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ABSTRACT The self-regulated recognition of human activities from time-series smartphone sensor data is
a growing research area in smart and intelligent health care. Deep learning (DL) approaches have exhibited
improvements over traditional machine learning (ML) models in various domains, including human activity
recognition (HAR). Several issues are involved with traditional ML approaches; these include handcrafted
feature extraction, which is a tedious and complex task involving expert domain knowledge, and the use of a
separate dimensionality reduction module to overcome overfitting problems and hence provide model gen-
eralization. In this article, we propose a DL-based approach for activity recognition with smartphone sensor
data, i.e., accelerometer and gyroscope data. Convolutional neural networks (CNNs), autoencoders (AEs),
and long short-term memory (LSTM) possess complementary modeling capabilities, as CNNs are good at
automatic feature extraction, AEs are used for dimensionality reduction and LSTMs are adept at temporal
modeling. In this study, we take advantage of the complementarity of CNNs, AEs, and LSTMs by combining
them into a unified architecture. We explore the proposed architecture, namely, ‘‘ConvAE-LSTM’’, on four
different standard public datasets (WISDM, UCI, PAMAP2, and OPPORTUNITY). The experimental
results indicate that our novel approach is practical and provides relative smartphone-based HAR solution
performance improvements in terms of computational time, accuracy, F1-score, precision, and recall over
existing state-of-the-art methods.

INDEX TERMS Deep Learning, human activity recognition, smartphone sensors, autoencoder.

I. INTRODUCTION
Human activity recognition (HAR) has been a popular
research area for several decades due to its wide applica-
tions in smart health care, ambient assisted living, disease
prediction, video surveillance, remote health care and so
on [1], [2]. According to a report released by the United
Nations (UN) [3], the expected worldwide population of
elderly people is expected to reach 2 billion by 2050. Elderly
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people need special attention and care, as most elderly people
suffer from many diseases. Moreover, the doctor-to-patient
population ratio was determined to be 1:1800. The monitor-
ing of real-time human physical activities, particularly the
daily living activities (DLAs) [4] of elderly people, is an
indispensable aspect in smart health care and can effec-
tively enhance medical rehabilitation and elderly care. Daily
lifestyles have significant impacts on several critical diseases.
Therefore, daily physical activity monitoring provides an
important health indicator [5]. The identification and clas-
sification of human physical activity are popularly used to
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monitor, analyze and understand various postures across a
variety of applications and systems.

Various sensor-based HAR frameworks have been pro-
posed in the literature, such as smartphone sensor-based,
body-worn sensor-based and audio/video data-based frame-
works. Body-worn sensors are not comfortable for users,
and audio/video data have several privacy concerns. More-
over, both body-worn sensor signals and audio/video signals
require complex signal processing techniques [6]. The audio
recording of any long-term activity becomes noisy due to
background noise or white noise. Therefore, an audio signal
alone at any given moment does not provide valuable infor-
mation. It may also be difficult to differentiate between two
pieces of audio information. Therefore, audio data are insuf-
ficient on their own for recognizing some basic activities. The
collection of video data turns out to be difficult in populated
locations, in locations where many physical obstacles exist,
or when brightness is low [7]. To infer the descriptions of
human behaviors and transport modes, sensor data are also
obtained by using smartphones. In human activity moni-
toring and understanding, the utility of tactile information
provided by smartphones affects analyses because of their
distinct centers of attention over other sensor modalities.
Normally, smartphone sensor-based physical HAR systems
are motivated by their ubiquity, discretion, inexpensive instal-
lation procedures, noninvasive properties and ease of use [8].
By utilizing a smartphone, continuous data can be collected
while performing any type of physical activity. Moreover,
mobile health-related data monitoring becomes more elegant
and accurate due to the variety of built-in smartphone sen-
sors [9]. Several built-in smartphone sensors can be used to
collect data for HAR. However, the most commonly used
built-in sensors are accelerometers and gyroscopes [10]–[13].

Smartphone sensor-based datasets contain multivariate
time-series data. Local dependency is the intrinsic nature of
time-series data. Moreover, the natures of human activity
signals are hierarchical and translation-invariant [14], and
they are rich in dynamic information regarding the underly-
ing system. As a result, the need to accurately model such
high-dimensional datasets is increasing. Physical activities
consist of some special distinctive features. Hence, several
methodological challenges are involved in HAR (except for
handcrafted feature extraction), such as imbalanced datasets,
intraclass variability, interclass similarity, the empty class
problem [15] and the multiclass window problem [16].

Recently, smartphone-based HAR systems utilizing con-
ventional machine learning (ML) algorithms or deep learn-
ing (DL) approaches have gained popularity [17]. Feature
engineering is a dominant phase in traditional ML methods
because it extracts the relevant features that are responsible
for differentiating various activity patterns. The accurate per-
formance of HAR solutions greatly depends on the feature
engineering of raw signals [18]. Then, the features are fed
to classifiers to recognize human activities [6], [19]. Without
an adequate feature engineering process, conventional clas-
sifiers fail to competently and accurately identify physical

activities. Hence, to provide sensory data in an appropriate
form, complex data preprocessing techniques are required,
and handcrafted features are extracted from the acquired
sensory data based on expert domain knowledge [11]. Finally,
the handcrafted feature vector is fed to the conventional clas-
sifiers to recognize various human physical activities. How-
ever, past research has shown that some of these handcrafted
features are good at distinguishing one activity but not as
good at recognizing others [20]. Moreover, different research
domains require different handcrafted feature vectors to prop-
erly handle classification problems.

A. MOTIVATION
Automatic feature learning capabilities make DL algo-
rithms more popular than conventional ML algorithms.
DL algorithms can extract relevant features efficiently with-
out any manual assistance while simultaneously identify-
ing human activities [21]–[23]. DL approaches have proven
their outstanding predictive capabilities in speech and image
recognition, intelligent gamification, and natural language
processing. In the HAR literature, numerous DL approaches
have been investigated and applied. Convolutional neural
networks (CNNs) are popular supervisedDLmethods that are
used in the HAR domain (see Figure 1) to overcome the prob-
lem of handcrafted feature extraction. CNN layers are used
to automatically extract features from raw time-series data
without human intervention. In a CNN, the number of feature
maps often increases with the network depth, causing the
computational complexity of the architecture to also increase.
To overcome this problem, a dimensionality reduction tech-
nique can be employed to reduce the number of feature
maps. Moreover, existing DL-based HAR systems require
large quantities of labeled training data to achieve good per-
formance. However, in a real scenario, a large volume of
labeled training data is not easy to obtain because the task of
creating such a volume is tedious, time-consuming, laborious,
and expensive. Moreover, in real-time HAR applications, the
availability of labeled data is quite poor. To overcome these
issues, in this researchwork, we take advantage of an ‘autoen-
coder (AE), which possesses the property of unsupervised
feature learning and enables dimensionality reduction with
convolutional layers [24].

A convolutional AE (ConvAE) is a type of AE in which
nonlinear transformation is performed by a CNN [25]. This
is the motivation behind the use of a combination of a CNN
and an AE in our proposed architecture. Convolutional layers
are less computationally complex than connected layers [26].
Since CNNs primarily work in vector spaces, learning the
high-dimensional properties of input time series is more dif-
ficult. As a result, CNN architectures alone cannot efficiently
predict time-series signal data [27]. Moreover, CNNs cannot
extract temporal features, leading to a reduction in activity
recognition accuracy. ‘Long short-termmemory (LSTM) net-
works are adept at sequential learning because they carry
signal information across time steps [27]. By leveraging the
complementary strengths of a CNN and an LSTM neural
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FIGURE 1. Taxonomy of DL-based HAR.

network, the combination of CNN and LSTM models pre-
serves both spatial and temporal information and performs
better in terms of sequential learning [27], [28].

Motivated by the architectures of CNNs, AEs, and LSTM
networks, this work proposes an integrated architecture using
ConvAE and LSTM for recognizing human activities. Our
exhaustive literature study also suggests that this combination
is novel. The end-to-end model in the proposed work consists
of the following three distinct modules.

• A convolutional AE module.
• An LSTM module.
• A fully connected layer followed by a softmax function.

B. CONTRIBUTIONS
The contributions provided in this paper are as follows.

1) We perform an extensive literature survey regarding
DL-based HAR, which can be helpful for readers to
understand and compare the state-of-the-art methods in
this domain.

2) We propose ConvAE-LSTM, which is a novel DL
architecture that (a) can automatically extract fea-
tures from unlabeled raw sensory data, (b) uses fewer
parameters due to the presence of a convolution layer
that minimizes the risk of overfitting, (c) reduces the

required computational time and d) enhances the accu-
racy of HAR.

3) We demonstrate the effectiveness of our proposed
ConvAE-LSTM network through empirical experi-
ments on two different standard public smartphone
sensor-based HAR datasets the same experimental
environment.

4) Additionally, we compare the experimental results
obtained using our proposed method with those of
some state-of-the-art methods drawn from the HAR
literature.

II. RELATED WORK
A substantial number of reviews have been conducted regard-
ing the recognition of human physical activities using var-
ious approaches, as elucidated in [11], [29], [30], which
include both ML and DL approaches. Various shallow
machine learning approaches have been used in HAR solu-
tions. For instance, in [6], [12], [13], [31]–[36], the authors
emphasized only accuracy based on various ML algo-
rithms by using 17 different baseline time-frequency domain
features mentioned in [11]. Previously, the researchers
in [29], [32], [37]–[45] used various feature extraction and/or
selection methods before feeding the obtained data to a clas-
sification algorithm for recognizing diverse human activities.
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ML models rely on handcrafted features in the HAR
domain, and such features require expert domain knowledge.
Moreover, they increase the time complexity of the resulting
model. To overcome these issues, researchers have started
exploring DL approaches, as DL models possess automatic
feature extraction capabilities. In this section, we establish an
underlying basis for DL-based HAR while looking at some
of the earlier works that are relevant to our approach and how
their methods differ from ours.

A. DEEP LEARNING FOR HAR
Relevant features can be automatically learned by DL algo-
rithms. As a result, in the case of smartphone-based HAR
models, the performance of DL algorithms is astonish-
ingly high. Because of their hierarchical feature extrac-
tion capacities, CNNs are gaining prominence in the HAR
domain. CNNs containing at least one convolutional layer
and one pooling layer followed by at least one fully con-
nected layer have acquired fame because of their capa-
bility of learning unique representations from images or
speech while capturing local dependencies and distortion
invariance [8]. In [18], the authors proposed a CNN-based
HAR model by capturing the local dependencies and scale-
invariant features of activity signals. To prove the efficiency
of the proposed framework, the authors used three pub-
lic datasets : OPPORTUNITY [82], [83], Skoda [84], and
Actitracker [85]. Ronao and Cho [14] proposed another
CNN method for HAR by using the UCI public dataset and
handcrafted features. Another work proposed in [8] used a
1D-CNN to recognize human activities in the UCI public
dataset [11] with extra temporal fast Fourier transforma-
tion (FFT) information.

Ravi et al. [46] presented a HAR framework using con-
volutional layers and shallow features obtained from
smartphone sensors and wearable sensors. The WISDM
dataset [10] and DAPHNet-FoG [86] datasets were used in
this study. Bevilacqua et al. [87] suggested a CNN-based
HAR that uses five distinct sensors, including an accelerom-
eter and a gyroscope, to recognize 16 different lower-
limb actions. In another work, Jiang et al. [47] described
a CNN-based HAR framework using the UCI-HAR pub-
lic dataset. The adaptive moment estimation (Adam) hyper-
parameter optimization technique was employed in this
study. Another HAR framework proposed by Ignatov [48]
used a combination of manually extracted features and
automatically extracted features obtained from a CNN.
To demonstrate the efficiency of the proposed framework,
the authors used two popular public datasets (WISDM and
UCI). They also experimented without extracting handcrafted
features from the UCI dataset. A body-worn sensor-based
HAR framework was proposed by Rueda et al. [49] using
a CNN. Three different datasets were used in their exper-
iments to prove the efficiency of the proposed model; two
different public datasets, OPPORTUNITY and PAMAP2,
were used in [88]. In [50], the authors proposed an
HAR framework using a 2D-CNN and calculated both

the accuracy and computational time of the developed
approach.

In [51], the authors suggested a HAR framework using
a CNN architecture for the ‘‘UCI-HAR’’ public dataset.
Moreover, the authors calculated the training and testing
times of their approach as 3.4274 seconds and 372.6 ms,
respectively. Zebin et al. [52] proposed an HAR model to
recognize five different activities such as ‘‘walking on a
level surface’’, ‘‘walking upstairs’’, ‘‘walking downstairs’’,
‘‘remaining sedentary’’ and ‘‘sleeping’’ by utilizing a CNN.
Waist-mounted inertial sensors such as an accelerometer
and a gyroscope were used to collect the data. In [53], the
authors proposed a CNN-based HAR solution using smart-
phone accelerometer, magnetometer, gyroscope, and barom-
eter sensor data. In this work, the authors identified nine
different activities. In [54], the authors proposed a 2D deep
CNN architecture to solve an HAR problem. In this work,
the authors used a separate data compression technique for
smartphone sensor data. Gamble and Huang [55] described
a 1D-CNN architecture with accelerometer and gyroscope
smartphone sensors for HAR to identify human physical
activities. Cruciani et al. [56] proposed a smartphone sensor-
based and audio-based HARmethod using a CNN. They used
the UCI-HAR dataset, a real-world extrasensory dataset [89]
and the DCASE 2017 dataset. Yen et al. [57] suggested a
CNN-based HAR framework using the smartphone-derived
UCI-HAR public dataset and self-collected data from wear-
able sensors. Wan et al. [58] suggested an HAR framework
incorporating three different deep learning methods, namely,
a CNN, LSTM, and bidirectional LSTM, with two different
public datasets; one included the smartphone sensor-based
UCI datasets, and the other was derived from the wearable
sensor-based PAMAP2 datasets.

In [59], a sparse AE (SAE) was used to automatically
learn features, and based on this concept, a smartphone-based
HAR framework was proposed. Three different channels
(an accelerometer, a gyroscope, and the magnitudes of both
sensors) were used by the authors. Statistical metrics were
used to demonstrate the achieved performance measures.
In [60], the authors proposed an AE-based HAR system built
on various video datasets. Utilizing a stacked autoencoder,
a smartphone sensor-based HAR system was proposed by
Almaslukh et al. [61]. In [62], the authors identified eight
locomotion and transportation activities via an adversarial
AE. Data were collected by using smartphone sensors with
four different positions (torsos, bags, hips, and hands) to per-
form the experiment. Via a combination of stacking denoising
AEs and LightGBM, an HAR solution was proposed in [63]
using the UCI dataset. Ozcan and Basturk [64] proposed
a stacked AE-based HAR system. The authors used both
WISDM and UCI smartphone-based sensor data to perform
their experiments. Recently, a regularized AE-based HAR
framework was proposed in [65] using body-worn sensors.
Based on the idea that one encoder is associated with one
class, an ensemble of autonomous AE-based HAR solutions
was proposed in [66]. In this study, the authors used three
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TABLE 1. State-of-the-art DL-based HAR systems.
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TABLE 1. (Continued.) State-of-the-art DL-based HAR systems.

different datasets : WISDM, MHealth and PAMAP2. A typ-
ical AE-based HAR system was proposed in [67] using body-
worn sensor data such as the PAMAP2, OPPORTUNITY,
USC-HAD, and DAPHNet datasets.

Geng and Song [68] proposed an HAR solution using
video data (KTH dataset). In this study, the authors used a
CNN with a convolutional AE. Varamin et al. [69] proposed
a deep convolutional AE-based approach to identify human
activities using both a smartphone sensor and body-worn sen-
sors with matching ratios of 94.9% and 84.9%, respectively.
In this study, the authors emphasized only unsupervised fea-
ture learning concepts.

A context-aware HAR framework was proposed in [70].
A ‘multilayer LSTM with batch normalization was used by
the authors to recognize static and dynamic physical activ-
ities using body-worn inertial sensors. However, the com-
putational cost and memory requirements were quite high,
as edge computing was used in this study. Yu and Qin [71]
suggested anHAR framework using bidirectional LSTMwith
the UCI-HAR dataset. Zhao et al. [72] suggested a residual
bidirectional LSTM architecture to identify different human
activities using both UCI smartphone sensor and body-worn
sensor (OPPORTUNITY) datasets.

In [73], the authors proposedCNN- and LSTM-basedHAR
solutions using two different public datasets collected by
wearable sensors. In [74], the authors used a CNN followed
by an LSTM-based DL architecture for HAR by using the
UCI smartphone-based dataset. Wang et al. [75] suggested a
HAR framework using a CNN in combination with LSTM.
The HAPT public wearable sensor dataset was used by the
authors to prove the effectiveness of their work.Mutegeki and
Han [76] used the UCI smartphone sensor dataset to identify
human activities using a CNN-LSTM architecture. Ercolano
and Rossi [77] proposed a CNN-LSTM-based architecture
using video data (the CAD-60 dataset) for HAR. In all

the aforementioned works, researchers used combinations of
CNNs and LSTM to extract spatial and temporal features.

Ye et al. [78] suggested a two-stream convolutional
network-based ‘‘convolutional LSTM’’ architecture to rec-
ognize various daily life activities. They used the HMDB51
and UCF101 video datasets and extracted features by using
the convolution layer of the CNN.

Xia et al. [80] suggested an LSTM-CNN-based HAR
framework to identify different daily life activities using
three different datasets: UCI, WISDM, and OPPORTUNITY.
In this study, a two-layer LSTM network, followed by a
convolutional layer, was used. Two additional layers, global
average pooling (GAP) and the batch normalization layers,
were used to model parameters and speed up the convergence
of the network, respectively. After convolution, the fully con-
nected layer was replaced by a GAP layer.

Zou et al. [81] proposed an AE long-term recurrent con-
volutional network (AE-LRCN)-based HAR framework that
consists of three different modules: an AE, a CNN, and
LSTM. The proposed framework can identify five different
activities : : emptying, sitting, walking, running and standing.

Xu et al. [79] suggested ‘‘InnoHAR’’, which is the
combination of an inception neural network and an
RNN with different scale-based convolution kernels, for
HAR. Karim et al. [90] suggested ‘the use of multivariate
LSTM-FCNs for time-series classification. The authors used
an HAR dataset that included 34 other datasets obtained
from different domains to demonstrate the performance of
the proposed model. In this work, a squeeze-and-excitation
block was incorporated to improve the performance of the
proposed model.

We summarize the aforementioned state-of-the-art
DL-based HARmethods in Table 1. In Table 1, we can easily
verify that for smartphone-based HAR systems, UCI and
WISDM are the most popular public standard smartphone
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sensor data used in previous works. Moreover, we can also
determine a research gap: convolutional AR with LSTM is
a novel architecture by which we can obtain higher accu-
racy with permissible computational times in HAR domain
applications. In [81], the authors used a combination of an
AE, a CNN, and LSTM, although this approach exhibited
several clear differences from our method. First, we introduce
a combination of convolutional layers with an AE, and then
the output of the convolutional AE passes through LSTM.
Conversely, in [81], the authors used three different modules,
where the input first passed through the AE, then through
the CNN, and finally through LSTM. In our work, we take
advantage of the convolutional layer of a CNN in combination
with an AE and LSTM. Second, in [81], the authors used
channel state information (CSI) frames as inputs. In contrast,
in this study, we take time window segments of raw signals as
inputs. Third, in [81], to prove the efficiency of the proposed
AE-LRCN architecture, the authors used a self-collected
dataset for activities such as emptying, sitting, walking,
running and standing. In this paper, to exhibit the efficiency of
our proposed architecture, we use four popular public datasets
(UCI, WISDM, OPPORTUNITY, and PAMAP2).

III. PRELIMINARIES
The proposed DL architecture is a combination of a convo-
lutional AE and LSTM. The Convolutional AE leverages the
convolutional filtering performance of CNNs with unsuper-
vised AE pretraining. Therefore, to understand the concept of
a convolutional AE, it is necessary to separately understand
the concepts of both the CNN and AE.

A. CNNs
Recently, CNNs have achieved great successes in various
domains, such as image classification and speech recogni-
tion, due to their ability to learn locally connected features.
Generally, CNNs consist of three different layers: convolu-
tion layers, pooling layers and fully connected layers [91].
The convolution layers are the fundamental concepts of a
CNN architecture that perform feature extraction. Input fea-
ture map downsampling is performed by the pooling layers,
and the fully connected layers are used for classification.
Both max-pooling and average-pooling layers are commonly
employed to perform local maximization and averaging oper-
ations on the input features, respectively. Motivated by [92],
we present the max-pooling layer concept by using the fol-
lowing equation : :

mpl+1i = max
(t−1)p+1<k<tp

qli(k), t = 1, 2, · · · ,Q (1)

An average-pooling layer is represented as follows :

apl+1i = avg
(t−1)p+1<k<tp

qli(k), t = 1, 2, · · · ,Q (2)

where qli(k) is the value of the k
th neuron in the ith feature map

of the l th layer, t denotes the t th moving step of the filter, p is
the width of the pooling filter, andmpl+1i ormpl+1i represents

the corresponding output in the (l+1)th layer provided by the
pooling operation.

In comparison with a fully connected layer, a convolution
layer has much fewer parameters due to sparse connectivity
and weight sharing, thereby minimizing the possibility of
overfitting. However, due to the tremendous popularity of
traditional CNNs in HAR, the recently proposed CNN-based
HAR models adopt 1-2 fully connected layers as classi-
fiers [57], [87]. Although fully connected layers can ade-
quately perform classification, various parameters lead to the
risk of overfitting.

B. CONVOLUTIONAL OPERATION
The given input data are processed by the convolution ker-
nel, which produces processed features as outputs. These
processed features are known as feature maps. The multiple
kernels that reside in convolution layers are used to extract
the relevant features. Motivated by [92], the ubiquitous con-
volutional operation is denoted by

yl+1i (j) = wli ∗ x
l(j)+ bli (3)

where wli and b
l
i represent the weight and bias of the i

th kernel
in the l th layer and x l(j) denotes the jth local region of layer l.

Generally, after the convolution operation, a nonlinear
transformation is subsequently employed by using an acti-
vation function. A commonly used activation function is the
rectified linear unit (ReLU), which is represented by

al=1i (j) = f (yl+1i (j)) = max{0, yl+1i (j)} (4)

C. AE
The basic principles of AEs were proposed in [93]. An AE is
a feedforward neural network that accepts x ∈ Rd an input
and first maps it to a latent representation h ∈ Rd

′

to produce
an output under certain constraints.

An AE encodes and decodes the given inputs to produce
unsupervised pretraining data. The deterministic encoding
function used to construct a nonlinear mapping for the given
input x is as follows :

di = σ (wxi + b) (5)

where σ is the nonlinear activation function and w and b are
the weights and biases, respectively.

The decoding function used to reconstruct the input vector
x with encoded features is as follows :

d̂i = σ (ŵdi + b̂) (6)

where ŵ and b̂ are the weights and biases of the decoder,
respectively.

IV. THE PROPOSED MODEL
Multivariate time-series data are collected from built-in
smartphone-based sensors to identify various human activi-
ties. Fine-grained information can be obtained by using sen-
sory data from sensors such as triaxial accelerometers and
gyroscopes. However, the data collected using smartphone
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sensors are noisy and not in an appropriate form. It is not
possible to recognize fundamental patterns with such noisy
raw sensory data. To remove this noise, conventional filtering
techniques such as low-pass, high-pass, and median filter-
ing are used. After removing the noise, feature engineering
is applied to extract relevant features, and ultimately, the
extracted feature vector is fed to the classifier as its input.
As mentioned earlier, conventional noise removal, feature
engineering, and classification methods require substantial
human expertise and intervention, and they fail to reveal the
temporal interdependence of data [81]. CNNs are popularly
used for automatic feature extraction in several domains,
including HAR. CNNs, however, use backpropagation neural
networks to train the kernels/weights used for convolution,
which takes a long time.

In both ML and DL architectures, time window-based
sensor data segmentation is required to assign a single activity
class. Researchers approximate the size of the sliding window
over the sensor data streams to extract features in cases
involving labeled data [22]. Sometimes, this strategy leads to
the loss of important activity information. Activity recogni-
tion accuracy may increase with an increase in the length of
the segments, but a long window size causes response time
delays in real-time HAR. Hence, an unsupervised feature
learning approach such as an AE is beneficial in scenarios
in which we do not have labeled data.

The proposed model consists of three modules, as repre-
sented in Figure 4. The first module is a convolutional AE,
which consists of a convolution layer, a pooling layer and a
deconvolution layer. The output of the convolutional AE is
passed through a flattened layer to change it to the LSTM
input format. The LSTM output is passed through a fully
connected layer to obtain a high-level representation. Finally,
a softmax layer is used for the final human physical activity
recognition step. Thus, this model is capable of identifying
the temporal dependencies among the time-series signals
acquired through smartphone sensors.

As mentioned, a flattened layer is added after the decon-
volution layer in the convolutional AE to format the feature
data for the LSTM layer. This is because the data format of
the convolution layer is different from the input data format
of the LSTM layer. A time-distributed wrapper, which is
provided by the Keras library in Python, takes a layer as
an argument and applies convolutions to the signal while
maintaining its temporal integrity for the LSTM layers [94].
As the time-distributed layer works with a 3D data format,
we need to reshape the input signal from 128 time frameswith
an accurate number of signals. A total of 128 time frames are
divided into four slices with 32 time frames each.

The three different aforementioned modules used in this
proposed deep learning architecture are further explained as
follows :

A. CONVOLUTIONAL AE
One of the AE variations is the convolutional AE [69],
in which a fully connected layer is replaced by a

FIGURE 2. Convolutional AE architecture.

FIGURE 3. LSTM architecture [81].

convolutional layer. Convolutional AEs have the advantages
of both convolutional layers and the unsupervised pretrain-
ing capability of an AE. In contrast to the conventional AE
network, the convolutional AE contains convolutional layers
in the encoder and deconvolution layers instead of a fully
connected layer in the decoder. Our proposed convolutional
AE includes convolution, pooling, and deconvolution layers,
as presented in Figure 2. The encoder consists of one con-
volution layer and a pooling layer. The decoder consists of a
deconvolution layer. Encoding the result of the convolution
operation with a max-pooling layer permits higher-layer rep-
resentations that are invariant to small input translations and
reduce the computational cost of the proposed approach [26].
The convolution-deconvolution layer is followed by an acti-
vation function, which is represented as follows [95]:

hk = σ (
∑
l∈L

x l
⊗

wk + bk ) (7)

where
• hk = the latent representation of the k th feature map of
the current layer

• σ = the activation function
• x l = the l th feature map of the group of feature maps L
obtained from the previous layer

•

⊗
= a 2D convolution operation

• wk = the weights of the k th feature map of the current
layer

• bk = the bias of the k th feature map of the current layer
‘‘Valid convolution’’ is performed by the convolution layer,
and ‘‘full convolution’’ is performed by the deconvolution
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FIGURE 4. Convolutional AE-LSTM architecture.

layer. For instance, if the size of a feature map x l is p × p
and the size of the filter is q × q, then after performing
the valid convolution, the size becomes (p-q+1)× (p-q+1),
and after performing the full convolution, the size becomes
(p+q-1)× (p+q-1) [95].

By utilizing the maximum activity within the input feature
maps, a max-pooling layer pools features, and according
to the size of the pooling kernel, it constructs reduced-size
output feature maps.

B. LSTM
Temporal features in time-series sensor data have great
importance when modeling human movement [23]. Recently,
recurrent neural networks (RNNs), most remarkably those
that depend on LSTM [96], have achieved impressive per-
formance in different domains, including HAR. The LSTM
architecture is responsible for extracting the temporal features
from sensory signals due to its temporal characteristics and
long-term dependencies. The conventional architecture of
LSTM [81] is represented in Figure 3.
In our proposed model, the convolutional AE, as explained

in section IV-A, is followed by an LSTM model. The output
of the convolutional AE and the compressed features are the
inputs of the LSTM for deducing the latent temporal inter-
actions throughout the timeframes. According to Figure 3,
at time frame t, x t is the input signal and ht is the hidden
state. At time frame t-1, C t−1 is the memory cell state. wf ,
wi, wc, and wo and bf , bi, bc, bo are the weights and biases,
respectively. σ and tanh are the activation functions. In the
first step, the LSTM calculates the previous information from
the cell state C t−1 by using a forget gate as follows : :

f t = σ (wf [ht−1, x t ]+ bf ) (8)

where f t is either 0 or 1 to denote the total block and total
transit of the information, respectively. In the next step, the
LSTM calculates the upcoming information to be stored by
using a two-step process. The first part regulates the parame-
ters to be used via the following equation:

it = σ (wi[ht−1, x t ]+ bi) (9)

The second part determines an optimal state value C̃ t by using
the following equation:

C̃ t
= tanh(wc[ht−1, x t ]+ bc) (10)

In the third step, the LSTM determines the current state C t

by using the following equation:

C t
= f t ∗ C t−1

+ it ∗ C̃ t (11)

As exhibited in Figure 3, the filtered version of the com-
pressed cell state tanh(C t ) is the hidden network output ht .
The part of the information that should be preserved is cal-
culated by using the sigmoid layer ot , which is determined
according to the following equation:

ot = σ (wo[ht−1, x t ]+ bo) (12)

Ultimately, the final hidden output ht is articulated as

ht = ot ∗ tanh(C t ) (13)

C. FULLY CONNECTED AND SOFTMAX CLASSIFICATION
LAYERS
Fully connected layers are used to follow high-level repre-
sentations. In this work, the LSTM outputs are fed into two
hidden layers, and ultimately, a softmax layer is used for the
final activity identification step.

V. PERFORMANCE EVALUATION
We present the experimental results of our proposed
method (ConvAE-LSTM) on two smartphone sensor-based
public standard datasets (UCI [11] and WISDM [10])
and two body-worn, sensor-based public standard datasets
(OPPORTUNITY [82] and PAMAP2 [88]) in this section.
In this article, we mainly focus on smartphone sensor-
based HAR. Hence, we present detailed experimental results
obtained using the UCI and WISDM datasets. To demon-
strate the efficiency of our proposed model, we also present
the experimental results obtained by using OPPORTUNITY
and PAMAP2 in terms of accuracy and F1-scores.

A. DATASET
To exhibit the efficiency of the proposed method, we use
two popular public standard smartphone sensor-based HAR
datasets and two body-worn, sensor-based public standard
datasets that represent both static and dynamic activities. The
standard datasets used are explained as follows :
• UCI dataset [11] : This standard dataset is taken from
the publicly available ‘University of California Irvine
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FIGURE 5. % of different activities in the UCI dataset.

FIGURE 6. % of different activities in the WISDM dataset.

(UCI) Machine Learning’’ repository. This is a balanced
dataset, as shown in Figure 5. This dataset was col-
lected from 30 subjects aged between 19 and 48 years
who performed 6 different daily life activities such as
‘‘sitting’’, ‘‘standing’’, ‘‘walking’’, ‘‘lying’’, ‘‘walking
upstairs’’ and ‘‘walking downstairs’’. To collect the data,
a waist-mounted smartphone (SamsungGalaxySII ) with
a built-in accelerometer and gyroscope was used. This
dataset was also collected in a laboratory environment
with proper surveillance. This collected dataset consists
of 10,299 instances in total. Triaxial linear acceleration
and angular velocity measurements were collected at a
constant sampling rate of 50 Hz.

• WISDMActitracker dataset [10] : This standard pub-
lic dataset is provided by the ‘Wireless Sensor and
Data Mining (WISDM) lab. The dataset was collected
from 36 subjects using smartphone accelerometer sen-
sors. Each subject was asked to perform 6 different
human physical activities, such as ‘‘sitting’’, ‘‘standing’’,
‘‘walking’’, ‘‘jogging’’, ‘‘walking upstairs’’ and ‘‘walk-
ing downstairs’’. This dataset was also collected in a
laboratory environment with proper surveillance. In this
dataset, the total number of instances is 1,098,207. The

3-axial linear acceleration measurements were collected
at a constant sampling rate of 20 Hz.

• OPPORTUNITY dataset [82] : This dataset consists
of complicated naturalistic activities including a large
number of atomic activities (over 27,000) recorded in a
sensory-rich environment at a constant sampling rate of
30 Hz. It includes recordings of 12 participants obtained
using 15 networked sensor systems with 72 sensors from
10 different modalities that are embedded in the envi-
ronment, in objects, and on the body. We only consider
the on-body sensors, including the 3-axial accelerome-
ter and inertial measurement units. This is an 18-class
classification problem (including the null class).

• PAMAP2 dataset [88] : It contains recordings from
9 subjects (8 men and 1 woman) who were asked to
perform 18 lifestyle tasks, including household chores,
at a constant sampling rate of 100 Hz. Over the course
of 10 hours, data from inertial measurement equipment
on the hand, chest, and ankle were collected, includ-
ing accelerometer, gyroscope, magnetometer, temper-
ature, and heart rate data. The resulting dataset has
52 dimensions.

Using a continuous sequence of sensory data, an end-to-end
HARmodel is implemented in this work. During this process,
from the raw sensory data, a sequence of short time-series
data is extracted. To save the transient connections between
the information focused on a given activity, a sliding window
with a 50% overlapping rate is used to segment the collected
raw sensory data. For the above datasets, the length of the
sliding window is 128 with a step size of 64.

B. EXPERIMENTAL SETUP
In the training phase, forward calculation is used with
the training set to obtain the network output. Afterward,
in between the predicted outputs and actual outputs, the
cross-entropy errors are calculated. Then, the Adam opti-
mizer is used to backpropagate the errors in the sequence
of layers to update the hyperparameters of our proposed
network. After calculating the adaptive learning rate of each
parameter, the hyperparameters of the objective function are
optimized by Adam [97]. The Keras API permits one to move
from the beginning to the end result with the least viable
delay [94]. During this experiment, we build a sequential
Keras model (version 2.4.3) with TensorFlow in the backend
(version 2.3.1). For our experiments, we use a single GPU
(NVIDIA GTX 1060 GPU with 6 GB of memory).

To perform the experiment, the first two datasets are
divided into two different groups: 70% of the volunteers
are selected for training, and 30% are used for testing the
proposed HAR solution. Hence, the same subjects’ data are
not included in both the training and testing sets. In our
experiment, simple 5-fold cross validation is used to gener-
ate multiple training and validation splits from the training
set, as cross validation is less computationally complex than
other methods such as leave-one-out cross validation [98].
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TABLE 2. Average training and testing times yielded for the UCI-HAR dataset.

Leave-one-subject-out (LOSO) cross validation is also per-
formed to provide a more comprehensive evaluation. We use
data from one subject for testing and those from the remaining
subjects for training. This cross-subject test is more rigorous
because the test data are hidden from the models, making it
a more realistic setting for validating the models’ generaliza-
tion abilities. By using all the datasets, in the input layer of
the CNN, 1D convolution is performed. In our experiment,
a ReLU is used as an activation function for the convolution
layers with a kernel size of 3, a stride of 2, and a filter
size of 64. Similarly, in the max-pooling layer, the pooling
size and stride are both of size 2. The learning rate is set
to 0.001. The optimizer updates and calculates the network
parameters that affect themodel training and output processes
to approximate or reach the optimal value, thereby reducing
the loss function.

C. EXPERIMENTAL RESULTS
In this section, we discuss the experimental results of the
proposed method in terms of accuracy, precision, recall, com-
putational complexity, and testing time by using the first two
datasets. The experimental results obtained with the other two
datasets are provided later. To prove the capability of our
proposed model, we also compare the results of our proposed
model with those of other commonly used DL approaches,
such as a CNN, LSTM, an AE, CNN-LSTM, and a convo-
lutional AE. In this experiment, we take the simple CNN
and LSTM architectures as proposed in [58]. In the cases
of the AE and convolutional AE, we utilize a max-pooling
layer for encoding, which is similar to our proposed method
(ConvAE-LSTM).

1) UCI DATASET
Utilizing the UCI-HAR dataset, we perform exhaustive
experiments on various DL approaches, such as a CNN,
LSTM, an AE, CNN-LSTM, a convolutional AE, and the
proposed method (ConvAE-LSTM). Table 2 demonstrates
the training time, testing time, and testing accuracy of
the aforementioned DL approaches, including our proposed
model. All the DL approaches are used in our experiment
to demonstrate the effectiveness of our proposed method
in the same experimental environment. The computational
time of our proposed model is very competitive with those
of the aforementioned DL approaches in the same compu-
tational environment. Moreover, the computational time of
ConvAE-LSTM is very competitive with that of the state-of-
the-art approach proposed in [51], where the computational
times for training and testing are 3.4274 s and 372.6 ms,

TABLE 3. Classification report for ConvAE-LSTM with UCI.

respectively, when using the CNN with the UCI dataset. The
testing accuracy of ConvAE-LSTM is 98.14%,which ismuch
higher than that of other popular DL approaches. However,
the computational times of the AE and convolutional AE are
the lowest among all the mentioned approaches in Table 2,
whereas their accuracies are very poor in comparison with
that of our proposed approach, as these two methods do not
consider the temporal dependencies among the raw sensory
time-series data.

Table 3 demonstrates the detailed classification results of
our proposed model. In this proposed model, as we take
both a convolutional AE and LSTM in combination, the
F1-scores of activities such as ‘‘walking’’, ‘‘walking down-
stairs’’ and ‘‘walking upstairs’’ are 99%, 100%, and 94%,
respectively. Therefore, we can conclude that our proposed
method can distinguish similar activity patterns very effi-
ciently, which is not achieved by using only the CNNmethod,
as mentioned in the HAR literature. Similarly, in cases with
static features such as ‘‘sitting’’, ‘‘lying’’ and ‘‘standing’’,
we achieve F1-scores of 97%, 98%, and 98%, respectively,
which are much better than those of any CNN-based HAR
solution. From the experimental results, we can easily con-
clude that our proposed method not only efficiently dif-
ferentiates among the static and dynamic activities but can
also efficiently identify similar activity patterns. Figure 7
depicts the confusion matrix of the different activities in the
testing set. We also analyze the activity recognition accu-
racy of the proposed ConvAE-LSTM method and compare
its performance with that of UCI data-based state-of-the-art
HAR solutions, the CNN, a CNN +handcrafted features [8],
LSTM with bidirectional LSTM [58], bidirectional LSTM
alone [71], CNN-LSTM [74] and LSTM-CNN [80], as well
as two popularly used shallow ML approaches (a random
forest (RF) and a support vector machine (SVM)). Table 4
compares the average accuracy of ConvAE-LSTM with that
of the aforementioned approaches. ConvAE-LSTM provides
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FIGURE 7. Confusion matrix for CAE-LSTM with UCI.

TABLE 4. Average accuracy comparison on the UCI-HAR dataset.

the best activity recognition accuracy (98.14%) among all
tested approaches.

2) WISDM DATASET
Utilizing the WISDM dataset, we perform exhaustive exper-
iments on various DL approaches, such as the CNN, LSTM,
the AE, CNN-LSTM, the convolutional AE, and the proposed
method (ConvAE-LSTM). Table 5 demonstrates the training
times, testing times, and testing accuracies of the afore-
mentioned DL approaches, including our proposed model.
The computational time of our proposed model is very
competitive with those of the other DL approaches in the
same computational environment. The testing accuracy of
the proposed model is 97.76%, which is much higher than
that of other popular DL approaches. However, the train-
ing and testing times of the AE and convolutional AE are
the lowest among all the mentioned approaches in Table 5,
whereas their accuracies are very poor in comparison with
that of our proposed approach, as these two methods do not
consider the temporal dependencies among the raw sensory
time-series data. It is pertinent to mention that the WISDM
dataset is imbalanced, as depicted in Figure 6. In the case
of an imbalanced dataset, several techniques are required
to balance the dataset according to the HAR literature, and

FIGURE 8. Confusion matrix for ConvAE-LSTM with WISDM.

most conventional ML algorithms fail to classify imbalanced
datasets properly. However, while performing our experi-
ment, none of these techniques are applied to convert the
imbalanced dataset into a balanced dataset. The imbalanced
WISDM dataset is employed in our proposed model directly,
and we obtain very high identification performance for all the
activities, as the F1-score of each activity is greater than 95%
and the overall accuracy is 99%. Hence, we can conclude
that our proposed method provides an added advantage to
overcome the imbalanced dataset issue.

Table 6 shows the detailed classification results of our pro-
posed method with WISDM. In this proposed method, as we
utilize both a convolutional AE and LSTM in combination,
the F1-scores for activities such as ‘‘jogging’, ‘‘walking’’,
‘‘walking downstairs’’ and ‘‘walking upstairs’’ are 100%,
99%, 95%, and 97%, respectively. Therefore, we can con-
clude that our proposed method can distinguish similar activ-
ity patterns very efficiently, which is not achieved when using
only the CNN method, as mentioned in the HAR literature.
Moreover, for both static activities (‘‘sitting’’ and ‘‘stand-
ing’’), the F1-score is 99%, which is very remarkable accord-
ing to the HAR literature. Figure 8 depicts the confusion
matrix for the different activities in the testing set.

We also analyze the activity recognition accuracy of our
proposed ConvAE-LSTM method, and compare its perfor-
mance with that of WISDM dataset-based standard HAR
models, the CNN [18], a CNN + handcrafted features [48],
an AE ensemble [66], the convolutional AE [69] and
LSTM-CNN [80], as well as two shallowML approaches (an
RF and an SVM). Table 7 compares the average accuracy of
ConvAE-LSTM with that of the aforementioned approaches.
ConvAE-LSTM provides the best activity recognition accu-
racy (98.67%) among all tested approaches.

D. PERFORMANCE EVALUATION OF THE PROPOSED
MODEL USING LOSO CROSS VALIDATION
We also perform LOSO cross validation to provide a more
comprehensive evaluation. We use the data from one subject
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TABLE 5. Average training and testing time comparisons on the WISDM dataset.

TABLE 6. Classification report for ConvAE-LSTM with WISDM.

TABLE 7. Average accuracy comparison on the WISDM dataset.

for testing and the data from the remaining subjects for
training. This cross-subject test is more difficult because
the test data are hidden from the models, making it a more
realistic setting for validating the models’ generalization abil-
ities. After testing the models with a unique subject for each
fold, we obtain different evaluation metric values, one from
each fold. To assess the accuracy of the models, we take
the mean± SD of all the accuracy metrics. We perform the
LOSO cross-validation evaluation technique with a 95% con-
fidence level as follows :

• In LOSO cross-validation, for each fold, we obtain dif-
ferent accuracy metrics. We calculate the mean and SD
for each accuracy metric.

• After calculating the average accuracy, we calculate the
error: error = 1− accuracy.

• Next, we calculate the confidence interval for the classi-
fication error using

error ± constant ∗

√
error ∗ (1− error)

n
,

where n is the number of samples used to evaluate the
model and the value of the constant is 1.96, which is
provided by the statistics for the 95% confidence level.

TABLE 8. Average accuracy comparison on the UCI-HAR dataset with
LOSO cross validation.

TABLE 9. Average accuracy comparison on the WISDM dataset with LOSO
cross validation.

By sing the aforementioned steps, we calculate the true
accuracy and confidence interval with a 95% confidence
level (the significance level is 0.05) for each of the models,
as presented in Tables 8 and 9.

Even when using LOSO cross validation, which is more
realistic and difficult, the proposed technique outperforms
the aforementioned state-of-the-art methods on both the
UCI and WISDM datasets. By utilizing LOSO cross valida-
tion, the accuracies of the proposed model are 97.13% and
97.56% on the UCI and WISDM datasets, respectively, with
a 0.05 level of significance. Similarly, the F1-scores of the
proposed model are 97.08% and 97.38% on the UCI and
WISDM datasets, respectively, with a 0.05 level of signif-
icance. The performance of the different models according
to LOSO cross validation with a 95% confidence level is
presented in Tables 8 and 9 for the UCI andWISDM datasets,
respectively.
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TABLE 10. Average accuracy comparison on the OPPORTUNITY and
PAMAP2 datasets.

E. EXPERIMENTAL RESULTS OBTAINED ON THE
OPPORTUNITY AND PAMAP2 DATASETS
We use LOSO cross validation to perform an experiment
using these two body-worn sensor datasets. The performance
of the different models according to LOSO cross valida-
tion with a 95% confidence level is presented in Table 10
for the OPPORTUNITY and PAMAP2 datasets. We achieve
an accuracy of 95.69% and an F1-score of 95.54% on the
OPPORTUNITY dataset and an accuracy of 94.33% and an
F1-score of 94.46% on the PAMAP2 dataset. Our proposed
method outperforms the existing methods on both datasets.

F. STATISTICAL ANALYSIS
To prove the generalization and robustness of our proposed
technique, it is also necessary to perform a statistical test.
In this study, we consider four different datasets: UCI [11],
WISDM [10], PAMAP2 [88] and OPPORTUNITY [82].
We perform the Friedman test [100], [101], which is a
nonparametric equivalent of the repeated-measures ANOVA
technique. In our statistical test, we assume that the null
hypothesis is as follows: ‘‘There are no significant differences
among the model performances’’. The alternate hypothesis
is as follows: ‘‘There is a significant difference among the
model performances’’.

The following steps are executed to perform the Friedman
test.
• First, represent the observed accuracy in a matrix xij
with n rows and k columns, where the accuracies of
16 different models are presented corresponding to the
4 different datasets. In our experiment, n=16 and k=4.

• Then, for each dataset, separately calculate the ranks of
the models.

• Replace the data with a new matrix {rij}n×k , where entry
rij is the rank of xij within block i.

• Calculate the values r̄·j = 1
n

∑n
i=1 rij.

• Then, calculate the test statistic (Friedman test statistic)
using the following formula :

Q =
12n

k(k + 1)

k∑
j=1

(
r̄·j −

k + 1
2

)2

.

FIGURE 9. Effects of the optimizers on model performance with the UCI
dataset.

• Finally, using a chi-squared distribution, approximate
the probability distribution ofQ. In this case, the p-value
is given by P(χ2

k−1 ≥ Q).

After performing the abovementioned test with α = 0.05,
the observed level of significance p ≤ α. Hence, the result
is statistically significant. However, this p-value is based on
a single accuracy and thus may give an inappropriate result.
Therefore, to adjust our statistical confidence measures based
on the number of completed tests, we require multiple testing
correction processes. The Bonferroni correction [102] is the
simplest and most extensively used multiple testing correc-
tion method. If we use a significance threshold of α but run n
independent tests, the Bonferroni adjustment only considers a
score significant if thematching p-value≤ α/n. A Bonferroni
correction [102] is used to control the familywise Type-I
error rate, resulting in an adjusted significance of 0.0031.
In Table 11, the p-values are less than 0.31%, and we can
statistically conclude that the proposed model outperforms
the state-of-the-art models as the assumed null hypothesis is
rejected. Hence, there are significant differences between the
model performances.

G. EFFECTS OF THE HYPERPARAMETERS ON THE
PERFORMANCE OF THE PROPOSED MODEL
The performance of a classification model is heavily influ-
enced by its hyperparameters. The impacts of two major
hyperparameters, that is, the number of epochs and the batch
size, on model performance are presented in this section.
Tests are run on the first two datasets, and the performance of
the model is assessed by tweaking a few model parameters.
The accuracy is utilized as the criterion for evaluation.

1) IMPACT OF THE OPTIMIZER
An optimizer updates and estimates the network parameters
that affect the model training and output processes to approx-
imate or reach the optimal value, thereby reducing the loss
function. This is an essential part of any DL approach. As a
result, selecting an appropriate optimizer for DL training is
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TABLE 11. Comparison of the models using the Friedman test.

FIGURE 10. Effects of the optimizers on model performance with the
WISDM dataset.

FIGURE 11. Effect of the batch size on model performance for the UCI
dataset.

critical. As illustrated in Figures 9 and 10, several common
optimizers, such as Adam, RMSprop, SGD, AdaGrad, and
AdaDelta, are empirically verified. The Adam optimizer-
trained model has the best fitting effect and the steadiest
gradient descent curve fluctuation. Hence, to train the CNN
model, Adam is employed as the optimizer.

Figures 15 and 16 present the accuracies and losses
induced by different numbers of epochs on the WISDM
dataset.

FIGURE 12. Effect of the batch size on model performance for the WISDM
dataset.

FIGURE 13. Effect of the number of epochs on the model accuracy with
the UCI dataset.

2) IMPACT OF THE BATCH SIZE
In regard to DL, minibatch processing is a popular technique
for training neural networks. The gradient descent process
may slow down due to the optimization of the cumulative
error over the entire training set and possibly lead to a local
optimum for the corresponding model. If the error due to
one sample only is optimized in one iteration, the gradient
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FIGURE 14. Effect of the number of epochs on the model loss with the
UCI dataset.

FIGURE 15. Effect of the number of epochs on the model accuracy with
the WISDM dataset.

FIGURE 16. Effect of the number of epochs on the model loss with the
WISDM dataset.

descent step may fluctuate dramatically, resulting in training
difficulty. Figures 11 and 12 depict the accuracies obtained
with the five different batch sizes. When the batch size is set
to 192, the accuracy is at its maximum for theWISDM public
dataset, and when the batch size is 128, the accuracy is at its
maximum for our UCI dataset.

3) EFFECT OF THE NUMBER OF EPOCHS
The number of epochs is a type of hyperparameter that plays
an important role in a DL model’s training process. The total
number of epochs to be used helps us determine whether
the data have been overtrained. Figures 13 and 14 present
the accuracies and losses obtained with different numbers
of epochs on the UCI dataset. The validation set is used to
minimize overfitting asmuch as possible.We stop the training
procedure when the validation error is minimal.

H. COMPLEXITY ANALYSIS OF THE PROPOSED
ARCHITECTURE
Suppose that n0 = the number of input channels, n =
the number of filters, s1Xs2 = the size of each filter, and
m1Xm2 = Size of the output feature map. The complexity
of the convolution layer = O(n0 ∗ s1 ∗ s2 ∗ n ∗ m1 ∗ m2).
In the case of the deconvolutional layer in the AE, only
the dimensionality is decreased by the downsampling factor,
so there is no effect on the complexity. The polling layer
is a fixed operation with no weighting factor. Fully con-
nected layers - Input dimensions = m, and number of output
dimensions = n. The number of parameters = (m + 1) ∗ n.
LSTM is local in terms of space and time; therefore, the
overall complexity of an LSTM network per time step is
equal to O(w), where w is the number of weights. Overall
complexity = O(((n0 ∗ s1 ∗ s2 ∗ n ∗ m1 ∗ m2) + w) + i ∗ e),
where i is the input length and e is the number of epochs.

VI. DISCUSSIONS
In this study, we propose a DL framework by combining a
convolutional AE and LSTM. The fully connected layer of
the CNN increases the computational time of the model as
the number of parameters increases. Additionally, CNNs are
efficient in extracting features from labeled data, which are
very rare in real scenarios. To overcome these shortcomings,
we combine the convolution layer with an AE, and the output
of the convolutional AE is given as the input of the LSTM
module to extract temporal features and make the proposed
DL architecture more accurate and effective in recogniz-
ing human activities. In the traditional ML method, feature
engineering is a challenging and tedious job. In contrast,
DL approaches are blessed with automatic feature learning
characteristics. However, various DL approaches have their
own merits and demerits. Hence, in this study, we consider
the advantages of the convolution layer in combination with
an AE for automatic feature extraction and for overcom-
ing the overfitting issue. Moreover, sensor data streams are
time series; hence, LSTM-based approaches with excellent
sequential modeling capabilities are inherently appropriate.
With the typical memory and computational resource restric-
tions, however, training an LSTMmodel on raw sensory data
with a high sampling frequency is impossible. The suggested
model not only avoids complicated data preprocessing and
feature engineering techniques but also provides high recog-
nition accuracy in an acceptable amount of computational
time.
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In this study, we mainly focus on smartphone-based
HAR. Hence, for detailed experimentation, we consider
smartphone-based public standard sensor data for exhaus-
tive experiments. To prove the effectiveness of the proposed
method, we also experiment with body-worn sensory data
drawn from the ‘‘PAMAP2’’ and ‘‘OPPORTUNITY’’ public
standard datasets and compare our results with those of state-
of-the-art methods developed in other studies.

In the literature, convolutional AEs and LSTM are both
popularly used for manifold data. Our proposed architec-
ture is the combination of a convolutional AE and LSTM.
However, in this paper, we do not show the experimental
results obtained when using manifold data. In our future
work, we can adopt manifold data to prove the effectiveness
of our proposed framework.

VII. CONCLUSION
A novel DL approach in which a convolutional AE is
followed by LSTM for HAR, namely, ConvAE-LSTM,
is proposed in this paper. To establish the generalizability,
potentiality, and efficacy of the suggested model, two stan-
dard smartphone sensor-based datasets (UCI and WISDM)
and two standard body-worn sensor datasets (Opportunity
and PAMAP2) are considered for experimentation. The pro-
posed method achieves average precision, recall, F1-score,
and accuracy values of 97%, 96.83%, 97.67%, and 98.14%
on the UCI dataset and 98.17%, 98.33%, 98.17% and 98.67%
on the WISDM dataset, respectively. Furthermore, we also
explore the computational times of our proposed method and
other commonly used DL approaches in the same experi-
mental environment. The computational time of the proposed
model is highly competitive with those of the other mentioned
DL approaches. We also examine how several hyperparam-
eters, such as the type of optimizer used, the number of
epochs, and the batch size, affect the model performance.
Finally, the model is trained with the best hyperparameters
for the final design. To summarize, compared with the other
tested DL approaches and two popularly used shallow ML
approaches described in the HAR literature, the proposed
ConvAE-LSTMmodel demonstrates consistently higher per-
formance and has better generalization.

Despite the fact that much work has been done in this field,
our findings show that many challenges remain unsolved,
particularly in the area of activity recognition. Several aspects
will be involved in future work. First, we will compare the
proposed method with other recent DL-based methods and
perform experiments on more available datasets by using
other available classifiers. Second, in real-life applications,
the applicability of the proposed method should be analyzed.
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