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A Networked Reduced Model for Electrical Networks
with Constant Power Loads

Nima Monshizadeh Claudio De Persis Arjan J. van der Schaft Jacquelien M.A. Scherpen

Abstract— We consider structure preserving power networks
with proper algebraic constraints resulting from constant power
loads. Both for the linear and the nonlinear model of the
network, we propose explicit reduced order models which
are expressed in terms of ordinary differential equations. The
relative frequencies among all the buses in the original power
grid are readily tractable in the proposed reduced models. For
deriving these reduced models, we introduce the “projected
pseudo incidence” matrix which yields a novel decomposition of
the reduced Laplacian matrix. With the help of this new matrix,
we are able to eliminate the proper algebraic constraints while
preserving the crucial frequency information of the loads.

I. INTRODUCTION

The interdisciplinary field of power networks and mi-
crogrids has received lots of attentions from the control
community in the last decade, see e.g. [7], [14], [13], [15],
[4]. Principal components of a power grid are synchronous
generators, inverters, and loads. The frequency behavior of
the synchronous generators are often modelled by the so
called “swing equation” [10]. It can be shown that the
frequency of the droop-controlled inverters also admits a
similar dynamics, see e.g. [13].

In the intuitive modelling of the power network, the gen-
erators and the loads are located at different subset of nodes.
This corresponds to the so-called structure preserving model
which is naturally expressed in terms of differential algebraic
equations (DAE), see [1], [5]. The algebraic constraints in
the structure preserving model are associated with the load
dynamics.

Motivated by the fact that the presence of the algebraic
constraints hinders the stability analysis of power networks,
several aggregated models are reported in the literature
where each bus of the grid is associated with certain load
and generation; see e.g. [3], [12]. The advantage of these
aggregated models is mainly due to the fact that they are
described by ordinary differential equations (ODE) which
facilitates the analysis of the network. However, the explicit
relationship between the aggregated model and the original
structure preserved model is often missing, which restricts
the validity and applicability of the results.
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Aiming at simplified ODE description of the model to-
gether with respecting the heterogenous structure of the
power network has endorsed the use of Kron reduced models
[6], [2]. In the Kron reduction method, the variables which
are exclusive to the algebraic constraints are solved in terms
of the rest of the variables. This results in a reduced graph,
the (loopy) Laplaican matrix of which is the Schur comple-
ment of the (loopy) Laplacian matrix of the original graph.
By construction, the Kron reduction technique restricts the
class of the applicable load dynamics. The most notable
subclass, for which Kron reduced models can be obtained,
includes constant current and constant admittance loads in
which each load is modelled as a constant current demand
and a shunt admittance connected to the ground [6].

The algebraic constraints can also be solved in the case
of frequency dependent loads where the active power drawn
by each load consists of a constant term and a frequency-
dependent term [1], [16], [11]. However, in the popular
class of constant power loads, the algebraic constraints are
“proper”, meaning that they are not explicitly solvable. One
way to avoid these proper algebraic constraints is to work
with linear approximations. Otherwise, a remarkable method
to cope with these constraints in the nonlinear model is to use
the implicit function theorem, and study the approximated
implicit ODE model around the point of interest [9]. To the
best of our knowledge, for nonlinear power networks with
proper algebraic constraints, an explicit reduced ODE model
is absent in the literature.

In this paper, first we revisit the Kron reduction method for
the linear case, where the Schur complement of the Laplacian
matrix (which is again a Laplacian) naturally appears in the
network dynamics. It turns out that the usual decomposition
of the reduced Laplacian matrix leads to a state space realiza-
tion which contains merely partial information of the original
power network, and the frequency behavior of the loads is
not visible. As a remedy for this problem, we introduce a new
matrix, namely the projected pseudo incidence matrix, which
yields a novel decomposition of the reduced Laplacian. Then,
we derive reduced order models capturing the behavior of
the original structure preserved model. Next, we turn our
attention to the nonlinear case where the algebraic constraints
are not readily solvable. Again by the use of the projected
pseudo incidence matrix, we propose explicit reduced models
expressed in terms of ordinary differential equations. We
identify the loads embedded in the proposed reduced network
by unveiling the conserved quantity of the system.

The structure of the paper is as follows. Section II de-
scribes the power network model we consider in this paper.
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In Section III, we discuss the reduced models for the system
obtained by linear approximations. Also in Subsection III-
A, we introduce the projected pseudo incidence matrix and
the new decomposition of the reduced Laplacian matrix. An
explicit reduced order model for the nonlinear power network
is established in Section IV. Finally, the paper closes with
conclusions in Section V.

II. POWER NETWORK

The topology of the power network is represented by
a connected and undirected graph G(V, E). There are two
types of buses (nodes): synchronous generators VG and loads
VL, with V = VG ∪ VL. The edge set E is the set of
unordered pairs {i, j} accounting for the transmission lines
which are assumed to be inductive. Let the matrix B denote
the incidence matrix of G. Recall that for an undirected graph
G, the incidence matrix is obtained by assigning an arbitrary
orientation to the edges of G and defining

bik =

 +1 if i is the tail of arc k
−1 if i is the head of arc k
0 otherwise

with bik being the (i, k)th element of B.
At each node i ∈ V , the electrical active power is given

by
pi =

∑
j∈Ni

X−1ij ViVj sin θij , θij := θi − θj

where Xij is the inductance of the transmission line {i, j},
Vi is the voltage magnitude at node i, and θi is the voltage
angle with respect to the nominal reference θ∗ = ω∗t.
We assume that the transmission lines are lossless and the
voltage magnitudes are constant. We consider synchronous
generators admitting the so-called swing equation

Miθ̈i = −Aiθ̇i − pi + ui, i ∈ VG

where Mi is the angular momentum, Ai is the damping
coefficient, and ui is the net shaft power input to the
generator. As for the loads, we consider the constant power
loads admitting the proper algebraic constraint

0 = pi − p∗i , i ∈ VL

where p∗i is constant. Now the network model can be written
in compact as

Mθ̈G = −Aθ̇G −BGΓsin(BT θ) + u (1a)

0 = −BLΓsin(BT θ) + p (1b)

where θG = col(θi) with i ∈ VG, and θL = col(θi) with i ∈
VL. The sin(·) operator is defined element-wise. In addition,
θ = col(θG, θL), B = col(BG, BL), and Γ = diag(γk) with

γk = X−1ij ViVj

where k is the index of the edge {i, j} in accordance with the
incidence matrix B. We assume that the voltages are positive
and constant, and thus the matrix Γ is positive definite. Note
that the notation col(Y1, Y2) is used to denote in short the
matrix

[
Y T
1 Y T

2

]T
for given matrices Y1 and Y2.

Our goal here is to eliminate the load dynamics and
embed it into the dynamics of the generators in order to
obtain an explicit reduced order model described by ordinary
differential equations.

III. LINEAR MODEL

First, we consider the linear model where sin(η) is ap-
proximated by η, with η = BT θ. Then, the system (1a)-(1b)
can be written as[

Mθ̈G +Aθ̇G
0

]
= −

[
BGΓBT

G BGΓBT
L

BLΓBT
G BLΓBT

L

] [
θG
θL

]
+

[
u
p

]
(2)

Note that the two by two block matrix on the right hand
side of (2) can be associated with the Laplacian matrix of
the graph G, say L, where the weights on the edges are
defined by the matrix Γ. In particular,

L = BΓBT =

[
BGΓBT

G BGΓBT
L

BLΓBT
G BLΓBT

L

]
.

The vector θL can be computed as

θL = −(BLΓBT
L )−1BLΓBT

GθG + (BLΓBT
L )−1p. (3)

Note that BLΓBT
L is a principle submatrix of the Laplacian

matrix and thus invertible. By replacing this back to (2), we
obtain

Mθ̈G = −Aθ̇G − LSθG + u− p̂ (4)

where

LS = BGΓBT
G −BGΓBT

L (BLΓBT
L )−1BLΓBT

G

and
p̂ = BGΓBT

L (BLΓBT
L )−1p.

Noting that LS is equal to the Schur complement of the
Laplacian matrix L, it is well-known that LS is again a
Laplacian matrix defined on a reduced graph Ĝ = (VG, Ê),
and admits the decomposition

LS = B̂Γ̂B̂T (5)

where B̂ is the incidence matrix of Ĝ.
A crucial issue in frequency regulation is to keep the

frequency disagreement among the buses as small as pos-
sible, and steer the frequency back to the nominal frequency
using a secondary control scheme. Notice that this frequency
disagreement is not transparent in (4). Now, let ωG = θ̇G,
ωL = θ̇L, and ω = col(ωG, ωL). To capture the frequency
disagreements in the original network (1a)-(1b), we define
the vector δ as

δ = BTω. (6)

Observe that δk indicates the difference between the (actual)
frequencies of the nodes i and j, with {i, j} being the kth

edge of G. Then the network dynamics (1a)-(1b) admits the
following model

η̇ = δ = BTω (7a)
Mω̇G = −AωG −BGΓη + u (7b)

0 = −BLΓη + p (7c)
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where η = BT θ. Similarly, for the aggregated model (4), the
frequency disagreement vector is defined as

δ̂ = B̂TωG. (8)

Then by (5) the system (4) has the following state-space
representation

˙̂η = δ̂ = B̂TωG (9a)

Mω̇G = −AωG − B̂Γ̂η̂ + u− p̂ (9b)

where η̂ = B̂T θG.
Although the Kron reduced model (9) provides an explicit

aggregated model for the network (7), comparing the dynam-
ics (9a) to (7a) reveals several disadvantages for this model:

i) Unlike the vector δ, the disagreement vector δ̂ captures
only the mismatch among the frequencies of the gen-
erators, whereas, clearly one would like to monitor the
mismatch of the frequencies in the entire network.

ii) Note that the vectors η̂ and δ̂ typically have
N2

g−Ng

2
elements where Ng is the total number of generators.
Hence, the size of these vectors increases substantially
by the increase in the size of the network, which makes
the monitoring and simulations intractable.

Motivated by the above drawbacks, next we propose an
alternative decomposition of the reduced Laplacian matrix
LS , instead of the customary one given by (5).

A. A novel decomposition of the reduced Laplacian

We make the result of this subsection self contained, and
independent of the power network interpretation. To this end,
let again G = (V, E) denote an undirected graph with n
vertices and m edges, and assume that G is connected. As
before, for each k = 1, 2, . . . ,m, let γk > 0 denote the
weight associated to the kth edge of G. The Laplacian matrix
of G is defined as L = BΓBT where Γ = diag(γk). Suppose
that the vertex set V is partitioned as V = V1 ∪ V2 with
V1∩V2 = ∅. Then the Laplacian matrix L can be partitioned
as

L =

[
L11 L21

LT
21 L22

]
where L11 ∈ R|VG|×|VG|. Note that the Schur complement
of L with respect to L22 is given by

LS = L11 − L21L
−1
22 L

T
21.

This can be rewritten as

LS = B1ΓBT
1 −B1ΓBT

2 (B2ΓBT
2 )−1B2ΓBT

1 (10)

where B = col(B1, B2) is the incidence matrix of G. For a
connected graph G, it is well known that LS is well defined,
and is the Laplacian matrix of an undirected graph Ĝ with
|V1| vertices.

Now, given a partitioning B = col(B1, B2) and the
positive weights Γ, we define the Projected pseudo incidence
matrix of G as

BS = B1(I −B+
2 B2) (11)

where B+
2 is the pseudo inverse of the matrix B2 with respect

to the inner product defined by Γ, i.e.

B+
2 = ΓBT

2 (B2ΓBT
2 )−1. (12)

Observe that BS = B1Π where

Π = I −B+
2 B2

is the orthogonal projection to the kernel of B2, with respect
to the inner product defined by Γ. Similar to the incidence
matrix, the matrix BS has zero column sums. Some useful
properties of the matrix BS are captured in the following
proposition.

Proposition 1 Let BS denote the projected pseudo inci-
dence matrix of G with respect to the partitioning B =
col(B1, B2) and the weights Γ as given by (11). Then the
following statements hold:

i) im1 = kerBT
S

ii) 0 = BSΓBT
2

iii) LS = BSΓBT
1

iv) LS = BSΓBT
S

Proof. Clearly,

BSΓBT
2 = B1(I −B+

2 B2)ΓBT
2

= B1ΓBT
2 −B1B

+
2 B2ΓBT

2 = 0, (13)

which proves the second statement. From (10), we have

LS = B1(I − ΓBT
2 (B2ΓBT

2 )−1B2)ΓBT
1

= B1(I −B+
2 B2)ΓBT

1 = BSΓBT
1 ,

which verifies the third statement.
The matrix BSΓBT

S is computed as

BSΓBT
S = BSΓBT

1 −BSΓBT
2 (B+

2 )TBT
1 . (14)

By the third statement of the proposition, BSΓBT
1 = LS . In

addition, the second term on the right hand side of (14) is
equal to zero by (13). Therefore, we obtain that BSΓBT

S =
LS .

As the matrix LS is the Laplacian matrix of a reduced
graph Ĝ, we have LS1 = 0. Then, by the forth statement
of the proposition and positive definiteness of Γ, we have
BT

S 1 = 0. Recall that LS is the Schur complement of
the Laplacian matrix L. As G is connected, the spectral
interlacing property [8, Thm. 3.1] implies that Ĝ is connected
as well, and thus kerLS = kerBT

S = im1. �
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B. The new representation of the reduced order network

Now, consider again the model (4). Let BS be the pro-
jected pseudo incidence matrix with respect to the partition-
ing B = col(BG, BL) and the weights Γ, as given by (11).
Let the vector ηS be defined as

ηS = BT
S θG. (15)

Observe that by (3) we have

ωL = −(BGB
+
L )TωG (16)

where again B+
L denote the pseudo inverse of BL with

respect to the inner product Γ, i.e. B+
L = ΓBT

L (BLΓBT
L )−1.

Hence, we have

η̇S = BT
S ωG = (I −B+

LBL)TBT
GωG

= BT
GωG −BT

L (BGB
+
L )TωG = BT

GωG +BT
LωL

= BTω = δ

where we have used (16) and (6). Also note that, by
Proposition 1, we have

LSθG = BSΓBT
S θG = BSΓηS .

Therefore the system (4) admits the following state space
model

η̇S = δ = BT
S ωG (17a)

Mω̇G = −AωG −BSΓηS + u− p̂ (17b)

where p̂ has the same expression as before. The main advan-
tage of the reduced model (17) over (9) is that the model (17)
readily reflects the properties of the full network (7). Most
importantly, notice that both the frequency disagreement
vector δ and the weight matrix Γ are preserved in the reduced
model. Therefore, one can easily deduce the behavior of
the full network by looking into the model (17), and the
aforementioned drawbacks for the model (9) do not apply to
this case.

IV. NONLINEAR MODEL

In this section, we consider the nonlinear model (1a)-
(1b), and investigate possible elimination of purely algebraic
constraints resulting form the constant power load dynamics
(1b). Notice that unlike the linear case, the state components
θL cannot be explicitly solved here in terms of θG and p.

Before proceeding with the establishment of a reduced
order model, it is necessary to assume that (1a)-(1b) admits
a solution. To make this assumption, more explicit we write
the differential algebraic system (1a)-(1b) as

θ̇G = ωG (18a)

Mω̇G = −AωG −BGΓ sin(BT θ) + u (18b)

0 = −BLΓ sin(BT θ) + p (18c)

Suppose that θ = col(θG.θL) and u are constant vectors
satisfying

0 = −BGΓ sin(BT θ) + u (19a)

0 = −BLΓ sin(BT θ) + p (19b)

Then, the point θ = θ, ωG = 0, and u = u identify an
equilibrium of (18). Let the right hand side of (18c) be
denoted by g(θ). To investigate the regularity of (18c) and
the existence of the (local) solutions to the DAE (18), we
compute the Jacobian of g with respect to θL as

∂g

∂θL
= −BLΓcos(η)BT

L (20)

where η = BT θ = BT
GθG + BT

LθL, and cos(η) =
diag(cos(ηk)). Observe that the matrix BLΓcos(η)BT

L is a
principle submatrix of the Laplacian matrix

L′ = BΓ′BT

where Γ′(η) = Γcos(η). Hence,
∂g

∂θL
is nonsingular if Γ′ is

positive definite. Therefore, by denoting

Ω := (−π
2
,
π

2
)m,

the existence of the equilibrium and the regularity of (18c)
impose the following assumption.

Assumption 1 There exists a constant vector θ with BT θ ∈
Ω such that (19) is satisfied.

Under the assumption above, the DAE (18) admits a unique
(local) solution, see [9] for more details. Also note that
the assumption BT θ ∈ Ω is ubiquitous in the power grid
literature and is sometimes referred to as a security constraint
[7].

Next, we establish a reduced model for the system (18).
Clearly, the differential algebraic system (18) admits the
dynamics

η̇ = BTω = BT
GωG +BT

LωL (21a)
Mω̇G = −AωG −BGΓ sin(η) + u (21b)

0 = −BLΓ sin(η) + p. (21c)

where η = BT θ and ω = col(ωG, ωL) as before. Taking the
time derivative of (21c) yields

0 = −BLΓcos(η)BTω

= −BLΓcos(η)BT
GωG −BLΓcos(η)BT

LωL (22)

where cos(η) = diag(cos(ηk)). Assuming that η ∈ Ω, the
matrix cos(η) is nonsingular, and thus ωL is obtained as

ωL = −(BLΓ′BT
L )−1BLΓ′BT

GωG (23)

where
Γ′(η) = Γcos(η).

Note that by Assumption 1 and equality (20) there exists a
neighborhood around η = BT θ such that BLΓcos(η)BT

L is
nonsingular, and there exists a solution to (18), and thus to
(21), for a nonzero interval of time. This means that (22)
and (23) are well defined.

By substituting (23) in (21a), we have

η̇ = BT
GωG −BT

L (BLΓ′BT
L )−1BLΓ′BT

GωG. (24)
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Now, let BS denote the projected pseudo incidence matrix
with respect to the partitioning B = col(BG, BL) and the
weights Γ′. Then, it is easy to see that the right hand side of
(24) is equal to BT

S (η)ωG, and hence we obtain the following
reduced model

η̇ = BT
S (η)ωG (25a)

Mω̇G = −AωG −BGΓ sin(η) + u. (25b)

This defines a valid state space model for (η, ωG) with
ordinary differential equations, and in particular we have the
following theorem.

Theorem 2 Suppose that (η, ωG, ωL, u) is a solution to the
differential algebraic equations (21), defined on the interval
I = [0, T ). Assume that η(t) ∈ Ω, ∀t ∈ I. Then (η, ωG, u) is
a solution to the ordinary differential equations (25), defined
on the interval I.

Proof. The proof follows from the construction of the
reduced model (25). �

Note that at the first glance it seems that the constant
power loads are missing in the reduced model (25). However,
these loads are actually embedded in the reduced dynamics.
To see this, we make the following important observation.

Proposition 3 Let η(0) ∈ Ω. Then the vector BLΓ sin(η)
is a conserved quantity of the dynamical system (25) over
the domain of the existence of the solution.

Proof. By taking the time derivative of BLΓ sin(η) along
the solutions of (25), we obtain that

d

dt
BLΓ sin(η) = BLΓcos(η)η̇ = BLΓ′(η)BT

S (η)ωG

Note that the matrix Γ′ is positive definite, and the matrix
BS is well defined over the domain of the existence of the
solution. Then the second statement of Proposition 1 yields
BLΓ′BT

S = 0 which completes the proof. �

Remark 4 Notice that solutions to (25) may not always exist
for all time, and in particular the system trajectories may
have finite escape time at the closure of Ω. To rule out this
finite escape time and guarantee the existence of the solution
for all time, one need to assume that there exists a subset A
of the state space Ω× R|VG| that is forward invariant along
the solutions to (25). This forward invariance condition can
be fulfilled by establishing the attractivity of the equilibrium
(η, ωG).1

Proposition 3 suggests that the constant vector BLΓ sin(η)
can indeed be interpreted as the constant power loads of the
reduced network.

1This will be postponed to a future work.

Assume that u = u is constant. Then for an equilibrium
(η, ωG) of (25) with η ∈ Ω, we have

0 = BT
S (η)ωG (26a)

0 = −AωG −BGΓ sin(η) + u. (26b)

Hence, by Proposition 1, we have ωG = 1ω0 for some
constant ω0. By multiplying both sides of (26b) from the
left by 1T , we obtain that

ω0 =
−1TBGΓ sin(η) + 1Tu

1TA1
,

which boils down to

ω0 =
1TBLΓ sin(η) + 1Tu

1TA1
,

where we have used the fact that 1TBG = −1TBL ,and
BLΓ sin(η) is constant. Hence, 1TBLΓ sin(η) + 1Tu has
to be identically zero to avoid frequency deviation. This
corresponds to the well-known demand and supply matching
condition which again elucidates the fact that the vector
BLΓ sin(η) plays the role of the loads in the reduced network
(25).

By the discussion above, and the results of Theorem 2 and
Proposition 3, we conclude that the original network (21) is
embedded in the reduced network (25). This enables us to
deduce the properties of the original model by looking at the
explicit reduced ODE model (25). Moreover, one can design
controllers based on the reduced ODE model (25) rather than
the DAE model (21).

Remark 5 Despite the fact that the reduced network (25)
is expressed in terms of ordinary differential equations, the
analysis/control schemes available in the power network
literature, in particular for aggregated modes, are not readily
applicable to this case. This is mainly due to the presence of
the state dependent map BS in (25a) instead of the ordinary
time-independent incidence matrix. However, one can show
that this does not hinder the analysis thanks to the nice
properties of the projected pseudo incidence matrix captured
in Proposition 1 as well as the invariance observation made
in Proposition 3. The analysis and control of the reduced
order model (25) will be discussed in a future work.

V. CONCLUSIONS

We have considered structure preserving power networks
expressed as differential algebraic equations, where the
proper algebraic constraints are the result of the presence
of constant power loads. We have introduced the notion of
the projected pseudo incidence matrix, which provides a
novel decomposition of the reduced Laplacian matrix. For
the linear network model, by exploiting this new matrix,
we have proposed a reduced model in which the frequency
disagreements among all the buses of the network are readily
tractable. We have also addressed the elimination of the
purely algebraic constraints in the nonlinear network model.
Again, by using the projected pseudo incidence matrix, we
have established a reduced model under a suitable regularity
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assumption. The proposed explicit reduced order model is
expressed in terms of ordinary differential equations, and
thus facilitates the understanding, analysis, and the controller
design of the power network. Frequency regulation and
active power sharing of the proposed reduced models will
be investigated in a future work.
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