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Abstract—DART calibration is an iterative inversion method 
that is applied to shortwave (SW) satellite images to get maps of 
spectral signatures (SS) of city materials at the satellite spatial 
resolution. Therefore, it is potentially a handy spectral unmixing 
tool. However, up to now, it has only been validated by comparing 
the time series of SW radiative budget Q*

SW from a flux tower in 
Basel to DART simulated Q*

SW using maps of SS derived from 
satellite images. This paper thoroughly assesses the DART 
calibration accuracy with two synthetic case studies, called "ideal" 
and "non-ideal", for short wavelengths. In both cases, the satellite 
image is a DART simulated image of an urban scene with ground, 
buildings with various structures, water, and shrubs. In the ideal 
case, SS maps are the only unknowns in the inversion process. The 
mean relative errors over all bands for ground, roof, water, tree, 
and shrub maps were 0.013, 0.005, 0.027, 0.297, and 0.250. In the 
non-ideal case, we considered an uncertainty on parameters 
assumed to be known in the ideal case: solar zenith angle (SZA), 
satellite image spatial resolution, pixel-shift, inaccuracy of 
landscape modeling, and modulation transfer function (MTF). It 
led to larger errors: for ground, roof, water, tree, and shrubs, the 
mean relative error was 0.233, 0.507, 3.088, 0.834, and 1.256, 
respectively. By descending order of importance, the parameters 
that most affect the accuracy of the retrieved SS of urban material 
were SZA, satellite image spatial resolution, pixel-shift, inaccuracy 
of 3D urban scene modeling, and MTF. 

Index Terms—DART, Reflectance, Spectral confusion, Spectral 
mixed model, Urban meteorology 

I. INTRODUCTION 

pace-time variations of the spectral signatures (SS) of city 
materials play an essential role in the energy balance 

models, characterization, and classification of urban material 
and surface changes [1]. They provide basic modeling 
parameters for many research works, such as climate change 
adaptation and sustainable human health development [2]. 
However, the current understanding of the separation of city 
materials and their spectral characteristics is insufficient [3]. 
Indeed, it is challenging to determine SS since they vary with 
time and space. The roof is a typical example since its 
reflectance depends on its weathering state [4]. Therefore, it is 
necessary to consider the spatial and temporal changes of each 
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urban material SS [5]. 
Remote sensing is a potentially ideal tool since it provides 

time-series satellite images of cities [6]. However, cities have 
very complex and various three-dimensional (3D) geometries 
[7]. The associated multiple-scattering events explain that the 
observed reflectance at the pixel level depends on the radiative 
interactions between the urban components present in the same 
pixel and between these components and neighbor urban 
components [8]. In short, the observed pixel reflectance is a 
complex function of the SS of urban components inside and 
outside that pixel. The complexity of the problem depends both 
on the spatial variability of the urban geometry and the spatial 
resolution of the remote sensing sensor. Therefore, the accurate 
retrieval of the SS of city material [9] is a complex mixed pixel 
problem, especially if several urban components are present in 
the pixel [10]. 

Mixed pixels are generally analyzed using either a linear 
spectral mixture analysis (LSMA) or nonlinear spectral mixture 
analysis (NLSMA) [11-15]. LSMA is widely used for its 
simplicity because it ignores the multiple scattering among 
components within a pixel and assumes that the reflectance of 
each mixed pixel is a linear sum of the reflectance of the present 
components or endmembers weighted by the endmembers' 
abundance in each mixed pixel [16-18]. Decomposing mixed 
pixels into a number of endmembers SS requires approximating 
their proportion per pixel (fraction images). Several standard 
methods allow one to estimate fractional abundance, including 
the least squares [18], modified Gramm-Schmidt orthogonal 
decomposition [19], or singular value decomposition [20]. 
Model fit is sometimes evaluated using error metric root-mean-
square error (RMSE) [21]. 

Early LSMA considers each endmember to have a unique 
spectrum, assuming that the number of endmembers combined 
with their spectral separability allows one to avoid confusion 
[22]. Consequently, it cannot treat the full spatial variation of 
urban SS in a given urban landscape. Depending on the spatial 
resolution of the satellite image and the specific 3D urban 
geometry and its numeric representation, two significant issues 
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are encountered when applying LSMA to an urban environment: 
the multiple endmember problem in a class if the SS of this class 
varies [23], and the non-pure pixel problem if there are no pure 
pixels for urban materials [24]. 

Various methods have been devised to solve the above two 
problems separately. For example, multiple endmember 
spectral mixture analysis (MESMA) [23] and its derivation 
class-based MESMA [25], hierarchical MESMA [21], and 
stratified classification MESMA [26] are used to solve the 
multiple endmember problem. Their core concept is to classify 
distinct classes and then use MESMA to identify multiple 
endmembers within the classes and account for SS' temporal 
changes. Besides, minimum volume simplex analysis (MVSA) 
[24] addresses hyperspectral unmixing by applying a minimal 
volume simplex to the hyperspectral images, minimizing the 
same objective feature, and minimizing a regularized least-
squares fit of the data restricting the abundance fractions that 
belong to the likelihood simplex to solve non-pure pixel 
problems. Two significant issues must be noted: (1) MESMA 
needs various endmembers SS within each class. In addition, 
very high classification accuracy is required because the final 
accuracy depends heavily on the classification. However, 
misclassification is very difficult to avoid for materials that 
share similar SS. (2) MVSA requires hyperspectral images, and 
the number of bands of satellite images must be at least larger 
than the number of endmembers. Moreover, due to the frequent 
inter-class and intra-class spectral variability in urban areas, 
these two problems always exist together. In addition, recent 
work has shown that the vertical dimension has a significant 
impact on the functioning of the specific ecosystem [27], which 
stresses the interest in studying city landscapes from a 3D 
perspective. 

DART calibration [28-30] can open new avenues to improve 
the retrieval of urban SS, which allows the variation of 
endmember from pixel to pixel when retrieving SS of urban 
components. This 3D radiative transfer model was selected 
because it offers the advantage of working with any satellite 
image characteristics (spatial resolution, spectral band, etc.) and 
any urban architecture [31-34]. Indeed, it can simulate remote 
sensing images considering multiple scattering events between 
the urban components [35, 36]. It has been widely used for 
remote sensing studies, including vegetation [37, 38] and cities 
[39]. In addition, the DART calibration has already been 
successfully used in urban studies to map urban albedo and 3D 
shortwave radiative budgets [30]. 

However, a current validation of DART calibration is still 
lacking. Up to now, its only validation was done by comparing 
the time series of the radiative budget Q*

SW simulated by DART 
and measured by flux towers in Basel, Switzerland. Therefore, 
a more comprehensive accuracy analysis is essential for DART 
calibration. This paper focuses on quantitative analysis of 
DART calibration accuracy under various situations. It also 
investigates the factors that impact DART calibration accuracy. 
This paper is a synthetic study because DART simulated images 
mimic satellite images. First, in the so-called "ideal case", the 
SS of the urban components are the only unknowns. Then, in a 
"non-ideal case", we consider that a number of parameters 

associated with satellite observations are not perfectly known. 
Finally, we give an example of employing DART calibration in 
one PlanetScope image to retrieve SS of land covers. 

II. MATERIALS AND METHODS 

A. Description of the urban scene 

The study site was a synthetic 128 m × 128 m 3D urban scene 
with five types of components: flat ground, water, buildings, 
shrubs, and trees (Fig. 1). There were three 15 m × 15 m water 
surfaces and nine buildings with three kinds of roofs evenly 
distributed in the scene. Roofs were prismatic on the left side of 
the scene, flat in the middle, and trapezoidal on the right with 
the same inclination equal to 20°. The length, width, and height 
of the buildings were 15 m, and the length and width of the 
ground surfaces between the buildings were also 15 m. These 
are common values in European cities [40]. 

 
Fig. 1. The schematic urban scene: ground, water, shrubs, trees, and buildings 

with flat, prismatic, and trapezoidal roofs. (a) 3D view. (b) Top view. 

The scene contained two shrubs whose length and width 
were 15 m with a 1 m height. The shrub was modeled as a 
uniform volume of leaf elements with a spherical leaf angle 
distribution (LAD) and a leaf area density equal to 0.5 m2/m3. 
The scene also contained four trees. In order to simplify the 
analysis of the inversion procedure, these trees were directly 
created by DART and not imported. In addition, the foliar 
elements of the tree crowns and shrubs were simulated with 
small triangles and not with a turbid medium. The trees created 
with DART have trunks simulated with regular octahedrons and 
crowns with specific vertical and horizontal profiles of LAD 
and the volume density of the leaf area. Here, all trees had the 
same geometric parameters: an ellipsoidal crown with 10 m 
height and 10 m diameter at mid-height, homogeneously filled 
with a 0.5 m2/m3 leaf density. The urban components were 
spatially distributed to meet the usual illumination conditions 
with shadows and mixed pixels effects. 

 

Fig. 2. (a) DART pseudo satellite image of the 3D scene. It has some spectral 
confusions (e.g., the same reflectance for three roofs and the ground). (b) 
DART image simulated with constant SS per urban component. (c) The 
DART image after the calibration procedure. All images are RGB color 
composites. 

B. DART calibration 

DART calibration is an iterative inversion method applied to 
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a satellite image to get a map of SS per type of urban component 
with urban anthropogenic heat flux. DART calibration first 
retrieves the SS of endmembers by iteratively comparing 
simulated and satellite images. Then, this 2D component SS 
map allows one to compute anthropogenic heat flux maps. The 
retrieved procedure comprises two major steps.  

The first step provides first order SS maps using the LSMA 
method. DART estimates the "amount" of urban components 
by simulating a reflectance image and an image per type of 
urban component called "component reflectance image". The 
term "amount" indicates the spectral contribution of each 

component and not its relative area. Therefore, its meaning 
differs from the term "abundance", and the presence of multiple 
scattering explains that the sum of the "amount" of all 
components can be larger than one. The inversion method starts 
with user-defined SS values that can be selected from the 
DART database. First order SS maps are calculated by 
assuming that all urban components of the same type share the 
same SS within a certain distance. In this step, the urban 
components with a small amount are neglected for each pixel 
because they are difficult to assess. Here, we used a threshold 
of 1%. 

Table I INPUT SPECTRAL SIGNATURES (SS) PARAMETERS FOR THE DART CALIBRATION PROCEDURE. ρ MEANS REFLECTANCE AND τ 
MEANS TRANSMISSIVITY. SWIR MEANS SHORT WAVE INFRARED. 

Components SS Ground Roof Shrub Water 
Tree 
(ρ+τ) 

Initial SS for base 
simulation 

Blue 
(492.4±66 nm) 

0.2169 0.0748 0.1173 0.0695 0.3578 

Green 
(559.8±36 nm) 

0.2483 0.1122 0.2635 0.0649 0.4600 

Red 
(664.6±31 nm) 

0.2561 0.2501 0.0987 0.0543 0.6140 

NIR 
(832.8±106 nm) 

0.2366 0.3100 0.9289 0.0283 0.9289 

SWIR1 
(1613.7±91 nm) 

0.2011 0.7165 0.6794 0.0053 0.8722 

SWIR2 
(2202.4±175 nm) 

0.1693 0.7190 0.4178 0.0051 0.6497 

Pseudo image SS 
for satellite 
simulation 

Blue 
(492.4±66 nm) 

0.0574 
0.1067 
0.1131 
0.0574 

0.0927 
0.0536 

0.0277 
0.0364 
0.0326 

0.1153 
0.0829 

Green 
(559.8±36 nm) 

0.0710 
0.1456 
0.1206 
0.0710 

0.1996 
0.1329 

0.0269 
0.0250 
0.0380 

0.1733 
0.1942 

Red 
(664.6±31 nm) 

0.1003 
0.3074 
0.1308 
0.1003 

0.0892 
0.0405 

0.0267 
0.0206 
0.0245 

0.0854 
0.0820 

NIR 
(832.8±106 nm) 

0.1681 
0.3257 
0.1460 
0.1681 

0.9426 
0.9013 

0.0262 
0.0198 
0.0198 

0.9596 
0.9013 

SWIR1 
(1613.7±91 nm) 

0.3349 
0.3623 
0.1049 
0.3349 

0.5631 
0.5551 

0.0210 
0.0186 
0.0186 

0.5199 
0.6668 

SWIR2 
(2202.4±175 nm) 

0.2635 
0.3213 
0.1009 
0.2635 

0.3091 
0.2494 

0.01890 
0.01633 
0.01633 

0.2778 
0.4911 

 
Table II INPUT SIMULATION PARAMETERS FOR THE DART CALIBRATION PROCEDURE. 

Parameters Ideal-case Non-ideal-case  
MTF 1 0.15 - 0.3 

The step of each input parameter is determined 
by eFAST sensitivity analysis. 

SZA 30° 0-60° 
Spatial resolution 4m 0.5-15m 

X-axis shift 0 pixel 0-1 pixel 
Y-axis shift 0 pixel 0-1 pixel 

Urban geometry accuracy 100% 95%-105% 

 
The second step is a sequence of iterations that converge 

towards a final SS map per type of urban component at the 
satellite image spatial resolution. It combines the bisection and 
Newton's methods. The SS is the independent variable, and the 
component reflectance image is a dependent variable. Basically, 
if the reflectance of a DART pixel is smaller than that of the 
satellite image, the SS values of the components in this pixel 
are increased, and vice versa. It is operated per pixel. The SS 
values of the components in a pixel are no longer updated in the 
following iterations if the relative difference of the DART and 
satellite pixel reflectance is less than a user-defined threshold; 

here, this threshold was set to 1%. This step implicitly considers 
multiple scattering between components. At the end of the 
procedure, the DART image simulated with the retrieved SS 
maps is nearly equal to the satellite image (i.e., mean relative 
error smaller than 10-3). A detailed description of DART 
calibration is in the literature [28-30]. 

The accuracy of the DART calibration method was assessed 
using a DART simulated image that mimics an atmospherically 
corrected satellite image. Therefore, DART computed two 
products: the pseudo satellite image and the so-called base 
image that converges to the pseudo satellite image with the 
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iterative change of the component SS maps by the calibration 
method. The relative difference between the true and retrieved 
SS values was used to indicate the DART calibration accuracy. 
Six spectral bands (three visible bands, NIR, and two short 
wave infrared bands) were considered. It must be noted that 
DART calibration processes all bands independently; it can 
process mono-band images. Also, the DART atmosphere 
radiative transfer module [41, 42] was not used because the 
satellite image was assumed to be atmospherically corrected. 

As already mentioned, two cases of base simulations were 
studied: an ideal-case and a no-ideal case. In the ideal-case, SS 
values were the only unknowns (Table I). All other input 
parameters were identical between the base and satellite 
simulations: 30° solar zenith angle (SZA), perfect sensor MTF 
(Modulation Transfer Function), 4 m satellite image spatial 
resolution, perfect geometric registration of the base and 
satellite images, etc. (Table II). SZA greatly influences the 
bidirectional reflectance effect [43-45] by distributing shadows 
in the image. Besides, together with the roof inclination, they 
determine the angle of incidence of light hitting the roof. The 
MTF defines how much contrast the sensor retains to the 
original target. It defines the faithful transition of the object's 
spatial frequency content of the image. It can blur the image and 
thus affect SS retrieval accuracy [46]. Spatial resolution refers 
to the dimension of a pixel on the ground. 

The non-ideal case considered the complexity of the satellite 
image. Indeed, several satellite observation factors, used as 
DART input parameters of the base image, could not be 
precisely known. Their imprecision influenced the retrieval of 
SS. The six considered influence factors corresponded to two 
broad categories: (1) Image acquisition: SZA, image spatial 
resolution, and MTF. (2) Accuracy in image registration (x- and 
y-shift) and 3D geometry of the urban scene.  

In the non-ideal case, SZA and spatial resolution of the 
satellite image were identical in the pseudo and base images 
because they were usually known. Conversely, MTF, 
registration errors, and the accuracy of 3D objects were often 
not well known. Therefore, they differed between satellite and 
base simulations. MTF was simulated using the Gaussian filter 
but was only used in the satellite simulation because the current 
DART calibration method did not consider it. Similarly, the 
geometric registration of satellite images and the geometry of 
3D urban scenes could not be perfectly known. Therefore, they 
were fixed in the satellite simulation while varying in the base 
simulation to mimic geometry inaccuracy. Seventy samples 
were generated per influence factor (Table II), which led to 420 
samples. The range of MTF was set to 0.15 - 0.3, corresponding 
to the 10 m spatial resolution band of Sentinel-2 images [47]. 
The range of SZA was set to 0-60°. The range of spatial 
resolution was set to 0.5-15 m, corresponding to most high-
resolution satellites, including Satellite Pour l'Observation de la 
Terre (SPOT), RapidEye, Advanced Land Observing Satellite 
(Alos), Ziyuan-3 (ZY3), Gaofen-1 (GF1), Keyhole (KH), 
IKONOS, QuickBird, WorldView, GeoEye, and Pleiades. 
According to the literature [48, 49], the geo-positioning 
accuracy of satellite images can be sub-pixel. Therefore, the 
maximal range of pixel-shift was set to one pixel. Besides, the 

input parameters (e.g., geometry of buildings, trees, water 
surfaces, and tree leaf area) used to construct the 3D landscape 
could not be precisely known. Therefore, in the base 
simulations of the non-ideal case, these parameters were varied 
with factors from 95% to 105% compared to the pseudo satellite 
simulation. 

C. Sensitivity analysis 

Model sensitivity analysis focused on the effect of 
differences in the values of DART input parameters on the 
retrieved SS accuracy. A global sensitivity analysis was done 
for the non-ideal-case only. A global sensitivity analysis model, 
called the extended Fourier Amplitude Sensitivity Test (eFAST) 
[50], was used to assess the influence of each factor mentioned 
above: MTF, SZA, satellite spatial resolution, registration error 
x and y, and imprecision of 3D objects. 

The eFAST is a sensitivity analysis method based on 
numerical computations for the predicted value and variance of 
a model prediction. The basis of the calculation is to turn a 
multidimensional problem into a one-dimensional integral over 
all unknown model inputs. To avoid multidimensional 
integration, a search curve that passes through the entire 
parameter space is created. The decomposition of the Fourier 
series representation is used to obtain the fractional contribution 
of individual input variables to model prediction variance. The 
analysis consisted of four stages: (1) Building the ranges and 
distributions for the input parameters and formally developing 
the predicted value and output variance in terms of integrals for 
the input parameter space; (2) Transforming the given 
multidimensional integral into a single-dimensional integral on 
input parameter space; (3) Estimating the predicted value and 
performance variance; (4) Estimating the sensitivity indexes.  

First order sensitivity indexes and total indexes are computed 
using the Fourier decomposition terms of the model output [51]. 
First-order sensitivity indexes are a direct measure of sensitivity 
based on variance and contribute to the output variance of the 
principal effect of an input parameter. As a result, it measures 
the effect of variation of an input parameter only but averaged 
over the variations of other input parameters. Total order 
sensitivity indexes measure each input parameter's contribution 
to the output variation, including all variances produced by its 
interactions with other input variables in any order. 

III. RESULTS 

A. Accuracy assessment: ideal case 

Fig. 2 shows the pseudo satellite image and the associated 
base images before and after calibration. In the pseudo satellite 
image, the roofs had reflectance values that differed and could 
be close to those of the ground conversely to the uncalibrated 
base image, where all roofs had the same reflectance. As 
expected, the calibrated base image was visually very similar to 
the pseudo satellite image. Fig. 3 shows the evolution of the 
mean relative error �c̅omponent per component with iterations of 
the calibration method in the green band. For each component, 
� ̅component was very large in the uncalibrated image (ground: 
13.08, roof: 8.72, water: 33.88, tree: 4.47, shrub: 5.27). It 
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dramatically decreased down to around 0.01 for ground, roof, 
and water in the calibrated image. However, it only decreased 
down to 0.29 for shrubs and 0.36 for trees. Besides, for the trees, 
this decreased oscillates with iterations.  

Fig. 4 shows spatial images and violin diagrams of the 
relative error of each component in the calibrated image. The 
calibration appeared to be more accurate for pure pixels than 
for mixed pixels: � ̅ pure ground = −0.0015 with � ̅mixed ground = 
−0.0211, �p̅ure roof = 0.0055 with �m̅ixed roof = 0.0083, �p̅ure water = 
−0.0013 with �m̅ixed water = 0.0007, and �p̅ure tree = −0.2519 with 
�m̅ixed tree = −0.3806. Besides, the accuracy of SS is very similar 
in the sunlit and shaded areas. In addition, an initial SS 
confusion had a negligible impact on � ̅component. Results for 
ground (Fig. 4.a and Fig. 4.b) were excellent, even for shaded 
ground, except for mixed pixels with vegetation. Results were 
also good for roofs (Fig. 4.c and Fig. 4.d) and water surfaces 
(Fig. 4.e and Fig. 4.f), even in shaded areas, except for mixed 
water pixels containing vegetation. The shape of roofs had a 
negligible impact on � ̅ roof. However, the performances of 
vegetation include shrub (Fig. 4.g and Fig. 4.h) and trees (Fig. 
4.i and Fig. 4.j), were relatively unideal compared to others. 

 
Fig. 3. Evolutions of the mean relative error of the component SS with the 
iterations in the green band. The mean relative error at iteration 0 is due to 
the selected initial SS value. Relative errors are calculated pixelwise for each 
component, and a mean statistical value of the absolute value of the relative 
error is calculated. Similar trends are found in the other bands. 

B. Sensitivity analysis and accuracy estimate: non-ideal case 

1) Sensitivity analysis 

A sensitivity study was performed on the non-ideal case. Fig. 
3 indicates that the calibration procedure nearly converges at 
iteration five. Therefore, we set a constant maximum iteration 
value of eight for all sensitivity analyses. SZA, satellite image 
resolution, pixel-shift, landscape modeling inaccuracy, and 
MTF were analyzed using eFAST sensitivity analyses (Fig. 5). 

MTF: the result shows that MTF had very little influence on 
the calibration accuracy. The highest mean first order 
sensitivity (0.095) and total order sensitivity (0.658) over all 
bands was the shrub. The lowest mean first order sensitivity 
(0.018) and total order sensitivity (0.093) over all bands was 
ground. The MTF mean first order and total order sensitivity 
over all bands over all elements were 0.056 and 0.346. 

 
Fig. 4. The final calibration results of the error analysis for ground (a and b), 
roof (c and d), water (e and f), shrub (g and h), and trees (i and j) in the green 
band in the spatial and frequency domain. Relative errors are calculated 
pixelwise. Blank in the image means there is no corresponding component in 
that pixel. Violin range is limited to within the range of the relative error. A 
similar phenomenon was also observed for other bands. 

 

SZA: ground had the highest mean first order sensitivity 
(0.721) and the mean total order sensitivity (0.861) over all 
bands. Water had the lowest mean first order sensitivity (0.047) 
and the mean total order sensitivity (0.348) over all bands. 
Overall, the SZA mean first order and total order sensitivity 
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over all bands were 0.253 and 0.660, respectively.  
Satellite resolution: water had the highest mean first order 

sensitivity (0.327) over all bands, and shrub had the highest 
mean total order sensitivity (0.891) over all bands. The lowest 
mean first order sensitivity (0.036) and total order sensitivity 
(0.137) over all bands was ground. The mean first order and 
total order sensitivity of the spatial resolution over all bands 
were 0.222 and 0.628. 

X-shift: the highest mean first order sensitivity (0.145) and 
total order sensitivity (0.806) over all bands was the shrub. The 
lowest mean first order sensitivity (0.033) and total order 
sensitivity (0.129) over all bands was ground. The X-shift mean 
first order and total order sensitivity over all bands over all 
elements were 0.096 and 0.441, respectively.  

Y-shift: the roof had the highest mean first order sensitivity 
(0.105) over all bands, and the shrub had the highest mean total 
order sensitivity (0.727) over all bands. The lowest mean first 
order sensitivity (0.050) and total order sensitivity (0.172) over 
all bands was ground. The Y-shift mean first order and total 
order sensitivity over all bands over all elements were 0.085 and 
0.437.  

Accuracy of the 3D scene model: the highest mean first order 
sensitivity (0.094) and total order sensitivity (0.758) over all 
bands was the shrub. The roof had the lowest mean first order 
sensitivity (0.015) over all bands, and the ground had the lowest 
mean total order sensitivity (0.088) over all bands. The 
accuracy of the 3D scene model mean first order and total order 
sensitivity over all bands over all elements were 0.054 and 
0.407.  

 Overall, mean sensitivity values over all components were 
close to each other for the six bands: 0.317 for the blue band, 
0.305 for the green band, 0.307 for the red band, 0.264 for the 
NIR, 0.301 for the short wave infrared 1 (SWIR1) band, and 
0.342 for the short wave infrared 2 (SWIR2) band. Besides, the 
mean total order sensitivity (0.485) was four times larger than 
the mean first order sensitivity (0.127) over all bands and over 
all components.  

2) Accuracy assessment: non-ideal case 
Fig. 6 shows the mean relative error per component over all 

420 cases. Performances were excellent in all bands for ground 
and roof: the range of �  ̅was 0.015 - 1.572 for ground and 0.024 
- 1.7662 for roofs. The accuracies were less accurate for the 
other components than ground and roof, especially for 
components in the band with low SS. Large errors tended to 
occur if the SS of the component was low. For example, for 
vegetation (i.e., shrubs, trees), the range of � ̅was 0.159 - 2.709 
in the green band. However, its range in the red band was even 
0.341 - 11.445. Similarly, � ̅ water increased dramatically in 
SWIR1 and SWIR2, where its SS is low. The range of �w̅ater 
over all bands was 0.053 - 15.683.  

 
Fig. 5. Sensitivity analysis results. The eFAST method is used for sensitivity 
analysis based on 420 cases. Sensitivity indexes are calculated per component 
per band and stacked over all bands. All subplots share the same x-axis. The 
effect magnitudes are SZA, satellite spatial resolution, pixel-shift, landscape 
model inaccuracy, and MTF, in descending order of magnitude. 
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Fig. 6. Mean relative errors on the retrieved SS of scene components for the 
blue, green, red, NIR, SWIR1, and SWIR2 bands. Relative errors are calculated 
pixelwise per component. The absolute value of relative error is averaged over 
all 420 cases. Violin range is limited to within the range of the mean relative 
error. 

IV. SATELLITE IMAGE APPLICATION 

The DART calibration was also applied to real satellite data 
to verify its accuracy preliminarily. The study area was selected 
as Basel, a research target of the URBan ANthropogenic heat 
FLUX from the Earth observation Satellites (URBANFLUXES) 
project [52]. Basel is a city in northwestern Switzerland on the 

river Rhine, where the Swiss, French, and German borders meet 
[28, 30]. Our study area comprised almost the entire city of 
Basel, with latitude from 47.53°N to 47.57°N, and longitude 

from 7.55°E to 7.62°E. Its geometric database was very detailed 

(Fig. 7). These cities are characteristic European cities to allow 
the extension of the results to other European cities. Their 3D 
mock-ups were initially constructed and used by Lucas et al. 
[28-30]. The land cover classes of Basel included buildings, 
impervious layer, water, low vegetations, bare soils, deciduous, 
and evergreen, according to the URBANFLUXES project [53, 
54]. Here, some classes were grouped. The tree class contained 
deciduous and evergreen; the ground class contained 
impervious surface, low vegetations, and bare soils; and the 
building and water classes were the same as in the 
URBANFLUXES project. The location and geometric structure 
of all urban elements, including the local Digital Elevation 
Model (DEM), were from the local city database. Trees were 
defined by their location, height, and crown dimensions from 
field measurements. DART simulated trunks with regular 
octahedrons and crowns as ellipsoidal volumes filled with small 
triangles in this work. Here we only give necessary information 
about the city database. More detailed descriptions are 
presented in the literature [28]. 

 
Fig. 7. Basel 3D digital surface model (DSM). (a) Top view. (b) Side view of 
the red square in (a). Buildings (roofs: dark, walls: light grey), trees (green), 
river (blue), and ground (yellow). 

We downloaded one 3 m resolution multispectral surface 
reflectance image with four bands from Planet 
(https://www.planet.com/). This image had undergone ortho-
correction and atmospheric correction, and it was selected 
because its off-nadir angle was precisely 0.0. Table III shows 
the detailed parameters of this image. Data processing included 
geometry co-registration between satellite images and DART 
simulated images. We first clipped the satellite images based on 
the geographical latitude and longitude and kept only the 
remote sensing images in the study area. Then we shifted the 
3D urban database along the x- and y-axis to do the co-
registration between the DART image and the satellite image. 
Satellite images were distorted due to factors such as 
observation angle and image distortion. Therefore, the 
geometric accuracy of DART simulated images was much 
higher than that of satellite images. We set the DART simulated 
image as the base image and used the GeFolki [48, 49] 
developed by the French aerospace lab to warp the satellite 
image to DART simulated image for co-registration. Gefolki is 
a module allowing carrying out the co-registration of two 
remote sensing images with a geometry accuracy of less than 
0.1 pixels. Finally, the warped satellite image was used for 
inversion with DART simulated image. 
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Fig. 8. (a) PlanetScope image in the Basel area. (b) DART image simulated 
with constant SS per urban component. (c) The DART image after the 
calibration procedure. All images are RGB color composites. 

Sub-Arctic Summer (SAS) was selected as the atmosphere 
model in the DART simulation. This atmospheric model was 
selected using the total column water vapor and air temperature 
[55]. These data were from water vapor and surface temperature 
data of the National Centers for Environmental Prediction and 
the National Center for Atmospheric Research (NCEP / NCAR) 
Reanalysis Data [56]. The aerosol model was selected as urban 
mode based on the study area directly [55]. As atmospherically 
corrected surface reflectance data were used, we assumed that 
the atmospheric influence was removed, so the atmospheric 
parameters have minimal effect on the results (only the skylight 
distribution is affected). The input parameters of spectral bands, 
spatial resolution, and sun-target-satellite geometry were kept 
consistent with the satellite image in the DART simulation 
(Table III). 

 
Table III SATELLITE IMAGE PARAMETERS. 

Parameters Values 
ID 20190915_100328_1003 

Date Sep 15, 2019, 10:03:28 UTC 
Source 4-band PlanetScope Scene 

Cloud percentage 0% 
Pixel resolution 3m 

Satellite ID 1003 
Off-nadir angle 0.0° 
Sun elevation 42.2° 
Sun azimuth 152.0° 
Instrument PS2 

Spectral bands (nm) 
Blue Green Red NIR 

455 - 515 500 - 590 590 - 670 780 - 860 

 
Fig. 8 shows the satellite image and DART simulated images 

before and after DART calibration. Before calibration, the 
difference between DART simulated image and the satellite 
image was tremendous. However, after calibration, the 
difference was tiny. Fig. 9 and Fig. 10 depict the SS distribution 
in spatial and frequency. We carefully examined the bimodal 
issue for the water bodies and found that it was due to the lack 
of bridges in the urban 3D structure database, and therefore 
some of the reflectance values of the bridges were assigned to 
the water body. Also, some ground pixels showed typical 
vegetation spectral signatures (Some pixels were very green in 
Fig. 9). It is because, in our city 3D database, there was no 
distinction between ground and grassland. Therefore, during the 
DART radiative transfer simulation, the grassland pixels were 
also considered as a surface. In all, there were significant 
spectral differences between the different components, 
indicating good spectral unmixing.  

 
Fig. 9. Retrieved SS of vegetation, river, roof, and ground by DART calibration. 
All images are RGB color composites. The black pixels indicate no 
corresponding element in that pixel. 
 

 
Fig. 10. Frequency distribution of SS obtained from DART calibration in (a) 
blue, (b) green, (c) red, and (d) NIR bands. The cross symbol indicates the SS 
in iteration 0 of DART calibration in Fig. 8.b. 

V. DISCUSSION AND CONCLUSIONS 

A. Discussion 

1) Accuracy assessment 
The DART calibration method has only been validated by 

comparing the time series of the short wave radiative budget 
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Q*
SW simulated by DART and measured in a flux tower in Basel, 

Switzerland [30]. The mean relative difference over one year 
was 2.7%, which is a very encouraging result. However, this 
comparison was only a kind of one-pixel validation. Here, the 
validation is extended to every pixel by using a DART 
simulated pseudo satellite image. 

Our results (Fig. 2 and Fig. 3) show that the DART 
calibration has an excellent overall accuracy under ideal 
experimental conditions. However, vegetation has a markedly 
less accurate retrieved SS compared to other urban components. 
Three explanations are put forward. (1) Being a volume of foliar 
elements, vegetation cannot be simulated as a simple surface 
like the other urban components. (2) The leaf SS includes leaf 
transmittance and reflectance. Here, it is represented by the leaf 
single scattering albedo, with a pre-defined spectral ratio 
between its reflectance and transmittance. (3) The low value of 
leaf SS in the considered spectral bands.  

Other works already stressed the poor performance of 
vegetation in the unmixing model [21], especially for mixed 
pixels that contain vegetation. The complexity of vegetation 
structure, including multiple scattering, leads to complex 
nonlinear relationships between leaf albedo and canopy 
reflectance [57, 58]. These remarks are consistent because the 
DART calibration provides maps of SS that are less accurate 
for vegetation than for urban surface components such as 
ground and roofs. Similarly, the low reflectance of water 
complexifies the retrieval of its SS [21]. However, here, the 
results are excellent for water, even in shaded areas (Fig. 4). It 
is explained that water surfaces are treated as surfaces in this 
work.  

Shadows are usually mentioned as an essential source of 
inaccuracy in the retrieved SS [59]. For example, shadows cast 
by buildings in urban densities considerably obscure local 
information in the image, leading to possibly corrupted results 
or interpretative errors [60]. Methods like MESMA try to solve 
this problem by incorporating shade as an endmember [21]. 
Here, the impact of shadows on the retrieval of SS is relatively 
low, suggesting that the algorithm of DART calibration is well 
adapted to the processing of shaded urban areas. 

The non-ideal case stresses that inaccurate DART input 
parameters can significantly affect the calibration accuracy (Fig. 
6). For example, an inaccurate geometric co-registration of the 
satellite image leads to an inaccurate amount estimation and 
finally leads to the poor estimation of SS. In contrast to some 
traditional hybrid image unmixing, DART calibration does not 
estimate the abundance calculated from the endmember SS, 
which is a significant advantage because it allows the SS of the 
endmember to vary from pixel to pixel. However, it needs a 
very accurate co-registration of the satellite image and the 3D 
scene model. Besides, we find that some components with low 
SS (e.g., water and vegetation) produce high relative error and 
variance. It is because we use the relative error, and if the pixel 
shifting problem leads a high reflectance pixel to a lower SS 
component, the denominator becomes large in relative error, 
leading to the high relative error and variance. 
2)  Sensitivity analysis 

DART calibration accuracy is influenced by SZA, satellite 

spatial resolution, pixel shift, landscape model inaccuracy, and 
MTF in descending order of magnitude (Fig. 5). SZA 
significantly impacted ground apparent reflectance through 
shadows and bidirectional reflectance effects. Also, for the 
roofs, SZA and the angle of the inclined roofs determine the 
incidence angle. The low sensitivity of SZA on water may be 
that water was treated as surfaces without topography in our 
work.  

The spatial resolution of satellite imagery is an essential 
factor in city studies because it determines the pure pixel 
distribution in the satellite image [21]. High-resolution sensors 
tended to produce pure pixels, while low-resolution sensors 
were more likely to produce mixed pixels. Welch et al. [61] use 
average urban plots to demonstrate that the high-frequency 
details that characterize the urban scene are necessary for 
remote sensor data with spatial resolutions of 0.5-10 m. A 
spatial resolution of at least 5 m is needed to capture urban 
structures for urban applications adequately [62]. The spatial 
resolution of the image is also a constraint on DART calibration 
because it assumes that the SS of components in a pixel is 
constant in this pixel. A potential solution could be to sub-
classify urban components. For example, roofs in the same 
pixel could be classified into subcomponents if additional 
information (e.g., type of material) is available. Moreover, this 
assumption can also be mitigated with higher image resolution.  

Pixel shifting has little impact on the inversion accuracy of 
continuous and homogeneous components (e.g., ground), and it 
is the same for the accuracy of the 3D model because they had 
similar geometric effects on the amount estimation problem of 
mixed pixels. MTF had less impact on large and homogeneous 
scene components such as ground than on small components 
such as roofs, trees, water, and shrubs. In all, the components 
with small size and high heterogeneity are much more sensitive 
than components with big size and high homogeneity. 
3) Satellite image application 

It should be noted that in our work, we use a satellite image 
with VZA equal to 0.0°. The primary difficulty in using the off-

nadir image is the inconsistent coordinate system between 
satellite image and DART simulated image. Most surface 
reflectance satellite products (e.g., Sentinel 2 L1C product with 
the date before March 2021, 
https://sentinel.esa.int/web/sentinel/user-guides/sentinel-2-
msi/definitions) using DEM to do orthorectification, and this 
rectification is called "orthorectification". As a result, some 
buildings are tilted in the image (the walls can be seen in the 
image). However, the DART module uses DSM to do 
orthorectification, and this rectification is called "true 
orthorectification". As a result, all the buildings are vertical 
(There are no wall pixels in the simulated image). The 
coordinates of the corresponding image points in the two kinds 
of images are different. However, geometry accuracy is critical 
in our study, especially for the scene with strong heterogeneity. 
Research is being conducted for the DART model to provide an 
"orthorectification" image in addition to the "true 
orthorectification" image.  
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B. Conclusions 

We assessed the accuracy of the DART calibration to retrieve 
SS per component of an urban scene, for an ideal case (i.e., SS 
is only unknown) and a non-ideal case (i.e., SS is unknown with 
inaccurate input parameters), for the visible, NIR and two 
SWIR band. Sensitivity analyzes were also done on some 
parameters. The major conclusions are: 

 Calibration accuracy is influenced by SZA, satellite spatial 
resolution, pixel shift, landscape model inaccuracy, and MTF 
in descending order of magnitude. 

 In the ideal case, the mean relative error over all bands of 
ground, roof, water, tree, and shrub is 0.013, 0.005, 0.027, 0.297, 
and 0.250, respectively. It is 0.233, 0.507, 3.088, 0.834, and 
1.256 in the non-ideal case. 

 Calibration is insensitive to the number of bands and is 
highly resistant to shadow interference. 

 Some uncontrollable external factors may be significant to 
the accuracy image, such as co-registration error or the user-

defined ratio between blade reflectance and transmittance.  
Overall, the DART calibration (i.e., retrieval of SS maps of 

urban components from remote sensing images) is generic, 
accurate in ideal cases, and efficient in handling inter-class 
spectral confusion. Besides, present improvements in co-
registration procedures increase its potential. Its applications 
are numerous. Indeed, the availability of up-to-date SS maps of 
urban scenes using a time series of satellite imagery is valuable 
in many domains such as urban management and urban climate. 
For example, it is essential for computing the urban radiative 
budget, and consequently, the urban energy budget and 
associated heat fluxes. Therefore, it helps to address significant 
issues facing cities, such as urban climate and change detection.  

Compared with the traditional spectral unmixing models that 
can only identify the variability of endmember spectra only 
within the inter-class, DART calibration can identify the 
variability of endmember spectra between pixels, which is 
extremely helpful for studying high heterogeneous urban areas. 
Another advantage of the DART calibration should be noted: it 
does not need hyperspectral images because it can work with a 
single band image. Therefore, it is well adapted to satellites 
with few spectral bands with a high spatial resolution (e.g., 
Sentinel-2). 

To upscale from micro to local scale, spectral un-mixing 
approaches and radiative transfer modelling have been used in 
past studies, with DART model to be the most comprehensive 
physical modelling scheme [52]. A limitation in this paper is 
that DART calibration directly upscales to pixel level through 
material fractions via spectral mixture analysis. The radiative 
transfer of facet is implicitly considered in the simulation to 
calculate "amount" because DART computations (e.g., 
scattering and absorption) are done at the facet level. Another 
interesting idea to retrieve SS of components might be making 
all calculations at the facet level first and then upscale to the 
pixel level. In this case, the urban morphology effect could be 
implicitly included in the up-scaling procedure. 
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