For each baseline model, we evaluated the area under the curve of the receiver operating characteristic
and precision-recall curves (ROC-AUC, PR-AUC). Notably, Elevation and CRISTA are regression models
whereas we compared classification performance. Sweeping thresholds in the evaluation of ROC-AUC and
PR-AUC can standardize such comparisons. We evaluated our own model architectures using five different
initial random seeds and performed a one sample z-test relative to the AUCs of the baselines.

2.3 Model Training and Validation

We aim to convey the value of the TrueOT dataset and its underlying distinction from data generated by
proxy assays. Therefore, we train and validate our own models exclusively on the Proxy Dataset. Throughout
this work, splitting data is an approximate process due to the need to keep gRNAs unique in each subset of
data. We performed training and five-fold cross validation (CV) on approximately 80% of the Proxy Dataset
(“Proxy TrainCV”). Within each fold, we apply an inverse class weight to account for class imbalance.
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Dataset Name Original n gRNAs n Bulge Other Purpose

TrueOT 1841 36 1841 227 1614 Holdout Dataset

TrueOT CNN std

1841

18 1059 0 1059

Pairwise Comparisons
TrueOT Elevation 26 1118 0 1118
TrueOT predictCRISPR 12 857 0 857
TrueOT CRISTA 25 1252 186 1066
TrueOT CRISPR-NET 15 1078 182 896

Proxy Dataset 18072 31 3505 157 3348 Developing SCNNs

Proxy TrainCV n/a 23 2811 129 2682 Training/CV
Proxy Validation n/a 8 694 28 666 Hyperparameter Selection

Table 1: Summary of datasets. TrueOT was used as a holdout evaluation set, and subsets were used
in pairwise comparisons against published baseline algorithms with n denoting the number of datapoints in
each set. The Proxy Dataset was used for internal model development with cross-validation (CV) ensembling
on Proxy TrainCV and hyperparameter selection guided by Proxy Validation.

We conducted majority vote CV ensembling with early stopping based on CV performance for each model
architecture. The ensembling process helps each member model learn to generalize to a different subset of
gRNAs in Proxy TrainCV. Performance on these five folds is too variable to inform hyperparameter selection
due to the limited unique gRNAs in each fold. Therefore, we use the ensemble ROC-AUC on the remaining
20% of data (“Proxy Validation”) as a far more stable guide. This decision also reflects the common practice
of using generalization on proxy datasets as a ranking mechanism of scoring algorithms.

2.4 Siamese Model Design

We selected a Siamese network as our core architecture which is commonly used for sequence comparisons
in natural language processing with some recent adaptations to biological settings [44, 45]. A Siamese
network passes elements of paired data through an identical sequence processing network and evaluates
their similarity. Here, we assessed the Euclidean distance between the gRNA and target sequences’ network
output. By optimizing a contrastive loss function, Siamese networks learn to position similar sequences
(i.e., gRNA-target pair that results in editing) close together while pushing dissimilar pairs further apart. A
Siamese network is particularly helpful for investigating the influence of various network depths because its
output dimension is arbitrary; layers can easily be added or removed without having to condense the final
output to a scalar value (regression) or the number of classes (classification). Such dimensionality reduction
in other neural networks is often accomplished by dense layers which are parameter intensive and unlikely
to transfer well between datasets.

2.4.1 Data Encoding

Existing bulge-aware scoring algorithms require alignment for data encoding [19, 20]. Because alignment
algorithms can vary in output given the same pair of sequences, scoring algorithms may be susceptible to
these disagreements. We simplify the encoding strategy to ignore exact alignment and attempt to correct
for small frameshifts caused by bulges through a max pooling operation. The gRNA and target nucleotides
{A, C, G, T/U} are one-hot encoded, and by simply left-padding the sequences with zeros to a fixed length
of 26, our encoding is alignment-independent (Fig. 1a). We chose 26 as up to three insertions have been
allowed in past alignment techniques for CRISPR scoring [20].

2.4.2 Siamese Networks

We start with a single convolutional and pooling layer with many filters because of such layers’ established
ability to capture features that generalize across datasets [32]. This Siamese 1-Convolution model (S1C)
anomalously allows filters to be added indefinitely without harming generalization (in theory) since the
model’s output dimension is arbitrary and a distance is immediately computed after pooling. As a result,
we use 214 = 16384 filters of 8 nucleotide width in our S1C based on our hyperparameter search (Fig. S2).
For bulge awareness, we add a 1 × 2 max pooling operator with stride 1, allowing our network to partially
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(a) S1C (b) Hybrid S1C

Figure 1: The Siamese models compute a distance D between a guide RNA (gRNA) and target DNA sequence.
(a) Rather than aligning the gRNA and target sequences, we simply left-pad them to a fixed length of 26. The S1C
applies a single convolutional and pooling layer to each one-hot encoded sequence. The filter vector at position i for
a sequence seq is denoted yi,seq. The distance is the standard Euclidean distance between the feature matrices of
the gRNA and DNA sequences. (b) The Hybrid S1C computes the squared distance between two input sequences
at each position from the output of an S1C. Note that the S1C’s distance can be represented by D =

√
1T d2i . By

passing the position-wise distances to a post-processing network with a nonnegative activation function (e.g., ReLU),
the Hybrid S1C can learn a nonlinear “distance” guided by a contrastive loss function. The post-processing network
is entirely arbitrary in principle, although we use a single dense layer of 256 neurons in this work.

tolerate ±1 position frameshifts of sequences. We also hypothesize that our relatively wide 8-nucleotide
convolutions will learn some frameshift tolerance themselves.

Despite these features, there are several reasons why additional model complexity is warranted. First, the
S1C only measures local dependencies within 8 nucleotide windows. By computing a distance on the output
of this layer, neither positions nor combinations of features are considered, both of which have established
relevance [6, 13]. There are arbitrarily many ways to increase model complexity, but we present just two
simple cases representative of the evidence of a need for transfer learning. In one implementation, we add a
second convolutional and pooling layer (S2C), and in a second, we add a dense layer (S1C Dense). Unlike
in S1C, we constrain the number of filters (256) in the first convolutional layer for these deeper models to
prevent an explosion of parameters. To directly compare S2C and S1C dense against a single convolutional
layer, we define the S1C mini model with just these 256 filters.

2.4.3 Untrained S1C

Random kernel weights in convolutions have been shown to create distance-preserving (“isometric”) embed-
dings of inputs [46, 47], making them a natural choice for a Siamese network that makes decisions based on
the output positions of input sequences. Training kernel weights distorts the network’s output positions to
better separate classes, especially with datapoints at the boundary [47]. In the context of CRISPR scoring,
we define boundary points as gRNA-target pairs with strong sequence homology that do not result in editing
and vice versa. We suspect that comparing the performance of an untrained S1C model (“S1C ut”) against
that of the trained Siamese models and existing baselines may provide insight into the influence of training
on the resolution of boundary points.

2.4.4 Hybrid S1C for Transfer Learning

In applying transfer learning, we use the S1C trained on the Proxy Dataset as a pretrained base network with
frozen weights, add on a post-processing network, and train the latter network’s weights on roughly half of
TrueOT (Fig. 1b). Note that TrueOT is a very small dataset such that the post-processing network must be
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relatively simple for any meaningful training to occur, but the S1C output dimension is very high. However,
the S1C is position-invariant with an output equivalent to the square root of the sum of the squared position
differences in each convolutional window (Fig. 1b). This intuition lends a natural way to dramatically reduce
the output dimension of the S1C for transfer learning on a small dataset: we compute the squared position
differences and pass this small vector to a dense network. With a ReLU activation on the final output, this
“Hybrid S1C” learns a nonlinear “distance” metric that accounts for combinations of positions of sequence
discrepancies between the gRNA and target. We remove the square root function on the output since it is
a monotonic function and ROC and PR characterizations are based on thresholds. We initialize the weights
such that the model starts as an equivalent classifier to the S1C.

We split TrueOT approximately into 75% (TrueOT Train CV) for training and CV and 25% (TrueOT
Test) for testing, enforcing non-overlapping gRNAs between each split. We performed a similar five-fold CV
training and ensembling process described in Section 2.3. For each fold of the Hybrid S1C, we loaded the
weights of the corresponding fold from the original S1C and froze them, trained only the additional dense
layers of the post processing network on a portion of the TrueOT training set, and used the CV portion to
guide early stopping. We used CV performance for hyperparameter selection, ultimately choosing a single
hidden layer of 256 neurons. This process maintained the Hybrid S1C as a five-member ensemble.

To evaluate the effect on TrueOT Test performance, we made two versions of the Hybrid S1C. For the
first, we used the transfer learning process described above. For the second, we trained the entire network,
including the convolutional layer, on Proxy TrainCV. We used random weight initializations and selected
that with the best Proxy Validation performance. We generated ten different splits of TrueOT and evaluated
the change in ROC-AUC performance relative to the original S1C. Repeated splitting of TrueOT ensures
that any apparent performance change is not just an anomaly of a particular split. Comparing these two
versions of the Hybrid S1C indicates whether the performance change is due to the transfer learning process
specifically (freezing weights from the original S1C) or merely due to the change in network architecture.

3 Results

3.1 Model Design by Proxy Validation Compromises TrueOT Performance

Figure 2 illustrates a general pattern from our research: improving generalization performance on the Proxy
Validation set can compromise the performance on TrueOT. The untrained network performs slightly better
than guessing on the Proxy Validation set (ROC-AUC 0.626, PR-AUC 0.250) but substantially better on
TrueOT (ROC-AUC 0.797, PR-AUC 0.482), meaning that classes of sequence pairs in TrueOT are more
closely related to an absolute count of mismatches along with some frameshift tolerance. Although we have
no influence over the distribution of data labels in TrueOT, this contrast illustrates that our Proxy Validation
set has many more boundary points from which our Siamese models may hope to learn from.

In adding subsequent layers to our Siamese models, recall that S1C dense and S2C are built off of
S1C mini. These simple extensions dramatically improve performance on the Proxy Validation set while
exhibiting worse performance on TrueOT than S1C mini (Fig. 2). This pattern holds for both ROC-AUC
and PR-AUC. Ultimately, these results indicate that the Proxy Validation set is suboptimal for guiding model
design if the goal is to generalize to TrueOT. We speculate that this is caused by an underlying discrepancy
in the biology of proxy assays versus in vivo editing. If the two datasets were from the same underlying
distributions, this inverse effect would be very unlikely to occur. Moreover, the two best-performing models
on TrueOT are S1C and S1C mini. Interestingly, the many extra filters in S1C substantially improve the
Proxy Validation performance over S1C mini, but both of these single-convolutional models maintain similar
TrueOT performance. This result is consistent with the established robustness of high level convolutional
layers in transfer learning applications.

3.2 S1C Achieves State-of-the-Art Performance on TrueOT

Here we compare the S1C against baselines given the results in Section 3.1 and include S1C ut as a useful
reference. In pairwise comparisons on appropriate subsets of TrueOT, our S1C significantly outperforms
most of the tested baseline algorithms (Table 2). Two exceptions are Elevation and predictCRISPR, which
outperform the S1C. However, these models cannot account for bulges, meaning that this comparison is
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(a) (b)

(c) (d)

Figure 2: Comparison of generalization performance on Proxy Validation and TrueOT for various Siamese models.
(a,b) Comparison of ROC-AUC (c,d) Comparison of PR-AUC.

restricted to gRNA-target pairs of equal length. The S1C appears roughly on par with CRISPR-NET,
slightly underperforming in ROC-AUC and outperforming in PR-AUC.

Among all baselines, COSMID, CRISTA, and CRISPR-NET are designed to account for bulges. We
further partitioned the TrueOT into bulge-containing and bulge-excluded datasets to deepen our comparison
against these models (Table 3). The S1C significantly outperforms the baselines in almost all categories. One
exception is a larger p value (p = 0.022) in the PR-AUC comparison against COSMID for bulge-containing
datapoints. The second exception appears to clarify the comparable overall performance of the S1C and
CRISPR-NET in Table 2: CRISPR-NET has an edge on bulge-excluded datapoints while the S1C has better
performance on bulge-containing datapoints.

The S1C’s approximate equivalence with the state-of-the-art should not be taken lightly. By including
only a single convolutional layer, the S1C has no capacity to learn nonlinear combinations of features, unlike
all of the ML-based methods noted here. Moreover, even the untrained S1C ut outperforms most rule-
based and some ML models. The S1C ut essentially counts the number of mismatches with some frameshift
tolerance. While more patterns are clearly necessary to distinguish boundary points in a dataset, it appears
that the added functional capacity of existing models does not necessarily improve in vivo editing predictions.
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ROC-AUC PR-AUC

Baseline Name n Baseline S1C S1C ut Baseline S1C S1C ut

Cropit 1614 0.686 0.821 0.786 0.352 0.542 0.492

Hsu 1614 0.668 0.821 0.786 0.369 0.542 0.492

CCTop 1614 0.662 0.821 0.786 0.341 0.542 0.492

MIT 1614 0.766 0.821 0.786 0.440 0.542 0.492

CFD 1614 0.813 0.821 0.786 0.492 0.542 0.492

COSMID 1819 0.669 0.826 0.795 0.350 0.533 0.483

CNN std 1059 0.724 0.816 0.762 0.426 0.503 0.422

Elevation 1118 0.799 0.784 0.731 0.442 0.413 0.374

predictCRISPR 857 0.810 0.756 0.701 0.396 0.359 0.318

CRISTA 1252 0.731 0.776 0.731 0.354 0.390 0.352

CRISPR-NET 1078 0.779 0.755 0.704 0.198 0.329 0.286

Table 2: Pairwise Comparisons on TrueOT. We conduct one-sided z-tests between the Baselines and the
S1C’s. Baselines’ AUCs are bolded if they are greater than both the S1C’s and S1C ut’s AUCs with p < 0.001.
The S1Cs’ AUCs are bolded if they are greater than the Baselines’ AUC with p < 0.001.

ROC-AUC PR-AUC

Baseline Name TrueOT Subset n Baseline S1C S1C ut Baseline S1C S1C ut

COSMID
Other 1614 0.656 0.821 0.786 0.358 0.542 0.492
Bulge 205 0.733 0.820 0.808 0.279 0.336 0.338

CRISTA
Other 1066 0.739 0.775 0.721 0.374 0.405 0.366
Bulge 186 0.584 0.810 0.803 0.089 0.335 0.340

CRISPR-NET
Other 896 0.844 0.749 0.721 0.359 0.342 0.297
Bulge 182 0.643 0.806 0.803 0.073 0.335 0.340

Table 3: Pairwise Comparisons on TrueOT for bulge-capable models. The original n datapoints available
for pairwise comparisons were split into bulge-containing gRNA-target pairs and all other pairs. A pair was
considered to have a bulge if a ‘-’ appeared in either sequence in the original study’s alignment or if the two
sequences were of different lengths. Bold font is applied as in Table 2.

3.3 Baseline Models’ Datasets Reflect their TrueOT Performance

Our pairwise model evaluations are intended to compare baselines against the S1C and do not directly reflect
a rank ordering among baselines. However, the relative performance appears consistent with our transfer
learning hypothesis; better performing baselines incorporate more in vivo-based data in their training process.
PredictCRISPR used many of the low-throughput datapoints contained in TrueOT in its training set [18],
hence its fewest datapoints n on which we can perform a pairwise comparison fairly. CFD performs the
best among the rule-based algorithms on the full 1614 bulge-excluded datapoints and comes very close to
the performance of the S1C. We suggest that while CFD is often labeled as rule-based in the literature, it
could be considered an ML approach driven by in vivo data as its weights are tuned based on flow cytometry
data [6]. These direct in vivo measurements, while not based on sequence modification rate for inclusion
in TrueOT, are arguably very close in motivation. Lastly, Elevation derived its model as a generalization
of CFD, which may explain its similarly high performance. More details on the datasets used in each ML
baseline are available in Table S3.

3.4 Bulge Performance of the S1C Appears Driven by Max Pooling

The S1C’s superior performance on the bulge-containing subsets of TrueOT (Table 3) could be due to chance
given the small number of datapoints available (n ≤ 205). Nonetheless, we investigated the decision-making
process of the S1C for bulges to understand its high performance. We hypothesized that the use of many
filters (214) allowed the S1C to treat mismatches due to small frameshifts from bulges differently than random
mismatches. For example, an insertion at position 4 in a window on the target sequence could appear as 5
mismatches with gRNA (Fig. 3a), but perhaps the S1C learns to recognize such an occurrence as a frameshift
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(a) Example Datapoint (b) S1C (c) S1C Without Pooling

Figure 3: Characterization of the capacity of convolutions to learn the effect of bulges. Error bars ±1 s.d. (a) Pairs
of sequences were generated either by introducing substitutions or bulges at specific positions. For each pair in each
method of mutation, the raw number of mismatches and convolutional distance was evaluated. (b) Comparison of
the relationship between mismatches and network distance for the S1C. (c) Same comparison with an S1C without
pooling.

instead.
We tested this hypothesis by generating a series of random sequences and pairing them either with a

mutated sequence with a random number of mismatches or with a sequence modified by an insertion or
deletion. To maintain a length of 8 for an insertion event, the 3’ base was truncated; for a deletion, a
random base was appended to the 3’ end. We evaluated the distances computed by the S1C’s filters between
each pair of sequences and plotted them as a function of the naive mismatch count. While we expected
the bulge-generated pairs to exhibit lower convolutional distances than the mismatch-generated pairs - an
indication of recognizing greater similarity - we were surprised to find essentially the same distribution of
distances for both sets of sequences (Fig. 3b). The distance computation between pairs appears unaware
of bulges, indicating that the S1C is managing bulges predominantly through max pooling. Indeed, the
untrained S1C ut performs similarly on bulge datapoints as the S1C (Table 3) and is only utilizing max
pooling for bulge awareness. When we remove pooling and retrain the S1C with an otherwise identical
network, the filters are forced to learn to recognize bulges on their own (Fig. 3c).

Max pooling is indifferent to the type and sequence neighborhood of a bulge by merely allowing for ±1
shift in the position of sequence features. This limited handling of bulges in the S1C outperforms existing
algorithms on bulge datapoints and supports the notion of underlying discrepancies between proxy datasets
and TrueOT. Learning the influence of bulge type and neighborhood is the role of model training. We spec-
ulate that much like our results in Section 3.1, existing models may have appeared to improve performance
on the validation and test sets used by the respective authors while resulting in reduced performance on
TrueOT.

3.5 Transfer Learning with Hybrid S1C Improves TrueOT Generalization

In evaluating the effect on ROC-AUC for ten different splits of TrueOT (Fig. 4), we find that training the
dense layers of the Hybrid S1C on a portion of TrueOT TrainCV while freezing the convolution weights
from the original S1C slightly improves the ensemble performance on TrueOT Test (one-sided paired t-test,
p = 0.047). We speculate that the small improvement is mostly due to limited training data in splits of
TrueOT TrainCV. Training the full Hybrid S1C network from scratch on the Proxy TrainCV achieved the best
Proxy Validation performance in this study (ROC-AUC 0.877), a substantial improvement over the original
S1C (ROC-AUC 0.803, Fig. 2a). However, Figure 4 shows that its performance on TrueOT Test splits is
significantly lower than that of the original S1C (p = 0.0004). This contrasting result echoes that of Figure 2
and further confirms that Proxy Validation is not appropriate to guide model design. Indeed, when training
the Hybrid S1C from scratch, some initializations that resulted in poorer Proxy Validation generalization had
marginally improved TrueOT Test performance (results not shown). Ultimately, the Hybrid S1C architecture
reliably improves TrueOT Test performance when applied through a transfer learning framework. Future
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Figure 4: Performance comparison of two versions of the Hybrid S1C against the original S1C on ten different splits
of TrueOT Test. For the “Transfer Learning” datapoints (red stars), the original S1C model’s weights, previously
trained on the Proxy TrainCV, were loaded into the Hybrid S1C and frozen. The Hybrid S1C’s dense parameters
were then trained on TrueOT TrainCV. This framework lends a slight overall improvement over the original S1C
(p = 0.047 in one-sided paired t-test). For comparison (blue circles), the full Hybrid S1C architecture was trained
from scratch on Proxy TrainCV with various initial random seeds. Selecting the initialization that lends the highest
performance on Proxy Validation results in reduced generalization performance on the TrueOT Test sets (p = 0.0004).

research may see larger performance gains as more data is available for inclusion in TrueOT for tuning deeper
layers.

4 Discussion

The computational scoring of putative OTs is essential for economically designing safe gRNAs. Scoring
models to date have reported test set performance on datasets sourced by assays that measure a proxy of in
vivo editing. Each of these sources carries the risk of being misaligned with true in vivo editing behavior.
Models should be evaluated based on their ability to predict the in vivo editing behavior of gRNA sequences
that were unseen during model training [48]. We suggest that our curated TrueOT dataset offers a starting
point for an accepted benchmark, and our initial exploration towards a new model supports our hypothesis
of an underlying mismatch between various datasets.

Our simple S1C model with only one convolutional layer achieves state-of-the-art performance on TrueOT
as reflected by pairwise comparisons against several rule-based and ML models. This result suggests the
potency of a Siamese convolutional architecture for deriving generalizable features across datasets. Moreover,
adding subsequent layers to S1C can improve generalization performance on our Proxy Validation set while
compromising performance on TrueOT. This inverse relationship strongly suggests that the data in the two
datasets originate from different distributions; sequence features that govern editing in vivo are sufficiently
distinct from those of the assays represented in Proxy Validation.

We are concerned that an underlying discrepancy among datasets is a pervasive issue in the CRISPR
scoring literature. Notably, even the untrained S1C performed comparatively if not better than many baseline
models on TrueOT. This result indicates that baselines may have learned irrelevant (if not misleading)
features for TrueOT during training on data from proxy assays, an effect we observed during our own
development of Siamese networks (Figs. 2, 4). While researchers commonly use one or a few external
datasets for model comparisons, there is little consideration of which dataset is more reflective of in vivo
editing. Therefore, we believe there is an urgent need for a common benchmark dataset such as TrueOT
to compare models. We acknowledge that this work does not consider the influences of epigenetic features
that can lend variable behavior between cell types. As more in vivo-validated data becomes available, we
envision TrueOT being split into nuanced subsets of data for particular applications.

If training data is sourced from proxy assays, transfer learning principles should be considered for im-
proving performance on such benchmark datasets. Our S1C’s high performance and extreme simplicity offers
a strong baseline against which to compare new models and a potent starting point for extended research
as there is substantial room for improvement. A single convolutional layer aggregates local relationships
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without considering position or nonlinear combinations of features. Added complexity directly to the S1C
as posed here will be difficult with its abnormally high (214) number of filters (an idiosyncrasy of the S1C
architecture). However, either the S1C mini with far fewer (28) filters or the dimensionality reduction offered
by the Hybrid S1C framework could serve as more accessible starting points. In any case, our results suggest
that benefiting from additional model complexity will be increasingly feasible as data is added to TrueOT
and transfer learning approaches are considered.

We are optimistic that the expansion of TrueOT and applied transfer learning principles will help alleviate
other issues in CRISPR datasets by better elucidating the causes of OT activity. For instance, it is widely
assumed that the targets with low sequence homology to a gRNA will have zero editing efficiency such that
in many assays, signals from such target sites are treated as noise and excluded from the final output [26,49].
These exclusions may include datapoints with bulges depending on the particular alignment method used
to gauge sequence homology [20]. While the field gradually recognizes the importance of OTs with bulges,
the noise filtering process based on homology carries the risk of mislabeling target sites with bulges. Further
experimental validations on sites with low sequence homology will help distinguish genuine OTs from noise
generated by somatic mutations and DNA repairs while also benefiting the basic research of gRNA-target
hybridization mechanism.

In conclusion, there is an unmet need for a widely accepted gold standard dataset for benchmarking OT
evaluation pipelines. While we propose the TrueOT dataset and its corresponding inclusion criteria, we urge
the CRISPR community to more broadly recognize the need for such a dataset and modify TrueOT as it
sees fit. We find substantial evidence that the datasets used in model development should not be considered
equivalent from a machine learning perspective. Instead, they appear to have discrepancies such that the
decision-making processes learned from one dataset may transfer poorly to another. As more experimentally
validated in vivo editing data becomes available, dedicated transfer learning efforts can begin to properly
leverage the quantity of high-throughput data.
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